1
|
Kim SY. Insights into Tuberous Sclerosis Complex : From Genes to Clinics. J Korean Neurosurg Soc 2025; 68:321-337. [PMID: 40090343 PMCID: PMC12062541 DOI: 10.3340/jkns.2025.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder caused by pathogenic variants of TSC1 or TSC2 genes, leading to dysregulation of the mammalian target of rapamycin (mTOR) pathway. This dysregulation results in the formation of organ-specific tumors and neurological manifestations such as seizures, intellectual disability, and developmental delays. These characteristic clinical features are crucial for diagnosis, and genetic testing is playing an increasingly significant role. Long-term disease monitoring and appropriate interventions by multidisciplinary experts, including the use of mTOR inhibitors and promising therapeutic agents based on disease pathomechanisms, are essential for effective TSC management and improved clinical outcomes.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children’s Hospital, Seoul, Korea
| |
Collapse
|
2
|
Hartung J, Müller C, Calkhoven CF. The dual role of the TSC complex in cancer. Trends Mol Med 2025; 31:452-465. [PMID: 39488444 DOI: 10.1016/j.molmed.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
The tuberous sclerosis complex (TSC1/TSC2/TBC1D7) primarily functions to inhibit the mechanistic target of rapamycin complex 1 (mTORC1), a crucial regulator of cell growth. Mutations in TSC1 or TSC2 cause tuberous sclerosis complex (TSC), a rare autosomal dominant genetic disorder marked by benign tumors in multiple organs that rarely progress to malignancy. Traditionally, TSC proteins are considered tumor suppressive due to their inhibition of mTORC1 and other mechanisms. However, more recent studies have shown that TSC proteins can also promote tumorigenesis in certain cancer types. In this review, we explore the composition and function of the TSC protein complex, the roles of its individual components in cancer biology, and potential future therapeutic targeting strategies.
Collapse
Affiliation(s)
- Josephine Hartung
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Christine Müller
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands.
| |
Collapse
|
3
|
Brown SP, Jena AK, Osko JJ, Ransdell JL. Tsc1 deletion in Purkinje neurons disrupts the axon initial segment, impairing excitability and cerebellar function. Neurobiol Dis 2025; 207:106856. [PMID: 40015654 PMCID: PMC11997981 DOI: 10.1016/j.nbd.2025.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
Loss-of-function mutations in tuberous sclerosis 1 (TSC1) are prevalent monogenic causes of autism spectrum disorder (ASD). Selective deletion of Tsc1 from mouse cerebellar Purkinje neurons has been shown to cause several ASD-linked behavioral impairments, which are linked to reduced Purkinje neuron repetitive firing rates. We used electrophysiology methods to investigate why Purkinje neuron-specific Tsc1 deletion (Tsc1mut/mut) impairs Purkinje neuron firing. These studies revealed a depolarized shift in action potential threshold voltage, an effect that we link to reduced expression of the fast-transient voltage-gated sodium (Nav) current in Tsc1mut/mut Purkinje neurons. The reduced Nav currents in these cells was associated with diminished secondary immunofluorescence from anti-pan Nav channel labeling at Purkinje neuron axon initial segments (AIS). Anti-ankyrinG immunofluorescence was also found to be significantly reduced at the AIS of Tsc1mut/mut Purkinje neurons, suggesting Tsc1 is necessary for the organization and functioning of the Purkinje neuron AIS. An analysis of the 1st and 2nd derivative of the action potential voltage-waveform supported this hypothesis, revealing spike initiation and propagation from the AIS of Tsc1mut/mut Purkinje neurons is impaired compared to age-matched control Purkinje neurons. Heterozygous Tsc1 deletion resulted in no significant changes in the firing properties of adult Purkinje neurons, and slight reductions in anti-pan Nav and anti-ankyrinG labeling at the Purkinje neuron AIS, revealing deficits in Purkinje neuron firing due to Tsc1 haploinsufficiency are delayed compared to age-matched Tsc1mut/mut Purkinje neurons. Together, these data reveal that the loss of Tsc1 impairs Purkinje neuron firing and membrane excitability through the dysregulation of proteins essential for AIS organization and function.
Collapse
Affiliation(s)
- Samuel P Brown
- Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Achintya K Jena
- Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Joanna J Osko
- Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Joseph L Ransdell
- Department of Biology, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
4
|
Li TL, Blair JD, Yoo T, Grant GA, Hockemeyer D, Porter BE, Bateup HS. mTORC1 activation drives astrocyte reactivity in cortical tubers and brain organoid models of TSC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640914. [PMID: 40093155 PMCID: PMC11908165 DOI: 10.1101/2025.02.28.640914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Tuberous Sclerosis Complex (TSC) is a genetic neurodevelopmental disorder associated with early onset epilepsy, intellectual disability and neuropsychiatric disorders. A hallmark of the disorder is cortical tubers, which are focal malformations of brain development containing dysplastic cells with hyperactive mTORC1 signaling. One barrier to developing therapeutic approaches and understanding the origins of tuber cells is the lack of a model system that recapitulates this pathology. To address this, we established a genetically mosaic cortical organoid system that models a somatic "second-hit" mutation, which is thought to drive the formation of tubers in TSC. With this model, we find that loss of TSC2 cell-autonomously promotes the differentiation of astrocytes, which exhibit features of a disease-associated reactive state. TSC2 -/- astrocytes have pronounced changes in morphology and upregulation of proteins that are risk factors for neurodegenerative diseases, such as clusterin and APOE. Using multiplexed immunofluorescence in primary tubers from TSC patients, we show that tuber cells with hyperactive mTORC1 activity also express reactive astrocyte proteins, and we identify a unique population of cells with expression profiles that match those observed in organoids. Together, this work reveals that reactive astrogliosis is a primary feature of TSC that arises early in cortical development. Dysfunctional glia are therefore poised to be drivers of pathophysiology, nominating a potential therapeutic target for treating TSC and related mTORopathies.
Collapse
Affiliation(s)
- Thomas L. Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - John D. Blair
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Taesun Yoo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Lucile Packard Children’s Hospital and Stanford University Medical Center, Stanford, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Helen S. Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Wang S, Ma R, Gao C, Tian YN, Hu RG, Zhang H, Li L, Li Y. Unraveling the function of TSC1-TSC2 complex: implications for stem cell fate. Stem Cell Res Ther 2025; 16:38. [PMID: 39901197 PMCID: PMC11792405 DOI: 10.1186/s13287-025-04170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Tuberous sclerosis complex is a genetic disorder caused by mutations in the TSC1 or TSC2 genes, affecting multiple systems. These genes produce proteins that regulate mTORC1 activity, essential for cell function and metabolism. While mTOR inhibitors have advanced treatment, maintaining long-term therapeutic success is still challenging. For over 20 years, significant progress has linked TSC1 or TSC2 gene mutations in stem cells to tuberous sclerosis complex symptoms. METHODS A comprehensive review was conducted using databases like Web of Science, Google Scholar, PubMed, and Science Direct, with search terms such as "tuberous sclerosis complex," "TSC1," "TSC2," "stem cell," "proliferation," and "differentiation." Relevant literature was thoroughly analyzed and summarized to present an updated analysis of the TSC1-TSC2 complex's role in stem cell fate determination and its implications for tuberous sclerosis complex. RESULTS The TSC1-TSC2 complex plays a crucial role in various stem cells, such as neural, germline, nephron progenitor, intestinal, hematopoietic, and mesenchymal stem/stromal cells, primarily through the mTOR signaling pathway. CONCLUSIONS This review aims shed light on the role of the TSC1-TSC2 complex in stem cell fate, its impact on health and disease, and potential new treatments for tuberous sclerosis complex.
Collapse
Affiliation(s)
- Shuang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruishuang Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chong Gao
- School of Medicine, Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yu-Nong Tian
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rong-Gui Hu
- State Key Laboratory of Brain-Machine Intelligence, Liangzhu Laboratory, School of Medicine, Zhejiang University, Zhejiang, China.
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lan Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
6
|
Brown SP, Jena AK, Osko JJ, Ransdell JL. Tsc1 Deletion in Purkinje Neurons Disrupts the Axon Initial Segment, Impairing Excitability and Cerebellar Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635932. [PMID: 39974887 PMCID: PMC11838410 DOI: 10.1101/2025.01.31.635932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Loss-of-function mutations in tuberous sclerosis 1 (TSC1) are prevalent monogenic causes of autism spectrum disorder (ASD). Selective deletion of Tsc1 from mouse cerebellar Purkinje neurons has been shown to cause several ASD-linked behavioral impairments, which are linked to reduced Purkinje neuron repetitive firing rates. We used electrophysiology methods to investigate why Purkinje neuron-specific Tsc1 deletion (Tsc1 mut/mut ) impairs Purkinje neuron firing. These studies revealed a depolarized shift in action potential threshold voltage, an effect that we link to reduced expression of the fast-transient voltage-gated sodium (Nav) current in Tsc1 mut/mut Purkinje neurons. The reduced Nav currents in these cells was associated with diminished secondary immunofluorescence from anti-pan Nav channel labeling at Purkinje neuron axon initial segments (AIS). Interestingly, anti-ankyrinG immunofluorescence was also found to be significantly reduced at the AIS of Tsc1 mut/mut Purkinje neurons, suggesting Tsc1 is necessary for the organization and functioning of the Purkinje neuron AIS. An analysis of the 1st and 2nd derivative of the action potential voltage-waveform supported this hypothesis, revealing spike initiation and propagation from the AIS of Tsc1 mut/mut Purkinje neurons is impaired compared to age-matched control Purkinje neurons. Heterozygous Tsc1 deletion resulted in no significant changes in the firing properties of adult Purkinje neurons, and slight reductions in anti-pan Nav and anti-ankyrinG labeling at the Purkinje neuron AIS, revealing deficits in Purkinje neuron firing due to Tsc1 haploinsufficiency are delayed compared to age-matched Tsc1 mut/mut Purkinje neurons. Together, these data reveal the loss of Tsc1 impairs Purkinje neuron firing and membrane excitability through the dysregulation of proteins necessary for AIS organization and function.
Collapse
Affiliation(s)
| | | | - Joanna J. Osko
- Department of Biology Miami University, Oxford, OH 45056
| | | |
Collapse
|
7
|
Dementieva NV, Nikitkina EV, Shcherbakov YS, Pleshanov NV, Ryabova AE, Azovtseva AI, Silyukova YL, Musidray AA, Griffin DK, Romanov MN. Genome-Wide Analysis of Genetic Predispositions Linked to Damaged Membranes and Impaired Fertility as Indicators of Compromised Sperm-Egg Interaction Mechanisms in Frozen-Thawed Rooster Semen. Front Biosci (Schol Ed) 2025; 17:26022. [PMID: 40150870 DOI: 10.31083/fbs26022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND Cryopreservation cannot be widely used for rooster sperm due to high incidences of cryoinjury, including damage to sperm membranes. Thus, cryopreserved rooster sperm has limited use due to low sperm motility and reduced fertilizing ability, which disrupts the mechanisms involved in sperm-egg interactions. Previously, we used an Illumina 60K single-nucleotide polymorphism (SNP) array to search for genes associated with rooster sperm quality, before and after freeze-thawing. As a continuation of these genome-wide association studies (GWAS), the present investigation used a denser 600K SNP chip. Consequently, the screen depth was expanded by many markers for cryo-resistance in rooster sperm while more candidate genes were identified. Thus, our study aimed to identify genome-wide associations with ejaculate quality indicators, including those concerning sperm membrane damage. METHODS We selected sperm quality indicators after freezing-thawing using samples from a proprietary cryobank collection created to preserve generative and germ cells of rare and endangered breeds of chickens and other animal species. A total of 258 ejaculates from 96 roosters of 16 different breeds were analyzed. Moreover, 96 respective DNA samples were isolated for genotyping using a 600K Affymetrix® Axiom® high-density genotyping array. RESULTS In total, 31 SNPs and 26 candidate genes were associated with characteristics of sperm membrane damage, progressive motility, and sperm cell respiration induction using 2,4-dinitrophenol. In particular, we identified the ENSGALG00000029931 gene as a candidate for progressive motility, PHF14 and ARID1B for damaged sperm membranes, and KDELR3, DDX17, DMD, CDKL5, DGAT2, ST18, FAM150A, DIAPH2, MTMR7, NAV2, RAG2, PDE11A, IFT70A, AGPS, WDFY1, DEPDC5, TSC1, CASZ1, and PLEKHM2 for sperm cell respiration induction. CONCLUSIONS Our findings provide important information for understanding the genetic basis of sperm membrane integrity and other traits that can potentially compromise the mechanisms involved in sperm-egg interactions. These findings are relevant to the persistence of fertility after thawing previously frozen rooster semen.
Collapse
Affiliation(s)
- Natalia V Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Elena V Nikitkina
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Yuri S Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Nikolai V Pleshanov
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Anna E Ryabova
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Anastasiia I Azovtseva
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Yulia L Silyukova
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Artem A Musidray
- North-Western Center for Interdisciplinary Research of Food Security Problems, St. Petersburg Federal Research Center of the Russian Academy of Sciences, Pushkin, 196608 St. Petersburg, Russia
| | - Darren K Griffin
- School of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, 10900 Bangkok, Thailand
| | - Michael N Romanov
- School of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, 10900 Bangkok, Thailand
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk, 142132 Moscow Oblast, Russia
| |
Collapse
|
8
|
He L, Cho S, Blenis J. mTORC1, the maestro of cell metabolism and growth. Genes Dev 2025; 39:109-131. [PMID: 39572234 PMCID: PMC11789495 DOI: 10.1101/gad.352084.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway senses and integrates various environmental and intracellular cues to regulate cell growth and proliferation. As a key conductor of the balance between anabolic and catabolic processes, mTOR complex 1 (mTORC1) orchestrates the symphonic regulation of glycolysis, nucleic acid and lipid metabolism, protein translation and degradation, and gene expression. Dysregulation of the mTOR pathway is linked to numerous human diseases, including cancer, neurodegenerative disorders, obesity, diabetes, and aging. This review provides an in-depth understanding of how nutrients and growth signals are coordinated to influence mTOR signaling and the extensive metabolic rewiring under its command. Additionally, we discuss the use of mTORC1 inhibitors in various aging-associated metabolic diseases and the current and future potential for targeting mTOR in clinical settings. By deciphering the complex landscape of mTORC1 signaling, this review aims to inform novel therapeutic strategies and provide a road map for future research endeavors in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sungyun Cho
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
9
|
Dionne O, Sabatié S, Laurent B. Deciphering the physiopathology of neurodevelopmental disorders using brain organoids. Brain 2025; 148:12-26. [PMID: 39222411 PMCID: PMC11706293 DOI: 10.1093/brain/awae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Neurodevelopmental disorders (NDD) encompass a range of conditions marked by abnormal brain development in conjunction with impaired cognitive, emotional and behavioural functions. Transgenic animal models, mainly rodents, traditionally served as key tools for deciphering the molecular mechanisms driving NDD physiopathology and significantly contributed to the development of pharmacological interventions aimed at treating these disorders. However, the efficacy of these treatments in humans has proven to be limited, due in part to the intrinsic constraint of animal models to recapitulate the complex development and structure of the human brain but also to the phenotypic heterogeneity found between affected individuals. Significant advancements in the field of induced pluripotent stem cells (iPSCs) offer a promising avenue for overcoming these challenges. Indeed, the development of advanced differentiation protocols for generating iPSC-derived brain organoids gives an unprecedented opportunity to explore human neurodevelopment. This review provides an overview of how 3D brain organoids have been used to investigate various NDD (i.e. Fragile X syndrome, Rett syndrome, Angelman syndrome, microlissencephaly, Prader-Willi syndrome, Timothy syndrome, tuberous sclerosis syndrome) and elucidate their pathophysiology. We also discuss the benefits and limitations of employing such innovative 3D models compared to animal models and 2D cell culture systems in the realm of personalized medicine.
Collapse
Affiliation(s)
- Olivier Dionne
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Salomé Sabatié
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Benoit Laurent
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5H4, Canada
| |
Collapse
|
10
|
Andrei C, Mihai DP, Nitulescu GM, Nitulescu G, Zanfirescu A. Modulating Autophagy in Osteoarthritis: Exploring Emerging Therapeutic Drug Targets. Int J Mol Sci 2024; 25:13695. [PMID: 39769455 PMCID: PMC11727697 DOI: 10.3390/ijms252413695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by the breakdown of cartilage and the subsequent inflammation of joint tissues, leading to pain and reduced mobility. Despite advancements in symptomatic treatments, disease-modifying therapies for OA remain limited. This narrative review examines the dual role of autophagy in OA, emphasizing its protective functions during the early stages and its potential to contribute to cartilage degeneration in later stages. By delving into the molecular pathways that regulate autophagy, this review highlights its intricate interplay with oxidative stress and inflammation, key drivers of OA progression. Emerging therapeutic strategies aimed at modulating autophagy are explored, including pharmacological agents such as AMP kinase activators, and microRNA-based therapies. Preclinical studies reveal encouraging results, demonstrating that enhancing autophagy can reduce inflammation and decelerate cartilage degradation. However, the therapeutic benefits of autophagy modulation depend on precise, stage-specific approaches. Excessive or dysregulated autophagy in advanced OA may lead to chondrocyte apoptosis, exacerbating joint damage. This review underscores the promise of autophagy-based interventions in bridging the gap between experimental research and clinical application. By advancing our understanding of autophagy's role in OA, these findings pave the way for innovative and effective therapies. Nonetheless, further research is essential to optimize these strategies, address potential off-target effects, and develop safe, targeted treatments that improve outcomes for OA patients.
Collapse
Affiliation(s)
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.A.); (G.M.N.); (G.N.); (A.Z.)
| | | | | | | |
Collapse
|
11
|
Rotti PG, Yi Y, Gasser G, Yuan F, Sun X, Apak-Evans I, Wu P, Liu G, Choi S, Reeves R, Scioneaux AE, Zhang Y, Winter M, Liang B, Cunicelli N, Uc A, Norris AW, Sussel L, Wells KL, Engelhardt JF. CFTR represses a PDX1 axis to govern pancreatic ductal cell fate. iScience 2024; 27:111393. [PMID: 39687022 PMCID: PMC11647141 DOI: 10.1016/j.isci.2024.111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation, acinar atrophy, and ductal hyperplasia drive pancreatic remodeling in newborn cystic fibrosis (CF) ferrets lacking a functional cystic fibrosis conductance regulator (CFTR) channel. These changes are associated with a transient phase of glucose intolerance that involves islet destruction and subsequent regeneration near hyperplastic ducts. The phenotypic changes in CF ductal epithelium and their impact on islet function are unknown. Using bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq), and assay for transposase-accessible chromatin using sequencing (ATAC-seq) on CF ferret models, we demonstrate that ductal CFTR protein constrains PDX1 expression by maintaining PTEN and GSK3β activation. In the absence of CFTR protein, centroacinar cells adopted a bipotent progenitor-like state associated with enhanced WNT/β-Catenin, transforming growth factor β (TGF-β), and AKT signaling. We show that the level of CFTR protein, not its channel function, regulates PDX1 expression. Thus, this study has discovered a cell-autonomous CFTR-dependent mechanism by which CFTR mutations that produced little to no protein could impact pancreatic exocrine/endocrine remodeling in people with CF.
Collapse
Affiliation(s)
| | - Yaling Yi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Grace Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Idil Apak-Evans
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Peipei Wu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Guangming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Soon Choi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rosie Reeves
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Attilina E. Scioneaux
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael Winter
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bo Liang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan Cunicelli
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aliye Uc
- Stead Family Department of Pediatrics, Carver College of Medicine, Iowa City, IA, USA
| | - Andrew W. Norris
- Center for Gene Therapy, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lori Sussel
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - Kristen L. Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
12
|
Cheng TYD, Fu DA, Falzarano SM, Zhang R, Datta S, Zhang W, Omilian AR, Aduse-Poku L, Bian J, Irianto J, Asirvatham JR, Campbell-Thompson M. Association of Computed Tomography Scan-Assessed Body Composition with Immune and PI3K/AKT Pathway Proteins in Distinct Breast Cancer Tumor Components. Int J Mol Sci 2024; 25:13428. [PMID: 39769193 PMCID: PMC11676426 DOI: 10.3390/ijms252413428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
This hypothesis-generating study aims to examine the extent to which computed tomography-assessed body composition phenotypes are associated with immune and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways in breast tumors. A total of 52 patients with newly diagnosed breast cancer were classified into four body composition types: adequate (lowest two tertiles of total adipose tissue [TAT]) and highest two tertiles of total skeletal muscle [TSM] areas); high adiposity (highest tertile of TAT and highest two tertiles of TSM); low muscle (lowest tertile of TSM and lowest two tertiles of TAT); and high adiposity with low muscle (highest tertile of TAT and lowest tertile of TSM). Immune and PI3K/AKT pathway proteins were profiled in tumor epithelium and the leukocyte-enriched stromal microenvironment using GeoMx (NanoString). Linear mixed models were used to compare log2-transformed protein levels. Compared with the normal type, the low muscle type was associated with higher expression of INPP4B (log2-fold change = 1.14, p = 0.0003, false discovery rate = 0.028). Other significant associations included low muscle type with increased CTLA4 and decreased pan-AKT expression in tumor epithelium, and high adiposity with increased CD3, CD8, CD20, and CD45RO expression in stroma (p < 0.05; false discovery rate > 0.2). With confirmation, body composition can be associated with signaling pathways in distinct components of breast tumors, highlighting the potential utility of body composition in informing tumor biology and therapy efficacies.
Collapse
Affiliation(s)
- Ting-Yuan David Cheng
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43201, USA
| | - Dongtao Ann Fu
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA; (D.A.F.); (S.M.F.); (W.Z.); (M.C.-T.)
| | - Sara M. Falzarano
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA; (D.A.F.); (S.M.F.); (W.Z.); (M.C.-T.)
| | - Runzhi Zhang
- Department of Biostatistics, College of Public Health & Health Professions & College of Medicine, University of Florida, Gainesville, FL 32611, USA; (R.Z.); (S.D.)
| | - Susmita Datta
- Department of Biostatistics, College of Public Health & Health Professions & College of Medicine, University of Florida, Gainesville, FL 32611, USA; (R.Z.); (S.D.)
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA; (D.A.F.); (S.M.F.); (W.Z.); (M.C.-T.)
| | - Angela R. Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Livingstone Aduse-Poku
- Department of Epidemiology, College of Public Health & Health Professions & College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Jiang Bian
- Department of Health Outcomes & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA;
| | | | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA; (D.A.F.); (S.M.F.); (W.Z.); (M.C.-T.)
| |
Collapse
|
13
|
Sage E, Choudhri AF, Lee-Diaz JA, Bissler J, Wheless JW. Safety profile of abdominal magnetic resonance imaging (MRI) performed for renal disease surveillance in tuberous sclerosis complex patients with vagus nerve stimulation: Safety of MRI for TSC Patients with VNS. Seizure 2024; 123:148-151. [PMID: 39571475 DOI: 10.1016/j.seizure.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024] Open
Abstract
INTRODUCTION Individuals with tuberous sclerosis complex (TSC) often present with refractory epilepsy and may be undergoing treatment with vagus nerve stimulation (VNS) to control seizures. Surveillance magnetic resonance imaging (MRI) is necessary to monitor for the renal angiomyolipomas associated with TSC; however, MRI of the abdomen is not approved for patients withVNS therapy. We have many TSC patients with refractory epilelpsy who benefitted from VNS therapy, so we developed an MRI protocol that allows MRI of the abdomen to be performed in these patients to permit safe imaging of their kidneys. Here we report our results using this protocol. METHODS We performed a retrospective review for all TSC patients seen from 01/01/1997 to 10/01/2022 at a single center to determine VNS implantation status. Patients with VNS implants and abdomen imaging performed according to the protocol for kidney surveillance were included. RESULTS Sixteen patients with 48 total MRIs of the abdomen were found: 34 (71 %) scans were conducted under sedation and 14 (29 %) without sedation. None of the patients reported any adverse effects (pain or discomfort). No instances of VNS dysfunction were noted when re-interrogating the device immediately after completion of the imaging studies or at later neurology follow-up appointments. All MRI scans were of good quality for interpretation. CONCLUSION Abdominal MRIs performed in typical VNS exclusion zones were not associated with adverse events or VNS dysfunction. We believe this protocol is safe and permits the best method for monitoring renal disease in TSC patients with VNS.
Collapse
Affiliation(s)
- Ethan Sage
- Rhodes College, Memphis, TN, United States; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Asim F Choudhri
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States; Division of Neuroradiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jorge A Lee-Diaz
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States; Division of Neuroradiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John Bissler
- Tuberous Sclerosis Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, United States; Division of Pediatric Nephrology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James W Wheless
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States; Tuberous Sclerosis Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, United States; Division of Pediatric Neurology, University of Tennessee Health Science Center, 49 North Dunlap, 3rd Floor FOB, Memphis, TN 38105, United States.
| |
Collapse
|
14
|
Shen N, Zhuo Z, Luo X, Li B, Lin X, Luo S, Ye Z, Wang P, He N, Shi Y, Liao W. Variants of TSC1 are associated with developmental and epileptic encephalopathy and focal epilepsy without tuberous sclerosis : For the China Epilepsy Gene 1.0 Project. ACTA EPILEPTOLOGICA 2024; 6:41. [PMID: 40217423 PMCID: PMC11960315 DOI: 10.1186/s42494-024-00189-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/26/2024] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND The TSC1 gene encodes a growth inhibitory protein hamartin, which plays a crucial role in negative regulation of the activity of mTORC1 (mechanistic target of rapamycin complex 1). TSC1 has been associated with tuberous sclerosis complex (TSC). This study aims to investigate the association between TSC1 variants and common epilepsy. METHODS Trio-based whole-exome sequencing was performed in epilepsy patients without acquired etiologies from the China Epilepsy Gene 1.0 Project platform. The pathogenicity of the variants was evaluated according to the American College of Medical Genetics and Genomic (ACMG) guidelines. RESULTS Two TSC1 de novo variants, including c.1498 C > T/p.Arg500* and c.2356 C > T/p.Arg786*, were identified in two patients with developmental and epileptic encephalopathy (DEE). The patients exhibited frequent seizures and neurodevelopmental delay. Additionally, we identified two heterozygous TSC1 variants that affected four individuals with focal epilepsy from two unrelated families. The four probands did not present any typical symptom of TSC and had normal brain MRI findings. The four variants were absent in the Genome Aggregation Database (gnomAD) and were predicted to be damaging with a in silico prediction tool. Based on the ACMG guidelines, the four variants were evaluated to be "pathogenic" or "likely pathogenic". Of the patients in the China Epilepsy Gene 1.0 Project, 22 patients carried TSC1 variants and were diagnosed with TSC. The ratio of patients carrying TSC1 variants with or without TSC is about 5:1. CONCLUSIONS TSC1 is potentially associated with common epilepsy without tuberous sclerosis.
Collapse
Affiliation(s)
- Nanxiang Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xiangyun Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bingmei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xuqing Lin
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zilong Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Pengyu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yiwu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Weiping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
15
|
Alesi N, Asrani K, Lotan TL, Henske EP. The Spectrum of Renal "TFEopathies": Flipping the mTOR Switch in Renal Tumorigenesis. Physiology (Bethesda) 2024; 39:0. [PMID: 39012319 DOI: 10.1152/physiol.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
The mammalian target of Rapamycin complex 1 (mTORC1) is a serine/threonine kinase that couples nutrient and growth factor signaling to the cellular control of metabolism and plays a fundamental role in aberrant proliferation in cancer. mTORC1 has previously been considered an "on/off" switch, capable of phosphorylating the entire pool of its substrates when activated. However, recent studies have indicated that mTORC1 may be active toward its canonical substrates, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and S6 kinase (S6K), involved in mRNA translation and protein synthesis, and inactive toward TFEB and TFE3, transcription factors involved in the regulation of lysosome biogenesis, in several pathological contexts. Among these conditions are Birt-Hogg-Dubé syndrome (BHD) and, recently, tuberous sclerosis complex (TSC). Furthermore, increased TFEB and TFE3 nuclear localization in these syndromes, and in translocation renal cell carcinomas (tRCC), drives mTORC1 activity toward the canonical substrates, through the transcriptional activation of the Rag GTPases, thereby positioning TFEB and TFE3 upstream of mTORC1 activity toward 4EBP1 and S6K. The expanding importance of TFEB and TFE3 in the pathogenesis of these renal diseases warrants a novel clinical grouping that we term "TFEopathies." Currently, there are no therapeutic options directly targeting TFEB and TFE3, which represents a challenging and critically required avenue for cancer research.
Collapse
Affiliation(s)
- Nicola Alesi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Kaushal Asrani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elizabeth P Henske
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
16
|
Devkota S, Bhatta OP, Kalikote A, Gyawali P, Lamichhane S. Atypical case of tuberous sclerosis with isolated neurologic findings: A case report. Clin Case Rep 2024; 12:e9379. [PMID: 39229295 PMCID: PMC11369680 DOI: 10.1002/ccr3.9379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Tuberous sclerosis (TSC) is an autosomal dominant neurocutaneous disorder. This case highlights rare isolated neurologic finding in a TSC patient emphasizing the need for heightened suspicion even in the absence of any cutaneous findings and family history.
Collapse
Affiliation(s)
- Shritik Devkota
- Department of Radiodiagnosis and ImagingAnil Baghi HospitalPunjabIndia
- Department of Radiodiagnosis and ImagingPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | | | | | - Prakash Gyawali
- Department of Emergency MedicineSukraraj Tropical and Infectious HospitalKathmandu
| | - Samiksha Lamichhane
- Department of Radiodiagnosis and ImagingBP Koirala Institute of Health SciencesDharanNepal
| |
Collapse
|
17
|
Li K, Cao JF, Gong Y, Xiong L, Wu M, Qi Y, Ying X, Liu D, Ma X, Zhang X. Rapamycin improves the survival of epilepsy model cells by blocking phosphorylation of mTOR base on computer simulations and cellular experiments. Neurochem Int 2024; 176:105746. [PMID: 38641027 DOI: 10.1016/j.neuint.2024.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
PURPOSE Epilepsy is a chronic brain dysfunction characterized by recurrent epileptic seizures. Rapamycin is a naturally occurring macrolide from Streptomyces hygroscopicus, and rapamycin may provide a protective effect on the nervous system by affecting mTOR. Therefore, we investigated the pharmacologic mechanism of rapamycin treating epilepsy through bioinformatics analysis, cellular experiments and supercomputer simulation. METHODS Bioinformatics analysis was used to analyze targets of rapamycin treating epilepsy. We established epilepsy cell model by HT22 cells. RT-qPCR, WB and IF were used to verify the effects of rapamycin on mTOR at gene level and protein level. Computer simulations were used to model and evaluate the stability of rapamycin binding to mTOR protein. RESULTS Bioinformatics indicated mTOR played an essential role in signaling pathways of cell growth and cell metabolism. Cellular experiments showed that rapamycin could promote cell survival, and rapamycin did not have an effect on mRNA expression of mTOR. However, rapamycin was able to significantly inhibit the phosphorylation of mTOR at protein level. Computer simulations indicated that rapamycin was involved in the treatment of epilepsy through regulating phosphorylation of mTOR at protein level. CONCLUSION We found that rapamycin was capable of promoting the survival of epilepsy cells by inhibiting the phosphorylation of mTOR at protein level, and rapamycin did not have an effect on mRNA expression of mTOR. In addition to the traditional study that rapamycin affects mTORC1 complex by acting on FKBP12, this study found rapamycin could also directly block the phosphorylation of mTOR, therefore affecting the assembly of mTORC1 complex and mTOR signaling pathway.
Collapse
Affiliation(s)
- Kezhou Li
- College of Medicine, Southwest Jiaotong University, Chengdu, China; Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jun-Feng Cao
- Chengdu Medical College, Chengdu, China; College of Medicine, Southwest Jiaotong University, Chengdu, China
| | | | - Li Xiong
- Chengdu Medical College, Chengdu, China
| | - Mei Wu
- Chengdu Medical College, Chengdu, China
| | - Yue Qi
- Chengdu Medical College, Chengdu, China
| | | | | | - Xuntai Ma
- Chengdu Medical College, Chengdu, China; The First Affiliated Hospital of Clinical Medical College of Chengdu Medical College, Chengdu, China.
| | - Xiao Zhang
- Chengdu Medical College, Chengdu, China.
| |
Collapse
|
18
|
Cheng TYD, Fu DA, Falzarano SM, Zhang R, Datta S, Zhang W, Omilian AR, Aduse-Poku L, Bian J, Irianto J, Asirvatham JR, Campbell-Thompson M. Association of computed tomography scan-assessed body composition with immune and PI3K/AKT pathway proteins in distinct breast cancer tumor components. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.21.24307688. [PMID: 38826360 PMCID: PMC11142286 DOI: 10.1101/2024.05.21.24307688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
This hypothesis-generating study aims to examine the extent to which computed tomography-assessed body composition phenotypes are associated with immune and PI3K/AKT signaling pathways in breast tumors. A total of 52 patients with newly diagnosed breast cancer were classified into four body composition types: adequate (lowest two tertiles of total adipose tissue [TAT]) and highest two tertiles of total skeletal muscle [TSM] areas); high adiposity (highest tertile of TAT and highest two tertiles of TSM); low muscle (lowest tertile of TSM and lowest two tertiles of TAT); and high adiposity with low muscle (highest tertile of TAT and lowest tertile of TSM). Immune and PI3K/AKT pathway proteins were profiled in tumor epithelium and the leukocyte-enriched stromal microenvironment using GeoMx (NanoString). Linear mixed models were used to compare log2-transformed protein levels. Compared with the normal type, the low muscle type was associated with higher expression of INPP4B (log2-fold change = 1.14, p = 0.0003, false discovery rate = 0.028). Other significant associations included low muscle type with increased CTLA4 and decreased pan-AKT expression in tumor epithelium, and high adiposity with increased CD3, CD8, CD20, and CD45RO expression in stroma (P<0.05; false discovery rate >0.2). With confirmation, body composition can be associated with signaling pathways in distinct components of breast tumors, highlighting the potential utility of body composition in informing tumor biology and therapy efficacies.
Collapse
|
19
|
Wang Y, Guo R, Piedras BI, Tang HY, Asara JM, Tempera I, Lieberman PM, Gewurz BE. The CTLH Ubiquitin Ligase Substrates ZMYND19 and MKLN1 Negatively Regulate mTORC1 at the Lysosomal Membrane. RESEARCH SQUARE 2024:rs.3.rs-4259395. [PMID: 38746323 PMCID: PMC11092817 DOI: 10.21203/rs.3.rs-4259395/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Most Epstein-Barr virus-associated gastric carcinoma (EBVaGC) harbor non-silent mutations that activate phosphoinositide 3 kinase (PI3K) to drive downstream metabolic signaling. To gain insights into PI3K/mTOR pathway dysregulation in this context, we performed a human genome-wide CRISPR/Cas9 screen for hits that synergistically blocked EBVaGC proliferation together with the PI3K antagonist alpelisib. Multiple subunits of carboxy terminal to LisH (CTLH) E3 ligase, including the catalytic MAEA subunit, were among top screen hits. CTLH negatively regulates gluconeogenesis in yeast, but not in higher organisms. Instead, we identified that the CTLH substrates MKLN1 and ZMYND19, which highly accumulated upon MAEA knockout, associated with one another and with lysosomes to inhibit mTORC1. ZMYND19/MKLN1 bound Raptor and RagA/C, but rather than perturbing mTORC1 lysosomal recruitment, instead blocked a late stage of its activation, independently of the tuberous sclerosis complex. Thus, CTLH enables cells to rapidly tune mTORC1 activity at the lysosomal membrane via the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- Yin Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brenda Iturbide Piedras
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Virology, Harvard Medical School
| |
Collapse
|
20
|
Liu M, Ye J, You X. An updated meta-analysis of effectiveness and safety of mTOR inhibitors in the management of tuberous sclerosis complex patients. Childs Nerv Syst 2024; 40:823-829. [PMID: 37906297 DOI: 10.1007/s00381-023-06200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/17/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE Tuberculous sclerosis complex (TSC) is an autosomal dominant multi-system disease. In TSC patients, the inhibition of mTOR pathway is weakened, which leads to the uncontrolled proliferation of normal resting cells. Therefore, mTOR inhibitors have many therapeutic potentials in the treatment of TSC. However, there is no consensus on the safety and efficacy of mTOR inhibitors so far. This article aimed to present new evidence for the efficacy and safety of mTOR inhibitors in the treatment of TSC by evaluating published clinical trials. METHODS A systemic search of online databases, such as Cochrane Library, Embase, PubMed, and the US National Institutes of Health Clinical Trials Registry, was conducted. The researchers selected studies that met the following entry criteria: randomized, double-blinded or single-blinded, placebo-controlled, parallel-group studies with active and control arms receiving rapamycin or everolimus and matched placebo, respectively. The meta-analysis included seven studies. Tumor response or epilepsy seizure frequency response rates were considered efficacy outcomes. RESULTS In seven studies involving 877 patients, using of mTOR inhibitors therapy showed an improvement in both tumor response and seizure frequency outcomes in TSC. In combination of AML (angiomyolipomas), SEGA (subependymal giant cell astrocytoma), epilepsy, and facial angiofibroma subjects, the RR is 3.01 (95% CI 2.03 to 4.45, p = 0.000) with observed heterogeneity (I-squared = 55.4%). The main side effect of mTOR inhibitors was stomatitis. CONCLUSION The updated meta-analysis suggests that the use of mTOR inhibitors is an effective therapy for patients with TSC.
Collapse
Affiliation(s)
- Mengling Liu
- Department of Neurology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China.
| | - Jiayou Ye
- Department of Gastrointestinal Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China
| | - Xiaoling You
- Department of General Practice, The Second People's Hospital Afliated to China Three Gorges University, Yichang, China
| |
Collapse
|
21
|
Sidorov VY, Sidorova TN, Samson PC, Reiserer RS, Britt CM, Neely MD, Ess KC, Wikswo JP. Contractile and Genetic Characterization of Cardiac Constructs Engineered from Human Induced Pluripotent Stem Cells: Modeling of Tuberous Sclerosis Complex and the Effects of Rapamycin. Bioengineering (Basel) 2024; 11:234. [PMID: 38534508 PMCID: PMC10968530 DOI: 10.3390/bioengineering11030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The implementation of three-dimensional tissue engineering concurrently with stem cell technology holds great promise for in vitro research in pharmacology and toxicology and modeling cardiac diseases, particularly for rare genetic and pediatric diseases for which animal models, immortal cell lines, and biopsy samples are unavailable. It also allows for a rapid assessment of phenotype-genotype relationships and tissue response to pharmacological manipulation. Mutations in the TSC1 and TSC2 genes lead to dysfunctional mTOR signaling and cause tuberous sclerosis complex (TSC), a genetic disorder that affects multiple organ systems, principally the brain, heart, skin, and kidneys. Here we differentiated healthy (CC3) and tuberous sclerosis (TSP8-15) human induced pluripotent stem cells (hiPSCs) into cardiomyocytes to create engineered cardiac tissue constructs (ECTCs). We investigated and compared their mechano-elastic properties and gene expression and assessed the effects of rapamycin, a potent inhibitor of the mechanistic target of rapamycin (mTOR). The TSP8-15 ECTCs had increased chronotropy compared to healthy ECTCs. Rapamycin induced positive inotropic and chronotropic effects (i.e., increased contractility and beating frequency, respectively) in the CC3 ECTCs but did not cause significant changes in the TSP8-15 ECTCs. A differential gene expression analysis revealed 926 up- and 439 down-regulated genes in the TSP8-15 ECTCs compared to their healthy counterparts. The application of rapamycin initiated the differential expression of 101 and 31 genes in the CC3 and TSP8-15 ECTCs, respectively. A gene ontology analysis showed that in the CC3 ECTCs, the positive inotropic and chronotropic effects of rapamycin correlated with positively regulated biological processes, which were primarily related to the metabolism of lipids and fatty and amino acids, and with negatively regulated processes, which were predominantly associated with cell proliferation and muscle and tissue development. In conclusion, this study describes for the first time an in vitro TSC cardiac tissue model, illustrates the response of normal and TSC ECTCs to rapamycin, and provides new insights into the mechanisms of TSC.
Collapse
Affiliation(s)
- Veniamin Y. Sidorov
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA (C.M.B.); (J.P.W.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Tatiana N. Sidorova
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Philip C. Samson
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA (C.M.B.); (J.P.W.)
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
| | - Ronald S. Reiserer
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA (C.M.B.); (J.P.W.)
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
| | - Clayton M. Britt
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA (C.M.B.); (J.P.W.)
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
| | - M. Diana Neely
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.D.N.); (K.C.E.)
| | - Kevin C. Ess
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.D.N.); (K.C.E.)
| | - John P. Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA (C.M.B.); (J.P.W.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
22
|
Riepe C, Wąchalska M, Deol KK, Amaya AK, Porteus MH, Olzmann JA, Kopito RR. Small-molecule correctors divert CFTR-F508del from ERAD by stabilizing sequential folding states. Mol Biol Cell 2024; 35:ar15. [PMID: 38019608 PMCID: PMC10881158 DOI: 10.1091/mbc.e23-08-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Over 80% of people with cystic fibrosis (CF) carry the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel at the apical plasma membrane (PM) of epithelial cells. F508del impairs CFTR folding causing it to be destroyed by endoplasmic reticulum associated degradation (ERAD). Small-molecule correctors, which act as pharmacological chaperones to divert CFTR-F508del from ERAD, are the primary strategy for treating CF, yet corrector development continues with only a rudimentary understanding of how ERAD targets CFTR-F508del. We conducted genome-wide CRISPR/Cas9 knockout screens to systematically identify the molecular machinery that underlies CFTR-F508del ERAD. Although the ER-resident ubiquitin ligase, RNF5 was the top E3 hit, knocking out RNF5 only modestly reduced CFTR-F508del degradation. Sublibrary screens in an RNF5 knockout background identified RNF185 as a redundant ligase and demonstrated that CFTR-F508del ERAD is robust. Gene-drug interaction experiments illustrated that correctors tezacaftor (VX-661) and elexacaftor (VX-445) stabilize sequential, RNF5-resistant folding states. We propose that binding of correctors to nascent CFTR-F508del alters its folding landscape by stabilizing folding states that are not substrates for RNF5-mediated ubiquitylation.
Collapse
Affiliation(s)
- Celeste Riepe
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Magda Wąchalska
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Kirandeep K. Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720
- Chan Zuckerberg Biohub Network, San Francisco, CA 94158
| | - Anais K. Amaya
- Department of Pediatrics, Stanford University, Stanford, CA 94305
| | | | - James A. Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720
- Chan Zuckerberg Biohub Network, San Francisco, CA 94158
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
23
|
Murthy MHS, Jasbi P, Lowe W, Kumar L, Olaosebikan M, Roger L, Yang J, Lewinski N, Daniels N, Cowen L, Klein-Seetharaman J. Insulin signaling and pharmacology in humans and in corals. PeerJ 2024; 12:e16804. [PMID: 38313028 PMCID: PMC10838073 DOI: 10.7717/peerj.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Once thought to be a unique capability of the Langerhans islets in the pancreas of mammals, insulin (INS) signaling is now recognized as an evolutionarily ancient function going back to prokaryotes. INS is ubiquitously present not only in humans but also in unicellular eukaryotes, fungi, worms, and Drosophila. Remote homologue identification also supports the presence of INS and INS receptor in corals where the availability of glucose is largely dependent on the photosynthetic activity of the symbiotic algae. The cnidarian animal host of corals operates together with a 20,000-sized microbiome, in direct analogy to the human gut microbiome. In humans, aberrant INS signaling is the hallmark of metabolic disease, and is thought to play a major role in aging, and age-related diseases, such as Alzheimer's disease. We here would like to argue that a broader view of INS beyond its human homeostasis function may help us understand other organisms, and in turn, studying those non-model organisms may enable a novel view of the human INS signaling system. To this end, we here review INS signaling from a new angle, by drawing analogies between humans and corals at the molecular level.
Collapse
Affiliation(s)
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | - Whitney Lowe
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | - Lokender Kumar
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | | | - Liza Roger
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- School of Ocean Futures, Arizona State University, Tempe, AZ, United States of America
| | - Jinkyu Yang
- Department of Aeronautics & Astronautics, University of Washington, Seattle, WA, USA
| | - Nastassja Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Noah Daniels
- Department of Computer Science, University of Rhode Island, Kingston, RI, USA
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Judith Klein-Seetharaman
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
24
|
Carbonell-Roig J, Aaltonen A, Cartocci V, McGuirt A, Mosharov E, Kehr J, Lieberman OJ, Sulzer D, Borgkvist A, Santini E. Dysregulated acetylcholine-mediated dopamine neurotransmission in the eIF4E Tg mouse model of autism spectrum disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577831. [PMID: 38352367 PMCID: PMC10862723 DOI: 10.1101/2024.01.29.577831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2024]
Abstract
Autism Spectrum Disorders (ASD) consist of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine dopamine neurotransmission in a mouse model of ASD characterized by elevated expression of the eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal dopamine release. The loss of normal dopamine neurotransmission is due to a defective nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings reveal an intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility, provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions.
Collapse
|
25
|
Zhao M, Li P, Qiao D, Hua S, Yue Q, Dai Y, Huang Y, Jiang J, Yin H, Li M, Ding Y, Yang X, Ma Y, Ding K, Zeng L. N6-methyladenosine modification of TSC1 mRNA contributes to macrophage polarization regulated by Coptisine in DSS-induced ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155153. [PMID: 38014839 DOI: 10.1016/j.phymed.2023.155153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND PURPOSE Ulcerative colitis (UC) is a global refractory disease characterized by recurrent episodes. Coptisine (COP) is an isoquinoline alkaloid derived from Coptis chinensis, which has strong anti-inflammatory activity. Macrophages are key cells mediating inflammation. It is reported that N6-methyladenosine (m6A) RNA methylation regulates the polarization of macrophages and affects the development of inflammation. COP exerts an exact inhibitory effect on macrophages inflammation, while the specific mechanism remains unclear. The current study is designed to conduct a further investigation into the protective mechanism of COP against dextran sulfate sodium (DSS) -induced UC in mice. METHODS Using a DSS-induced UC model, we evaluated the pharmacodynamic effect of COP on UC mice, and verified the regulatory mechanism of COP on macrophage polarization in vivo and in vitro. The methylation level of m6A was detected by methylated RNA immunoprecipitation sequence (MeRIP) -qPCR, and the expression level of Methyltransferase Like (METTL)14 was determined by western blotting. Then METTL14 was knocked down in macrophages, and its effects on Tuberous sclerosis complex (TSC1) mRNA and m6A methylation regulation were observed. RESULTS COP improved the symptoms, alleviated tissue damage and reduced inflammation levels in DSS-induced UC mice. COP increased TSC1 expression, inhibited the Mitogen-activated protein kinase (MEK) / Extracellular regulated protein kinases (ERK) signaling pathway, and thus inhibited macrophage M1 polarization, whereas COP increased CCAAT Enhancer Binding Protein beta (c/EBPβ) expression, and thus promoted macrophage M2 polarization. COP also significantly increased the expression of METTL14, which enhanced m6A methylation and ultimately improved the stability of TSC1 mRNA. CONCLUSIONS COP was effective in treating UC and could regulate the polarization of macrophages. The possible mechanisms might be related to m6A modification-mediated TSC1.
Collapse
Affiliation(s)
- Min Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Peiyi Li
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dan Qiao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Siyi Hua
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiyu Yue
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxin Dai
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuqiu Huang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaxin Jiang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiting Yin
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng Li
- Nanjing hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Yang Ding
- Nanjing hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Xu Yang
- Nanjing hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Yong Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kang Ding
- Nanjing hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China.
| | - Li Zeng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
26
|
Tsutsumi K, Nohara A, Tanaka T, Murano M, Miyagaki Y, Ohta Y. FilGAP regulates tumor growth in Glioma through the regulation of mTORC1 and mTORC2. Sci Rep 2023; 13:20956. [PMID: 38065968 PMCID: PMC10709582 DOI: 10.1038/s41598-023-47892-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that forms the two different protein complexes, known as mTORC1 and mTORC2. mTOR signaling is activated in a variety of tumors, including glioma that is one of the malignant brain tumors. FilGAP (ARHGAP24) is a negative regulator of Rac, a member of Rho family small GTPases. In this study, we found that FilGAP interacts with mTORC1/2 and is involved in tumor formation in glioma. FilGAP interacted with mTORC1 via Raptor and with mTORC2 via Rictor and Sin1. Depletion of FilGAP in KINGS-1 glioma cells decreased phosphorylation of S6K and AKT. Furthermore, overexpression of FilGAP increased phosphorylation of S6K and AKT, suggesting that FilGAP activates mTORC1/2. U-87MG, glioblastoma cells, showed higher mTOR activity than KINGS-1, and phosphorylation of S6K and AKT was not affected by suppression of FilGAP expression. However, in the presence of PI3K inhibitors, phosphorylation of S6K and AKT was also decreased in U-87MG by depletion of FilGAP, suggesting that FilGAP may also regulate mTORC2 in U-87MG. Finally, we showed that depletion of FilGAP in KINGS-1 and U-87MG cells significantly reduced spheroid growth. These results suggest that FilGAP may contribute to tumor growth in glioma by regulating mTORC1/2 activities.
Collapse
Affiliation(s)
- Koji Tsutsumi
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan.
| | - Ayumi Nohara
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Taiki Tanaka
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Moe Murano
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Yurina Miyagaki
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan.
| |
Collapse
|
27
|
Hu J, Zhang Y, Yan K, Zhang M, Li Y, Li Y, Gu W, Xu S, Wang Y, Yan X. Change and Regulation of Nutritional Metabolism in Silver Pomfret During Compensatory Growth. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1085-1098. [PMID: 37864114 DOI: 10.1007/s10126-023-10261-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Compensatory growth (CG) in fish is heavily influenced by nutrient metabolism. However, there are limited studies examining how nutrient metabolism is regulated during this process. For silver pomfret, an important commercial marine fish, it's crucial to establish effective starvation and re-feeding strategies to ensure good water quality and fast growth. To identify the complete compensatory growth model of silver pomfret, we conducted an experiment with a control group (normal feeding) and three starvation/re-feeding groups. We observed that the recovery of weight and condition factor in the 14-day starvation and 14-day re-feeding groups was significantly faster than other groups, indicating full compensatory growth. Thus, we selected this group for the next experiment. We performed untargeted metabolomics and transcriptome analysis of muscle tissue on Day 14, 21 and 28 (CG process), and examined the key regulatory genes of nutrient metabolism on Day 0, 7, 14, 21 and 28 (starvation and re-feeding process). Our data revealed that during starvation, silver pomfret first utilized carbohydrates and short-chain lipids, followed by proteins and long-chain lipids. After re-feeding, lipids accumulated first, resulting in rapid growth, followed by the recovery of protein content in muscle. During starvation, the expression of anabolic-related genes such as TER and CALR decreased, and catabolic-related genes such as TSC2 and MLYCD increased, promoting the AMPK pathway. During re-feeding, anabolic-related gene expression increased without AMPK inhibition. Our findings provide insights into the energy utilization strategies of fish and molecular regulation during compensatory growth in fish.
Collapse
Affiliation(s)
- Jiabao Hu
- School of Marine Sciences, Ningbo University, Ningbo, China
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Youyi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Kaiheng Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Man Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yaya Li
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yuanbo Li
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Weiwei Gu
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Shanliang Xu
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yajun Wang
- School of Marine Sciences, Ningbo University, Ningbo, China.
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China.
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
28
|
Jing L, Zhai ME, Qian MR, Li YM, Han MW, Wang K, Huang W, Nan G, Jiang JL. Targeting the up-regulated CNOT3 reverses therapeutic resistance and metastatic progression of EGFR-mutant non-small cell lung cancer. Cell Death Discov 2023; 9:406. [PMID: 37919290 PMCID: PMC10622567 DOI: 10.1038/s41420-023-01701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. CNOT3, a subunit of the CCR4-NOT complex, has recently been suggested to be overexpressed in lung cancer and involved in tumor malignancy. However, its precise role and the underlying mechanisms still need to be fully revealed. In the present study, we found in lung cancer cells the expression of CNOT3 could be regulated by EGFR signaling pathway and c-Jun, a transcription factor downstream of EGFR, transcriptionally regulated its expression. Interestingly, CNOT3 could inversely regulate the expression of c-Jun via modulating its translation. Thus, a feedback loop existed between c-Jun and CNOT3. CNOT3 reduction post EGFR blockade facilitated the drug-induced cell death, and simultaneously inhibited cell proliferation via impacting TSC1/mTOR axis. Whereas, further up-regulation of the CNOT3 expression was observed in gefitinib-resistant cells, which dampened gefitinib sensitivity. Mechanically, the elevation of CNOT3 was induced by the bypass activation of HER2/c-Jun signaling. Depleting CNOT3 in vitro and in vivo sensitized the drug-resistant cells to gefitinib treatment and inhibited metastatic progression. These results give novel insights into the role of CNOT3 in lung cancer malignancy and provide a theoretical basis for the development of therapeutic strategies to solve acquired resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Lin Jing
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Meng-En Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Mei-Rui Qian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yi-Ming Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Ming-Wei Han
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kun Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wan Huang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Gang Nan
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jian-Li Jiang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
29
|
Wittenstein A, Caspi M, Rippin I, Elroy-Stein O, Eldar-Finkelman H, Thoms S, Rosin-Arbesfeld R. Nonsense mutation suppression is enhanced by targeting different stages of the protein synthesis process. PLoS Biol 2023; 21:e3002355. [PMID: 37943958 PMCID: PMC10684085 DOI: 10.1371/journal.pbio.3002355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/28/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023] Open
Abstract
The introduction of premature termination codons (PTCs), as a result of splicing defects, insertions, deletions, or point mutations (also termed nonsense mutations), lead to numerous genetic diseases, ranging from rare neuro-metabolic disorders to relatively common inheritable cancer syndromes and muscular dystrophies. Over the years, a large number of studies have demonstrated that certain antibiotics and other synthetic molecules can act as PTC suppressors by inducing readthrough of nonsense mutations, thereby restoring the expression of full-length proteins. Unfortunately, most PTC readthrough-inducing agents are toxic, have limited effects, and cannot be used for therapeutic purposes. Thus, further efforts are required to improve the clinical outcome of nonsense mutation suppressors. Here, by focusing on enhancing readthrough of pathogenic nonsense mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, we show that disturbing the protein translation initiation complex, as well as targeting other stages of the protein translation machinery, enhances both antibiotic and non-antibiotic-mediated readthrough of nonsense mutations. These findings strongly increase our understanding of the mechanisms involved in nonsense mutation readthrough and facilitate the development of novel therapeutic targets for nonsense suppression to restore protein expression from a large variety of disease-causing mutated transcripts.
Collapse
Affiliation(s)
- Amnon Wittenstein
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Rippin
- The Department of Human Molecular Genetics & Biochemistry School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Elroy-Stein
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- The Department of Human Molecular Genetics & Biochemistry School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sven Thoms
- Biochemistry and Molecular Medicine, Medical School EWL, Bielefeld University, Bielefeld, Germany
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Zhao X, Wang Y, Xia H, Liu S, Huang Z, He R, Yu L, Meng N, Wang H, You J, Li J, Yam JWP, Xu Y, Cui Y. Roles and Molecular Mechanisms of Biomarkers in Hepatocellular Carcinoma with Microvascular Invasion: A Review. J Clin Transl Hepatol 2023; 11:1170-1183. [PMID: 37577231 PMCID: PMC10412705 DOI: 10.14218/jcth.2022.00013s] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) being a leading cause of cancer-related death, has high associated mortality and recurrence rates. It has been of great necessity and urgency to find effective HCC diagnosis and treatment measures. Studies have shown that microvascular invasion (MVI) is an independent risk factor for poor prognosis after hepatectomy. The abnormal expression of biomacromolecules such as circ-RNAs, lncRNAs, STIP1, and PD-L1 in HCC patients is strongly correlated with MVI. Deregulation of several markers mentioned in this review affects the proliferation, invasion, metastasis, EMT, and anti-apoptotic processes of HCC cells through multiple complex mechanisms. Therefore, these biomarkers may have an important clinical role and serve as promising interventional targets for HCC. In this review, we provide a comprehensive overview on the functions and regulatory mechanisms of MVI-related biomarkers in HCC.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yudan Wang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hang Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junqi You
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinglin Li
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Changxing, Zhejiang, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
31
|
Vujovic F, Shepherd CE, Witting PK, Hunter N, Farahani RM. Redox-Mediated Rewiring of Signalling Pathways: The Role of a Cellular Clock in Brain Health and Disease. Antioxidants (Basel) 2023; 12:1873. [PMID: 37891951 PMCID: PMC10604469 DOI: 10.3390/antiox12101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Metazoan signalling pathways can be rewired to dampen or amplify the rate of events, such as those that occur in development and aging. Given that a linear network topology restricts the capacity to rewire signalling pathways, such scalability of the pace of biological events suggests the existence of programmable non-linear elements in the underlying signalling pathways. Here, we review the network topology of key signalling pathways with a focus on redox-sensitive proteins, including PTEN and Ras GTPase, that reshape the connectivity profile of signalling pathways in response to an altered redox state. While this network-level impact of redox is achieved by the modulation of individual redox-sensitive proteins, it is the population by these proteins of critical nodes in a network topology of signal transduction pathways that amplifies the impact of redox-mediated reprogramming. We propose that redox-mediated rewiring is essential to regulate the rate of transmission of biological signals, giving rise to a programmable cellular clock that orchestrates the pace of biological phenomena such as development and aging. We further review the evidence that an aberrant redox-mediated modulation of output of the cellular clock contributes to the emergence of pathological conditions affecting the human brain.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Paul K. Witting
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
32
|
Riepe C, Wąchalska M, Deol KK, Amaya AK, Porteus MH, Olzmann JA, Kopito RR. Small molecule correctors divert CFTR-F508del from ERAD by stabilizing sequential folding states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.556420. [PMID: 37745470 PMCID: PMC10515913 DOI: 10.1101/2023.09.15.556420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Over 80% of people with cystic fibrosis (CF) carry the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel at the apical plasma membrane (PM) of epithelial cells. F508del impairs CFTR folding causing it to be destroyed by endoplasmic reticulum associated degradation (ERAD). Small molecule correctors, which act as pharmacological chaperones to divert CFTR-F508del from ERAD, are the primary strategy for treating CF, yet corrector development continues with only a rudimentary understanding of how ERAD targets CFTR-F508del. We conducted genome-wide CRISPR/Cas9 knockout screens to systematically identify the molecular machinery that underlies CFTR-F508del ERAD. Although the ER-resident ubiquitin ligase, RNF5 was the top E3 hit, knocking out RNF5 only modestly reduced CFTR-F508del degradation. Sublibrary screens in an RNF5 knockout background identified RNF185 as a redundant ligase, demonstrating that CFTR-F508del ERAD is highly buffered. Gene-drug interaction experiments demonstrated that correctors tezacaftor (VX-661) and elexacaftor (VX-445) stabilize sequential, RNF5-resistant folding states. We propose that binding of correctors to nascent CFTR-F508del alters its folding landscape by stabilizing folding states that are not substrates for RNF5-mediated ubiquitylation.
Collapse
Affiliation(s)
- Celeste Riepe
- Department of Biology, Stanford University, Stanford, CA, USA 94305
| | - Magda Wąchalska
- Department of Biology, Stanford University, Stanford, CA, USA 94305
| | - Kirandeep K. Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA USA 94720
- Chan Zuckerberg Biohub, San Francisco, CA, USA 94158
| | - Anais K. Amaya
- Department of Pediatrics, Stanford University, Stanford, CA, USA 94305
| | | | - James A. Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA USA 94720
- Chan Zuckerberg Biohub, San Francisco, CA, USA 94158
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA, USA 94305
| |
Collapse
|
33
|
Tettoni SD, Egri SB, Doxsey DD, Veinotte K, Ouch C, Chang JY, Song K, Xu C, Shen K. Structure of the Schizosaccharomyces pombe Gtr-Lam complex reveals evolutionary divergence of mTORC1-dependent amino acid sensing. Structure 2023; 31:1065-1076.e5. [PMID: 37453417 PMCID: PMC10529327 DOI: 10.1016/j.str.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/14/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
mTORC1 is a protein kinase complex that controls cellular growth in response to nutrient availability. Amino acid signals are transmitted toward mTORC1 via the Rag/Gtr GTPases and their upstream regulators. An important regulator is LAMTOR, which localizes Rag/Gtr on the lysosomal/vacuole membrane. In human cells, LAMTOR consists of five subunits, but in yeast, only three or four. Currently, it is not known how variation of the subunit stoichiometry may affect its structural organization and biochemical properties. Here, we report a 3.1 Å-resolution structural model of the Gtr-Lam complex in Schizosaccharomyces pombe. We found that SpGtr shares conserved architecture as HsRag, but the intersubunit communication that coordinates nucleotide loading on the two subunits differs. In contrast, SpLam contains distinctive structural features, but its GTP-specific GEF activity toward SpGtr is evolutionarily conserved. Our results revealed unique evolutionary paths of the protein components of the mTORC1 pathway.
Collapse
Affiliation(s)
- Steven D Tettoni
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Shawn B Egri
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Dylan D Doxsey
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Kristen Veinotte
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Christna Ouch
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jeng-Yih Chang
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Kangkang Song
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Chen Xu
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
34
|
Rabeling A, Goolam M. Cerebral organoids as an in vitro model to study autism spectrum disorders. Gene Ther 2023; 30:659-669. [PMID: 35790793 DOI: 10.1038/s41434-022-00356-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorders (ASDs) are a set of disorders characterised by social and communication deficits caused by numerous genetic lesions affecting brain development. Progress in ASD research has been hampered by the lack of appropriate models, as both 2D cell culture as well as animal models cannot fully recapitulate the developing human brain or the pathogenesis of ASD. Recently, cerebral organoids have been developed to provide a more accurate, 3D in vitro model of human brain development. Cerebral organoids have been shown to recapitulate the foetal brain gene expression profile, transcriptome, epigenome, as well as disease dynamics of both idiopathic and syndromic ASDs. They are thus an excellent tool to investigate development of foetal stage ASDs, as well as interventions that can reverse or rescue the altered phenotypes observed. In this review, we discuss the development of cerebral organoids, their recent applications in the study of both syndromic and idiopathic ASDs, their use as an ASD drug development platform, as well as limitations of their use in ASD research.
Collapse
Affiliation(s)
- Alexa Rabeling
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Mubeen Goolam
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
- UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
35
|
Fallone L, Walzer T, Marçais A. Signaling Pathways Leading to mTOR Activation Downstream Cytokine Receptors in Lymphocytes in Health and Disease. Int J Mol Sci 2023; 24:12736. [PMID: 37628917 PMCID: PMC10454121 DOI: 10.3390/ijms241612736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.
Collapse
Affiliation(s)
| | | | - Antoine Marçais
- CIRI—Centre International de Recherche en Infectiologie (Team Lyacts), Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.F.); (T.W.)
| |
Collapse
|
36
|
Kitano T, Nishikawa K, Takagaki T, Sugitani Y, Hino O, Kobayashi T. Induction by rapamycin and proliferation‑promoting activity of Hspb1 in a Tsc2‑deficient cell line. Exp Ther Med 2023; 26:315. [PMID: 37273756 PMCID: PMC10236050 DOI: 10.3892/etm.2023.12014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/21/2023] [Indexed: 06/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an intractable inherited disease caused by a germline mutation in either the TSC complex subunit 1 (TSC1) or TSC2 tumor suppressor genes. Recent progress in the treatment of TSC with rapamycin has provided benefits to patients with TSC. However, the complete elimination of tumors is difficult to achieve as regrowth often occurs after a drug is suspended; thus, more efficient medication and novel therapeutic targets are required. To overcome tumor remnants in the treatment of TSC, the present study investigated rapamycin-responsive signaling pathways in Tsc2-deficient tumor cells, focusing on heat shock protein-related pathways. The expression levels of heat shock protein family B (small) member 1 (Hspb1; also known as HSP25/27) were increased by rapamycin treatment. The phosphorylation of Hspb1 was also increased. The knockdown of Hspb1 suppressed cell proliferation in the absence of rapamycin, and the overexpression of Hspb1 enhanced cell proliferation both in the presence and absence of rapamycin. Pathways associated with Hspb1 may present target candidates for treatment of TSC.
Collapse
Affiliation(s)
- Takayuki Kitano
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Keiko Nishikawa
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Tetsuya Takagaki
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yoshinobu Sugitani
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Toshiyuki Kobayashi
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
37
|
Mango D, Ledonne A. Updates on the Physiopathology of Group I Metabotropic Glutamate Receptors (mGluRI)-Dependent Long-Term Depression. Cells 2023; 12:1588. [PMID: 37371058 DOI: 10.3390/cells12121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRI), including mGluR1 and mGluR5 subtypes, modulate essential brain functions by affecting neuronal excitability, intracellular calcium dynamics, protein synthesis, dendritic spine formation, and synaptic transmission and plasticity. Nowadays, it is well appreciated that the mGluRI-dependent long-term depression (LTD) of glutamatergic synaptic transmission (mGluRI-LTD) is a key mechanism by which mGluRI shapes connectivity in various cerebral circuitries, directing complex brain functions and behaviors, and that it is deranged in several neurological and psychiatric illnesses, including neurodevelopmental disorders, neurodegenerative diseases, and psychopathologies. Here, we will provide an updated overview of the physiopathology of mGluRI-LTD, by describing mechanisms of induction and regulation by endogenous mGluRI interactors, as well as functional physiological implications and pathological deviations.
Collapse
Affiliation(s)
- Dalila Mango
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Ada Ledonne
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
38
|
Sait SF, Giantini-Larsen AM, Tringale KR, Souweidane MM, Karajannis MA. Treatment of Pediatric Low-Grade Gliomas. Curr Neurol Neurosci Rep 2023; 23:185-199. [PMID: 36881254 PMCID: PMC10121885 DOI: 10.1007/s11910-023-01257-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Pediatric low-grade gliomas and glioneuronal tumors (pLGG) account for approximately 30% of pediatric CNS neoplasms, encompassing a heterogeneous group of tumors of primarily glial or mixed neuronal-glial histology. This article reviews the treatment of pLGG with emphasis on an individualized approach incorporating multidisciplinary input from surgery, radiation oncology, neuroradiology, neuropathology, and pediatric oncology to carefully weigh the risks and benefits of specific interventions against tumor-related morbidity. Complete surgical resection can be curative for cerebellar and hemispheric lesions, while use of radiotherapy is restricted to older patients or those refractory to medical therapy. Chemotherapy remains the preferred first-line therapy for adjuvant treatment of the majority of recurrent or progressive pLGG. RECENT FINDINGS Technologic advances offer the potential to limit volume of normal brain exposed to low doses of radiation when treating pLGG with either conformal photon or proton RT. Recent neurosurgical techniques such as laser interstitial thermal therapy offer a "dual" diagnostic and therapeutic treatment modality for pLGG in specific surgically inaccessible anatomical locations. The emergence of novel molecular diagnostic tools has enabled scientific discoveries elucidating driver alterations in mitogen-activated protein kinase (MAPK) pathway components and enhanced our understanding of the natural history (oncogenic senescence). Molecular characterization strongly supplements the clinical risk stratification (age, extent of resection, histological grade) to improve diagnostic precision and accuracy, prognostication, and can lead to the identification of patients who stand to benefit from precision medicine treatment approaches. The success of molecular targeted therapy (BRAF inhibitors and/or MEK inhibitors) in the recurrent setting has led to a gradual and yet significant paradigm shift in the treatment of pLGG. Ongoing randomized trials comparing targeted therapy to standard of care chemotherapy are anticipated to further inform the approach to upfront management of pLGG patients.
Collapse
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Alexandra M Giantini-Larsen
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Kathryn R Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Mark M Souweidane
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
39
|
D’Antona L, Amato R, Brescia C, Rocca V, Colao E, Iuliano R, Blazer-Yost BL, Perrotti N. Kinase Inhibitors in Genetic Diseases. Int J Mol Sci 2023; 24:ijms24065276. [PMID: 36982349 PMCID: PMC10048847 DOI: 10.3390/ijms24065276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Over the years, several studies have shown that kinase-regulated signaling pathways are involved in the development of rare genetic diseases. The study of the mechanisms underlying the onset of these diseases has opened a possible way for the development of targeted therapies using particular kinase inhibitors. Some of these are currently used to treat other diseases, such as cancer. This review aims to describe the possibilities of using kinase inhibitors in genetic pathologies such as tuberous sclerosis, RASopathies, and ciliopathies, describing the various pathways involved and the possible targets already identified or currently under study.
Collapse
Affiliation(s)
- Lucia D’Antona
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Valentina Rocca
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Emma Colao
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Bonnie L. Blazer-Yost
- Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Nicola Perrotti
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
40
|
Potential of Capric Acid in Neurological Disorders: An Overview. Neurochem Res 2023; 48:697-712. [PMID: 36342577 DOI: 10.1007/s11064-022-03809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
To solve the restrictions of a classical ketogenic diet, a modified medium-chain triglyceride diet was introduced which required only around 60% of dietary energy. Capric acid (CA), a small molecule, is one of the main components because its metabolic profile offers itself as an alternate source of energy to the brain in the form of ketone bodies. This is possible with the combined capability of CA to cross the blood-brain barrier and achieve a concentration of 50% concentration in the brain more than any other fatty acid in plasma. Natural sources of CA include vegetable oils such as palm oil and coconut oil, mammalian milk and some seeds. Several studies have shown that CA has varied action on targets that include AMPA receptors, PPAR-γ, inflammatory/oxidative stress pathways and gut dysbiosis. Based on these lines of evidence, CA has proved to be effective in the amelioration of neurological diseases such as epilepsy, affective disorders and Alzheimer's disease. But these studies still warrant more pre-clinical and clinical studies that would further prove its efficacy. Hence, to understand the potential of CA in brain disease and associated comorbid conditions, an advance and rigorous molecular mechanistic study, apart from the reported in-vitro/in-vivo studies, is urgently required for the development of this compound through clinical setups.
Collapse
|
41
|
Nikesitch N, Beraldi E, Zhang F, Adomat H, Bell R, Suzuki K, Fazli L, Hy Kung S, Wells C, Pinette N, Saxena N, Wang Y, Gleave M. Chaperone-mediated autophagy promotes PCa survival during ARPI through selective proteome remodeling. Oncogene 2023; 42:748-758. [PMID: 36611121 DOI: 10.1038/s41388-022-02573-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023]
Abstract
The androgen receptor (AR) plays an important role in PCa metabolism, with androgen receptor pathway inhibition (ARPI) subjecting PCa cells to acute metabolic stress caused by reduced biosynthesis and energy production. Defining acute stress response mechanisms that alleviate ARPI stress and therefore mediate prostate cancer (PCa) treatment resistance will help improve therapeutic outcomes of patients treated with ARPI. We identified the up-regulation of chaperone-mediated autophagy (CMA) in response to acute ARPI stress, which persisted in castration-resistant PCa (CRPC); previously undefined in PCa. CMA is a selective protein degradation pathway and a key stress response mechanism up-regulated under several stress stimuli, including metabolic stress. Through selective protein degradation, CMA orchestrates the cellular stress response by regulating cellular pathways through selective proteome remodeling. Through broad-spectrum proteomic analysis, CMA coordinates metabolic reprogramming of PCa cells to sustain PCa growth and survival during ARPI; through the upregulation of mTORC1 signaling and pathways associated with PCa biosynthesis and energetics. This not only promoted PCa growth during ARPI, but also promoted the emergence of CRPC in-vivo. During CMA inhibition, PCa metabolism is compromised, leading to ATP depletion, resulting in a profound anti-proliferative effect on PCa cells, and is enhanced when combined with ARPI. Furthermore, CMA inhibition prevented in-vivo tumour formation, and also re-sensitized enzalutamide-resistant cell lines in-vitro. The profound anti-proliferative effect of CMA inhibition was attributed to cell cycle arrest mediated through p53 transcriptional repression of E2F target genes. In summary, CMA is an acute ARPI stress response mechanism, essential in alleviating ARPI induced metabolic stress, essential for ensuring PCa growth and survival. CMA plays a critical role in the development of ARPI resistance in PCa.
Collapse
Affiliation(s)
- Nicholas Nikesitch
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eliana Beraldi
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Fan Zhang
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hans Adomat
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Robert Bell
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kotaro Suzuki
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Hy Kung
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Wells
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Nicholas Pinette
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Neetu Saxena
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
42
|
Basset J, Marchal L, Hovnanian A. EGFR Signaling Is Overactive in Pachyonychia Congenita: Effective Treatment with Oral Erlotinib. J Invest Dermatol 2023; 143:294-304.e8. [PMID: 36116508 DOI: 10.1016/j.jid.2022.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Pachyonychia congenita (PC) is a rare keratinizing disorder characterized by painful palmoplantar keratoderma for which there is no standard current treatment. PC is caused by dominant mutations in keratin (K) K6A, K6B, K6C, K16, or K17 genes involved in stress, wound healing, and epidermal barrier formation. Mechanisms leading to pain and painful palmoplantar keratoderma in PC remain elusive. In this study, we show overexpression of EGFR ligands epiregulin and TGF-α as well as HER1‒EGFR and HER2 in the upper spinous layers of PC lesions. EGFR activation was confirmed by upregulated MAPK/ERK and mTOR signaling. Abnormal late terminal keratinization was associated with elevated TGM1 activity. In addition, the calcium ion permeable channel TRPV3 was significantly increased in PC-lesional skin, suggesting a predominant role of the TRPV3/EGFR signaling complex in PC. We hypothesized that this complex contributes to promoting TGM1 activity and induces the expression and shedding of EGFR ligands. To counteract this biological cascade, we treated three patients with PC with oral erlotinib for 6‒8 months. The treatment was well-tolerated and led to an early, drastic, and sustained reduction of neuropathic pain with a major improvement of QOL. Our study provides evidence that targeted pharmacological inhibition of EGFR is an effective strategy in PC.
Collapse
Affiliation(s)
- Justine Basset
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | - Lucile Marchal
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France; University of Paris, Paris, France; Department of Genetics, Necker Hospital for Sick Children. Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
43
|
Morleo M, Vieira HL, Pennekamp P, Palma A, Bento-Lopes L, Omran H, Lopes SS, Barral DC, Franco B. Crosstalk between cilia and autophagy: implication for human diseases. Autophagy 2023; 19:24-43. [PMID: 35613303 PMCID: PMC9809938 DOI: 10.1080/15548627.2022.2067383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Macroautophagy/autophagy is a self-degradative process necessary for cells to maintain their energy balance during development and in response to nutrient deprivation. Autophagic processes are tightly regulated and have been found to be dysfunctional in several pathologies. Increasing experimental evidence points to the existence of an interplay between autophagy and cilia. Cilia are microtubule-based organelles protruding from the cell surface of mammalian cells that perform a variety of motile and sensory functions and, when dysfunctional, result in disorders known as ciliopathies. Indeed, selective autophagic degradation of ciliary proteins has been shown to control ciliogenesis and, conversely, cilia have been reported to control autophagy. Moreover, a growing number of players such as lysosomal and mitochondrial proteins are emerging as actors of the cilia-autophagy interplay. However, some of the published data on the cilia-autophagy axis are contradictory and indicate that we are just starting to understand the underlying molecular mechanisms. In this review, the current knowledge about this axis and challenges are discussed, as well as the implication for ciliopathies and autophagy-associated disorders.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Helena L.A. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital - IRCCS, Rome, Italy
| | - Liliana Bento-Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy,Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy,CONTACT Brunella Franco CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| |
Collapse
|
44
|
Shimada T, Yamagata K. Spine morphogenesis and synapse formation in tubular sclerosis complex models. Front Mol Neurosci 2022; 15:1019343. [PMID: 36606143 PMCID: PMC9807618 DOI: 10.3389/fnmol.2022.1019343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in the Tsc1 or Tsc2 genes, whose products form a complex and inactivate the small G-protein Rheb1. The activation of Rheb1 may cause refractory epilepsy, intellectual disability, and autism, which are the major neuropsychiatric manifestations of TSC. Abnormalities in dendritic spines and altered synaptic structure are hallmarks of epilepsy, intellectual disability, and autism. In addition, spine dysmorphology and aberrant synapse formation are observed in TSC animal models. Therefore, it is important to investigate the molecular mechanism underlying the regulation of spine morphology and synapse formation in neurons to identify therapeutic targets for TSC. In this review, we focus on the representative proteins regulated by Rheb1 activity, mTORC1 and syntenin, which are pivotal downstream factors of Rheb1 in the alteration of spine formation and synapse function in TSC neurons.
Collapse
Affiliation(s)
- Tadayuki Shimada
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan,*Correspondence: Tadayuki Shimada,
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan,Department of Psychiatry, Takada Nishishiro Hospital, Niigata, Japan,Kanato Yamagata,
| |
Collapse
|
45
|
Zhang J, Xu S, Liang K, Cao X, Ye Z, Huang W, Bai X, Zhang Y. LysM-positive neurons drive Tuberous Sclerosis Complex (TSC)-associated brain lesions. Cell Signal 2022; 100:110468. [PMID: 36115548 DOI: 10.1016/j.cellsig.2022.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Mutations of Tsc1 or Tsc2 can lead to excessive activation of mTORC1 and cause Tuberous Sclerosis Complex (TSC), which is an autosomal dominant genetic disease prominently characterized by seizures, mental retardation and multiorgan hamartoma. In TSC, pathological changes in the central nervous system are the leading cause of death and disability. In decades, series of rodent models have been established by mutating Tsc1 or Tsc2 genes in diverse neural cell lineages to investigate the underlying cellular and molecular mechanisms, however, the cellular origin triggering neural pathological changes in TSC is undetermined. In this study, we generated a novel mouse model involving conditional deletion of Tsc1 in lysozyme 2 (Lyz2)-positive cells which replicated several features of brain lesions including epileptic seizures, megalencephaly, highly enlarged pS6-positive neurons and astrogliosis. In addition, we confirmed that bone marrow-derived myeloid cells including microglia with Tsc1 deficiency are not the decisive lineage in the cerebral pathologies in TSC. These histological assays in our murine model indicate an essential contribution of Lyz2-positive neurons to TSC progression. The Lyz2-positive neural population-specific onset of Tsc1 loss in murine postnatal brain might be the key to pathological phenotypes. Our findings thus provided evidences supporting new insights into the role of Lyz2-positive neurons in TSC events.
Collapse
Affiliation(s)
- Jiahuan Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Song Xu
- Department of Arthroplasty, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kangyan Liang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Xiong Cao
- Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Zhixin Ye
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Wenlan Huang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China.
| | - Yue Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
46
|
Xu H, Zhao Y, Zhao Q, Shi M, Zhang Z, Ding W, Zhao Y. Tuberous Sclerosis Complex 1 Deficiency in Macrophages Promotes Unclassical Inflammatory Response to Lipopolysaccharide In Vitro and Dextran Sodium Sulfate-Induced Colitis in Mice. Aging Dis 2022; 13:1875-1890. [PMID: 36465179 PMCID: PMC9662278 DOI: 10.14336/ad.2022.0408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/08/2022] [Indexed: 09/01/2023] Open
Abstract
Human tuberous sclerosis (TSC) is mainly caused by genetic mutations of tuberous TSC1or TSC2. Recent studies found that TSC1 deficiency promoted classical M1 macrophage polarization. However, whether TSC1 regulates other inflammatory cytokine expression in lipopolysaccharidem (LPS)-stimulated macrophages is unknown. Herein, we studied the cytokine expression profile of wild-type (WT) and TSC1-deleted macrophages after LPS stimulation in vitro and the pathogenesis of dextran sodium sulfate (DSS)-induced colitis in mice with myeloid-specific TSC1 deletion (TSC1cKO mice). We found that TSC1-deficient macrophages exhibited the enhanced secretion of interleukin-17A (IL-17A), IL-17F, and interferon-gamma (IFN-γ) in response to LPS stimulation in vitro. This is in contrast to LPS-stimulated WT macrophages, which usually do not. Importantly, TSC1cKO mice exhibited exacerbated DSS-induced acute colitis with severer symptoms. MTOR deletion or rapamycin treatment significantly reversed the enhanced expressions of IL-17A, IL-17F, and IFN-γ in LPS-stimulated TSC1-deficient macrophages in vitro and rescued the enhanced DSS-induced colitis in TSC1cKO mice, indicating that TSC1 deficiency increased these cytokine productions in an mTOR-dependent manner. RNA-sequencing and molecular studies indicated that TSC1 deficiency enhanced the aerobic glycolysis process and the activities of mTOR-STAT3-RORγT pathway in LPS-stimulated macrophages. Inhibition of aerobic glycolysis, STAT3, or RORγT reversed IL-17 and IFN-γ expression in LPS-treated TSC1-deficient macrophages. Thus, TSC1 is essential for macrophages to shut down IL-17A, IL-17F, and IFN-γ expression during LPS stimulation by suppressing the aerobic glycolysis process and mTOR-STAT3, RORγT, and T-bet pathways. The present study uncovered the key role of TSC1 in shutting down IL-17A, IL-17F, and IFN-γ expressions in LPS-treated macrophages.
Collapse
Affiliation(s)
- Huawen Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Cunji Medical College, University of Chinese Academy of Sciences, Beijing, China.
| | - Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Cunji Medical College, University of Chinese Academy of Sciences, Beijing, China.
| | - Qingjie Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Mingpu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Cunji Medical College, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Cunji Medical College, University of Chinese Academy of Sciences, Beijing, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Cunji Medical College, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
47
|
Huang Z, You X, Chen L, Du Y, Brodeur K, Jee H, Wang Q, Linder G, Darbousset R, Cunin P, Chang MH, Wactor A, Wauford BM, Todd MJC, Wei K, Li Y, Levescot A, Iwakura Y, Pascual V, Baldwin NE, Quartier P, Li T, Gianatasio MT, Hasserjian RP, Henderson LA, Sykes DB, Mellins ED, Canna SW, Charles JF, Nigrovic PA, Lee PY. mTORC1 links pathology in experimental models of Still's disease and macrophage activation syndrome. Nat Commun 2022; 13:6915. [PMID: 36443301 PMCID: PMC9705324 DOI: 10.1038/s41467-022-34480-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
Still's disease is a severe inflammatory syndrome characterized by fever, skin rash and arthritis affecting children and adults. Patients with Still's disease may also develop macrophage activation syndrome, a potentially fatal complication of immune dysregulation resulting in cytokine storm. Here we show that mTORC1 (mechanistic target of rapamycin complex 1) underpins the pathology of Still's disease and macrophage activation syndrome. Single-cell RNA sequencing in a murine model of Still's disease shows preferential activation of mTORC1 in monocytes; both mTOR inhibition and monocyte depletion attenuate disease severity. Transcriptomic data from patients with Still's disease suggest decreased expression of the mTORC1 inhibitors TSC1/TSC2 and an mTORC1 gene signature that strongly correlates with disease activity and treatment response. Unrestricted activation of mTORC1 by Tsc2 deletion in mice is sufficient to trigger a Still's disease-like syndrome, including both inflammatory arthritis and macrophage activation syndrome with hemophagocytosis, a cellular manifestation that is reproduced in human monocytes by CRISPR/Cas-mediated deletion of TSC2. Consistent with this observation, hemophagocytic histiocytes from patients with macrophage activation syndrome display prominent mTORC1 activity. Our study suggests a mechanistic link of mTORC1 to inflammation that connects the pathogenesis of Still's disease and macrophage activation syndrome.
Collapse
Affiliation(s)
- Zhengping Huang
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDivision of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.413405.70000 0004 1808 0686Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaomeng You
- grid.38142.3c000000041936754XDepartment of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Liang Chen
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Yan Du
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,grid.412465.0Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kailey Brodeur
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Hyuk Jee
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Qiang Wang
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Grace Linder
- grid.239552.a0000 0001 0680 8770Blood Bank and Transfusion Medicine Division, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Roxane Darbousset
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Pierre Cunin
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Margaret H. Chang
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Alexandra Wactor
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Brian M. Wauford
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Marc J. C. Todd
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kevin Wei
- grid.38142.3c000000041936754XDivision of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Ying Li
- grid.38142.3c000000041936754XDivision of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Anais Levescot
- grid.462336.6Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
| | - Yoichiro Iwakura
- grid.143643.70000 0001 0660 6861Centre for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Virginia Pascual
- grid.5386.8000000041936877XDepartment of Pediatrics and Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY USA
| | - Nicole E. Baldwin
- grid.486749.00000 0004 4685 2620Baylor Scott & White Research Institute, Dallas, TX USA
| | - Pierre Quartier
- grid.5842.b0000 0001 2171 2558Pediatric Immunology, Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris, Universite de Paris, Paris, France
| | - Tianwang Li
- grid.413405.70000 0004 1808 0686Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Maria T. Gianatasio
- grid.416636.00000 0004 0460 4960Mass General Brigham Healthcare Center - Salem Hospital, Salem, MA USA
| | - Robert P. Hasserjian
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Lauren A. Henderson
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - David B. Sykes
- grid.32224.350000 0004 0386 9924Center for Regenerative Medicine, Massachusetts General Hospital, Boston, USA
| | - Elizabeth D. Mellins
- grid.168010.e0000000419368956Department of Pediatrics, Program in Immunology, Stanford University, Stanford, CA USA
| | - Scott W. Canna
- grid.239552.a0000 0001 0680 8770Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Julia F. Charles
- grid.38142.3c000000041936754XDivision of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Peter A. Nigrovic
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDivision of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Pui Y. Lee
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
48
|
An mTORC1 to HRI signaling axis promotes cytotoxicity of proteasome inhibitors in multiple myeloma. Cell Death Dis 2022; 13:969. [PMID: 36400754 PMCID: PMC9674573 DOI: 10.1038/s41419-022-05421-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Multiple myeloma (MM) causes approximately 20% of deaths from blood cancers. Notwithstanding significant therapeutic progress, such as with proteasome inhibitors (PIs), MM remains incurable due to the development of resistance. mTORC1 is a key metabolic regulator, which frequently becomes dysregulated in cancer. While mTORC1 inhibitors reduce MM viability and synergize with other therapies in vitro, clinically, mTORC1 inhibitors are not effective for MM. Here we show that the inactivation of mTORC1 is an intrinsic response of MM to PI treatment. Genetically enforced hyperactivation of mTORC1 in MM was sufficient to compromise tumorigenicity in mice. In vitro, mTORC1-hyperactivated MM cells gained sensitivity to PIs and hypoxia. This was accompanied by increased mitochondrial stress and activation of the eIF2α kinase HRI, which initiates the integrated stress response. Deletion of HRI elevated the toxicity of PIs in wt and mTORC1-activated MM. Finally, we identified the drug PMA as a robust inducer of mTORC1 activity, which synergized with PIs in inducing MM cell death. These results help explain the clinical inefficacy of mTORC1 inhibitors in MM. Our data implicate mTORC1 induction and/or HRI inhibition as pharmacological strategies to enhance MM therapy by PIs.
Collapse
|
49
|
Capuano I, Buonanno P, Riccio E, Crocetto F, Pisani A. Parapelvic Cysts: An Imaging Marker of Kidney Disease Potentially Leading to the Diagnosis of Treatable Rare Genetic Disorders? A Narrative Review of the Literature. J Nephrol 2022; 35:2035-2046. [PMID: 35749008 DOI: 10.1007/s40620-022-01375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
Abstract
Simple renal cysts are a common finding during abdominal imaging assessment. The incidence increases with age and it is higher in male gender. Parapelvic cysts are a subset of simple cysts that arise within the renal parenchyma, adjacent to the renal sinus, characterized by being generally single, larger, and incompletely surrounded by renal parenchyma. Noteworthy, parapelvic cysts are a rare and understudied condition which, although considered clinically insignificant due to the absence of influence on renal function, still have a controversial aetiopathogenesis. On the other hand, urological management and differential diagnosis have been thoroughly investigated. The aim of our review is to provide an overall vision on this rare condition, usually misdiagnosed and underestimated, on the basis of more recent data. An accurate differential diagnosis of parapelvic cysts can lead to the identification of treatable conditions such as Fabry disease, autosomal dominant polycystic kidney disease, polycystic liver disease and tuberous sclerosis complex disease.
Collapse
Affiliation(s)
- Ivana Capuano
- Department of Public Health, Chair of Nephrology "Federico II", University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy.
| | - Pasquale Buonanno
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Eleonora Riccio
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Antonio Pisani
- Department of Public Health, Chair of Nephrology "Federico II", University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
50
|
Mitchell RA, Mitchell M, Williams K. The autism spectrum disorder phenotype in children with tuberous sclerosis complex: A systematic review and meta-analysis. Dev Med Child Neurol 2022; 64:1214-1229. [PMID: 35724267 DOI: 10.1111/dmcn.15307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022]
Abstract
AIM To investigate the phenotype in autistic children with tuberous sclerosis complex (TSC), specifically autism spectrum disorder (ASD) severity and characteristics, intellectual ability, adaptive and executive function, language skills, attention-deficit/hyperactivity disorder features, and internalizing and externalizing behaviours. METHOD MEDLINE, Embase, and the Cochrane Library were searched up to March 2021. Studies that investigated predefined phenotypic factors in children with TSC-ASD were included according to the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P) guidelines. Two authors independently reviewed titles, abstracts, full texts, and extracted the data. Risk of bias and GRADE assessments were completed. RESULTS Thirty-four studies with 3160 children with TSC, 30% with ASD, were included. Meta-analysis found that 90% (95% confidence interval 86%-94%) of children with TSC-ASD have an intellectual disability. There was some evidence to suggest that young children with TSC-ASD and idiopathic ASD have a similar pattern of severity and behaviour. Overall, data about phenotypic characteristics were limited. INTERPRETATION A greater proportion of children with TSC-ASD are reported to have an intellectual disability than children with idiopathic ASD. Early intervention should consider the needs of children with a high likelihood of intellectual disability. Research is needed to better understand the impacts of intellectual disability and other co-occurring difficulties on adaptive function, participation, and quality of life in TSC-ASD. WHAT THIS PAPER ADDS Most children with tuberous sclerosis complex (TSC) and autism spectrum disorder (ASD) have an intellectual disability. TSC-ASD early intervention planning should consider the high likelihood of intellectual disability. Quality of life and the functional impact of intellectual disability in TSC-ASD are not understood. Little is known about co-occurring difficulties in TSC-ASD.
Collapse
Affiliation(s)
- Rebecca A Mitchell
- The Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Marijke Mitchell
- The Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Department of Paediatrics, Monash University, Clayton, Australia
| | - Katrina Williams
- The Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, Monash University, Clayton, Australia
- Monash Health, Monash Children's Hospital, Clayton, Australia
| |
Collapse
|