1
|
Nunez H, Nieto PA, Mars RA, Ghavami M, Sew Hoy C, Sukhum K. Early life gut microbiome and its impact on childhood health and chronic conditions. Gut Microbes 2025; 17:2463567. [PMID: 39916516 PMCID: PMC11810090 DOI: 10.1080/19490976.2025.2463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/12/2025] Open
Abstract
The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.
Collapse
Affiliation(s)
- Harold Nunez
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
| | | | - Ruben A. Mars
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
2
|
Guvenc F, Danska JS. The intestinal microbiome in type 1 diabetes: bridging early childhood exposures with translational advances. Curr Opin Immunol 2025; 94:102553. [PMID: 40179800 DOI: 10.1016/j.coi.2025.102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Type 1 diabetes (T1D) results from T cell-mediated destruction of pancreatic β-cells, requiring lifelong insulin therapy and glycemic monitoring. While genetic risk, particularly HLA class II, is well established, rising T1D incidence and earlier onset suggest environmental modifiers. Mouse models show that microbiome alterations influence β-cell autoimmunity, and human studies link microbiome composition to T1D, though specific microbial regulators remain unidentified. We examine host-microbiome interactions, including studies implicating enteroviruses in modulating islet autoimmunity. Mechanistic discoveries of microbial effects on diabetes have emerged from mouse model studies. We consider clinical applications, including microbiota-targeted therapies and biomarkers of microbiome-immune crosstalk. Future research should integrate microbial, genetic, environmental, and immune data using multi-omic approaches. Collaborative efforts combining immunology, microbiology, and clinical metadata will drive discovery and precision medicine in T1D.
Collapse
Affiliation(s)
- Furkan Guvenc
- Hospital for Sick Children Research Institute, Program in Genetics and Genome Biology, Department of Immunology, University of Toronto, ON, Canada
| | - Jayne S Danska
- Hospital for Sick Children Research Institute, Program in Genetics and Genome Biology, Department of Immunology, University of Toronto, ON, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, ON, Canada.
| |
Collapse
|
3
|
Wang S, Zheng C, Bu C, Guo D, Zhang C, Xie Q, Pan J, Sun J, Chen W, Jiang S, Zhai Q. Role of sn-2 palmitate on the development of the infant gut microbiome: A metagenomic insight. Food Res Int 2025; 211:116488. [PMID: 40356145 DOI: 10.1016/j.foodres.2025.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/26/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
The infant gut microbiome, which develops from birth, has profound and lasting effects on human health. Its establishment in early life is influenced by events such as delivery mode and feeding type. This study examined the effects of formula milk enriched with sn-2 palmitate on the gut microbiota of healthy term infants. We conducted a 16-week comparative analysis of three feeding groups: infants receiving high sn-2 palmitate formula (n = 30), regular vegetable oil formula (n = 32), and breast milk (n = 30). Using shotgun metagenomic sequencing of fecal samples, we performed a comprehensive assessment of the gut microbiota. While overall microbial composition and diversity were comparable across groups, the functional profile of the microbiome in infants receiving sn-2 palmitate-enriched formula more closely resembled that of breastfed infants compared to the control formula group. This similarity extended to microbial species interactions, virulence gene abundance, and metabolic pathway expression patterns. In addition, sn-2 palmitate promoted the proliferation of Bifidobacterium breve and enhanced the robustness of the gut microbial ecology. Notably, the phylogenetic analysis of B. breve strains in the sn-2 palmitate group showed closer alignment with the breastfed group compared to the control group. These findings suggest that sn-2 palmitate-enriched formula may confer gut microbiota functional benefits that more closely resemble those of breast milk compared to control formula milk. This study provides scientific evidence for the development of future functional infant formulas.
Collapse
Affiliation(s)
- Shumin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengdong Zheng
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Chaozhi Bu
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Danying Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Jiancun Pan
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Jianguo Sun
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shilong Jiang
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Schoultz I, Claesson MJ, Dominguez‐Bello MG, Fåk Hållenius F, Konturek P, Korpela K, Laursen MF, Penders J, Roager H, Vatanen T, Öhman L, Jenmalm MC. Gut microbiota development across the lifespan: Disease links and health-promoting interventions. J Intern Med 2025; 297:560-583. [PMID: 40270478 PMCID: PMC12087861 DOI: 10.1111/joim.20089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The gut microbiota plays a pivotal role in human life and undergoes dynamic changes throughout the human lifespan, from infancy to old age. During our life, the gut microbiota influences health and disease across life stages. This review summarizes the discussions and presentations from the symposium "Gut microbiota development from infancy to old age" held in collaboration with the Journal of Internal Medicine. In early infancy, microbial colonization is shaped by factors such as mode of delivery, antibiotic exposure, and milk-feeding practices, laying the foundation for subsequent increased microbial diversity and maturation. Throughout childhood and adolescence, microbial maturation continues, influencing immune development and metabolic health. In adulthood, the gut microbiota reaches a relatively stable state, influenced by genetics, diet, and lifestyle. Notably, disruptions in gut microbiota composition have been implicated in various inflammatory diseases-including inflammatory bowel disease, Type 1 diabetes, and allergies. Furthermore, emerging evidence suggests a connection between gut dysbiosis and neurodegenerative disorders such as Alzheimer's disease. Understanding the role of the gut microbiota in disease pathogenesis across life stages provides insights into potential therapeutic interventions. Probiotics, prebiotics, and dietary modifications, as well as fecal microbiota transplantation, are being explored as promising strategies to promote a healthy gut microbiota and mitigate disease risks. This review focuses on the gut microbiota's role in infancy, adulthood, and aging, addressing its development, stability, and alterations linked to health and disease across these critical life stages. It outlines future research directions aimed at optimizing the gut microbiota composition to improve health.
Collapse
Affiliation(s)
- Ida Schoultz
- School of Medical SciencesFaculty of Medicine and Health Örebro UniversityOrebroSweden
| | | | - Maria Gloria Dominguez‐Bello
- Department of Biochemistry & Microbiology and of AnthropologyRutgers University–New BrunswickNew BrunswickNew JerseyUSA
| | - Frida Fåk Hållenius
- Department of Food Technology, Engineering and NutritionLund UniversityLundSweden
| | - Peter Konturek
- Department of Medicine, Thuringia Clinic SaalfeldTeaching Hospital of the University JenaJenaGermany
| | - Katri Korpela
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - H. Roager
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksbergDenmark
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Department of Microbiology, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| |
Collapse
|
5
|
Nie HY, Zhao MF, Wu TY, Zou MJ, Tang YP, Wang XC, Wang NN, Zhou ZY, Bi Y, Zhao Y, Sun XT, Zhang JZ, Fang L, Li CJ. Elevated mevalonolactone from Ruminococcus torques contributes to Metabolically Abnormal Obesity development. J Biol Chem 2025:110281. [PMID: 40412522 DOI: 10.1016/j.jbc.2025.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 05/27/2025] Open
Abstract
Obese individuals are categorized as either "Metabolically Abnormal Obesity" (MAO) or "Metabolically Healthy Obesity" (MHO) based on their insulin resistance and metabolic disorders. However, the intrinsic mechanism remains largely unknown. Through examining gut microbiota and fecal metabolome of MAO and MHO patients, we identified intestinal microorganism Ruminococcus torques (R. torques) and its metabolite mevalonolactone (MVL) as risk factors for insulin resistance and metabolic disorders. Both R. torques and MVL administration results in MAO phenotype in mice. In general, MVL is an intermediate metabolite in the eukaryotic mevalonate (MVA) pathway, however we found that prokaryote R. torques, has the potential to produce MVL. We further showed that MVL could directly bind to the transcription factor ZNF384, triggering its nucleation and subsequent binding to the promoter regions of Ggps1. Ggps1 enhance Ras prenylation and promotes insulin resistance. In conclusion, the abnormal colonization of R. torques in gut leads to an increased level of MVL in patients. This, in turn, affects the expression of Ggps1 via ZNF384, ultimately contributing to the development of MAO.
Collapse
Affiliation(s)
- Hong-Yu Nie
- Model Animal Research Center of Medical School of Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Meng-Fei Zhao
- Model Animal Research Center of Medical School of Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Tian-Yu Wu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ming-Jie Zou
- Model Animal Research Center of Medical School of Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Yi-Ping Tang
- Model Animal Research Center of Medical School of Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Xiao-Chen Wang
- Model Animal Research Center of Medical School of Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Nan-Nan Wang
- Model Animal Research Center of Medical School of Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Zi-Yue Zhou
- Model Animal Research Center of Medical School of Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Yan Bi
- Model Animal Research Center of Medical School of Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Yue Zhao
- Model Animal Research Center of Medical School of Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Xi-Tai Sun
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jing-Zi Zhang
- Model Animal Research Center of Medical School of Nanjing University, Nanjing 210093, Jiangsu Province, China.
| | - Lei Fang
- Model Animal Research Center of Medical School of Nanjing University, Nanjing 210093, Jiangsu Province, China.
| | - Chao-Jun Li
- State Key Laboratory of Reproductive Medicine and Offspring Heath, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
6
|
Gallant R, Reza S, Wiemels JL, Greaves M. Microbiome and pediatric leukemia, diabetes, and allergies: Systematic review and meta-analysis. PLoS One 2025; 20:e0324167. [PMID: 40392825 PMCID: PMC12091780 DOI: 10.1371/journal.pone.0324167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/21/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Despite the different pathologies and genetic susceptibilities of childhood ALL, T1DM and allergies, these conditions share epidemiological risk factors related to timing of infectious exposures and acquisition of the gut microbiome in infancy. We have assessed whether lower microbiome diversity (Shannon Index) and shared genus/species profiles are associated with pediatric ALL, allergies, and T1DM. METHODS AND FINDINGS Literature search was performed using PubMed, Embase, Cochrane, and Web of Science databases. Case-control, meta-analyses, and cohort studies were considered for inclusion. Inclusion criteria: (i) subjects age 1-18 years at diagnosis, (ii) reports effect of microbiome measured prior to/at time of diagnosis/first intervention (iii) outcome of ALL, allergies, asthma, or T1DM, (iv) English text. Exclusion criteria: (i) age < 1 or >18 years at diagnosis, (ii) Down Syndrome-associated ALL, (iii) non-English text, (iv) reviews, pre-print, or abstracts, (v) heavily biased studies. Abstract and full text screening were performed by two independent reviewers. Data extraction was performed by one reviewer following PRISMA guidelines. Data were pooled using a random-effects model. Eighty-eight studies were included in the analysis, with seventy-seven in the qualitative analysis and 54 in the meta-analysis. Cases were found to have lower alpha-diversity than controls in ALL (SMD:-0.78, 95%CI:-1.21, -0.34), T1DM (SMD:-1.26, 95%CI:-3.49, 0.96), eczema (SMD:-0.34, 95%CI:-0.56, -0.12), atopy (SMD:-0.06, 95%CI:-0.34, 0.22), asthma (SMD:-0.37, 95%CI:-1.16, 0.42), and food allergy (SMD:-0.11, 95%CI:-0.63, 0.41). CONCLUSIONS These results highlight similarities in the microbiome diversity and composition of children with ALL, T1DM, and allergies. This is compatible with a common risk factor related to immune priming in infancy and highlights the gut microbiome as a potentially modifiable risk factor and preventative strategy for these childhood diseases.
Collapse
Affiliation(s)
- Rachel Gallant
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Samiha Reza
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Joseph L. Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
7
|
Liu Q, Hua Y, He R, Xiang L, Li S, Zhang Y, Chen R, Qian L, Jiang X, Wang C, Li Y, Wu H, Liu Y. Restoration of intestinal secondary bile acid synthesis: A potential approach to improve pancreatic β cell function in type 1 diabetes. Cell Rep Med 2025; 6:102130. [PMID: 40347938 DOI: 10.1016/j.xcrm.2025.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/11/2024] [Accepted: 04/16/2025] [Indexed: 05/14/2025]
Abstract
This study investigates the roles of gut microbiome and secondary bile acid dysfunctions in type 1 diabetes (T1D) and explores targeted interventions to address them. It finds that T1D is associated with reduced gut microbial diversity and imbalance favoring harmful bacteria over beneficial ones. Additionally, patients with T1D exhibited impaired secondary bile acid metabolism. Interventions aimed at modulating the gut microbiome and metabolites are safe and improve glycemic control, reduce daily insulin dose, and reduce inflammation. These interventions reshape the gut microbiome toward a healthier state and enhance secondary bile acid production. Responders to the interventions show increased levels of beneficial bacteria and secondary bile acids, along with improved C-peptide responses. Overall, these findings suggest that targeted modulation of the gut microbiome and secondary bile acid metabolism could be a promising therapeutic approach for T1D management. The trial is registered at Chinese Clinical Trial Registry (ChiCTR-ONN-17011279).
Collapse
Affiliation(s)
- Qing Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Yifei Hua
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Rongbo He
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Liqian Xiang
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Shaoqing Li
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 211100, China; Department of Endocrinology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province 211800, China
| | - Ying Zhang
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Rourou Chen
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Li Qian
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Xiaomeng Jiang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Congyi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medicalme University, The Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, Shanxi Province 030032, China
| | - Yangyang Li
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 211100, China.
| | - Hao Wu
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, China.
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 211100, China.
| |
Collapse
|
8
|
Mauvais FX, van Endert PM. Type 1 Diabetes: A Guide to Autoimmune Mechanisms for Clinicians. Diabetes Obes Metab 2025. [PMID: 40375390 DOI: 10.1111/dom.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025]
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells by autoreactive T lymphocytes, leading to insulin deficiency and lifelong insulin dependence. It develops in genetically predisposed individuals, triggered by environmental or immunological factors. Although the exact causes of T1D remain unknown, the autoimmune pathogenesis of the disease is clearly indicated by the genetic risk conferred by allelic human leukocyte antigens (HLA), the almost obligatory presence of islet cell autoantibodies (AAbs) and immune cell infiltration of pancreatic islets from patients. At the same time, epidemiological data point to a role of environmental factors, notably enteroviral infections, in the disease, although precise causative links between specific pathogens and T1D have been difficult to establish. Studies of human pancreas organs from patients made available through repositories and the advent of high-dimensional high-throughput technologies for genomic and proteomic studies have significantly elucidated our understanding of the disease in recent years and provided mechanistic insights that can be exploited for innovative targeted therapeutic approaches. This short overview will summarise current salient knowledge on immune cell and beta cell dysfunction in T1D pathogenesis. PLAIN LANGUAGE SUMMARY: Type 1 diabetes (T1D) is a chronic disease where the body's own immune system attacks and destroys the insulin-producing beta cells in the pancreas. This leads to a lack of insulin, a hormone essential for regulating blood sugar, which means people with T1D need insulin for life. The disease can develop at any age but is most diagnosed in children and young adults. Despite advances in treatment, T1D still significantly reduces life expectancy, especially in countries with fewer healthcare resources. T1D develops in people with a genetic predisposition, often triggered by environmental factors such as viral infections or changes in the gut microbiome. The disease progresses silently through three stages: Stage 1: Autoantibodies to beta cell components appear, signalling the immune system is reacting against the pancreas, but there are no symptoms; Stage 2: Beta cell function starts to decline, but fasting blood sugar is still normal; Stage 3: Enough beta cells are destroyed that fasting blood sugar rises, and symptoms of diabetes appear. The risk of progressing from stage 1 to full-blown diabetes is about 35-50% within five years, and even higher from stage 2. Over 60 genes are linked to T1D risk, most of which affect how the immune system works. The strongest genetic risk comes from specific versions of histocompatibility genes, which help the immune system distinguish between the body's own cells and invaders. Some types of these genes make it easier for the immune system to mistakenly attack beta cells. However, 90% of people diagnosed with T1D have no family member with T1D, showing that genetics is only part of the story. Environmental factors also play a big role. For example, certain viral infections, especially with viruses infecting the intestine, are associated with a higher risk of developing T1D. The gut microbiome - the community of bacteria living in our intestines - also influences risk, with healthier, more diverse microbiomes appearing to offer some protection. In T1D, immune cells - especially so-called T lymphocytes - mistake beta cells in the pancreas for threats and destroy them. This process is called autoimmunity. The attack is often reflected by the presence of autoantibodies against proteins found in beta cells. Over time, as more beta cells are lost, the body can no longer produce enough insulin, leading to the symptoms of diabetes. Interestingly, not all people with T1D have the same pattern of disease. For example, children diagnosed before age 7 often have more aggressive disease, more autoantibodies, and stronger genetic risk factors than those diagnosed later. Much of our understanding of T1D has come from studying animal models, but new technologies now allow researchers to study human pancreas tissue and blood immune cells in greater detail. Scientists are also exploring how the gut microbiome, diet, and environmental exposures contribute to T1D risk and progression. Treatment currently focuses on replacing insulin, but researchers are working on therapies that target the immune system or aim to protect or replace beta cells. Strategies include immunotherapy, gene therapy, and even modifying the gut microbiome. The goal is to prevent or reverse the disease, not just manage its symptoms. In summary, T1D is a complex autoimmune disease influenced by both genes and the environment. It progresses silently before symptoms appear, and while insulin therapy is life-saving, new research is paving the way for treatments that could one day halt or even prevent the disease.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, Paris, France
| | - Peter M van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker - Enfants Malades, Paris, France
| |
Collapse
|
9
|
Bal T. Scaffold-free endocrine tissue engineering: role of islet organization and implications in type 1 diabetes. BMC Endocr Disord 2025; 25:107. [PMID: 40259265 PMCID: PMC12010671 DOI: 10.1186/s12902-025-01919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic hyperglycemia disorder emerging from beta-cell (insulin secreting cells of the pancreas) targeted autoimmunity. As the blood glucose levels significantly increase and the insulin secretion is gradually lost, the entire body suffers from the complications. Although various advances in the insulin analogs, blood glucose monitoring and insulin application practices have been achieved in the last few decades, a cure for the disease is not obtained. Alternatively, pancreas/islet transplantation is an attractive therapeutic approach based on the patient prognosis, yet this treatment is also limited mainly by donor shortage, life-long use of immunosuppressive drugs and risk of disease transmission. In research and clinics, such drawbacks are addressed by the endocrine tissue engineering of the pancreas. One arm of this engineering is scaffold-free models which often utilize highly developed cell-cell junctions, soluble factors and 3D arrangement of islets with the cellular heterogeneity to prepare the transplant formulations. In this review, taking T1D as a model autoimmune disease, techniques to produce so-called pseudoislets and their applications are studied in detail with the aim of understanding the role of mimicry and pointing out the promising efforts which can be translated from benchside to bedside to achieve exogenous insulin-free patient treatment. Likewise, these developments in the pseudoislet formation are tools for the research to elucidate underlying mechanisms in pancreas (patho)biology, as platforms to screen drugs and to introduce immunoisolation barrier-based hybrid strategies.
Collapse
Affiliation(s)
- Tugba Bal
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, 34662, Turkey.
| |
Collapse
|
10
|
Chen Q, Gao Y, Li F, Yuan L. The role of gut-islet axis in pancreatic islet function and glucose homeostasis. Diabetes Obes Metab 2025; 27:1676-1692. [PMID: 39916498 PMCID: PMC11885102 DOI: 10.1111/dom.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/08/2025]
Abstract
The gastrointestinal tract plays a vital role in the occurrence and treatment of metabolic diseases. Recent studies have convincingly demonstrated a bidirectional axis of communication between the gut and islets, enabling the gut to influence glucose metabolism and energy homeostasis in animals strongly. The 'gut-islet axis' is an essential endocrine signal axis that regulates islet function through the dialogue between intestinal microecology and endocrine metabolism. The discovery of glucagon-like peptide-1 (GLP-1), gastric inhibitory peptide (GIP) and other gut hormones has initially set up a bridge between gut and islet cells. However, the influence of other factors remains largely unknown, such as the homeostasis of the gut microbiota and the integrity of the gut barrier. Although gut microbiota primarily resides and affect intestinal function, they also affect extra-intestinal organs by absorbing and transferring metabolites derived from microorganisms. As a result of this transfer, islets may be continuously exposed to gut-derived metabolites and components. Changes in the composition of gut microbiota can damage the intestinal barrier function to varying degrees, resulting in increased intestinal permeability to bacteria and their derivatives. All these changes contribute to the severe disturbance of critical metabolic pathways in peripheral tissues and organs. In this review, we have outlined the different gut-islet axis signalling mechanisms associated with metabolism and summarized the latest progress in the complex signalling molecules of the gut and gut microbiota. In addition, we will discuss the impact of the gut renin-angiotensin system (RAS) on the various components of the gut-islet axis that regulate energy and glucose homeostasis. This work also indicates that therapeutic approaches aiming to restore gut microbial homeostasis, such as probiotics and faecal microbiota transplantation (FMT), have shown great potential in improving treatment outcomes, enhancing patient prognosis and slowing down disease progression. Future research should further uncover the molecular links between the gut-islet axis and the gut microbiota and explore individualized microbial treatment strategies, which will provide an innovative perspective and approach for the diagnosis and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanyuan Gao
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fangyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
11
|
Rubin D, Bosy-Westphal A, Kabisch S, Kronsbein P, Müssig K, Simon MC, Tombek A, Weber KS, Skurk T. Nutritional Recommendations for People with Type 1 Diabetes Mellitus. Exp Clin Endocrinol Diabetes 2025; 133:177-190. [PMID: 40328262 DOI: 10.1055/a-2500-0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Affiliation(s)
- Diana Rubin
- Vivantes Hospital Spandau, Berlin, Germany
- Vivantes Humboldt Hospital, Berlin, Germany
| | - Anja Bosy-Westphal
- Institute of Human Nutrition, Faculty of Agriculture and Nutritional Sciences, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Stefan Kabisch
- Department of Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Peter Kronsbein
- Department of Ecotrophology, Niederrhein University of Applied Sciences, Mönchengladbach Campus, Mönchengladbach, Germany
| | - Karsten Müssig
- Department of Internal Medicine, Gastroenterology and Diabetology, Niels Stensen Hospitals, Franziskus Hospital Harderberg, Georgsmarienhütte, Germany
| | - Marie-Christine Simon
- Institute of Nutrition and Food Sciences, Nutrition and Microbiome, Rheinische Friedrich-Wilhelms University of Bonn, Bonn, Germany
| | - Astrid Tombek
- Diabetes Center Bad Mergentheim, Bad Mergentheim, Germany
| | - Katharina S Weber
- Institute for Epidemiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Thomas Skurk
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
- Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| |
Collapse
|
12
|
Meiirmanova Z, Mukhanbetzhanov N, Jarmukhanov Z, Vinogradova E, Kozhakhmetova S, Morenko M, Duisebayeva A, Poddighe D, Kushugulova A, Kozhakhmetov S. Alterations in Gut Microbiota of Infants Born to Mothers with Obesity. Biomedicines 2025; 13:838. [PMID: 40299456 PMCID: PMC12024737 DOI: 10.3390/biomedicines13040838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
Background: The impact of maternal obesity on offspring health remains a major and pressing issue. We investigated its impact on the development of the infant gut microbiome during the first six months of life, examining the taxonomic composition, metabolic pathways, and antibiotic resistance genes. Methods: Twenty-four mother-infant pairs were divided into maternally obese (OB, BMI > 36) and normal weight (BM) groups. Shotgun metagenomic sequencing was performed on stool samples collected at birth and at 1, 3, and 6 months. A total of 12 maternal samples and 23 infant samples (n = 35) in the obese group and 12 maternal samples and 30 infant samples (n = 42) in the control group were sequenced. The analysis included taxonomic profiling (MetaPhlAn 4), metabolic pathway analysis (HUMAnN 3), and antibiotic resistance gene screening (CARD/ABRicate). Results: The OB group showed reduced alpha diversity in the first month (p ≤ 0.01) and an increased Firmicutes/Bacteroidetes ratio, peaking at 3 months (p ≤ 0.001). The metabolic profiling revealed enhanced carbohydrate breakdown (p ≤ 0.001) in the BM group and lipid biosynthesis (p ≤ 0.0001) in the OB group pathways. Strong correlations emerged between Lactobacillales and fatty acid biosynthesis (r = 0.7, p ≤ 0.0001) and between Firmicutes and lincosamide (r = 0.8, p ≤ 0.0001). Conclusions: The infants of obese mothers had significantly altered development of the infant gut microbiome, affecting both composition and metabolic potential. These changes may have long-term health consequences and suggest potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Zarina Meiirmanova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Block S1, Astana Z05H0P9, Kazakhstan; (Z.M.); (N.M.); (Z.J.); (E.V.); (A.D.); (A.K.)
- Department of Children’s Diseases with Courses in Allergology, Hematology and Endocrinology, NJSC “Astana Medical University”, Astana Z01G6C5, Kazakhstan;
| | - Nurislam Mukhanbetzhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Block S1, Astana Z05H0P9, Kazakhstan; (Z.M.); (N.M.); (Z.J.); (E.V.); (A.D.); (A.K.)
| | - Zharkyn Jarmukhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Block S1, Astana Z05H0P9, Kazakhstan; (Z.M.); (N.M.); (Z.J.); (E.V.); (A.D.); (A.K.)
| | - Elizaveta Vinogradova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Block S1, Astana Z05H0P9, Kazakhstan; (Z.M.); (N.M.); (Z.J.); (E.V.); (A.D.); (A.K.)
- Interdisciplinary Sports Research, Center for Genetics and Life Sciences, Sirius University of Science and Technology, 1 Olympic Ave., Sirius Federal Territory 354340, Russia
| | | | - Marina Morenko
- Department of Children’s Diseases with Courses in Allergology, Hematology and Endocrinology, NJSC “Astana Medical University”, Astana Z01G6C5, Kazakhstan;
| | - Arailym Duisebayeva
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Block S1, Astana Z05H0P9, Kazakhstan; (Z.M.); (N.M.); (Z.J.); (E.V.); (A.D.); (A.K.)
- Department of Children’s Diseases with Courses in Allergology, Hematology and Endocrinology, NJSC “Astana Medical University”, Astana Z01G6C5, Kazakhstan;
- Innovative Center ArtScience, Astana Z11F5A9, Kazakhstan
| | - Dimitri Poddighe
- College of Health Sciences, VinUniversity, Gia Lam District, Hanoi 10000, Vietnam;
| | - Almagul Kushugulova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Block S1, Astana Z05H0P9, Kazakhstan; (Z.M.); (N.M.); (Z.J.); (E.V.); (A.D.); (A.K.)
- Kazakhstan Society of Human Microbiome Researchers, Astana Z05H0P9, Kazakhstan
| | - Samat Kozhakhmetov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Block S1, Astana Z05H0P9, Kazakhstan; (Z.M.); (N.M.); (Z.J.); (E.V.); (A.D.); (A.K.)
- Kazakhstan Society of Human Microbiome Researchers, Astana Z05H0P9, Kazakhstan
| |
Collapse
|
13
|
Yang SY, Han SM, Lee JY, Kim KS, Lee JE, Lee DW. Advancing Gut Microbiome Research: The Shift from Metagenomics to Multi-Omics and Future Perspectives. J Microbiol Biotechnol 2025; 35:e2412001. [PMID: 40223273 PMCID: PMC12010094 DOI: 10.4014/jmb.2412.12001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025]
Abstract
The gut microbiome, a dynamic and integral component of human health, has co-evolved with its host, playing essential roles in metabolism, immunity, and disease prevention. Traditional microbiome studies, primarily focused on microbial composition, have provided limited insights into the functional and mechanistic interactions between microbiota and their host. The advent of multi-omics technologies has transformed microbiome research by integrating genomics, transcriptomics, proteomics, and metabolomics, offering a comprehensive, systems-level understanding of microbial ecology and host-microbiome interactions. These advances have propelled innovations in personalized medicine, enabling more precise diagnostics and targeted therapeutic strategies. This review highlights recent breakthroughs in microbiome research, demonstrating how these approaches have elucidated microbial functions and their implications for health and disease. Additionally, it underscores the necessity of standardizing multi-omics methodologies, conducting large-scale cohort studies, and developing novel platforms for mechanistic studies, which are critical steps toward translating microbiome research into clinical applications and advancing precision medicine.
Collapse
Affiliation(s)
- So-Yeon Yang
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung Min Han
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Young Lee
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoung Su Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae-Eun Lee
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Tillett BJ, Dwiyanto J, Secombe KR, George T, Zhang V, Anderson D, Duggan E, Giri R, Loo D, Stoll T, Morrison M, Begun J, Hill MM, Gurzov EN, Bell KJ, Saad S, Barlow CK, Creek DJ, Chong CW, Mariño E, Hamilton-Williams EE. SCFA biotherapy delays diabetes in humanized gnotobiotic mice by remodeling mucosal homeostasis and metabolome. Nat Commun 2025; 16:2893. [PMID: 40133336 PMCID: PMC11937418 DOI: 10.1038/s41467-025-58319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Type 1 diabetes (T1D) is linked to an altered gut microbiota characterized by reduced short-chain fatty acid (SCFA) production. Oral delivery of a SCFA-yielding biotherapy in adults with T1D was followed by increased SCFAs, altered gut microbiota and immunoregulation, as well as delaying diabetes in preclinical models. Here, we show that SCFA-biotherapy in humans is accompanied by remodeling of the gut proteome and mucosal immune homeostasis. Metabolomics showed arginine, glutamate, nucleotide and tryptophan metabolism were enriched following the SCFA-biotherapy, and found metabolites that correlated with glycemic control. Fecal microbiota transfer demonstrated that the microbiota of SCFA-responders delayed diabetes progression in humanized gnotobiotic mice. The protected mice increased similar metabolite pathways to the humans including producing aryl-hydrocarbon receptor ligands and reducing inflammatory mucosal immunity and increasing IgA production in the gut. These data demonstrate that a potent SCFA immunomodulator promotes multiple beneficial pathways and supports targeting the microbiota as an approach against T1D. Trial registration: Australia New Zealand Clinical Trials Registry ACTRN12618001391268.
Collapse
Affiliation(s)
- Bree J Tillett
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jacky Dwiyanto
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kate R Secombe
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas George
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vivian Zhang
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
| | - Emily Duggan
- Translational Research Institute, Brisbane, QLD, Australia
| | - Rabina Giri
- Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
| | - Dorothy Loo
- Translational Research Institute, Brisbane, QLD, Australia
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mark Morrison
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jakob Begun
- Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Kirstine J Bell
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
| | - Chun Wie Chong
- Monash University Microbiome Research Centre, School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Eliana Mariño
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
- ImmunoBiota Therapeutics Pty Ltd, Melbourne, VIC, Australia.
| | | |
Collapse
|
15
|
Han YZ, Wang YZY, Zhu XY, Du BX, Wang YX, Zhang XQ, Jia JM, Liu WJ, Zheng HJ. The gut microbiota and diabetic nephropathy: an observational study review and bidirectional Mendelian randomization study. Trials 2025; 26:101. [PMID: 40122887 PMCID: PMC11931829 DOI: 10.1186/s13063-025-08755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Earlier studies have implicated a crucial link between diabetic nephropathy (DN) and the gut microbiota (GM) by considering the gut-kidney axis; however, the specific cause-and-effect connections between these processes remain unclear. METHODS To compare changes in the GM between DN patients and control subjects, a review of observational studies was performed. The examination focused on the phylum, family, genus, and species/genus categories. To delve deeper into the cause-effect relationship, instrumental variables for 211 GM taxa (9 phyla, 16 classes, 20 orders, 35 families, and 131 genera), which were eligible for the mbQTL (microbial quantitative trait locus) mapping analysis, were collected from the Genome Wide Association Study (GWAS). A Mendelian randomization investigation was then conducted to gauge their impact on DN susceptibility using data from the European Bioinformatics Institute (EBI) and the FinnGen consortium. The European Bioinformatics Institute data included 1032 DN patients and 451,248 controls, while the FinnGen consortium data consisted of 3283 DN patients and 210,463 controls. Two-sample Mendelian randomization (TSMR) was utilized to determine the link between the GM and DN. The primary method for analysis was the inverse variance weighted (IVW) approach. Moreover, a reverse Mendelian randomization analysis was carried out, and the findings were validated through sensitivity assessments. RESULTS This review examined 11 observational studies that satisfied the inclusion and exclusion criteria. There was a significant difference in the abundance of 144 GM taxa between DN patients and controls. By employing the MR technique, 13 bacteria were pinpointed as having a causal link to DN (including 3 unknown GM taxa). Even after Bonferroni correction, the protective impact of the phylum Proteobacteria and genus Dialister (Sequeira et al. Nat Microbiol. 5:304-313, 2020; Liu et al. EBioMedicine. 90:104527, 2023) and the harmful impact of the genus Akkermansia, family Verrucomicrobiaceae, order Verrucomicrobia and class Verrucomicrobiae on DN remained significant. No noticeable heterogeneity or horizontal pleiotropy was detected in the instrumental variables (IVs). However, reverse MR investigations have failed to reveal any substantial causal relationship between DN and the GM. CONCLUSION Differences in the GM among DN patients and healthy controls are explored in observational studies. We verified the possible connection between certain genetically modified genera and DN, thereby emphasizing the connection between the "gut-kidney" axis and new insights into the GM's role in DN pathogenesis underlying DN. Investigations into this association are necessary, and novel biomarkers for the development of targeted preventive strategies against DN are needed.
Collapse
Affiliation(s)
- Yi Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Zhi Yuan Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Xian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Jia Meng Jia
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Hui Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
16
|
Niu X, Chang G, Xu N, Li R, Niu B, Mao R, Wang S, Li G, Jiang J, Wang L. Vitamin A-Integrated Cinnamaldehyde Nanoemulsion: A Nanotherapeutic Approach To Counteract Liver Fibrosis via Gut-Liver Axis Modulation. ACS NANO 2025; 19:10433-10451. [PMID: 40045827 DOI: 10.1021/acsnano.5c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Liver fibrosis, a complex process resulting from most chronic liver diseases, remains devoid of effective treatments. An increasing body of evidence links liver fibrosis to the "gut-liver axis", with disruptions in the gut microbiota-host balance emerging as a critical contributor to its progression. Cinnamaldehyde (Cin), a natural compound with antioxidant, anti-inflammatory, and anticytotoxic properties, has shown potential in counteracting hepatic stellate cell (HSC) activation. Additionally, Cin has been shown to promote probiotics in the intestine, thereby restoring a healthy microbial community. These characteristics position Cin as a promising candidate for liver fibrosis treatment through modulation of the gut-liver axis. In this study, a Vitamin A (Va)-formulated Cin Nanoemulsion (Va-Cin@NM) was developed to enhance the physicochemical stability of Cin while preserving intestinal homeostasis and facilitating targeted liver deposition. In bile duct ligation (BDL)-induced liver fibrosis in rats, Va-Cin@NM intervention significantly reduced bile duct-like structure proliferation and collagen deposition in the liver. These effects are likely attributed to the restoration of gut microbiota, increased short-chain fatty acid (SCFA) concentrations, and improved intestinal integrity. Moreover, Va-Cin@NM treatment suppressed harmful bacterial populations in the liver, thus mitigating immune injury and inflammatory cell recruitment. Consequently, oxidative stress and HSC activation were attenuated. Overall, Va-Cin@NM demonstrates significant potential as a nanotherapeutic approach for liver fibrosis by modulating the gut-liver axis.
Collapse
Affiliation(s)
- Xia Niu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ge Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ning Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bingyu Niu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Mao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guiling Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
17
|
Cheng H, Guo H, Wen C, Sun G, Tang F, Li Y. The dual role of gut microbiota in pancreatic cancer: new insights into onset and treatment. Ther Adv Med Oncol 2025; 17:17588359251324882. [PMID: 40093983 PMCID: PMC11909682 DOI: 10.1177/17588359251324882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Pancreatic cancer ranks among the most lethal digestive malignancies, exhibiting a steadily increasing incidence and mortality worldwide. Despite significant advances in cancer research, the 5-year survival rate remains below 10%, predominantly due to delayed diagnosis and limited therapeutic options. Concurrently, the gut microbiota-an integral component of host physiology-has emerged as a crucial player in the pathogenesis of pancreatic cancer. Mounting evidence indicates that alterations in gut microbial composition and function may influence tumor initiation, progression, and response to therapy. This review provides an in-depth examination of the intricate interplay between the gut microbiome and pancreatic cancer, highlighting potential diagnostic biomarkers and exploring microbiome-targeted therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Huijuan Cheng
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Hongkai Guo
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Chengming Wen
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Guodong Sun
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
- Department of Medical Affairs, Lanzhou University First Hospital, Lanzhou, Gansu, P.R. China
| | - Futian Tang
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Yumin Li
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
18
|
Verster AJ, Salerno P, Valls R, Barrack K, Price CE, McClure EA, Madan JC, O’Toole GA, Sanville JL, Ross BD. Persistent delay in maturation of the developing gut microbiota in infants with cystic fibrosis. mBio 2025; 16:e0342024. [PMID: 39945545 PMCID: PMC11898760 DOI: 10.1128/mbio.03420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/23/2025] [Indexed: 02/19/2025] Open
Abstract
The healthy human infant gut microbiome undergoes stereotypical changes in taxonomic composition between birth and maturation to an adult-like stable state. During this time, extensive communication between microbiota and the host immune system contributes to health status later in life. Although there are many reported associations between microbiota compositional alterations and disease in adults, less is known about how microbiome development is altered in pediatric diseases. One pediatric disease linked to altered gut microbiota composition is cystic fibrosis (CF), a multi-organ genetic disease involving impaired chloride secretion across epithelia and heightened inflammation both in the gut and at other body sites. Here, we use shotgun metagenomics to profile the strain-level composition and developmental dynamics of the infant fecal microbiota from several CF and non-CF longitudinal cohorts spanning from birth to greater than 36 months of life. We identify a set of keystone species that define microbiota development in early life in non-CF infants but are missing or decreased in relative abundance in infants with CF, resulting in a delayed pattern of microbiota maturation, persistent entrenchment in a transitional developmental phase, and subsequent failure to attain an adult-like stable microbiota. Delayed maturation is strongly associated with cumulative antibiotic treatments, and we also detect the increased relative abundance of oral-derived bacteria and higher levels of fungi in infants with CF, features that are associated with decreased gut bacterial density. These findings suggest the potential for future directed therapies targeted at overcoming developmental delays in microbiota maturation for infants with CF.IMPORTANCEThe human gastrointestinal tract harbors a diversity of microbes that colonize upon birth and collectively contribute to host health throughout life. Infants with the disease cystic fibrosis (CF) harbor altered gut microbiota compared to non-CF counterparts, with lower levels of beneficial bacteria. How this altered population is established in infants with CF and how it develops over the first years of life is not well understood. By leveraging multiple large non-CF infant fecal metagenomic data sets and samples from a CF cohort collected prior to highly effective modulator therapy, we define microbiome maturation in infants up to 3 years of age. Our findings identify conserved age-diagnostic species in the non-CF infant microbiome that are diminished in abundance in CF counterparts that instead exhibit an enrichment of oral-derived bacteria and fungi associated with antibiotic exposure. Together, our study builds toward microbiota-targeted therapy to restore healthy microbiota dynamics in infants with CF.
Collapse
Affiliation(s)
- Adrian J. Verster
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Paige Salerno
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Rebecca Valls
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Kaitlyn Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Courtney E. Price
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Emily A. McClure
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Juliette C. Madan
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Julie L. Sanville
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Benjamin D. Ross
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
19
|
Hill JH, Bell R, Barrios L, Baird H, Ost K, Greenewood M, Monts JK, Tracy E, Meili CH, Chiaro TR, Weis AM, Guillemin K, Beaudin AE, Murtaugh LC, Stephens WZ, Round JL. Neonatal fungi promote lifelong metabolic health through macrophage-dependent β cell development. Science 2025; 387:eadn0953. [PMID: 40048508 PMCID: PMC12036834 DOI: 10.1126/science.adn0953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/19/2024] [Indexed: 03/14/2025]
Abstract
Loss of early-life microbial diversity is correlated with diabetes, yet mechanisms by which microbes influence disease remain elusive. We report a critical neonatal window in mice when microbiota disruption results in lifelong metabolic consequences stemming from reduced β cell development. We show evidence for the existence of a similar program in humans and identify specific fungi and bacteria that are sufficient for β cell growth. The microbiota also plays an important role in seeding islet-resident macrophages, and macrophage depletion during development reduces β cells. Candida dubliniensis increases β cells in a macrophage-dependent manner through distinctive cell wall composition and reduces murine diabetes incidence. Provision of C. dubliniensis after β cell ablation or antibiotic treatment improves β cell function. These data identify fungi as critical early-life commensals that promote long-term metabolic health.
Collapse
Affiliation(s)
- Jennifer Hampton Hill
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| | - Logan Barrios
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| | - Halli Baird
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| | - Kyla Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Morgan Greenewood
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| | - Josh K. Monts
- HSC Flow Cytometry Core, University of Utah, Salt Lake City, UT, USA
| | - Erin Tracy
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| | - Casey H. Meili
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Tyson R. Chiaro
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| | - Allison M. Weis
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Anna E. Beaudin
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - W. Zac Stephens
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| | - June L. Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Lernmark Å, Agardh D, Akolkar B, Gesualdo P, Hagopian WA, Haller MJ, Hyöty H, Johnson SB, Elding Larsson H, Liu E, Lynch KF, McKinney EF, McIndoe R, Melin J, Norris JM, Rewers M, Rich SS, Toppari J, Triplett E, Vehik K, Virtanen SM, Ziegler AG, Schatz DA, Krischer J. Looking back at the TEDDY study: lessons and future directions. Nat Rev Endocrinol 2025; 21:154-165. [PMID: 39496810 PMCID: PMC11825287 DOI: 10.1038/s41574-024-01045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
The goal of the TEDDY (The Environmental Determinants of Diabetes in the Young) study is to elucidate factors leading to the initiation of islet autoimmunity (first primary outcome) and those related to progression to type 1 diabetes mellitus (T1DM; second primary outcome). This Review outlines the key findings so far, particularly related to the first primary outcome. The background, history and organization of the study are discussed. Recruitment and follow-up (from age 4 months to 15 years) of 8,667 children showed high retention and compliance. End points of the presence of autoantibodies against insulin, GAD65, IA-2 and ZnT8 revealed the HLA-associated early appearance of insulin autoantibodies (1-3 years of age) and the later appearance of GAD65 autoantibodies. Competing autoantibodies against tissue transglutaminase (marking coeliac disease autoimmunity) also appeared early (2-4 years). Genetic and environmental factors, including enterovirus infection and gastroenteritis, support mechanistic differences underlying one phenotype of autoimmunity against insulin and another against GAD65. Infant growth and both probiotics and high protein intake affect the two phenotypes differently, as do serious life events during pregnancy. As the end of the TEDDY sampling phase is approaching, major omics approaches are in progress to further dissect the mechanisms that might explain the two possible endotypes of T1DM.
Collapse
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden.
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Gesualdo
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | - William A Hagopian
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Suzanne Bennett Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Edwin Liu
- Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristian F Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eoin F McKinney
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jessica Melin
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jorma Toppari
- Department of Paediatrics, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Eric Triplett
- University of Florida, Department of Microbiology and Cell Science, Gainesville, FL, USA
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Suvi M Virtanen
- Center for Child Health Research, Tampere University and University Hospital and Research, Tampere, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Munich, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München and e.V., Munich, Germany
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
21
|
Zeng X, Ma C, Fu W, Xu Y, Wang R, Liu D, Zhang L, Hu N, Li D, Li W. Changes in Type 1 Diabetes-Associated Gut Microbiota Aggravate Brain Ischemia Injury by Affecting Microglial Polarization Via the Butyrate-MyD88 Pathway in Mice. Mol Neurobiol 2025; 62:3764-3780. [PMID: 39322832 DOI: 10.1007/s12035-024-04514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
People with type 1 diabetes (T1D) have a significantly elevated risk of stroke, but the mechanism through which T1D worsens ischemic stroke remains unclear. This study was aimed at investigating the roles of T1D-associated changes in the gut microbiota in aggravating ischemic stroke and the underlying mechanism. Fecal 16SrRNA sequencing indicated that T1D mice and mice with transplantation of T1D mouse gut microbiota had lower relative abundance of butyric acid producers, f_Erysipelotrichaceae and g_Allobaculum, and lower content of butyric acid in feces. After middle cerebral artery occlusion (MCAO), these mice had poorer neurological outcomes and more severe inflammation, but higher expression of myeloid differentiation factor 88 (MyD88) in the ischemic penumbra; moreover, the microglia were inclined to polarize toward the pro-inflammatory type. Administration of butyrate to T1D mice in the drinking water alleviated the neurological damage after MCAO. Butyrate influenced the response and polarization of BV2 and decreased the production of inflammatory cytokines via MyD88 after oxygen-glucose deprivation/reoxygenation. Knocking down MyD88 in the brain alleviated neurological outcomes and decreased the concentrations of inflammatory cytokines in the brain after stroke in mice with transplantation of T1D mouse gut microbiota. Poor neurological outcomes and aggravated inflammatory responses of T1D mice after ischemic stroke may be partly due to differences in microglial polarization mediated by the gut microbiota-butyrate-MyD88 pathway. These findings provide new ideas and potential intervention targets for alleviating neurological damage after ischemic stroke in T1D.
Collapse
Affiliation(s)
- Xianzhang Zeng
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Can Ma
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wenchao Fu
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Yongmei Xu
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Rui Wang
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Dan Liu
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Lijuan Zhang
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Narisu Hu
- Oral Implant Center, Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Dongmei Li
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wenzhi Li
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
22
|
Shibata R, Nakanishi Y, Suda W, Nakano T, Sato N, Inaba Y, Kawasaki Y, Hattori M, Shimojo N, Ohno H. Neonatal gut microbiota and risk of developing food sensitization and allergy. J Allergy Clin Immunol 2025; 155:932-946. [PMID: 39692676 DOI: 10.1016/j.jaci.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Food sensitization (FS) develops in early infancy and is a risk factor for subsequent food allergy (FA). Recent evidence suggests relationships of gut microbiota with FS and FA. However, little is known about the role of neonatal gut microbiota in the pathobiology of these manifestations. OBJECTIVES We sought to characterize gut microbiota in children using an enterotyping approach and determine the association of gut microbiota and the enterotypes with the development of FS and FA. METHODS We combined gut microbiome and fecal short-chain fatty acid data from 2 longitudinal birth-cohort studies in Japan, clustered the microbiome data from children who were 1 week to 7 years old and their mothers and identified enterotypes. We also determined the associations of gut microbiota and enterotypes with risks of developing FS and FA across the 2 studies using multivariable regression models. RESULTS Data from the 2563 microbiomes identified 6 enterotypes. More gut bacteria (eg, Bifidobacterium) in 1-month-old children showed significant relationships with the development of FS and FA than in 1-week-old children. Enterotypes at 1 month old consisted of Bacteroides-dominant, Klebsiella-dominant, and Bifidobacterium-dominant enterotypes. Bifidobacterium-dominant enterotypes with the highest fecal propionate concentration had the lowest risks of developing FS and FA, especially of hen egg white sensitization. Bifidobacterium-dominant enterotypes had lower risks at 2 years old in one study (vs Bacteroides-dominant enterotype, adjusted odds ratio [adjOR]: 0.10, 95% CI: 0.01-0.78; vs Klebsiella-dominant enterotype, adjOR: 0.10, 95% CI: 0.01-0.77) and at 9 months old in the other study (vs Bacteroides-dominant enterotype, adjOR: 0.33, 95% CI: 0.11-0.91). CONCLUSIONS In these birth-cohort studies, gut microbiome clustering identified distinct neonatal enterotypes with differential risks of developing FS and FA.
Collapse
Affiliation(s)
- Ryohei Shibata
- Laboratorie for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan; Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, Chiba City, Japan.
| | - Yumiko Nakanishi
- Laboratorie for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Wataru Suda
- Laboratorie for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taiji Nakano
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Noriko Sato
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Yosuke Inaba
- Clinical Research Center, Chiba University Hospital, Chiba City, Japan
| | - Yohei Kawasaki
- Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan
| | - Masahira Hattori
- Laboratorie for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoki Shimojo
- Center for Preventive Medical Sciences, Chiba University, Chiba City, Japan
| | - Hiroshi Ohno
- Laboratorie for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan; Laboratorie for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.
| |
Collapse
|
23
|
Beckers KF, Schulz CJ, Flanagan JP, Blair RV, Liu CC, Childers GW, Sones JL. Pregnancy-specific shifts in the maternal microbiome and metabolome in the BPH/5 mouse model of superimposed preeclampsia. Physiol Genomics 2025; 57:115-124. [PMID: 39773069 DOI: 10.1152/physiolgenomics.00106.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Preeclampsia (PE) is a life-threatening hypertensive disorder of pregnancy with an incidence rate of up to 8% worldwide. However, the complete pathogenesis is still unknown. Obesity increases the risk of developing PE threefold. To better understand the relationship of maternal risk factors, the BPH/5 mouse was described as a model of superimposed PE. Previous research demonstrated that adult BPH/5 female mice have an adverse cardiometabolic phenotype characterized by hypertension, obesity with increased white adipose tissue, and dyslipidemia, exaggerated by pregnancy. We hypothesize that BPH/5 mice have gut dysbiosis characterized by changes in alpha and beta diversity of bacterial community structure as well as perturbed short-chain fatty acids (SCFAs) compared with controls in pregnancy. Fecal samples were used for Illumina sequencing of 16S v4 rRNA amplicons. Microbial community composition of the pregnant BPH/5 mice compared with C57 controls was different using permutational multivariate analysis of variance (PERMANOVA) with Bray-Curtis dissimilarity. Alpha diversity was increased in pregnant BPH/5 dams compared with controls. Alistipes and Helicobacter were increased, whereas Bacteroides, Lactobacillus, Parasutterella, and Parabacteroides were decreased compared with controls. Fecal SCFAs were not different between groups, but BPH/5 serum acetic and butyric acids were decreased, whereas isobutyric and isovaleric acids were increased specifically in pregnancy. BPH/5 pregnant colons had decreased expression of free fatty acid receptor, GPR41. In conclusion, the BPH/5 maternal fecal microbiome demonstrates microbial dysbiosis characterized by community structure and diversity changes before and after the onset of pregnancy. Gut dysbiosis may be a key mechanism linking SCFA signaling and obesity to the BPH/5 PE-like phenotype.NEW & NOTEWORTHY This is the first time the pregnant fecal microbiome has been identified in the BPH/5 spontaneous mouse model of superimposed PE. Community composition changed with the onset of pregnancy in this model. BPH/5 showed an altered colonic signaling with decreased GPR41 expression, suggesting that gut dysbiosis may link SCFA signaling to the PE phenotype. This data highlights the importance of the maternal obesogenic gut microbiome in pregnancy.
Collapse
Affiliation(s)
- Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States
| | - Christopher J Schulz
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States
| | - Juliet P Flanagan
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Robert V Blair
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Gary W Childers
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States
| | - Jenny L Sones
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
24
|
Neu J, Stewart CJ. Neonatal microbiome in the multiomics era: development and its impact on long-term health. Pediatr Res 2025:10.1038/s41390-025-03953-x. [PMID: 40021924 DOI: 10.1038/s41390-025-03953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
The neonatal microbiome has been the focus of considerable research over the past two decades and studies have added fascinating information in terms of early microbial patterns and how these relate to various disease processes. One difficulty with the interpretation of these relationships is that such data is associative and provides little in terms of proof of causality or the underpinning mechanisms. Integrating microbiome data with other omics such as the proteome, inflammatory mediators, and the metabolome is an emerging approach to address this gap. Here we discuss these omics, their integration, and how they can be applied to improve our understanding, treatment, and prevention of disease. IMPACT: This review introduces the concept of multiomics in neonatology and how emerging technologies can be integrated improve understanding, treatment, and prevention of disease. We highlight considerations for performing multiomic research in neonates and the need for validation in separate cohorts and/or relevant model systems. We summarise how the use of multiomics is expanding and lay out steps to bring this to the clinic to enable precision medicine.
Collapse
Affiliation(s)
- Josef Neu
- University of Florida, Gainesville, FL, USA
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
25
|
Blok L, Hanssen N, Nieuwdorp M, Rampanelli E. From Microbes to Metabolites: Advances in Gut Microbiome Research in Type 1 Diabetes. Metabolites 2025; 15:138. [PMID: 39997763 PMCID: PMC11857261 DOI: 10.3390/metabo15020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Type 1 diabetes (T1D) is a severe chronic T-cell mediated autoimmune disease that attacks the insulin-producing beta cells of the pancreas. The multifactorial nature of T1D involves both genetic and environmental components, with recent research focusing on the gut microbiome as a crucial environmental factor in T1D pathogenesis. The gut microbiome and its metabolites play an important role in modulating immunity and autoimmunity. In recent years, studies have revealed significant alterations in the taxonomic and functional composition of the gut microbiome associated with the development of islet autoimmunity and T1D. These changes include reduced production of short-chain fatty acids, altered bile acid and tryptophan metabolism, and increased intestinal permeability with consequent perturbations of host (auto)immune responses. Methods/Results: In this review, we summarize and discuss recent observational, mechanistic and etiological studies investigating the gut microbiome in T1D and elucidating the intricate role of gut microbes in T1D pathogenesis. Moreover, we highlight the recent advances in intervention studies targeting the microbiota for the prevention or treatment of human T1D. Conclusions: A deeper understanding of the evolution of the gut microbiome before and after T1D onset and of the microbial signals conditioning host immunity may provide us with essential insights for exploiting the microbiome as a prognostic and therapeutic tool.
Collapse
Affiliation(s)
- Lente Blok
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Nordin Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| |
Collapse
|
26
|
Chen E, Ajami NJ, White DL, Liu Y, Gurwara S, Hoffman K, Graham DY, El-Serag HB, Petrosino JF, Jiao L. Dairy Consumption and the Colonic Mucosa-Associated Gut Microbiota in Humans-A Preliminary Investigation. Nutrients 2025; 17:567. [PMID: 39940425 PMCID: PMC11820694 DOI: 10.3390/nu17030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Dairy consumption has been associated with various health outcomes that may be mediated by changes in gut microbiota. METHODS This cross-sectional study investigated the association between the colonic mucosa-associated gut microbiota and the self-reported intake of total dairy, milk, cheese, and yogurt. A total of 97 colonic mucosal biopsies collected from 34 polyp-free individuals were analyzed. Dairy consumption in the past year was assessed using a food frequency questionnaire. The 16S rRNA gene V4 region was amplified and sequenced. Operational taxonomic unit (OTU) classification was performed using the UPARSE and SILVA databases. OTU diversity and relative abundance were compared between lower vs. higher dairy consumption groups. Multivariable negative binomial regression models for panel data were used to estimate the incidence rate ratio and 95% confidence interval for bacterial counts and dairy consumption. False discovery rate-adjusted p values (q value) < 0.05 indicated statistical significance. RESULTS Higher total dairy and milk consumption and lower cheese consumption were associated with higher alpha microbial diversity (adjusted p values < 0.05). Higher total dairy and milk consumption was also associated with higher relative abundance of Faecalibacterium. Higher milk consumption was associated with higher relative abundance of Akkermansia. Higher total dairy and cheese consumption was associated with lower relative abundance of Bacteroides. CONCLUSIONS Dairy consumption may influence host health by modulating the structure and composition of the colonic adherent gut microbiota.
Collapse
Affiliation(s)
- Ellie Chen
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
| | - Nadim J. Ajami
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Donna L. White
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Yanhong Liu
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Shawn Gurwara
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
| | - Kristi Hoffman
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - David Y. Graham
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Section of Gastroenterology, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| | - Hashem B. El-Serag
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Section of Gastroenterology, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| | - Joseph F. Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
| |
Collapse
|
27
|
Li J, Xie Z, Yang L, Guo K, Zhou Z. The impact of gut microbiome on immune and metabolic homeostasis in type 1 diabetes: Clinical insights for prevention and treatment strategies. J Autoimmun 2025; 151:103371. [PMID: 39883994 DOI: 10.1016/j.jaut.2025.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Type 1 diabetes (T1D) is a complex disease triggered by a combination of genetic and environmental factors, where abnormal autoimmune responses lead to progressive damage of the pancreatic β cells and severe glucose metabolism disorder. Recent studies have increasingly highlighted the close link between gut microbiota dysbiosis and the development of T1D. This review delves into existing population studies to explore the intricate interactions between the gut microbiota and the immune and metabolic homeostasis in T1D. It summarizes how changes in the structure and function of the gut microbiota are closely associated with the onset and progression of T1D across its natural course and clinical stages. More importantly, based on evidence accumulated from clinical observations and trials, we pioneer the discussion on gut microbiota-based T1D prevention and treatment strategies, this not only enriches our understanding of the complex pathological mechanisms of T1D but also provides potential directions for developing novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Shimokawa C. The gut microbiome-helminth-immune axis in autoimmune diseases. Parasitol Int 2025; 104:102985. [PMID: 39491642 DOI: 10.1016/j.parint.2024.102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The global prevalence of autoimmune diseases has surged in recent decades. Consequently, environmental triggers have emerged as crucial contributors to autoimmune diseases, equally relevant to classical risk factors, such as genetic polymorphisms, infections, and smoking. Sequencing-based approaches have demonstrated distinct gut microbiota compositions in individuals with autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, type 1 diabetes mellitus (T1D), and systemic lupus erythematosus, compared to healthy controls. Furthermore, fecal microbiota transplantation and microbial inoculation experiments have supported the hypothesis that alterations in the gut microbiota can influence autoimmune responses and disease outcomes. Herein, we propose that intestinal helminths may serve as a critical factor in inducing alterations in the gut microbiota. The concept of helminth-mediated suppression of autoimmune diseases in humans is supported by substantial evidence, aligning with the long-standing "hygiene hypothesis." This review focused on T1D to explore the interactions between parasites, gut microbiota, and the immune system-a topic that remains a black box within this intricate triangular relationship.
Collapse
Affiliation(s)
- Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
29
|
Kennedy EC, Ross FC, O'Shea CA, Lavelle A, Ross P, Dempsey E, Stanton C, Hawkes CP. Observational study protocol: the faecal microbiome in the acute stage of new-onset paediatric type 1 diabetes in an Irish cohort. BMJ Open 2025; 15:e089206. [PMID: 39890137 PMCID: PMC11784173 DOI: 10.1136/bmjopen-2024-089206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/06/2024] [Indexed: 02/03/2025] Open
Abstract
INTRODUCTION Type 1 diabetes (T1D) is an autoimmune-mediated disorder caused by the destruction of pancreatic beta cells. Although there is an underlying genetic predisposition to developing T1D, the trigger is multifactorial and likely includes environmental factors. The intestinal microbiome has been identified as one such factor. Previous studies have illustrated differences in the microbiota of people with T1D compared with healthy controls. This study aims to describe the evolution of the microbiome and metabolome during the first year of clinical T1D, or stage 3 T1D diagnosis, and investigate whether there are differences in the microbiome and metabolome of children who present with and without diabetic ketoacidosis. The study will also explore possible associations between the microbiome, metabolome, glycaemic control and beta cell reserve. METHODS AND ANALYSIS This prospective cohort study will include children with newly diagnosed T1D and sibling controls (n=100, males and females) and their faecal microbiome will be characterised using shotgun metagenomic sequencing at multiple time points during the first year of diagnosis. We will develop a microbial culture biobank based on culturomic studies of stool samples from the healthy controls that will support future investigation. Metabolomic analysis will aim to identify additional biomarkers which may be involved in disease presentation and progression. Through this initial exploratory study, we aim to identify specific microbial biomarkers which may be used as future interventional targets throughout the various stages of T1D progression. ETHICS AND DISSEMINATION This study has been approved by the Clinical Research Ethics Committee of the Cork Teaching Hospitals. Study results will be available to patients with T1D and their families, carers, support networks and microbiome societies and other researchers. TRIAL REGISTRATION NUMBER The clinicaltrials.gov registration number for this trial is NCT06157736.
Collapse
Affiliation(s)
- Elaine Catherine Kennedy
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Fiona Catherine Ross
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Aonghus Lavelle
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre Moorepark, Moorepark, Ireland
| | - Colin Patrick Hawkes
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Pucci N, Ujčič-Voortman J, Verhoeff AP, Mende DR. Priority effects, nutrition and milk glycan-metabolic potential drive Bifidobacterium longum subspecies dynamics in the infant gut microbiome. PeerJ 2025; 13:e18602. [PMID: 39866568 PMCID: PMC11758915 DOI: 10.7717/peerj.18602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/06/2024] [Indexed: 01/28/2025] Open
Abstract
Background The initial colonization of the infant gut is a complex process that defines the foundation for a healthy microbiome development. Bifidobacterium longum is one of the first colonizers of newborns' gut, playing a crucial role in the healthy development of both the host and its microbiome. However, B. longum exhibits significant genomic diversity, with subspecies (e.g., Bifidobacterium longum subsp. infantis and subsp. longum) displaying distinct ecological and metabolic strategies including differential capabilities to break down human milk glycans (HMGs). To promote healthy infant microbiome development, a good understanding of the factors governing infant microbiome dynamics is required. Methodology We analyzed newly sequenced gut microbiome samples of mother-infant pairs from the Amsterdam Infant Microbiome Study (AIMS) and four publicly available datasets to identify important environmental and bifidobacterial features associated with the colonization success and succession outcomes of B. longum subspecies. Metagenome-assembled genomes (MAGs) were generated and assessed to identify characteristics of B. longum subspecies in relation to early-life gut colonization. We further implemented machine learning tools to identify significant features associated with B. longum subspecies abundance. Results B. longum subsp. longum was the most abundant and prevalent gut Bifidobacterium at one month, being replaced by B. longum subsp. infantis at six months of age. By utilizing metagenome-assembled genomes (MAGs), we reveal significant differences between and within B. longum subspecies in their potential to break down HMGs. We further combined strain-tracking, meta-pangenomics and machine learning to understand these abundance dynamics and found an interplay of priority effects, milk-feeding type and HMG-utilization potential to govern them across the first six months of life. We find higher abundances of B. longum subsp. longum in the maternal gut microbiome, vertical transmission, breast milk and a broader range of HMG-utilizing genes to promote its abundance at one month of age. Eventually, we find B. longum subsp. longum to be replaced by B. longum subsp. infantis at six months of age due to a combination of nutritional intake, HMG-utilization potential and a diminishment of priority effects. Discussion Our results establish a strain-level ecological framework explaining early-life abundance dynamics of B. longum subspecies. We highlight the role of priority effects, nutrition and significant variability in HMG-utilization potential in determining the predictable colonization and succession trajectories of B. longum subspecies, with potential implications for promoting infant health and well-being.
Collapse
Affiliation(s)
- Nicholas Pucci
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Joanne Ujčič-Voortman
- Sarphati Amsterdam, Department of Public Health Service Amsterdam, Amsterdam, Netherlands
| | - Arnoud P. Verhoeff
- Sarphati Amsterdam, Department of Public Health Service Amsterdam, Amsterdam, Netherlands
- Department of Sociology, University of Amsterdam, Amsterdam, Netherlands
| | - Daniel R. Mende
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
31
|
Fahur Bottino G, Bonham KS, Patel F, McCann S, Zieff M, Naspolini N, Ho D, Portlock T, Joos R, Midani FS, Schüroff P, Das A, Shennon I, Wilson BC, O'Sullivan JM, Britton RA, Murray DM, Kiely ME, Taddei CR, Beltrão-Braga PCB, Campos AC, Polanczyk GV, Huttenhower C, Donald KA, Klepac-Ceraj V. Early life microbial succession in the gut follows common patterns in humans across the globe. Nat Commun 2025; 16:660. [PMID: 39809768 PMCID: PMC11733223 DOI: 10.1038/s41467-025-56072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life. Using 3154 samples from 1827 infants across 12 countries, we trained a random forest model, achieving a root mean square error of 2.56 months. We identified key taxonomic predictors of age, including declines in Bifidobacterium spp. and increases in Faecalibacterium prausnitzii and Lachnospiraceae. Microbial succession patterns are conserved across infants from diverse human populations, suggesting universal developmental trajectories. Functional analysis confirmed trends in key microbial genes involved in feeding transitions and dietary exposures. This model provides a normative benchmark of "microbiome age" for assessing early gut maturation that may be used alongside other measures of child development.
Collapse
Affiliation(s)
| | - Kevin S Bonham
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Fadheela Patel
- University of Cape Town, Cape Town, Western Cape, South Africa
| | - Shelley McCann
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Michal Zieff
- University of Cape Town, Cape Town, Western Cape, South Africa
| | - Nathalia Naspolini
- School of Arts, Sciences and Humanity, University of São Paulo, São Paulo, SP, Brazil
| | - Daniel Ho
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Theo Portlock
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Raphaela Joos
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Firas S Midani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Paulo Schüroff
- School of Arts, Sciences and Humanity, University of São Paulo, São Paulo, SP, Brazil
| | - Anubhav Das
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Inoli Shennon
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Brooke C Wilson
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- INFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Mairead E Kiely
- INFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Carla R Taddei
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, São Paulo, SP, Brazil
| | - Patrícia C B Beltrão-Braga
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, São Paulo, SP, Brazil
| | - Alline C Campos
- Pharmacology of Neuroplasticity Lab- Department of Pharmacology, Ribeirão Preto Medical School- University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme V Polanczyk
- Division of Child & Adolescent Psychiatry, Department & Institute of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.
| |
Collapse
|
32
|
Sundheim B, Hirani K, Blaschke M, Lemos JRN, Mittal R. Pre-Type 1 Diabetes in Adolescents and Teens: Screening, Nutritional Interventions, Beta-Cell Preservation, and Psychosocial Impacts. J Clin Med 2025; 14:383. [PMID: 39860389 PMCID: PMC11765808 DOI: 10.3390/jcm14020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Type 1 Diabetes (T1D) is a progressive autoimmune disease often identified in childhood or adolescence, with early stages detectable through pre-diabetic markers such as autoantibodies and subclinical beta-cell dysfunction. The identification of the pre-T1D stage is critical for preventing complications, such as diabetic ketoacidosis, and for enabling timely interventions that may alter disease progression. This review examines the multifaceted approach to managing T1D risk in adolescents and teens, emphasizing early detection, nutritional interventions, beta-cell preservation strategies, and psychosocial support. Screening for T1D-associated autoantibodies offers predictive insight into disease risk, particularly when combined with education and family resources that promote lifestyle adjustments. Although nutritional interventions alone are not capable of preventing T1D, certain lifestyle interventions, such as weight management and specific nutritional choices, have shown the potential to preserve insulin sensitivity, reduce inflammation, and mitigate metabolic strain. Pharmacological strategies, including immune-modulating drugs like teplizumab, alongside emerging regenerative and cell-based therapies, offer the potential to delay disease onset by protecting beta-cell function. The social and psychological impacts of a T1D risk diagnosis are also significant, affecting adolescents' quality of life, family dynamics, and mental health. Supportive interventions, including counseling, cognitive-behavioral therapy (CBT), and group support, are recommended for managing the emotional burden of pre-diabetes. Future directions call for integrating universal or targeted screening programs within schools or primary care, advancing research into nutrition and psychosocial support, and promoting policies that enhance access to preventive resources. Advocacy for the insurance coverage of screening, nutritional counseling, and mental health services is also crucial to support families in managing T1D risk. By addressing these areas, healthcare systems can promote early intervention, improve beta-cell preservation, and support the overall well-being of adolescents at risk of T1D.
Collapse
Affiliation(s)
- Brody Sundheim
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Ransom Everglades High School, 3575 Main Hwy, Miami, FL 33133, USA
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Krish Hirani
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- American Heritage School, 12200 W Broward Blvd, Plantation, FL 33325, USA
| | - Mateo Blaschke
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Coral Gables High School, 450 Bird Rd, Coral Gables, FL 33146, USA
| | - Joana R. N. Lemos
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Mittal
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
33
|
Qiu J, Wu S, Huang R, Liao Z, Pan X, Zhao K, Peng Y, Xiang S, Cao Y, Ma Y, Xiao Z. Effects of antibiotic therapy on the early development of gut microbiota and butyrate-producers in early infants. Front Microbiol 2025; 15:1508217. [PMID: 39839108 PMCID: PMC11748296 DOI: 10.3389/fmicb.2024.1508217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Background Antibiotics, as the most commonly prescribed class of drugs in neonatal intensive care units, have an important impact on the developing neonatal gut microbiota. Therefore, comprehending the effects of commonly used antibiotic therapy on the gut microbiota and butyrate-producers in early infants could provide information for therapeutic decision-making in the NICU. Objectives To explore the effects of antibiotic therapy on the early development of gut microbiota and butyrate-producers in early infants. Methods A total of 72 infants were included in the study. We performed 16S rRNA sequencing on stool swab samples collected from neonatal intensive care unit patients who received amoxicillin-clavulanic acid (AC, n = 10), moxalactam (ML, n = 28) and non-antibiotics (NA, n = 34). We then compared the taxonomic composition between treatment regimens, focusing on differences in butyrate-producers. Results Our study showed that there were significant differences in Shannon index (p = 0.033) and Beta diversity (p = 0.014) among the three groups. At the family level, compared with the other two groups, the relative abundance of Clostridiaceae (p < 0.001) and Veillonellaceae (p = 0.004) were significantly higher, while the relative abundance of Enterococcidae (p < 0.001) was significantly lower in the NA group. The relative abundance of Enterobacteriaceae (p = 0.022) in the AC group was greater than that in the other two groups. Additionally, butyrate-producers (p < 0.001), especially Clostridiaceae (p < 0.001), were noticeably more abundant in the NA group. The relative abundance of Clostridiaceae and butyrate-producers were the lowest in the ML group (p < 0.001). Conclusion We found that antibiotic therapy had an adverse impact on the initial development of gut microbiota and leaded to a reduction in the abundance of butyrate-producers, particularly Clostridiaceae. Furthermore, moxalactam had a more pronounced effect on the gut microbiota compared to amoxicillin-clavulanic acid.
Collapse
Affiliation(s)
- Jun Qiu
- The School of Pediatrics, Hengyang Medical School, University of South China, Hunan Children’s Hospital, Hengyang, Hunan, China
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Sha Wu
- The School of Pediatrics, Hengyang Medical School, University of South China, Hunan Children’s Hospital, Hengyang, Hunan, China
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Ruiwen Huang
- Department of Neonatology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Zhenyu Liao
- Department of Neonatology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Xiongfeng Pan
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Kunyan Zhao
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
- The School of Public Health, University of South China, Hengyang, China
| | - Yunlong Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Yunhui Cao
- The School of Pediatrics, Hengyang Medical School, University of South China, Hunan Children’s Hospital, Hengyang, Hunan, China
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Ye Ma
- Department of Neonatology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Zhenghui Xiao
- The School of Pediatrics, Hengyang Medical School, University of South China, Hunan Children’s Hospital, Hengyang, Hunan, China
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
| |
Collapse
|
34
|
Fliegerová KO, Mahayri TM, Sechovcová H, Mekadim C, Mrázek J, Jarošíková R, Dubský M, Fejfarová V. Diabetes and gut microbiome. Front Microbiol 2025; 15:1451054. [PMID: 39839113 PMCID: PMC11747157 DOI: 10.3389/fmicb.2024.1451054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment. Research in recent decades increasingly indicates the potential role of the gut microbiome in the initiation, development, and progression of this disease. Intestinal microbes and their fermentation products have an important impact on host metabolism, immune system, nutrient digestion and absorption, gut barrier integrity and protection against pathogens. This review summarizes the current evidence on the changes in gut microbial populations in both types of diabetes mellitus. Attention is focused on changes in the abundance of specific bacterial groups at different taxonomic levels in humans, and microbiome shift is also assessed in relation to geographic location, age, diet and antidiabetic drug. The causal relationship between gut bacteria and diabetes is still unclear, and future studies applying new methodological approaches to a broader range of microorganisms inhabiting the digestive tract are urgently needed. This would not only provide a better understanding of the role of the gut microbiome in this metabolic disease, but also the use of beneficial bacterial species in the form of probiotics for the treatment of diabetes.
Collapse
Affiliation(s)
- Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Radka Jarošíková
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Dubský
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
| | - Vladimíra Fejfarová
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
35
|
Wang Z, Gong M, Fang Y, Yuan H, Zhang C. Reconstruction characteristics of gut microbiota from patients with type 1 diabetes affect the phenotypic reproducibility of glucose metabolism in mice. SCIENCE CHINA. LIFE SCIENCES 2025; 68:176-188. [PMID: 39285046 DOI: 10.1007/s11427-024-2658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/18/2024] [Indexed: 01/03/2025]
Abstract
The human microbiota-associated (HMA) mice model, especially the germ-free (GF)-humanized mice, has been widely used to probe the causal relationships between gut microbiota and human diseases such as type 1 diabetes (T1D). However, most studies have not clarified the extent to which the reconstruction of the human donor microbiota in recipient mice correlates with corresponding phenotypic reproducibility. In this study, we transplanted fecal microbiota from five patients with T1D and four healthy people into GF mice, and microbiota from each donor were transplanted into 10 mice. Mice with similar microbiota structure to the donor exhibited better phenotypic reproducibility. The characteristics of the microbial community assembly of donors also influenced the phenotypic reproducibility in mice, and individuals with a higher proportion of stochastic processes showed more severe disorders. Microbes enriched in patients with T1D had a stronger colonization potential in mice with impaired glucose metabolism, and microbiota functional features related to T1D were better reproduced in these mice. This indicates that assembly traits and colonization efficacy of microbiota influence phenotypic reproducibility in GF-humanized mice. Our findings provide important insights for using HMA mice models to explore links between gut microbiota and human diseases.
Collapse
Affiliation(s)
- Zhiyi Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengxue Gong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Fang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
36
|
Hakola L, Lundqvist A, Gissler M, Virta LJ, Virtanen SM, Metsälä J. Prenatal and Postnatal Exposure to Antibiotics and the Risk of Type 1 Diabetes in Finnish Children: A Registry-based Study. J Pediatr 2025; 276:114292. [PMID: 39245140 DOI: 10.1016/j.jpeds.2024.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE To study whether prenatal and postnatal exposure to antibiotics is associated with the risk of type 1 diabetes in childhood. STUDY DESIGN This case cohort study included 2869 children diagnosed with type 1 diabetes by the end of 2009 who were born between January 1, 1996, and December 31, 2008, in Finland and a reference cohort (n = 74 263) representing 10% of each birth cohort. Exposure to antibiotics was assessed in different time periods. The data were derived from Special Reimbursement Register, Drug Prescription Register, and Population Register and analyzed with weighted Cox proportional hazards regression models. RESULTS Exposure to any antibiotics before or during pregnancy, in the neonatal ward, during the first year of life, or during the 2 first years of life, was not associated with the risk of type 1 diabetes in the offspring. Exposure to macrolides in the year preceding pregnancy (adjusted hazard ratio [HR], 1.17; 95% CI, 1.02-1.33) and to sulfonamides and trimethoprim during pregnancy (adjusted HR, 1.91; 95% CI, 1.07-3.41) was associated with an increased risk of type 1 diabetes in the offspring. Exposure to sulfonamides and trimethoprim during first 2 years of life was associated with a decreased risk of type 1 diabetes (adjusted HR, 0.84; 95% CI, 0.73-0.97). The number of antibiotic purchases among mothers or children was not associated with type 1 diabetes risk. CONCLUSIONS Prenatal and postnatal exposure to antibiotics in general did not increase the risk of type 1 diabetes in the offspring. However, the type of antibiotic and timing of exposure may play a role in type 1 diabetes risk.
Collapse
Affiliation(s)
- Leena Hakola
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland; Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland.
| | - Annamari Lundqvist
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Mika Gissler
- The Department of Data and Analytics, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Region Stockholm, Academic Primary Health Care Centre, Stockholm, Sweden
| | - Lauri J Virta
- Research Department, The Social Insurance Institution of Finland, Helsinki, Finland
| | - Suvi M Virtanen
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland; Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Johanna Metsälä
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
37
|
Vernon JJ. Modulation of the Human Microbiome: Probiotics, Prebiotics, and Microbial Transplants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:277-294. [PMID: 40111698 DOI: 10.1007/978-3-031-79146-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The balance between health and disease is intrinsically linked to the interactions between microbial communities and the host. This complex environment of antagonism and synergy involves both prokaryotic and eukaryotic cells, whose collaborative metabolic pathways and immunomodulatory elements influence system homeostasis. As with the gut and other niches, the oral microbiome has the capacity to affect distal host sites. The ability to manipulate this environment holds the potential to impact local and systemic disease.With the increasing threat of antimicrobial resistance, novel approaches to reduce the burden of disease are essential. The use of probiotics and prebiotics is one such strategy. Probiotics introduce non-pathogenic bacteria into the environment to compete with pathogens for nutrients and attachment sites, or to produce metabolites that counteract disease aetiologies. Prebiotic compounds enhance the growth of health-associated organisms, offering additional benefits, whilst a conjunctive approach with probiotics potentially holds even greater promise. Though widely studied in the gastrointestinal context, their potential for treating oral diseases, such as dental caries and periodontitis, is less understood. Additionally, the use of microbial transplantations has demonstrated efficacy in other areas, reducing systemic inflammation and recolonising with commensal bacteria. Here we evaluate their use in the oral context and their modulatory impact on overall health.In this chapter, we discuss how pro- and prebiotic strategies seek to modulate both the oral and gut environments to promote oral health and prevent disease. We assess novel approaches for utilising health-associated microorganisms to combat oral disorders, either administered locally in the mouth or imparting influence through immune modulation via the oral-gut axis. By examining available clinical trial data, we aim to further understand the intricacies involved in this discipline. Furthermore, we consider the challenges facing the research community, including optimal candidate organism/compound selection and colonisation retention, as well as considerations for future research.
Collapse
Affiliation(s)
- Jon J Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK.
| |
Collapse
|
38
|
Lai Y, Huang X, Sun H, Hui Q, Hu S. Research Progress in the Relationship between Intestinal Flora and Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2025; 25:281-290. [PMID: 38956918 DOI: 10.2174/0118715303308965240624054156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Diabetes mellitus is a common chronic metabolic disease characterized by a high incidence and disability rate. Intestinal flora refers to the microbial community that lives in the intestines and plays a crucial role in maintaining intestinal health and the human immune system. In recent years, an increasing body of research has revealed a close relationship between intestinal flora and diabetes. The pathophysiological mechanisms between them have also been constantly uncovered, and the regulation of intestinal flora has shown promising efficacy in the adjuvant treatment of diabetes. This study mainly summarized the characteristics and mechanisms of intestinal flora in patients with diabetes in recent years, as well as the methods of regulating intestinal flora to prevent and treat diabetes, and prospected the future research direction. This will offer a theoretical basis for the clinical adjuvant treatment of diabetes with intestinal flora and the development of new drugs.
Collapse
Affiliation(s)
- Yingji Lai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianfeng Huang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongwei Sun
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Hui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanshan Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
39
|
Lalli MK, Salo TE, Hakola L, Knip M, Virtanen SM, Vatanen T. Associations between dietary fibers and gut microbiome composition in the EDIA longitudinal infant cohort. Am J Clin Nutr 2025; 121:83-99. [PMID: 39551356 PMCID: PMC11747200 DOI: 10.1016/j.ajcnut.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND The infant gut microbiome undergoes rapid changes in the first year of life, supporting normal development and long-term health. Although diet shapes this process, the role of fibers in complementary foods on gut microbiome maturation is poorly understood. OBJECTIVES We explored how the transition from human milk to fibers in complementary foods shapes the taxonomic and functional maturation of the gut microbiome within the first year of life. METHODS We assessed the longitudinal and cross-sectional development of infant gut microbiomes (N = 68 infants) and metabolomes (N = 33 infants) using linear mixed models to uncover their associations to dietary fibers and their food sources. Fiber intakes were assessed with 3-d food records (months 3, 6, 9, and 12) relying on CODEX-compliant fiber fraction values, and questionnaires tracked the overall complementary food introduction. Bacterial species were identified and quantified via MetaPhlAn2 from metagenomic data, and metabolomic profiles were obtained using 4 LC-MS methods. RESULTS We identified 176 complementary food fiber-bacterial species associations. First plant-based fibers associated with microbiota compositions similar to breastfeeding, and further associated with aromatic amino acid-derived metabolites, including 5-hydroxyindoleacetic acid (total dietary fiber - complementary foods (g) - β = 3.50, CI: 2.48, 4.52, P = 6.53 × 10-5). Distinct fibers from different food categories showed unique associations with specific bacterial taxa. Key species, such as Faecalibacterium prausnitznii, associated with oat fibers (g/MJ, β = 2.18, confidence interval: 1.36, 2.84, P = 6.12 × 10-6), reflective of maturing microbial communities. Fiber intake during weaning associated with shifts in metabolite profiles, including immunomodulatory metabolites, with fiber effects observed in a source- and timing-dependent manner, implicated in gradual microbiome diversification. CONCLUSIONS Introducing complementary dietary fibers during the weaning period supports gut microbiome diversification and stabilization. Even minor dietary variations shows significant associations with microbial taxa and functions from the onset of weaning, highlighting the importance of infant dietary recommendations that support the gut microbiome maturation during early life. This trial was registered at clinicaltrials.gov as registration number NCT01735123.
Collapse
Affiliation(s)
- Marianne K Lalli
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tuuli Ei Salo
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Leena Hakola
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; New Children's Hospital, Helsinki University Hospital, Helsinki, Finland; Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Suvi M Virtanen
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland; Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA, United States; Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
40
|
Woortman MA, Barrett ES, O’Connor TG, Gill SR, Scheible K, Brunner J, Sun H, Dominguez-Bello MG. Feeding Expressed Breast Milk Alters the Microbial Network of Breast Milk and Increases Breast Milk Microbiome Diversity over Time. Microorganisms 2024; 13:12. [PMID: 39858780 PMCID: PMC11767962 DOI: 10.3390/microorganisms13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Breastfeeding supplies nutrition, immunity, and hormonal cues to infants. Feeding expressed breast milk may result in de-phased milk production and feeding times, which distort the real-time circadian cues carried by breast milk. We hypothesized that providing expressed breast milk alters the microbiotas of both breast milk and the infant's gut. To test this hypothesis, we analyzed the microbiota of serial breast milk and infant fecal samples obtained from 14 mother-infant dyads who were lactating, half of which were providing expressed breast milk. Infant fecal microbiota showed lower α-diversity than breast milk microbiota. Bacterial amplicon sequence variant sharing occurred between breast milk and infant feces with no feeding group differences. However, the age-dependent gain in breast milk α-diversity was only significant in the expressed breast milk group and not in the direct breastfeeding group, suggesting that decreased contact with the infant's mouth influences the milk microbiota. Trending lower connectivity was also noted with breast milk microbes in the direct breastfeeding group, consistent with regular perturbations of the developing baby's oral microbiota by latching on the breast. The results of this preliminary study urge further research to independently confirm the effects of providing expressed breast milk and their health significance.
Collapse
Affiliation(s)
- Melissa A. Woortman
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA;
| | - Thomas G. O’Connor
- Departments of Psychiatry, Neuroscience, and Obstetrics and Gynecology, University of Rochester, Rochester, NY 14642, USA;
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA;
| | - Kristin Scheible
- Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA;
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY 14642, USA;
| | - Haipeng Sun
- Department of Biochemistry & Microbiology, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Maria G. Dominguez-Bello
- Department of Biochemistry & Microbiology, Rutgers University, New Brunswick, NJ 08901, USA;
- Department of Anthropology, Rutgers University, New Brunswick, NJ 08901, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
41
|
Nikola L, Iva L. Gut microbiota as a modulator of type 1 diabetes: A molecular perspective. Life Sci 2024; 359:123187. [PMID: 39488260 DOI: 10.1016/j.lfs.2024.123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Type 1 diabetes (T1D) is defined as an autoimmune metabolic disorder, characterized by destruction of pancreatic β-cells and high blood sugar levels. If left untreated, T1D results in severe health complications, including cardiovascular and kidney disease, as well as nerve damage, with ultimately grave consequences. Besides the role of genetic and certain environmental factors in T1D development, in the last decade, one new player emerged to affect T1D pathology as well, and that is a gut microbiota. Dysbiosis of gut bacteria can contribute to T1D by gut barrier disruption and the activation of autoimmune response, leading to the destruction of insulin producing cells, causing the development and aggravation of T1D symptoms. The relationship between gut microbiota and diabetes is complex and varies between individuals and additional research is needed to fully understand the effects of gut microbiome alternations in T1D pathogenesis. Therefore, the goal of this review is to understand the current knowledge in underlying molecular mechanism of gut microbiota effects, which leads to the new approaches for further studies in the prevention and treatment of T1D.
Collapse
Affiliation(s)
- Lukic Nikola
- Laboratory for Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Serbia
| | - Lukic Iva
- Laboratory for Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Serbia.
| |
Collapse
|
42
|
Prapa I, Yanni AE, Kompoura V, Mitropoulou G, Panas P, Kostomitsopoulos N, Kourkoutas Y. Functional Modulation of Gut Microbiota and Blood Parameters in Diabetic Rats Following Dietary Intervention with Free or Immobilized Pediococcus acidilactici SK Cells on Pistachio Nuts. Nutrients 2024; 16:4221. [PMID: 39683613 DOI: 10.3390/nu16234221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES The gut microbiota is linked to the pathogenesis of type 1 diabetes mellitus (T1DM), while supplementation with probiotics may result in positive alterations in the composition of the gut microbiome. This research aimed to map the changes in the gut microbiome and blood markers of streptozotocin-induced diabetic rats after a dietary intervention with free or immobilized cells of the presumptive probiotic Pediococcus acidilactici SK on pistachio nuts. METHODS Twenty-four male Wistar rats were studied and divided into four groups (healthy or diabetic) which received the free or the immobilized P. acidilactici SK cells on pistachio nuts for 4 weeks. Blood, fecal, and intestinal tissue samples were examined. RESULTS The diabetic rats exhibited an elevated concentration of HDL-c, while the inflammatory IL-1β levels were significantly lower in the diabetic animals that received the immobilized cells compared to the group that received the free cells. The dietary intervention with immobilized cells led to decreased counts of fecal staphylococci and enterococci in the diabetic animals, while the diet with both free and immobilized P. acidilactici SK cells rendered levels of these populations in normal values in the feces and intestinal tissue of the diabetic animals. Noticeably, the Lactobacillus and Bifidobacterium genera were elevated after the supplementation with immobilized P. acidilactici SK cells on pistachio nuts. CONCLUSIONS Dietary supplementation with P. acidilactici SK cells (in free or in immobilized form) beneficially affected the gut microbiota/microbiome of streptozotocin-induced diabetic rats, leading to the alleviation of dysbiosis and inflammation and control over their lipid levels.
Collapse
Affiliation(s)
- Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Amalia E Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece
| | - Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
43
|
Granato A, Renwick S, Yau C, Kong T, Daigneault MC, Knip M, Allen-Vercoe E, Danska JS. Analysis of early childhood intestinal microbial dynamics in a continuous-flow bioreactor. MICROBIOME 2024; 12:255. [PMID: 39639333 PMCID: PMC11619690 DOI: 10.1186/s40168-024-01976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The human gut microbiota is inoculated at birth and undergoes a process of assembly and diversification during the first few years of life. Studies in mice and humans have revealed associations between the early-life gut microbiome and future susceptibility to immune and metabolic diseases. To resolve microbe and host contributing factors to early-life development and to disease states requires experimental platforms that support reproducible, longitudinal, and high-content analyses. RESULTS Here, we deployed a continuous single-stage chemostat culture model of the human distal gut to study gut microbiota from 18- to 24-month-old children integrating both culture-dependent and -independent methods. Chemostat cultures recapitulated multiple aspects of the fecal microbial ecosystem enabling investigation of relationships between bacterial strains and metabolic function, as well as a resource from which we isolated and curated a diverse library of early life bacterial strains. CONCLUSIONS We report the reproducible, longitudinal dynamics of early-life bacterial communities cultured in an advanced model of the human gut providing an experimental approach and a characterized bacterial resource to support future investigations of the human gut microbiota in early childhood.
Collapse
Affiliation(s)
- Alessandra Granato
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Simone Renwick
- Dept. of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Infant Center of Research Excellence, The Larsson-Rosenquist Foundation Mother-Milk, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Christopher Yau
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Dept. of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tiffany Kong
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Dept. of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Emma Allen-Vercoe
- Dept. of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jayne S Danska
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Dept. of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Dept. of Medicine Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
44
|
Manokasemsan W, Jariyasopit N, Poungsombat P, Kaewnarin K, Wanichthanarak K, Kurilung A, Duangkumpha K, Limjiasahapong S, Pomyen Y, Chaiteerakij R, Tansawat R, Srisawat C, Sirivatanauksorn Y, Sirivatanauksorn V, Khoomrung S. Quantifying fecal and plasma short-chain fatty acids in healthy Thai individuals. Comput Struct Biotechnol J 2024; 23:2163-2172. [PMID: 38827233 PMCID: PMC11141283 DOI: 10.1016/j.csbj.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are involved in important physiological processes such as gut health and immune response, and changes in SCFA levels can be indicative of disease. Despite the importance of SCFAs in human health and disease, reference values for fecal and plasma SCFA concentrations in healthy individuals are scarce. To address this gap in current knowledge, we developed a simple and reliable derivatization-free GC-TOFMS method for quantifying fecal and plasma SCFAs in healthy individuals. We targeted six linear- and seven branched-SCFAs, obtaining method recoveries of 73-88% and 83-134% in fecal and plasma matrices, respectively. The developed methods are simpler, faster, and more sensitive than previously published methods and are well suited for large-scale studies. Analysis of samples from 157 medically confirmed healthy individuals showed that the total SCFAs in the feces and plasma were 34.1 ± 15.3 µmol/g and 60.0 ± 45.9 µM, respectively. In fecal samples, acetic acid (Ace), propionic acid (Pro), and butanoic acid (But) were all significant, collectively accounting for 89% of the total SCFAs, whereas the only major SCFA in plasma samples was Ace, constituting of 93% of the total plasma SCFAs. There were no statistically significant differences in the total fecal and plasma SCFA concentrations between sexes or among age groups. The data revealed, however, a positive correlation for several nutrients, such as carbohydrate, fat, iron from vegetables, and water, to most of the targeted SCFAs. This is the first large-scale study to report SCFA reference intervals in the plasma and feces of healthy individuals, and thereby delivers valuable data for microbiome, metabolomics, and biomarker research.
Collapse
Affiliation(s)
- Weerawan Manokasemsan
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Narumol Jariyasopit
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Patcha Poungsombat
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Khwanta Kaewnarin
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- SingHealth Duke-NUS Institute of Biodiversity Medicine, National Cancer Centre Singapore, Singapore
| | - Kwanjeera Wanichthanarak
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Alongkorn Kurilung
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kassaporn Duangkumpha
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Suphitcha Limjiasahapong
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Yotsawat Pomyen
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Roongruedee Chaiteerakij
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine Chulalongkorn University, Chulalongkorn University, Bangkok, Thailand
| | - Rossarin Tansawat
- Thailand Metabolomics Society, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Metabolomics for Life Sciences Research Unit, Chulalongkorn University, Chulalongkorn University, Bangkok, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vorapan Sirivatanauksorn
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
| | - Sakda Khoomrung
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Thailand Metabolomics Society, Bangkok, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
Meyhöfer S, Hammersen J, Schmid S, Khodaverdi S, Dafsari RS, Otfried-Schwab K, Papsch M, Pozza SBD, Meyhöfer SM, Holl RW, Prinz N. No Association Between Phenylketonuria or Hyperphenylalaninemia and Type 1 Diabetes: Insights From the German DPV Registry. Diabetes Care 2024; 47:e106-e108. [PMID: 39331038 DOI: 10.2337/dc24-1609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Svenja Meyhöfer
- Department of Internal Medicine 1, Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Johanna Hammersen
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Schmid
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute of Epidemiology and Medical Biometry, CAQM, University of Ulm, Ulm, Germany
| | - Semik Khodaverdi
- Clinic for Children and Adolescent Medicine, Clinical Centre Hanau, Hanau, Germany
| | - Roschan Salimi Dafsari
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Children's Hospital Düsseldorf, Düsseldorf, Germany
| | - Karl Otfried-Schwab
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Papsch
- Department of Paediatrics, Marienhospital, Gelsenkirchen, Germany
| | - Susanne Bechtold-Dalla Pozza
- Department of Pediatric Endocrinology, Dr. von Hauner Children's Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Sebastian M Meyhöfer
- Department of Internal Medicine 1, Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
- Clinical, Medical & Regulatory, Novo Nordisk Pharma GmbH, Mainz, Germany
| | - Reinhard W Holl
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute of Epidemiology and Medical Biometry, CAQM, University of Ulm, Ulm, Germany
| | - Nicole Prinz
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute of Epidemiology and Medical Biometry, CAQM, University of Ulm, Ulm, Germany
| |
Collapse
|
46
|
Mick GJ, McCormick KL. The role of GABA in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1453396. [PMID: 39619323 PMCID: PMC11604429 DOI: 10.3389/fendo.2024.1453396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Gamma aminobutyric acid (GABA) is synthesized from glutamate by glutamic decarboxylase (GAD). The entero-pancreatic biology of GABA, which is produced by pancreatic islets, GAD-expressing microbiota, enteric immune cells, or ingested through diet, supports an essential physiologic role of GABA in the health and disease. Outside the central nervous system (CNS), GABA is uniquely concentrated in pancreatic β-cells. They express GAD65, which is a type 1 diabetes (T1D) autoantigen. Glutamate constitutes 10% of the amino acids in dietary protein and is preeminently concentrated in human milk. GABA is enriched in many foods, such as tomato and fermented cheese, and is an over-the-counter supplement. Selected microbiota in the midgut have the enzymatic capacity to produce GABA. Intestinal microbiota interact with gut-associated lymphoid tissue to maintain host defenses and immune tolerance, which are implicated in autoimmune disease. Although GABA is a widely known inhibitory neurotransmitter, oral GABA does not cross the blood brain barrier. Three diabetes-related therapeutic actions are ascribed to GABA, namely, increasing pancreatic β-cell content, attenuating excess glucagon and tamping down T-cell immune destruction. These salutary actions have been observed in numerous rodent diabetes models that usually employed high or near-continuous GABA doses. Clinical studies, to date, have identified positive effects of oral GABA on peripheral blood mononuclear cell cytokine release and plasma glucagon. Going forward, it is reassuring that oral GABA therapy has been well-tolerated and devoid of serious adverse effects.
Collapse
Affiliation(s)
- Gail J. Mick
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
47
|
Zhang J, Wu L, Zhang Z, Li D, Han R, Ye L, Zhang Y, Hong J, Gu W. Gut microbiota and metabolic profiles in adults with unclassified diabetes: a cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1440984. [PMID: 39588334 PMCID: PMC11586653 DOI: 10.3389/fendo.2024.1440984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Aims Our study, employing a multi-omics approach, aimed to delineate the distinct gut microbiota and metabolic characteristics in individuals under 30 with unclassified diabetes, thus shedding light on the underlying pathophysiological mechanisms. Methods This age- and sex-matched case-control study involved 18 patients with unclassified diabetes, 18 patients with classic type 1 diabetes, 13 patients with type 2 diabetes, and 18 healthy individuals. Metagenomics facilitated the profiling of the gut microbiota, while untargeted liquid chromatography-mass spectrometry was used to quantify the serum lipids and metabolites. Results Our findings revealed a unique gut microbiota composition in unclassified diabetes patients, marked by a depletion of Butyrivibrio proteoclasticus and Clostridium and an increase in Ruminococcus torques and Lachnospiraceae bacterium 8_1_57FAA. Comparative analysis identified the combined marker panel of five bacterial species, seven serum biomarkers, and three clinical parameters could differentiate patients with UDM from HCs with an AUC of 0.94 (95% CI 0.85-1). Notably, the gut microbiota structure of patients with unclassified diabetes resembled that of type 2 diabetes patients, especially regarding disrupted lipid and branched-chain amino acid metabolism. Conclusions Despite sharing certain metabolic features with type 2 diabetes, unclassified diabetes presents unique features. The distinct microbiota and metabolites in unclassified diabetes patients suggest a significant role in modulating glucose, lipid, and amino acid metabolism, potentially influencing disease progression. Further longitudinal studies are essential to explore therapeutic strategies targeting the gut microbiota and metabolites to modify the disease trajectory.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Lei Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Zhongyun Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Rulai Han
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Lei Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| |
Collapse
|
48
|
Zhou B, Wang C, Putzel G, Hu J, Liu M, Wu F, Chen Y, Pironti A, Li H. An integrated strain-level analytic pipeline utilizing longitudinal metagenomic data. Microbiol Spectr 2024; 12:e0143124. [PMID: 39311770 PMCID: PMC11542597 DOI: 10.1128/spectrum.01431-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/28/2024] [Indexed: 11/08/2024] Open
Abstract
With the development of sequencing technology and analytic tools, studying within-species variations enhances the understanding of microbial biological processes. Nevertheless, most existing methods designed for strain-level analysis lack the capability to concurrently assess both strain proportions and genome-wide single nucleotide variants (SNVs) across longitudinal metagenomic samples. In this study, we introduce LongStrain, an integrated pipeline for the analysis of large-scale metagenomic data from individuals with longitudinal or repeated samples. In LongStrain, we first utilize two efficient tools, Kraken2 and Bowtie2, for the taxonomic classification and alignment of sequencing reads, respectively. Subsequently, we propose to jointly model strain proportions and shared haplotypes across samples within individuals. This approach specifically targets tracking a primary strain and a secondary strain for each subject, providing their respective proportions and SNVs as output. With extensive simulation studies of a microbial community and single species, our results demonstrate that LongStrain is superior to two genotyping methods and two deconvolution methods across a majority of scenarios. Furthermore, we illustrate the potential applications of LongStrain in the real data analysis of The Environmental Determinants of Diabetes in the Young study and a gastric intestinal metaplasia microbiome study. In summary, the proposed analytic pipeline demonstrates marked statistical efficiency over the same type of methods and has great potential in understanding the genomic variants and dynamic changes at strain level. LongStrain and its tutorial are freely available online at https://github.com/BoyanZhou/LongStrain. IMPORTANCE The advancement in DNA-sequencing technology has enabled the high-resolution identification of microorganisms in microbial communities. Since different microbial strains within species may contain extreme phenotypic variability (e.g., nutrition metabolism, antibiotic resistance, and pathogen virulence), investigating within-species variations holds great scientific promise in understanding the underlying mechanism of microbial biological processes. To fully utilize the shared genomic variants across longitudinal metagenomics samples collected in microbiome studies, we develop an integrated analytic pipeline (LongStrain) for longitudinal metagenomics data. It concurrently leverages the information on proportions of mapped reads for individual strains and genome-wide SNVs to enhance the efficiency and accuracy of strain identification. Our method helps to understand strains' dynamic changes and their association with genome-wide variants. Given the fast-growing longitudinal studies of microbial communities, LongStrain which streamlines analyses of large-scale raw sequencing data should be of great value in microbiome research communities.
Collapse
Affiliation(s)
- Boyan Zhou
- Division of
Biostatistics, Department of Population Health, New York University
School of Medicine, New
York, New York, USA
| | - Chan Wang
- Division of
Biostatistics, Department of Population Health, New York University
School of Medicine, New
York, New York, USA
| | - Gregory Putzel
- Department of
Microbiology, New York University School of
Medicine, New York, New
York, USA
| | - Jiyuan Hu
- Division of
Biostatistics, Department of Population Health, New York University
School of Medicine, New
York, New York, USA
| | - Menghan Liu
- Department of
Biological Sciences, Columbia University in the City of New
York, New York, New
York, USA
| | - Fen Wu
- Division of
Epidemiology, Department of Population Health, New York University
School of Medicine, New
York, New York, USA
| | - Yu Chen
- Division of
Epidemiology, Department of Population Health, New York University
School of Medicine, New
York, New York, USA
| | - Alejandro Pironti
- Department of
Microbiology, New York University School of
Medicine, New York, New
York, USA
| | - Huilin Li
- Division of
Biostatistics, Department of Population Health, New York University
School of Medicine, New
York, New York, USA
| |
Collapse
|
49
|
Cadario F. Insights in Nutrition to Optimize Type 1 Diabetes Therapy. Nutrients 2024; 16:3639. [PMID: 39519472 PMCID: PMC11547730 DOI: 10.3390/nu16213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Nutrition is an essential part of therapy for type 1 diabetes and is constantly evolving, offering growing opportunities to prevent this disease, slow down its evolution, and mitigate it. An attempt was made to bring together the current state of knowledge. In the path from the preclinical phase of the disease to its clinical onset, there is a phase known as the "honeymoon period" or partial remission, where different possible dietary options for combatting this disease have been presented. The most commonly used dietary models were compared, and the most frequent co-existing pathologies, such as overweight, non-alcoholic fatty liver disease, dyslipidemia, celiac disease, and metabolic instability, were addressed from their nutritional and dietary perspectives to provide clinicians with an updated framework of knowledge and support researchers in further investigations into the topic. Finally, a glimpse into the possible interplay between nutrition and the gut microbiome, food security, and ultra-processed food is provided. It is hoped that clinicians treating people with type 1 diabetes will be provided with further opportunities for the daily management of their patients through personalized nutrition.
Collapse
Affiliation(s)
- Francesco Cadario
- Division of Pediatrics, University del Piemonte Orientale, 28100 Novara, Italy;
- Diabetes Research Institute Federation, Miami, FL 33163, USA
| |
Collapse
|
50
|
Bocchio F, Mancabelli L, Milani C, Lugli GA, Tarracchini C, Longhi G, Conto FD, Turroni F, Ventura M. Compendium of Bifidobacterium-based probiotics: characteristics and therapeutic impact on human diseases. MICROBIOME RESEARCH REPORTS 2024; 4:2. [PMID: 40207278 PMCID: PMC11977362 DOI: 10.20517/mrr.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 04/11/2025]
Abstract
The human microbiota, a complex community of microorganisms residing in and on the human body, plays a crucial role in maintaining health and preventing disease. Bifidobacterium species have shown remarkable therapeutic potential across a range of health conditions, thus being considered optimal probiotic bacteria. This review provides insights into the concept of probiotics and explores the impact of bifidobacteria on human health, focusing on the gastrointestinal, respiratory, skeletal, muscular, and nervous systems. It also integrates information on the available genetic bases underlying the beneficial effects of each bifidobacterial probiotic species on different aspects of human physiology. Notably, Bifidobacterium-based probiotics have proven effective in managing gastrointestinal conditions such as constipation, antibiotic-associated diarrhea, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and Helicobacter pylori infections. These benefits are achieved by modulating the intestinal microbiota, boosting immune responses, and strengthening the gut barrier. Moreover, Bifidobacterium species have been reported to reduce respiratory infections and asthma severity. Additionally, these probiotic bacteria offer benefits for skeletal and muscular health, as evidenced by Bifidobacterium adolescentis and Bifidobacterium breve, which have shown anti-inflammatory effects and symptom relief in arthritis models, suggesting potential in treating conditions like rheumatoid arthritis. Furthermore, probiotic therapies based on bifidobacterial species have shown promising effects in alleviating anxiety and depression, reducing stress, and enhancing cognitive function. Overall, this review integrates the extensive scientific literature now available that supports the health-promoting applications of probiotic Bifidobacterium species and underscores the need for further research to confirm their clinical efficacy across different body systems.
Collapse
Affiliation(s)
- Fabiana Bocchio
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Christian Milani
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Gabriele Andrea Lugli
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| |
Collapse
|