1
|
Gong SM, Jiang Y, Xue YB, Peng YY, Qian CY, Zhang Y, Zhou R, Huang L. The odorant (R)-(-)-carvone promotes glucose-stimulated insulin secretion via the olfactory receptor Olfr1259 in pancreatic β-TC6 cells. Arch Biochem Biophys 2025; 768:110404. [PMID: 40157529 DOI: 10.1016/j.abb.2025.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Olfactory receptors (ORs) make up the largest subfamily of G protein-coupled receptors that are expressed in olfactory sensory neurons in the nasal cavity and recognize an enormous number of odorants from the external environment. These receptors, however, have also been found in many other tissues including pancreas, liver, and adipose tissue, in which they seem to play important but different roles. Yet, the exact functions of ORs in these extra-nasal tissues are not well understood. Here, we report that (R)-(-)-carvone and a few other odorants were able to evoke calcium responses in mouse pancreatic β-TC6 cells. Furthermore, (R)-(-)-carvone potentiated cytoplasmic cAMP accumulation and glucose-stimulated insulin secretion (GSIS). More importantly, GPCR signaling pathway components adenylyl cyclase, phospholipase C, and inositol triphosphate receptor were involved in (R)-(-)-carvone-induced signal transduction. By reanalyzing the available β-TC6 cells' RNAseq dataset, we identified several candidate ORs for (R)-(-)-carvone. Further analyses with molecular docking and molecular dynamics simulations indicated that (R)-(-)-carvone bound to the odorant-binding pocket of the olfactory receptor Olfr1259 while knockdown of Olfr1259 expression in β-TC6 cells with siRNA significantly reduced the stimulatory effects of (R)-(-)-carvone on cytoplasmic Ca2+ and cAMP levels, and insulin secretion. Together, these results indicated that Olfr1259 is the receptor for (R)-(-)-carvone in β-TC6 cells. Therefore, our study highlighted the important roles of (R)-(-)-carvone and its receptor Olfr1259 in initiating calcium signaling, inducing intracellular cAMP accumulation, and enhancing GSIS in pancreatic β cells, demonstrating that Olfr1259 may be a new therapeutic target for regulating glucose metabolism and for treating diabetes.
Collapse
Affiliation(s)
- Shi-Meng Gong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yangwei Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yan-Bo Xue
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yuan-Yuan Peng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chun-Yan Qian
- Linping Branch of the Second Affiliated Hospital, Zhejiang University of School of Medicine, Hangzhou, Zhejiang, 311100, China
| | - Yue Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ruhong Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; The First Affiliated Hospital, Zhejiang University of School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Geng L, Yi X, Lin Y, Abulimiti X, Jin L, Yu J, Xu A. Site-specific analysis and functional characterization of N-linked glycosylation for β-Klotho protein. Int J Biol Macromol 2025; 289:138846. [PMID: 39701265 DOI: 10.1016/j.ijbiomac.2024.138846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
β-Klotho (KLB), a type I transmembrane protein, serves as an obligate co-receptor determining the tissue-specific actions of endocrine fibroblast growth factors (FGFs). Despite accumulative evidence suggesting the occurrence of N-glycosylation in the KLB protein, the precise N-glycosites, glycoforms, and the impacts of N-glycosylation on the expression and function of the KLB protein remain unexplored. Employing a mass spectrometry-based approach, a total of 12 N-glycosites displaying heterogeneous site occupancy and glycoforms were identified within the extracellular region of the recombinant human KLB protein. Molecular simulation revealed negligible impact of these N-glycans on the overall structure of the KLB protein. However, both pharmacological inhibition of N-glycosylation and mutagenesis targeting N-glycosites reduced mature KLB protein content without impacting KLB mRNA synthesis in cells, underscoring the critical role of N-glycosylation in maintaining the stability of the KLB protein. Further studies revealed that the underglycosylated KLB mutant underwent rapid degradation via both lysosomal and proteasomal pathways and was unable to be efficiently trafficked to the plasma membrane, leading to impaired FGF21 signaling transduction. Collectively, multisite N-glycosylation is essential for the stability and cell surface localization of the KLB protein, representing a novel modulatory mechanism of endocrine FGF signaling.
Collapse
Affiliation(s)
- Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China.
| | - Xinyao Yi
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Ying Lin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Xiayidan Abulimiti
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Jiasui Yu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China.
| |
Collapse
|
3
|
Mikhailova AA, Sharypova MV, Simanenkova AV, Cheburkin YV, Fuks OS, Timkina NV, Dyachuk VA, Karonova TL. Fibroblast growth factor 21: a novel link in the development and treatment of metabolic disorders. "ARTERIAL’NAYA GIPERTENZIYA" ("ARTERIAL HYPERTENSION") 2025; 30:441-450. [DOI: 10.18705/1607-419x-2024-2455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
In recent years, fibroblast growth factor 21 (FGF21) has garnered increasing attention as a metabolic regulator. It plays a role in the development of tissue insulin sensitivity, exerts beneficial effects on carbohydrate and lipid metabolism, and exhibits antihyperglycemic and antilipidemic properties. Elevated FGF21 levels have been observed in patients with type 2 diabetes, obesity, non-alcoholic fatty liver disease, and a range of other conditions. This may indicate either resistance to FGF21 or a compensatory response to metabolic stress. Evidence suggests that FGF21 can be considered both a marker of several metabolic disorders and a potential therapeutic agent for the treatment of significant societal health issues. Objective. The objective of this review is to summarize the data published to date in the literature, including meta-analyses, reviews, and original studies, focusing on the diagnostic and potential therapeutic role of FGF21 in metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | - O. S. Fuks
- Almazov National Medical Research Centre
| | | | | | | |
Collapse
|
4
|
Tian S, Zhou S, Wu W, lin Y, Wang T, Sun H, A‐Ni‐Wan A, Li Y, Wang C, Li X, Yu P, Zhao Y. GLP-1 Receptor Agonists Alleviate Diabetic Kidney Injury via β-Klotho-Mediated Ferroptosis Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409781. [PMID: 39630101 PMCID: PMC11775532 DOI: 10.1002/advs.202409781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/17/2024] [Indexed: 01/30/2025]
Abstract
Semaglutide (Smg), a GLP-1 receptor agonist (GLP-1RA), shows renal protective effects in patients with diabetic kidney disease (DKD). However, the exact underlying mechanism remains elusive. This study employs transcriptome sequencing and identifies β-Klotho (KLB) as the critical target responsible for the role of Smg in kidney protection. Smg treatment alleviates diabetic kidney injury by inhibiting ferroptosis in patients, animal models, and HK-2 cells. Notably, Smg treatment significantly increases the mRNA expression of KLB through the activation of the cyclic adenosine monophosphate (cAMP) signaling pathway, specifically through the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Subsequently, the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway is activated, reprograming the key metabolic processes of ferroptosis such as iron metabolism, fatty acid synthesis, and the antioxidant response against lipid peroxidation. Suppression of ferroptosis by Smg further attenuates renal inflammation and fibrosis. This work highlights the potential of GLP-1RAs and KLB targeting as promising therapeutic approaches for DKD management.
Collapse
Affiliation(s)
- Shasha Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
- Department of NephrologyThe Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)TaiyuanShanxi030000China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Weixi Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Yao lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Tongdan Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Haizhen Sun
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - A‐Shan‐Jiang A‐Ni‐Wan
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Yaru Li
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Faculty of MedicineTianjin UniversityTianjin300072China
| | - Chongyang Wang
- School of Life SciencesPeking UniversityBeijing100871China
| | - Xiaogang Li
- Department of Internal MedicineMayo ClinicRochesterMN55901USA
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
- Nephropathy & Blood Purification DepartmentThe Second Hospital of Tianjin Medical UniversityTianjin300134China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Faculty of MedicineTianjin UniversityTianjin300072China
| |
Collapse
|
5
|
Ghassemifard L, Hasanlu M, Parsamanesh N, Atkin SL, Almahmeed W, Sahebkar A. Cell Therapies and Gene Therapy for Diabetes: Current Progress. Curr Diabetes Rev 2025; 21:e130524229899. [PMID: 38747221 DOI: 10.2174/0115733998292392240425122326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2025]
Abstract
The epidemic of diabetes continues to be an increasing problem, and there is a need for new therapeutic strategies. There are several promising drugs and molecules in synthetic medicinal chemistry that are developing for diabetes. In addition to this approach, extensive studies with gene and cell therapies are being conducted. Gene therapy is an existing approach in treating several diseases, such as cancer, autoimmune diseases, heart disease and diabetes. Several reports have also suggested that stem cells have the differentiation capability to functional pancreatic beta cell development in vitro and in vivo, with the utility to treat diabetes and prevent the progression of diabetes-related complications. In this current review, we have focused on the different types of cell therapies and vector-based gene therapy in treating or preventing diabetes.
Collapse
Affiliation(s)
- Leila Ghassemifard
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Persian Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masumeh Hasanlu
- Department of Internal Medicine, Vali-e-Asr Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Yu F, Xie S, Wang T, Huang Y, Zhang H, Peng D, Feng Y, Yang Y, Zhang Z, Zhu Y, Meng Z, Zhang R, Li X, Yin H, Xu J, Hu C. Pancreatic β cell interleukin-22 receptor subunit alpha 1 deficiency impairs β cell function in type 2 diabetes via cytochrome b5 reductase 3. Cell Rep 2024; 43:115057. [PMID: 39675006 DOI: 10.1016/j.celrep.2024.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Impaired β cell function is a hallmark of type 2 diabetes (T2D), but the underlying cellular signaling machineries that regulate β cell function remain unknown. Here, we identify that the interleukin-22 receptor subunit alpha 1 (IL-22RA1), known as a co-receptor for IL-22, is downregulated in human and mouse T2D β cells. Mice with β cell Il22ra1 knockout (Il22ra1βKO) exhibit defective insulin secretion and impaired glucose tolerance after being fed a high-fat diet (HFD) or an HFD/low dose of streptozotocin (STZ). Mechanistically, β cell IL-22RA1 deficiency inhibits cytochrome b5 reductase 3 (CYB5R3) expression via the IL-22RA1/signal transducer and activator of the transcription 3 (STAT3)/c-Jun axis, thereby impairing mitochondrial function and reducing β cell identity. Overexpression of CYB5R3 reinstates mitochondrial function, β cell identity, and insulin secretion in Il22ra1βKO mice. Moreover, the pharmacological activation of CYB5R3 with tetrahydroindenoindole restores insulin secretion in Il22ra1βKO mice, IL-22RA1-knockdown human islets, and Min6 cells. In conclusion, these findings suggest an important role of IL-22RA1 in preserving β cell function in T2D, which offers a potential therapeutic target for treating diabetes.
Collapse
Affiliation(s)
- Fan Yu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shuting Xie
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tongyu Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yeping Huang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Danfeng Peng
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yifan Feng
- Organ Transplant Center, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yumei Yang
- Department of Endocrinology and Metabolism, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Zheyu Zhang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China.
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Jie Xu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China.
| |
Collapse
|
7
|
Peng X, Hu Y, Xu J, Chen L, Ren W, Cai W. Inverse association between serum klotho levels and C-reactive protein levels in the US population: a cross-sectional study. BMC Cardiovasc Disord 2024; 24:687. [PMID: 39614159 DOI: 10.1186/s12872-024-04375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND The inverse relationship between serum Klotho levels and systemic inflammation, particularly C-reactive protein (CRP), has been suggested in limited studies. However, the association within a large and diverse population remains underexplored. METHODS We conducted a cross-sectional study using data from the National Health and Nutrition Examination Survey (NHANES) to investigate the association between serum Klotho levels and CRP among a nationally representative sample of the US population. Multiple linear regression analyses were performed to assess this relationship while adjusting for relevant covariates. Stratified analysis with interaction, restricted cubic splines (RCS) were employed to support the research objectives. RESULTS A total of 5901 participants had a mean age of 57.9 ± 11.0 years, with 49.4% of them being male and 50.6% of them being female. A negative association between serum Klotho and CRP was revealed in the fully adjusted model (β -0.26; 95% CI -0.41∼-0.11). When serum Klotho was taken as quartiles with Q1 as reference, the adjusted β that were lowest in Q4 were - 0.1 (95% CI -0.16∼-0.04, p-value = 0.002) in model 4, respectively. These statistics were robust in stratified analyses. CONCLUSION While our study demonstrates an inverse association between serum Klotho levels and CRP, suggesting a potential cardioprotective role of Klotho, it is important to note that our cross-sectional design does not permit the establishment of causality. Therefore, we cannot definitively conclude that increasing Klotho levels will directly reduce cardiovascular risk. Our findings do, however, highlight the need for further research to explore the potential of Klotho as a therapeutic target for cardiovascular health.
Collapse
Affiliation(s)
- Xuelan Peng
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Number 1333, Xinhu Road, Baoán District, Shenzhen, Guangdong, 518101, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yingjie Hu
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Number 1333, Xinhu Road, Baoán District, Shenzhen, Guangdong, 518101, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiarong Xu
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Number 1333, Xinhu Road, Baoán District, Shenzhen, Guangdong, 518101, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ling Chen
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Number 1333, Xinhu Road, Baoán District, Shenzhen, Guangdong, 518101, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei Ren
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Number 1333, Xinhu Road, Baoán District, Shenzhen, Guangdong, 518101, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenzhi Cai
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Number 1333, Xinhu Road, Baoán District, Shenzhen, Guangdong, 518101, China.
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
8
|
Shi J, Liang Z, Liu Z, Pan L, Hu X, Tian Y, Jin H, Liu Y, Cheng Y, Zhang M. Identification of Novel Proteins Mediating Causal Association Between Smoking and Essential Hypertension: A Mendelian Randomization Study. J Am Heart Assoc 2024:e036202. [PMID: 39604029 DOI: 10.1161/jaha.124.036202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/06/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Smoking is a factor for hypertension. We aim to reveal novel plasma proteins mediating the relationship of smoking with hypertension and identify potential drug targets for hypertension on the basis of Mendelian randomization design. METHODS AND RESULTS Data for smoking were selected from the largest genome-wide association study meta-analysis performed by the Genome-Wide Association Study and Sequencing Consortium of Alcohol and Nicotine Use. Data for plasma proteins were selected from the deCODE Health study and the UK Biobank Pharma Proteomics Project. Data for hypertension were extracted from the FinnGen Study. Moreover, proteome-wide Mendelian randomization and colocalization analyses, 2-step Mendelian randomization, and gene function and network prediction, as well as druggability assessment were performed. We finally identified 8 proteins (ANXA4 [annexin A4], DLK1 [protein delta homolog 1], KLB [β-klotho], MMP8 [matrix metallopeptidase 8], PLAT [tissue-type plasminogen activator], POSTN [periostin], SAT2 [thialysine N-ε-acetyltransferase], and IFNLR1 [interferon λ receptor 1]) mediating association of smoking with hypertension. PLAT and IFNLR1 were identified to be involved in the complement and coagulation cascades and the Janus kinase/signal transducer and activator of transcription signaling pathway. ANXA4, KLB, MMP8, PLAT, and IFNLR1 had druggability. Moreover, IFNLR1 had strong evidence of genetic colocalization, because the posterior probability for H4 of IFNLR1 was 91.3%. CONCLUSIONS This study identified the 8 proteins that mediate causal association between smoking and essential hypertension. Interferon λ receptor agonist targeting IFNLR1 may open a new avenue for treating hypertension. Our discoveries provide new insights into protein pathogenesis of hypertension and to better guide hypertension prevention and treatment among smokers.
Collapse
Affiliation(s)
- Jikang Shi
- Department of Clinical Nutrition Peking University Shenzhen Hospital Shenzhen China
| | - Zhuoshuai Liang
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Zhantong Liu
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Lingfeng Pan
- Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar Technical University of Munich Munich Germany
| | - Xinmeng Hu
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Yuyang Tian
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Huizhen Jin
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Yi Cheng
- The Cardiovascular Center The First Hospital of Jilin University Changchun Jilin China
| | - Ming Zhang
- Department of Clinical Nutrition Peking University Shenzhen Hospital Shenzhen China
| |
Collapse
|
9
|
Meroni M, Dongiovanni P, Tiano F, Piciotti R, Alisi A, Panera N. β-Klotho as novel therapeutic target in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A narrative review. Biomed Pharmacother 2024; 180:117608. [PMID: 39490050 DOI: 10.1016/j.biopha.2024.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) represents the most frequent cause of hepatic disorder, and its progressive form defined as Metabolic Dysfunction-Associated Steatohepatitis (MASH) contributes to the development of fibrosis/cirrhosis and hepatocellular carcinoma (HCC). Today effective therapeutic strategies addressing MASH-related comorbidities, inflammation, and fibrosis are needed. The fibroblast growth factor (FGF) 19 and 21 and their fibroblast growth factor receptor/β-Klotho (KLB) complexes have recently emerged as promising druggable targets for MASLD. However, less is known regarding the causative association between KLB activity and advanced stages of liver disease. In the present narrative review, we aimed to provide an up-to-date picture of the role of the KLB co-receptor in MASLD development and progression. We performed a detailed analysis of recently published preclinical and clinical data to decipher the molecular mechanisms underlying KLB function and to correlate the presence of inherited or acquired KLB aberrancies with the predisposition towards MASLD. Moreover, we described ongoing clinical trials evaluating the therapeutic approaches targeting FGF19-21/FGFR/KLB in patients with MASLD and discussed the challenges related to their use. We furtherly described that KLB exhibits protective effects against metabolic disorders by acting in an FGF-dependent and independent manner thus triggering the hypothesis that KLB soluble forms may play a critical role in preserving liver health. Therefore, targeting KLB may provide promising strategies for treating MASLD, as supported by experimental evidence and ongoing clinical trials.
Collapse
Affiliation(s)
- Marica Meroni
- Medicine and Metabolic Diseases; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Francesca Tiano
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberto Piciotti
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Nadia Panera
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Wen G, Xue L, Qiu M, Qiu J, Zhu X, Ren H. Biohybrid hydrogel inhibiting β-klotho/HDAC3 axis for hepatocellular carcinoma treatment. Int J Biol Macromol 2024; 277:134369. [PMID: 39098678 DOI: 10.1016/j.ijbiomac.2024.134369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Hepatocellular carcinoma (HCC), ranking as the fourth most prevalent cancer globally, has garnered significant attention due to its high invasiveness and mortality rates. However, drug therapies face challenges of inadequate efficacy and unclear mechanisms. Here, we propose a novel biohybrid hydrogel that targets β-klotho (KLB) for HCC treatment. As a dual-network hydrogel, this gel combines gelatin methacryloyl (GelMA) and polyvinyl alcohol (PVA) to ensure biocompatibility while enhancing controlled drug release. Notably, it exhibits good storage stability, high drug load capacity, and efficient water absorption. By introducing the HDAC3 inhibitor RGFP966, we can selectively inhibit the activation of KLB. This deactivation effectively blocks the FGF21-KLB signaling pathway and inhibits the progression of HCC. Importantly, we have successfully validated this unique phenomenon both in vivo and in vitro, providing substantial evidence for the efficacy of this hydrogel-based anti-tumor drug delivery system as a promising strategy for HCC treatment. This innovative research outcome brings new hope to the field of tumor therapy, providing a reliable theoretical foundation for future clinical applications.
Collapse
Affiliation(s)
- Gaolin Wen
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Lingling Xue
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Mengdi Qiu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Junlan Qiu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China.
| | - Xinhua Zhu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China.
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China; Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
11
|
Sullivan AI, Jensen-Cody SO, Claflin KE, Vorhies KE, Flippo KH, Potthoff MJ. Characterization of FGF21 Sites of Production and Signaling in Mice. Endocrinology 2024; 165:bqae120. [PMID: 39253796 DOI: 10.1210/endocr/bqae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Fibroblast growth factor (FGF) 21 is an endocrine hormone that signals to multiple tissues to regulate metabolism. FGF21 and another endocrine FGF, FGF15/19, signal to target tissues by binding to the co-receptor β-klotho (KLB), which then facilitates the interaction of these different FGFs with their preferred FGF receptor. KLB is expressed in multiple metabolic tissues, but the specific cell types and spatial distribution of these cells are not known. Furthermore, while circulating FGF21 is primarily produced by the liver, recent publications have indicated that brain-derived FGF21 impacts memory and learning. Here we use reporter mice to comprehensively assess KLB and FGF21 expression throughout the body. These data provide an important resource for guiding future studies to identify important peripheral and central targets of FGFs and to determine the significance of nonhepatic FGF21 production.
Collapse
Affiliation(s)
- Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kai E Vorhies
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
12
|
Wu H, Wang Q, Chen Y, Chen D. The association between circulating phenylalanine and the temporal risk of impaired insulin markers in gestational diabetes mellitus. Mol Genet Metab Rep 2024; 40:101090. [PMID: 38974841 PMCID: PMC11227027 DOI: 10.1016/j.ymgmr.2024.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 07/09/2024] Open
Abstract
Background We aimed to contrast plasma amino acid concentrations in pregnant women with Gestational Diabetes Mellitus (GDM) to those without, to analyze the link between plasma amino acid concentrations, GDM, insulin resistance, and insulin secretion at 24-28 weeks of gestation. Methods The research employed a retrospective case-control study design at a single center. Basic demographic and laboratory data were procured from the hospital's case system. The study encompassed seventy women without gestational diabetes mellitus (GDM) and thirty-five women with GDM matched in a 1-to-2 ratio for age and pre-pregnancy BMI. Utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS), peripheral fasting plasma amino acid concentrations in these women, during mid-pregnancy, were duly measured. We carefully evaluated the significant differences in the quantitative data between the two groups and developed linear regression models to assess the independent risk factors affecting insulin resistance and insulin secretion. Results Significant variations in insulin secretion and resistance levels distinguished GDM Group from the non-GDM group at three distinct time points, alongside relatively elevated serum Glycosylated Hemoglobin (HbA1c) levels. Triglycerides (TG) were also significantly increased in those with GDM during adipocytokine observations. Apart from glutamic acid and glutamine, the concentrations of the remaining 16 amino acids were notably increased in GDM patients, including all branched chain amino acids(BCAAs) and aromatic amino acids(AAAs). Ultimately, it was ascertained that fasting serum phenylalanine levels were independent risk factors affecting insulin resistance index and insulin secretion at various phases. Conclusions Various fasting serum amino acid levels are markedly increased in patients with GDM, specifically phenylalanine, which may play role in insulin resistance and secretion.
Collapse
Affiliation(s)
- Hao Wu
- Department of Obstetrics Central Laboratory, Women's Hospital School of Medicine Zhejiang University, China
| | - Qiong Wang
- Department of Maternity Inpatient, Women's Hospital School of Medicine Zhejiang University, China
| | - Yanmin Chen
- Department of Maternity Inpatient, Women's Hospital School of Medicine Zhejiang University, China
| | - Danqing Chen
- Department of Maternity Inpatient, Women's Hospital School of Medicine Zhejiang University, China
| |
Collapse
|
13
|
Wu C, Zhang C, Li F, Yan Y, Wu Y, Li B, Tong H, Lang J. Fucoxanthin Mitigates High-Fat-Induced Lipid Deposition and Insulin Resistance in Skeletal Muscle through Inhibiting PKM1 Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18013-18026. [PMID: 39088205 DOI: 10.1021/acs.jafc.4c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Glucose and lipid metabolism dysregulation in skeletal muscle contributes to the development of metabolic disorders. The efficacy of fucoxanthin in alleviating lipid metabolic disorders in skeletal muscle remains poorly understood. In this study, we systematically investigated the impact of fucoxanthin on mitigating lipid deposition and insulin resistance in skeletal muscle employing palmitic acid-induced lipid deposition in C2C12 cells and ob/ob mice. Fucoxanthin significantly alleviated PA-induced skeletal muscle lipid deposition and insulin resistance. In addition, fucoxanthin prominently upregulated the expression of lipid metabolism-related genes (Pparα and Cpt-1), promoting fatty acid β-oxidation metabolism. Additionally, fucoxanthin significantly increased the expression of Pgc-1α and Tfam, elevated the mtDNA/nDNA ratio, and reduced ROS levels. Further, we identified pyruvate kinase muscle isozyme 1 (PKM1) as a high-affinity protein for fucoxanthin by drug affinity-responsive target stability and LC-MS and confirmed their robust interaction by CETSA, microscale thermophoresis, and circular dichroism. Supplementation with pyruvate, the product of PKM1, significantly attenuated the beneficial effects of fucoxanthin on lipid deposition and insulin resistance. Mechanistically, fucoxanthin reduced glucose glycolysis rate and enhanced mitochondrial biosynthesis and fatty acid β-oxidation through inhibiting PKM1 activity, thereby alleviating lipid metabolic stress. These findings present a novel clinical strategy for treating metabolic diseases using fucoxanthin.
Collapse
Affiliation(s)
- Congcong Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Cheng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Yawei Yan
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Junzhe Lang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
14
|
Yang J, Chen L, Zhao SS, Du C, Fan YZ, Liu HX, Li Y, Li YZ. FGF21-dependent alleviation of cholestasis-induced liver fibrosis by sodium butyrate. Front Pharmacol 2024; 15:1422770. [PMID: 39040469 PMCID: PMC11260614 DOI: 10.3389/fphar.2024.1422770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Background The beneficial effects of fibroblast growth factor 21 (FGF21) and sodium butyrate (NaB) on protection against cholestasis-induced liver fibrosis are not well known. This study aimed to explore the effects of FGF21 and NaB on bile duct ligation (BDL)-induced liver fibrosis. Methods Wild-type (WT) and FGF21 knockout (KO) mice received BDL surgery for 14 days. Liver fibrosis was assessed by Masson's staining for fibrosis marker expressions at the mRNA or protein levels. Adenovirus-mediated FGF21 overexpression in the WT mice was assessed against BDL damage. BDL surgeries were performed in WT and FGF21 KO mice that were administered either phosphate-buffered saline or NaB. The effects of NaB on the energy metabolism and gut microbiota were assessed using stable metabolism detection and 16S rRNA gene sequencing. Results BDL-induced liver fibrosis in the WT mice was accompanied by high induction of FGF21. Compared to the WT mice, the FGF21 KO mice showed more severe liver fibrosis induced by BDL. FGF21 overexpression protected against BDL-induced liver fibrosis, as proved by the decreasing α-SMA at both the mRNA and protein levels. NaB administration enhanced the glucose and energy metabolisms as well as remodeled the gut microbiota. NaB alleviated BDL-induced liver fibrosis in the WT mice but aggravated the same in FGF21 KO mice. Conclusion FGF21 plays a key role in alleviating cholestasis-induced liver damage and fibrosis. NaB has beneficial effects on cholestasis in an FGF21-dependent manner. NaB administration can thus be a novel nutritional therapy for treating cholestasis via boosting FGF21 signaling and regulating the gut microbiota.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Lei Chen
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Shan-Shan Zhao
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Chuang Du
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Yi-Zhe Fan
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Hui-Xin Liu
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Yongchun Li
- The Sixth Affiliated Hospital of South China University of Technology, Foshan, Guangdong, China
| | - Yong-Zhi Li
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Bladder Disease Gene Research, Institute of Health Science, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Fu J, Zhang Q, Zhang N, Zhou S, Fang Y, Li Y, Yuan L, Chen L, Xiang C. Human Menstrual Blood-Derived Stem Cells Protect against Tacrolimus-Induced Islet Dysfunction via Cystathionine β-Synthase Mediated IL-6/STAT3 Inactivation. Biomolecules 2024; 14:671. [PMID: 38927074 PMCID: PMC11201965 DOI: 10.3390/biom14060671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetes imposes a huge burden worldwide. Islet transplantation is an alternative therapy for diabetes. However, tacrolimus, a kind of immunosuppressant after organ transplantation, is closely related to post-transplant diabetes mellitus. Mesenchymal stem cells (MSCs) have attracted interest for their potential to alleviate diabetes. In vivo experiments revealed that human menstrual blood-derived stem cells (MenSCs) treatment improved tacrolimus-induced blood glucose, body weight, and glucose tolerance disorders in mice. RNA sequencing was used to analyze the potential therapeutic targets of MenSCs. In this study, we illustrated that cystathionine β-synthase (CBS) contributed to tacrolimus -induced islet dysfunction. Using β-cell lines (MIN6, β-TC-6), we demonstrated that MenSCs ameliorated tacrolimus-induced islet dysfunction in vitro. Moreover, MenSC reduced the tacrolimus-induced elevation of CBS levels and significantly enhanced the viability, anti-apoptotic ability, glucose-stimulated insulin secretion (GSIS), and glycolytic flux of β-cells. We further revealed that MenSCs exerted their therapeutic effects by inhibiting CBS expression to activate the IL6/JAK2/STAT3 pathway. In conclusion, we showed that MenSCs may be a potential strategy to improve tacrolimus-induced islet dysfunction.
Collapse
Affiliation(s)
- Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Sining Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Li Yuan
- Innovative Precision Medicine (IPM) Group, Hangzhou 311215, China;
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
16
|
Fang Y, Feng H, Zhang B, Zhang S, Zhou Y, Hao P, Zhou Z, Zhou S, Li N, Hui Y, Ma L, Xiong J, Wu J, Liu L, Zhang X. Cytosolic pH is a direct nexus in linking environmental cues with insulin processing and secretion in pancreatic β cells. Cell Metab 2024; 36:1237-1251.e4. [PMID: 38513648 DOI: 10.1016/j.cmet.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Pancreatic β cells actively respond to glucose fluctuations through regulating insulin processing and secretion. However, how this process is elaborately tuned in circumstance of variable microenvironments as well as β cell-intrinsic states and whether its dysfunction links to metabolic diseases remain largely elusive. Here, we show that the cytosolic pH (pHc) in β cells is increased upon glucose challenge, which can be sensed by Smad5 via its nucleocytoplasmic shuttling. Lesion of Smad5 in β cells results in hyperglycemia and glucose intolerance due to insulin processing and secretion deficiency. The role of Smad5 in regulating insulin processing and secretion attributes to its non-canonical function by regulating V-ATPase activity for granule acidification. Genetic mutation of Smad5 or administration of alkaline water to mirror cytosolic alkalization ameliorated glucose intolerance in high-fat diet (HFD)-treated mice. Collectively, our findings suggest that pHc is a direct nexus in linking environmental cues with insulin processing and secretion in β cells.
Collapse
Affiliation(s)
- Yujiang Fang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
| | - Hexi Feng
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Bowen Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Shuwei Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yanjie Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Pengcheng Hao
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhongshu Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Shanshan Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Nan Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yi Hui
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Jie Xiong
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Jinjin Wu
- Shanghai Children's Medical Center, Shanghai Jiaotong University, Shanghai, China
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China; Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
| |
Collapse
|
17
|
Nauffal V, Klarqvist MDR, Hill MC, Pace DF, Di Achille P, Choi SH, Rämö JT, Pirruccello JP, Singh P, Kany S, Hou C, Ng K, Philippakis AA, Batra P, Lubitz SA, Ellinor PT. Noninvasive assessment of organ-specific and shared pathways in multi-organ fibrosis using T1 mapping. Nat Med 2024; 30:1749-1760. [PMID: 38806679 DOI: 10.1038/s41591-024-03010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024]
Abstract
Fibrotic diseases affect multiple organs and are associated with morbidity and mortality. To examine organ-specific and shared biologic mechanisms that underlie fibrosis in different organs, we developed machine learning models to quantify T1 time, a marker of interstitial fibrosis, in the liver, pancreas, heart and kidney among 43,881 UK Biobank participants who underwent magnetic resonance imaging. In phenome-wide association analyses, we demonstrate the association of increased organ-specific T1 time, reflecting increased interstitial fibrosis, with prevalent diseases across multiple organ systems. In genome-wide association analyses, we identified 27, 18, 11 and 10 independent genetic loci associated with liver, pancreas, myocardial and renal cortex T1 time, respectively. There was a modest genetic correlation between the examined organs. Several loci overlapped across the examined organs implicating genes involved in a myriad of biologic pathways including metal ion transport (SLC39A8, HFE and TMPRSS6), glucose metabolism (PCK2), blood group antigens (ABO and FUT2), immune function (BANK1 and PPP3CA), inflammation (NFKB1) and mitosis (CENPE). Finally, we found that an increasing number of organs with T1 time falling in the top quintile was associated with increased mortality in the population. Individuals with a high burden of fibrosis in ≥3 organs had a 3-fold increase in mortality compared to those with a low burden of fibrosis across all examined organs in multivariable-adjusted analysis (hazard ratio = 3.31, 95% confidence interval 1.77-6.19; P = 1.78 × 10-4). By leveraging machine learning to quantify T1 time across multiple organs at scale, we uncovered new organ-specific and shared biologic pathways underlying fibrosis that may provide therapeutic targets.
Collapse
Affiliation(s)
- Victor Nauffal
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Matthew C Hill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Danielle F Pace
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paolo Di Achille
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joel T Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Pulkit Singh
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cody Hou
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenney Ng
- Center for Computational Health, IBM Research, Cambridge, MA, USA
| | - Anthony A Philippakis
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Lubitz
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Xie J, Yan J, Ji K, Guo Y, Xu S, Shen D, Li C, Gao H, Zhao L. Fibroblast growth factor 21 enhances learning and memory performance in mice by regulating hippocampal L-lactate homeostasis. Int J Biol Macromol 2024; 271:132667. [PMID: 38801850 DOI: 10.1016/j.ijbiomac.2024.132667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is one endogenous metabolic molecule that functions as a regulator in glucose and lipid homeostasis. However, the effect of FGF21 on L-lactate homeostasis and its mechanism remains unclear until now. Forty-five Six-week-old male C57BL/6 mice were divided into three groups: control, L-lactate, and FGF21 (1.5 mg/kg) groups. At the end of the treatment, nuclear magnetic resonance-based metabolomics, and key proteins related to L-lactate homeostasis were determined respectively to evaluate the efficacy of FGF21 and its mechanisms. The results showed that, compared to the vehicle group, the L-lactate-treated mice displayed learning and memory performance impairments, as well as reduced hippocampal ATP and NADH levels, but increased oxidative stress, mitochondrial dysfunction, and apoptosis, which suggesting inhibited L-lactate-pyruvate conversion in the brain. Conversely, FGF21 treatment ameliorated the L-lactate accumulation state, accompanied by restoration of the learning and memory defects, indicating enhanced L-lactate uptake and utilization in hippocampal neurons. We demonstrated that maintaining constant L-lactate-pyruvate flux is essential for preserving neuronal bioenergetic and redox levels. FGF21 contributed to preparing the brain for situations of high availability of L-lactate, thus preventing neuronal vulnerability in metabolic reprogramming.
Collapse
Affiliation(s)
- Jiaojiao Xie
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiapin Yan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Keru Ji
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuejun Guo
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Sibei Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Danjie Shen
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chen Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hongchang Gao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325035, Zhejiang, China.
| | - Liangcai Zhao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
19
|
Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: An emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Dis 2024; 11:101064. [PMID: 38292170 PMCID: PMC10825286 DOI: 10.1016/j.gendis.2023.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) was originally identified as an important metabolic regulator which plays a crucial physiological role in regulating a variety of metabolic parameters through the metabolic network. As a novel multifunctional endocrine growth factor, the role of FGF21 in the metabolic network warrants extensive exploration. This insight was obtained from the observation that the FGF21-dependent mechanism that regulates lipid metabolism, glycogen transformation, and biological effectiveness occurs through the coordinated participation of the liver, adipose tissue, central nervous system, and sympathetic nerves. This review focuses on the role of FGF21-uncoupling protein 1 (UCP1) signaling in lipid metabolism and how FGF21 alleviates non-alcoholic fatty liver disease (NAFLD). Additionally, this review reveals the mechanism by which FGF21 governs glucolipid metabolism. Recent research on the role of FGF21 in the metabolic network has mostly focused on the crucial pathway of glucolipid metabolism. FGF21 has been shown to have multiple regulatory roles in the metabolic network. Since an adequate understanding of the concrete regulatory pathways of FGF21 in the metabolic network has not been attained, this review sheds new light on the metabolic mechanisms of FGF21, explores how FGF21 engages different tissues and organs, and lays a theoretical foundation for future in-depth research on FGF21-targeted treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jiaming Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
20
|
Liu X, Li Y, Chen X, Yin H, Li F, Chen N, Cui J, Li W. Revisiting the mechanisms linking blood glucose to cognitive impairment: new evidence for the potential important role of klotho. Front Endocrinol (Lausanne) 2024; 15:1323407. [PMID: 38505757 PMCID: PMC10948412 DOI: 10.3389/fendo.2024.1323407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Background The association between blood glucose and cognition is controversial. Klotho is an anti-aging protein with neural protective effects. This study aimed to use a population-based study to disentangle the relationship between blood glucose levels and cognitive function in older adults, and to explore the role of klotho in it. Methods A total of 1445 eligible participants from National Health and Nutrition Examination Survey (NHANES) 2011-2014 were included in our study. Cognitive function was assessed by Digit Symbol Substitution Test (DSST) and categorized into four quartiles (Q1-Q4). General characteristics and laboratory test results including serum klotho concentration and blood glucose levels were collected. Associations of cognitive function and klotho levels with blood glucose concentrations were explored through multivariate linear regression models. Mediation models were constructed to figure out the mediating role of klotho. Results All three multivariate linear regression models showed a negative correlation between blood glucose and cognitive function. (Model 1, β=-0.149, 95%CI: -0.202,-0.096, p=0.001; Model 2, β=-0.116, 95%CI: -0.167,-0.065, p=0.001; Model 3, β=-0.007, 95%CI: -0.118,-0.023, p=0.003). Mediation analysis showed that klotho mediated the statistical association between blood glucose level and cognitive function with proportions (%) of 12.5. Conclusion Higher blood glucose levels are associated with poorer cognitive performance in non-diabetic older adults, partially mediated through lower klotho levels.
Collapse
Affiliation(s)
- Xiangliang Liu
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Yuguang Li
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Xinqiao Chen
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Hongmei Yin
- Department of General Practice, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Fangqi Li
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Naifei Chen
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Yan J, Xie J, Xu S, Guo Y, Ji K, Li C, Gao H, Zhao L. Fibroblast growth factor 21 protects the liver from apoptosis in a type 1 diabetes mouse model via regulating L-lactate homeostasis. Biomed Pharmacother 2023; 168:115737. [PMID: 37862975 DOI: 10.1016/j.biopha.2023.115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023] Open
Abstract
AIMS/HYPOTHESIS Fibroblast growth factor 21 (FGF21) is a hepatokine with pleiotropic effects on glucose and lipid metabolic homeostasis. Here, we aimed to elucidate the mechanisms underlying the protective effects of FGF21 on L-lactate homeostasis and liver lesions in a type 1 diabetes mellitus (T1DM) mice model. METHODS Six-week-old male C57BL/6 mice were divided into control, T1DM, and FGF21 groups. We also examined hepatic apoptotic signaling and functional indices in wild-type and hydroxycarboxylic acid receptor 1 (HCA1) knockout mice with T1DM or long-term L-lactate exposure. After preincubation of high glucose- or L-lactate treated hepatic AML12 cells, L-lactate uptake, apoptosis, and monocarboxylic acid transporter 2 (MCT2) expression were investigated. RESULTS In a mouse model of T1DM, hepatic FGF21 expression was downregulated by approximately 1.5-fold at 13 weeks after the hyperglycemic insult. In vivo administration of exogenous FGF21 (2 mg/kg) to diabetic or L-lactate-infused mice significantly prevented hepatic oxidative stress and apoptosis by activating extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK) and AMP-activated protein kinase (AMPK) pathways. HCA1-KO mice were less susceptible to diabetes- and L-lactate-induced hepatic apoptosis and dysfunction. In addition, inhibition of PI3K-mTOR activity revealed that FGF21 prevented L-lactate-induced Cori cycle alterations and hepatic apoptosis by upregulating MCT2 protein translation. CONCLUSIONS/INTERPRETATION These results demonstrate that L-lactate homeostasis may be a therapeutic target for T1DM-related hepatic dysfunction. The protective effects of FGF21 on hepatic damage were associated with its ability to ameliorate MCT2-dependent Cori cycle alterations and prevent HCA1-mediated inhibition of ERK1/2, p38 MAPK, and AMPK signaling.
Collapse
Affiliation(s)
- Jiapin Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiaojiao Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Sibei Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuejun Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Keru Ji
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325035, Zhejiang, China.
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
22
|
Gao L, Liu YX, Zhou YZ, Qin XM. Baicalein Attenuates Neuroinflammation in LPS-Treated BV-2 Cells by Inhibiting Glycolysis via STAT3/c-Myc Pathway. Neurochem Res 2023; 48:3363-3377. [PMID: 37277556 DOI: 10.1007/s11064-023-03961-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
More and more evidence shows that metabolic reprogramming is closely related to the occurrence of AD. The metabolic conversion of oxidative phosphorylation into glycolysis will aggravate microglia-mediated inflammation. It has been demonstrated that baicalein could inhibit neuroinflammation in LPS-treated BV-2 microglial cells, but whether the anti-neuroinflammatory mechanisms of baicalein were related to glycolysis is unclear. Our results depicted that baicalein significantly inhibited the levels of nitric oxide (NO), interleukin-6 (IL-6), prostaglandin 2 (PGE2) and tumor necrosis factor (TNF-α) in LPS-treated BV-2 cells. 1H-NMR metabolomics analysis showed that baicalein decreased the levels of lactic acid and pyruvate, and significantly regulated glycolytic pathway. Further study revealed that baicalein significantly inhibited the activities of glycolysis-related enzymes including hexokinase (HK), 6-phosphate kinase (6-PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and inhibited STAT3 phosphorylation and c-Myc expression. By using of STAT3 activator RO8191, we found that baicalein suppressed the increase of STAT3 phosphorylation and c-Myc expression triggered by RO8191, and inhibited the increased levels of 6-PFK, PK and LDH caused by RO8191. In conclusion, these results suggested that baicalein attenuated the neuroinflammation in LPS-treated BV-2 cells by inhibiting glycolysis through STAT3/c-Myc pathway.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road Xiaodain District, Taiyuan, 030006, Shanxi, China.
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, Shanxi, China.
| | - Yu-Xin Liu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road Xiaodain District, Taiyuan, 030006, Shanxi, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, Shanxi, China
| | - Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road Xiaodain District, Taiyuan, 030006, Shanxi, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, Shanxi, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road Xiaodain District, Taiyuan, 030006, Shanxi, China.
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
23
|
Tang Y, Zhang M. Fibroblast growth factor 21 and bone homeostasis. Biomed J 2023; 46:100548. [PMID: 35850479 PMCID: PMC10345222 DOI: 10.1016/j.bj.2022.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), a member of the FGF subfamily, is produced primarily in the liver and adipose tissue. The main function of FGF21 is to regulate energy metabolism of carbohydrates and lipids in the body through endocrine and other means, making FGF21 have potential clinical value in the treatment of metabolic disorders. Although FGF21 and its receptors play a role in the regulation of bone homeostasis through a variety of signaling pathways, a large number of studies have reported that the abuse of FGF21 and its analogues and the abnormal expression of FGF21 in vivo may be associated with bone abnormalities. Due to limited research information on the effect of FGF21 on bone metabolism regulation, the role of FGF21 in the process of bone homeostasis regulation and the mechanism of its occurrence and development have not been fully clarified. Certainly, the various roles played by FGF21 in the regulation of bone homeostasis deserve increasing attention. In this review, we summarize the basic physiological knowledge of FGF21 and the effects of FGF21 on metabolic homeostasis of the skeletal system in animal and human studies. The information provided in this review may prove beneficial for the intervention of bone diseases.
Collapse
Affiliation(s)
- Yan Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Guoxue Lane, Chengdu, Sichuan, China
| | - Mei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Guoxue Lane, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Fibroblast growth factor 21 in metabolic syndrome. Front Endocrinol (Lausanne) 2023; 14:1220426. [PMID: 37576954 PMCID: PMC10414186 DOI: 10.3389/fendo.2023.1220426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Metabolic syndrome is a complex metabolic disorder that often clinically manifests as obesity, insulin resistance/diabetes, hyperlipidemia, and hypertension. With the development of social and economic systems, the incidence of metabolic syndrome is increasing, bringing a heavy medical burden. However, there is still a lack of effective prevention and treatment strategies. Fibroblast growth factor 21 (FGF21) is a member of the human FGF superfamily and is a key protein involved in the maintenance of metabolic homeostasis, including reducing fat mass and lowering hyperglycemia, insulin resistance and dyslipidemia. Here, we review the current regulatory mechanisms of FGF21, summarize its role in obesity, diabetes, hyperlipidemia, and hypertension, and discuss the possibility of FGF21 as a potential target for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
25
|
Puddu A, Maggi DC. Klotho: A new therapeutic target in diabetic retinopathy? World J Diabetes 2023; 14:1027-1036. [PMID: 37547589 PMCID: PMC10401458 DOI: 10.4239/wjd.v14.i7.1027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023] Open
Abstract
Klotho (Kl) is considered an antiaging gene, mainly for the inhibition of the insulin-like growth factor-1 signaling. Kl exists as full-length transmembrane, which acts as co-receptor for fibroblast growth factor receptor, and in soluble forms (sKl). The sKl may exert pleiotropic effects on organs and tissues by regulating several pathways involved in the pathogenesis of diseases associated with oxidative and inflammatory state. In diabetic Patients, serum levels of Kl are significantly decreased compared to healthy subjects, and are related to duration of diabetes. In diabetic retinopathy (DR), one of the most common microvascular complications of type 2 diabetes, serum Kl levels are negatively correlated with progression of the disease. A lot of evidences showed that Kl regulates several mechanisms involved in maintaining homeostasis and functions of retinal cells, including phagocytosis, calcium signaling, secretion of vascular endothelial growth factor A (VEGF-A), maintenance of redox status, and melanin biosynthesis. Experimental data have been shown that Kl exerts positive effects on several mechanisms involved in onset and progression of DR. In particular, treatment with Kl: (1) Prevents apoptosis induced by oxidative stress in human retinal endothelial cells and in retinal pigment epithelium (RPE) cells; (2) reduces secretion of VEGF-A by RPE cells; and (3) decreases subretinal fibrosis and preserves autophagic activity. Therefore, Kl may become a novel biomarker and a good candidate for the treatment of DR.
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine and Medical Specialties, University of Genova, Genova 16132, Italy
| | - Davide Carlo Maggi
- Department of Internal Medicine and Medical Specialties, University of Genova, Genova 16132, Italy
| |
Collapse
|
26
|
Su Y, Ye L, Hu C, Zhang Y, Liu J, Shao L. Periodontitis as a promoting factor of T2D: current evidence and mechanisms. Int J Oral Sci 2023; 15:25. [PMID: 37321994 PMCID: PMC10272210 DOI: 10.1038/s41368-023-00227-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
Periodontitis is an infectious disease caused by an imbalance between the local microbiota and host immune response. Epidemiologically, periodontitis is closely related to the occurrence, development, and poor prognosis of T2D and is recognized as a potential risk factor for T2D. In recent years, increasing attention has been given to the role of the virulence factors produced by disorders of the subgingival microbiota in the pathological mechanism of T2D, including islet β-cell dysfunction and insulin resistance (IR). However, the related mechanisms have not been well summarized. This review highlights periodontitis-derived virulence factors, reviews how these stimuli directly or indirectly regulate islet β-cell dysfunction. The mechanisms by which IR is induced in insulin-targeting tissues (the liver, visceral adipose tissue, and skeletal muscle) are explained, clarifying the influence of periodontitis on the occurrence and development of T2D. In addition, the positive effects of periodontal therapy on T2D are overviewed. Finally, the limitations and prospects of the current research are discussed. In summary, periodontitis is worthy of attention as a promoting factor of T2D. Understanding on the effect of disseminated periodontitis-derived virulence factors on the T2D-related tissues and cells may provide new treatment options for reducing the risk of T2D associated with periodontitis.
Collapse
Affiliation(s)
- Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Leilei Ye
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Chen Hu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Aaldijk AS, Verzijl CRC, Jonker JW, Struik D. Biological and pharmacological functions of the FGF19- and FGF21-coreceptor beta klotho. Front Endocrinol (Lausanne) 2023; 14:1150222. [PMID: 37260446 PMCID: PMC10229096 DOI: 10.3389/fendo.2023.1150222] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023] Open
Abstract
Beta klotho (KLB) is a fundamental component in fibroblast growth factor receptor (FGFR) signaling as it serves as an obligatory coreceptor for the endocrine hormones fibroblast growth factor 19 (FGF19) and fibroblast growth factor 21 (FGF21). Through the development of FGF19- and FGF21 mimetics, KLB has emerged as a promising drug target for treating various metabolic diseases, such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease. While rodent studies have significantly increased our understanding of KLB function, current clinical trials that test the safety and efficacy of KLB-targeting drugs raise many new scientific questions about human KLB biology. Although most KLB-targeting drugs can modulate disease activity in humans, individual patient responses differ substantially. In addition, species-specific differences in KLB tissue distribution may explain why the glucose-lowering effects that were observed in preclinical studies are not fully replicated in clinical trials. Besides, the long-term efficacy of KLB-targeting drugs might be limited by various pathophysiological conditions known to reduce the expression of KLB. Moreover, FGF19/FGF21 administration in humans is also associated with gastrointestinal side effects, which are currently unexplained. A better understanding of human KLB biology could help to improve the efficacy and safety of existing or novel KLB/FGFR-targeting drugs. In this review, we provide a comprehensive overview of the current understanding of KLB biology, including genetic variants and their phenotypic associations, transcriptional regulation, protein structure, tissue distribution, subcellular localization, and function. In addition, we will highlight recent developments regarding the safety and efficacy of KLB-targeting drugs in clinical trials. These insights may direct the development and testing of existing and future KLB-targeting drugs.
Collapse
|
28
|
Jin L, Yang R, Geng L, Xu A. Fibroblast Growth Factor-Based Pharmacotherapies for the Treatment of Obesity-Related Metabolic Complications. Annu Rev Pharmacol Toxicol 2023; 63:359-382. [PMID: 36100222 DOI: 10.1146/annurev-pharmtox-032322-093904] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
29
|
Dominguez-Villar M. TKT deficiency puts T regs to rest. Nat Metab 2022; 4:503-504. [PMID: 35606597 DOI: 10.1038/s42255-022-00574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|