1
|
Chen J, Li Y, Quan X, Chen J, Han Y, Yang L, Zhou M, Mok GSP, Wang R, Zhao Y. Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery. Neural Regen Res 2025; 20:2181-2198. [PMID: 39101653 PMCID: PMC11759020 DOI: 10.4103/nrr.nrr-d-24-00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Li Yang
- Department of Pharmacy, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Manfei Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Greta Seng Peng Mok
- Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| |
Collapse
|
2
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
Gao Y, Chen Q, Wu Z, Yuan L. Regulation of pancreatic β cells by exosomes from different sources. Diabetes Res Clin Pract 2025; 224:112222. [PMID: 40324722 DOI: 10.1016/j.diabres.2025.112222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Diabetes is a chronic metabolic disorder with rising global prevalence, particularly in developed and high-income regions. Central to its pathogenesis is the dysfunction of pancreatic β-cells, alongside impaired glucose and lipid metabolism in peripheral insulin-responsive tissues. Exosomes are nano-sized extracellular vesicles essential for intercellular communication and have emerged as pivotal regulators of metabolic homeostasis. Secreted by virtually all cell types, exosomes encapsulate bioactive cargo that reflects their cellular origin and physiological state, thereby exerting diverse functional effects. Recent evidence highlights the role of exosomes derived from the liver, gut, adipose tissue, skeletal muscle, and mesenchymal stem cells in modulating β-cell proliferation, insulin secretion, and survival. In peripheral tissues exosomes also influence insulin sensitivity by regulating glucose and lipid metabolism, ultimately shaping β-cell responses under hyperglycemic conditions. A more comprehensive understanding of exosome-mediated crosstalk between metabolic organs and pancreatic β-cells could pave the way for the development of exosome-based diagnostic tools and therapeutic strategies aimed at improving early detection, prevention, and treatment of the diabetes.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuoying Wu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Zhang Y, He K, Zhang C, Dang H, Hei J, Zhang Y, Chen P, Zhang Z, Yang Y, Wang Z, Yang X, Zhang L, Yu Y. Atlas of temporal molecular pathological alterations after traumatic brain injury based on RNA-Seq. Exp Neurol 2025; 390:115270. [PMID: 40268159 DOI: 10.1016/j.expneurol.2025.115270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/01/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Traumatic brain injury (TBI) involves diverse molecular pathological alterations and biological processes in a temporally dynamic manner. However, current knowledge on the various processes during the acute phase of TBI is still rather limited. RNA-seq analysis was performed on brain tissues from C57/BL6 mice at 10 time points(0 h, 1 h, 2 h, 3 h, 4 h, 6 h, 12 h, 1d, 3d, and 7d) following TBI modeling. Subsequently, a bioinformatics approach, Weighted Gene Co-expression Network Analysis (WGCNA), was employed to identify characteristic modules, which were then validated using the Mfuzz method. Pathway enrichment analysis was conducted on WGCNA module genes, and hub genes were screened using the STRING database. After exploring the various potential pathways and expression patterns (neuroinflammation, cognition, gliosis and myelin regeneration etc.), we focus on pyroptosis, a inflammatory cell death influencing immune response, for in-depth analysis. RT-qPCR, Western blot(WB) and Immunofluorescence(IF) were used to validate the hub genes and key pyroptosis-related genes(Casp1, Casp11, GSDMD). Additionally, single-cell RNA sequencing data at 7 day post injury(dpi) was also used to validate the expression of the identified hub genes. Our approach to intensive transcriptomic analysis comprehensively reveals the temporal molecular pathological alterations during TBI progression. Pyroptosis may be a key mechanism in the neuroinflammatory process. Intervention strategies targeting specific molecular pathways may offer novel approach for the treatment of TBI.
Collapse
Affiliation(s)
- Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Kun He
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Chuanpeng Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Hanhan Dang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Junru Hei
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Yunsheng Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Pengyu Chen
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Ze Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Yanbo Yang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Zixi Wang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Xu Yang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Li Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China.
| |
Collapse
|
5
|
Mathias K, Machado RS, Petronilho T, Sulzbacher VAR, de Rezende VL, Prophiro JS, Petronilho F. Glial and blood-brain barrier cell-derived exosomes: Implications in stroke. Microvasc Res 2025; 160:104812. [PMID: 40246225 DOI: 10.1016/j.mvr.2025.104812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Exosomes are small extracellular vesicles released by cells that play a pivotal role in intercellular communication, significantly influencing both the pathophysiology and potential treatment of ischemic stroke (IS). This review examines exosomes derived from key brain cell types, including microglia, astrocytes, oligodendrocytes, oligodendrocyte precursor cells (NG2+ cells), endothelial cells, and pericytes, emphasizing their molecular cargo and functional impact in IS. Microglia-derived exosomes regulate neuroinflammation, with M2-type exosomes exhibiting neuroprotective effects, while astrocyte-derived exosomes modulate pathways involved in pyroptosis and autophagy, influencing neuronal survival. Oligodendrocyte and NG2+ cell-derived exosomes contribute to remyelination, axonal growth, and inflammatory modulation. Endothelial and pericyte-derived exosomes play critical roles in BBB integrity, neurovascular remodeling, and drug transport across the BBB. This synthesis highlights recent advances in understanding how exosome-mediated communication impacts IS recovery and explores their translational potential for biomarker development and targeted therapies. By manipulating exosomal composition and delivery mechanisms, novel therapeutic strategies may emerge, offering hope for improved IS treatment outcomes.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Extremo Sul Catarinense, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Taise Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Victor Augusto Rodrigues Sulzbacher
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Victoria Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Extremo Sul Catarinense, Criciuma, SC, Brazil.
| |
Collapse
|
6
|
Costa-Ferro ZSM, Cunha RS, Rossi EA, Loiola EC, Cipriano BP, Figueiredo JCQ, da Silva EA, de Lima AVR, de Jesus Ribeiro AM, Moitinho Junior VS, Adanho CSA, Nonaka CKV, Silva AMDS, da Silva KN, Rocha GV, De Felice FG, do Prado-Lima PAS, Souza BSDF. Extracellular vesicles derived from mesenchymal stem cells alleviate depressive-like behavior in a rat model of chronic stress. Life Sci 2025; 366-367:123479. [PMID: 39983828 DOI: 10.1016/j.lfs.2025.123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Depression is a prevalent chronic psychiatric disorder with a growing impact on global health. Current treatments often fail to achieve full remission, highlighting the need for alternative therapeutic strategies. Mesenchymal stem cells (MSCs) have attracted significant interest for their therapeutic potential in neuropsychiatric disorders, primarily due to their capacity to target neuroinflammation. This study aimed to investigate if extracellular vesicles derived from human umbilical MSCs (hucMSCs) promote behavioral beneficial actions in a rat model of chronic unpredictable mild stress (CUMS). We show that a single dose of hucMSCs or their derived EVs (hucMSC-EVs) via the tail vein alleviated depressive-like behavior in rats, reduced markers of neuroinflammation, reduced pro-inflammatory cytokines (IL-1β and TNF-α), and increased the number and dendritic complexity of DCX-positive cells in the dentate gyrus. Proteomic analysis of EVs revealed the presence of proteins involved in modulation of inflammatory processes and cell activation. Our study demonstrates EVs derived from hucMSCs can effectively mitigate depressive symptoms by modulating neuroinflammatory pathways and enhancing neurogenesis. These findings support further exploration of MSC-derived EVs as a novel therapeutic option for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zaquer Suzana Munhoz Costa-Ferro
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Rachel Santana Cunha
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Erik Aranha Rossi
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil; Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Erick Correia Loiola
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Barbara Porto Cipriano
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Júlio César Queiroz Figueiredo
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Elisama Araújo da Silva
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Adne Vitória Rocha de Lima
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Adlas Michel de Jesus Ribeiro
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | | | - Corynne Stephanie Ahouefa Adanho
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | | | - Kátia Nunes da Silva
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Gisele Vieira Rocha
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Fernanda Guarino De Felice
- D'OR Institute for Research and Education, Rio de Janeiro, Brazil; Centre for Neuroscience Studies, Departments of Biomedical and Molecular Sciences & Psychiatry, Queen's University, Kingston, ON, Canada; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil; Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil; Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Wang W, Yin J. Identification of plasma exosomal microRNAs and bioinformatics analysis of the microRNA-messenger RNA regulatory pathways in mice with status epilepticus. Cytotechnology 2025; 77:65. [PMID: 39991702 PMCID: PMC11842689 DOI: 10.1007/s10616-025-00708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/07/2025] [Indexed: 02/25/2025] Open
Abstract
Status epilepticus (SE) is a serious neurological emergency that brings significant risks to health and life. microRNAs (miRNAs) and their targets show involvement in the pathophysiology of SE. We identified plasma exosomal miRNAs and analyzed the miRNA-messenger RNA (mRNA) regulatory pathways in SE mice. Mice were subjected to SE induction by kainic acid injection, and plasma exosome (Exo) extraction. Exo morphology, particle size distribution, and Exo-positive marker proteins were evaluated. Differentially-expressed miRNAs in Exos of SE mice were analyzed and verified by sequencing and RT-qPCR. Functional enrichment analysis on target genes and protein-protein interaction (PPI) network were performed. Hippocampal neuron cells HT-22 were cultured in vitro, and the targeted binding association between Exos-derived miR-205-5p and target genes was invalidated. There were 64 differentially-expressed miRNAs in plasma Exos of SE mice from healthy mice (32 up-regulated, 32 down-regulated). Among the top 10 differentially-expressed miRNAs, 5 were up-regulated, and 5 were down-regulated. The PPI network of collective target genes was developed, including 11 edges and 9 nodes. The genes related to nerve injury were phosphatase and tensin homolog (Pten), glycogen synthase kinase 3 beta (Gsk3b), and leucine-rich repeat kinase 2 (Lrrk2). SE mouse plasma Exos targeted Gsk3b, Lrrk2 and Pten in neuronal cells and reduced cell viability. Plasma exosomal miRNAs of SE mice were differentially expressed, and their target genes participated in the regulation of multiple pathways, mainly related to nervous system development. miR-205-5p could target Gsk3b, Lrrk2 and Pten, and suppress neuronal viability. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00708-8.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023 Liaoning People’s Republic of China
| | - Jian Yin
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023 Liaoning People’s Republic of China
| |
Collapse
|
8
|
Tajabadi Z, Dadkhah PA, Gholami Chahkand MS, Esmaeilpour Moallem F, Karimi MA, Amini-Salehi E, Karimi M. Exploring the role of exosomes in diabetic neuropathy: From molecular mechanisms to therapeutic potential. Biomed Pharmacother 2025; 185:117959. [PMID: 40056828 DOI: 10.1016/j.biopha.2025.117959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025] Open
Abstract
Diabetic neuropathy (DN) is a debilitating complication of diabetes mellitus (DM), characterized by progressive neuronal damage, sensory dysfunction, and impaired quality of life. Recent advances in exosome research have elucidated their crucial role in DN's pathogenesis, diagnosis, and treatment. Exosomes-nanoscale extracellular vesicles-function as vehicles for molecular cargo, including microRNAs (miRNAs), proteins, and lipids, which mediate intercellular communication and regulate key biological processes. Pathologically, hyperglycemia and hyperlipidemia induce the release of exosomes enriched with pathogenic miRNAs, such as miR-130a and miR-20b-3p, which disrupt neuronal function, axonal regeneration, and inflammatory pathways. Conversely, diagnostic studies highlight the utility of exosomal biomarkers like miR-7 and miR-221 in the early detection and monitoring of DN. Therapeutically, Schwann cell-derived and mesenchymal stromal cell (MSC)-derived exosomes demonstrate neuroprotective and reparative effects by enhancing mitochondrial function, modulating inflammation, and promoting axonal repair. Emerging approaches, including engineered exosomes and miRNA-enriched vesicles, further expand their therapeutic potential. Despite these advances, challenges such as standardization, large-scale production, and clinical validation remain in translating these findings into clinical practice. This review underscores the multifaceted roles of exosomes in DN and highlights their potential as innovative tools for precision diagnostics and targeted therapies, paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Zohreh Tajabadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
| |
Collapse
|
9
|
Li J, Wang Z, Wei Y, Li W, He M, Kang J, Xu J, Liu D. Advances in Tracing Techniques: Mapping the Trajectory of Mesenchymal Stem-Cell-Derived Extracellular Vesicles. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:137-168. [PMID: 40151822 PMCID: PMC11938168 DOI: 10.1021/cbmi.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 03/29/2025]
Abstract
Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) are nanoscale lipid bilayer vesicles secreted by mesenchymal stem cells. They inherit the parent cell's attributes, facilitating tissue repair and regeneration, promoting angiogenesis, and modulating the immune response, while offering advantages like reduced immunogenicity, straightforward administration, and enhanced stability for long-term storage. These characteristics elevate MSC-EVs as highly promising in cell-free therapy with notable clinical potential. It is critical to delve into their pharmacokinetics and thoroughly elucidate their intracellular and in vivo trajectories. A detailed summary and evaluation of existing tracing strategies are needed to establish standardized protocols. Here, we have summarized and anticipated the research progress of MSC-EVs in various biomedical imaging techniques, including fluorescence imaging, bioluminescence imaging, nuclear imaging (PET, SPECT), tomographic imaging (CT, MRI), and photoacoustic imaging. The challenges and prospects of MSC-EV tracing strategies, with particular emphasis on clinical translation, have been analyzed, with promising solutions proposed.
Collapse
Affiliation(s)
- Jingqi Li
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaoyu Wang
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongchun Wei
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenshuai Li
- State
Key Laboratory for Crop Stress Resistance and High-Efficiency Production,
Shaanxi Key Laboratory of Agricultural and Environmental Microbiology,
College of Life Sciences, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Mingzhu He
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingjing Kang
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia Xu
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- State
Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory
of Molecular Recognition and Biosensing, Frontiers Science Centers
for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Hermann DM, Wang C, Mohamud Yusuf A, Herz J, Doeppner TR, Giebel B. Extracellular vesicles lay the ground for neuronal plasticity by restoring mitochondrial function, cell metabolism and immune balance. J Cereb Blood Flow Metab 2025:271678X251325039. [PMID: 40072028 PMCID: PMC11904928 DOI: 10.1177/0271678x251325039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/15/2025] [Accepted: 02/14/2025] [Indexed: 03/15/2025]
Abstract
Extracellular vesicles (EVs) convey complex signals between cells that can be used to promote neuronal plasticity and neurological recovery in brain disease models. These EV signals are multimodal and context-dependent, making them unique therapeutic principles. This review analyzes how EVs released from various cell sources control neuronal metabolic function, neuronal survival and plasticity. Preferential sites of EV communication in the brain are interfaces between pre- and postsynaptic neurons at synapses, between astrocytes and neurons at plasma membranes or tripartite synapses, between oligodendrocytes and neurons at axons, between microglial cells/macrophages and neurons, and between cerebral microvascular cells and neurons. At each of these interfaces, EVs support mitochondrial function and cell metabolism under physiological conditions and orchestrate neuronal survival and plasticity in response to brain injury. In the injured brain, the promotion of neuronal survival and plasticity by EVs is tightly linked with EV actions on mitochondrial function, cell metabolism, oxidative stress and immune responses. Via the stabilization of cell metabolism and immune balance, neuronal plasticity responses are activated and functional neurological recovery is induced. As such, EV lay the ground for neuronal plasticity.
Collapse
Affiliation(s)
- Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Chen Wang
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thorsten R Doeppner
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Department of Neurology, University Hospital Gießen and Marburg, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
11
|
Qin Q, Fan L, Zeng X, Zheng D, Wang H, Li M, Jiang Y, Wang H, Liu H, Liang S, Wu L, Liang S. Mesenchymal stem cell-derived extracellular vesicles alleviate autism by regulating microglial glucose metabolism reprogramming and neuroinflammation through PD-1/PD-L1 interaction. J Nanobiotechnology 2025; 23:201. [PMID: 40069859 PMCID: PMC11895333 DOI: 10.1186/s12951-025-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Neuroinflammation triggered by microglia activation is hallmark of autism spectrum disorder (ASD), and this process includes crucial metabolic reprogramming from oxidative phosphorylation to glycolysis, which may cause neuron loss and functional impairment. The inhibitory immune checkpoint programmed cell death protein 1 (PD-1) on immune cells is an important target for tumor immunotherapy. However, the immunomodulatory effects of PD-1 in ASD remains to be elusive. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) exhibit immunomodulatory capabilities in a range of neurological diseases. Our findings indicated the expression of PD-L1 on MSC-EVs, potentially facilitating signaling to PD-1-expressing microglia. Here, we showed how MSC-EVs activated of PD-L1/PD-1 axis and ameliorated glycolysis, neuroinflammation and autism-like behaviors. After first detecting elevated glycolysis and neuroinflammation in prefrontal cortex (PFC) tissue from the maternal immune activation (MIA) mice, we also demonstrated that PD-1 expression level was upregulated in microglia. Following given MSC-EVs carried PD-L1 into adult MIA offspring mice via intranasal administration, which bound with PD-1 on microglia and then the autism-like behaviors were alleviated as well. Further experiments verified that MSC-EVs could decreased the level of glycolysis and neuroinflammation by PD-1/ERK/HIF-1α pathway in the primary microglia in PFC of MIA offspring mice. Pharmacological blockade and genetic inhibition of PD-1 could weaken the effect of MSC-EVs and aggravate microglial dysfunction, glycolysis and autism-like behaviors in MIA offspring mice. Futhermore, PD-L1 deficient weakened the effect of MSC-EVs on neuroinflammation, glycolysis and autism-like behaviors in MIA offspring mice. Our research indicated the significant immunomodulatory capabilities of MSC-EVs, which play an important role in reprogramming microglial glucose metabolism and suppressing neuroinflammation in ASD. By activating the PD-L1/PD-1 axis and inhibiting the downstream ERK/HIF-1α pathway, MSC-EVs were found to alleviate autism-like behaviors, which revealing a novel pathological mechanism and offering promising therapeutic insights into ASD.
Collapse
Affiliation(s)
- Qian Qin
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Linlin Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xin Zeng
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Danyang Zheng
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Han Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Mengyue Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Jiang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Hui Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Hao Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Shengjun Liang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| | - Shuang Liang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
12
|
Yang HB, Lu DC, Shu M, Li J, Ma Z. The roles and therapeutic potential of exosomal non-coding RNAs in microglia-mediated intercellular communication. Int Immunopharmacol 2025; 148:114049. [PMID: 39823800 DOI: 10.1016/j.intimp.2025.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Exosomes, which are small extracellular vesicles (sEVs), serve as versatile regulators of intercellular communication in the progression of various diseases, including neurological disorders. Among the diverse array of cargo they carry, non-coding RNAs (ncRNAs) play key regulatory roles in various pathophysiological processes. Exosomal ncRNAs derived from distinct cells modulate their reciprocal crosstalk locally or remotely, thereby mediating neurological diseases. Nevertheless, the emerging role of exosomal ncRNAsin microglia-mediated phenotypes remains largely unexplored. This review aims to summarise the biological functions of exosomal ncRNAs and the molecular mechanisms that underlie their impact on microglia-mediated intercellular communication, modulating neuroinflammation and synaptic functions within the landscape of neurological disorders. Furthermore, this review comprehensively described the potential applications of exosomal ncRNAs as diagnostic and prognostic biomarkers, as well as innovative therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Hu-Bo Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Min Shu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Juan Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
13
|
Yarahmadi A, Dorri Giv M, Hosseininejad R, Rezaie A, Mohammadi N, Afkhami H, Farokhi A. Mesenchymal stem cells and their extracellular vesicle therapy for neurological disorders: traumatic brain injury and beyond. Front Neurol 2025; 16:1472679. [PMID: 39974358 PMCID: PMC11835705 DOI: 10.3389/fneur.2025.1472679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex condition involving mechanisms that lead to brain dysfunction and nerve damage, resulting in significant morbidity and mortality globally. Affecting ~50 million people annually, TBI's impact includes a high death rate, exceeding that of heart disease and cancer. Complications arising from TBI encompass concussion, cerebral hemorrhage, tumors, encephalitis, delayed apoptosis, and necrosis. Current treatment methods, such as pharmacotherapy with dihydropyridines, high-pressure oxygen therapy, behavioral therapy, and non-invasive brain stimulation, have shown limited efficacy. A comprehensive understanding of vascular components is essential for developing new treatments to improve blood vessel-related brain damage. Recently, mesenchymal stem cells (MSCs) have shown promising results in repairing and mitigating brain damage. Studies indicate that MSCs can promote neurogenesis and angiogenesis through various mechanisms, including releasing bioactive molecules and extracellular vesicles (EVs), which help reduce neuroinflammation. In research, the distinctive characteristics of MSCs have positioned them as highly desirable cell sources. Extensive investigations have been conducted on the regulatory properties of MSCs and their manipulation, tagging, and transportation techniques for brain-related applications. This review explores the progress and prospects of MSC therapy in TBI, focusing on mechanisms of action, therapeutic benefits, and the challenges and potential limitations of using MSCs in treating neurological disorders.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Masoumeh Dorri Giv
- Nuclear Medicine Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hosseininejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azin Rezaie
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Narges Mohammadi
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arastoo Farokhi
- Department of Anesthesiology, Kermanshah University of Medical Sciences, Imam Reza Hospital, Kermanshah, Iran
| |
Collapse
|
14
|
Derisfard F, Jafarinezhad Z, Azarpira N, Namavar MR, Aligholi H. Exosomes obtained from human adipose-derived stem cells alleviate epileptogenesis in the pentylenetetrazol model of epilepsy. Neuroreport 2025; 36:161-168. [PMID: 39976050 DOI: 10.1097/wnr.0000000000002133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
As exosome therapy is a promising treatment in neurological disorders including epilepsy, the present study aimed to evaluate the effects of exosomes obtained from human adipose-derived stem cells (ADSCs) on pentylenetetrazol (PTZ) model of epilepsy in mice. Thirty adult mice were divided into PTZ, diazepam + PTZ, and exosome (5, 10, and 15 µg) + PTZ groups. The exosomes were administered intranasally 30 min before PTZ injection. The seizure latency, tonic-clonic onset, seizure duration, and mortality protection rate were monitored. Also, the level of hippocampal malondialdehyde (MDA), the oxidative stress marker, was evaluated. Exosomes in 5 and 15 µg concentration significantly increased seizure latency. Only 15 µg of exosomes induced a considerable delay in tonic-clonic onset. Seizure duration was significantly attenuated in the 5 µg exosome group. In addition, the 5-µg exosome indicated the highest mortality protection rate. Furthermore, the MDA level was significantly reduced in all animals treated by exosomes. Exosomes obtained from human ADSCs could alleviate epileptogenesis induced by PTZ maybe through reducing hippocampal oxidative stress.
Collapse
Affiliation(s)
- Fateme Derisfard
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies
| | - Zahra Jafarinezhad
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies
| | | | - Mohammad Reza Namavar
- Department of Anatomical Sciences, Histomorphometry and Stereology Research Center
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies
| |
Collapse
|
15
|
Chen M, Liu Y, Cao Y, Zhao C, Liu Q, Li N, Liu Y, Cui X, Liu P, Liang J, Fan Y, Wang Q, Zhang X. Remodeling the Proinflammatory Microenvironment in Osteoarthritis through Interleukin-1 Beta Tailored Exosome Cargo for Inflammatory Regulation and Cartilage Regeneration. ACS NANO 2025; 19:4924-4941. [PMID: 39848926 DOI: 10.1021/acsnano.4c16785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy. Given that HucMSCs are highly sensitive to microenvironmental signals, we hypothesized that priming HucMSCs within a proinflammatory environment would increase the number of exosomes secreted with enhanced anti-inflammatory properties. Subsequent miRNA profiling and pathway analysis confirmed that interleukin-1 beta (IL-1β)-induced exosomes (C-Exos) exert positive effects through miRNA regulation and signaling pathway modulation. In vitro experiments revealed that C-Exos enhance chondrocyte functionality and cartilage matrix production, as well as macrophage polarization, thereby enhancing cartilage repair. C-Exos were encapsulated in hyaluronic acid hydrogel microspheres (HMs) to ensure sustained release, leading to substantial improvements in the inflammatory microenvironment and cartilage regeneration in a rat OA model. This study outlines a strategy to tailor exosome cargo for anti-inflammatory and cartilage regenerative purposes, with the functionalized HMs demonstrating potential for OA treatment.
Collapse
Affiliation(s)
- Manyu Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yuhan Liu
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Yi Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Chengkun Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Quanying Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Na Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu 610000, China
| | - Yuan Liu
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of medicine, the Chinese University of Hong Kong, Shenzhen 518172, China
- Department of Orthopedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
| | - Pengcheng Liu
- Chengdu Xiangyakanglin Biotechnology Co., Ltd, Chengdu 610213, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu 610000, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
16
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2025; 62:1840-1881. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
17
|
Wu J, Li A, Shi Y, Wang Y, Luo J, Zhuang W, Ma X, Qiao Z, Xiu X, Lang X, Zhang S, Liu X, Sun B, Li H, Liu Y. Intranasal delivery of mesenchymal stem cell-derived exosomes ameliorates experimental autoimmune encephalomyelitis. Int Immunopharmacol 2025; 146:113853. [PMID: 39700966 DOI: 10.1016/j.intimp.2024.113853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/19/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) have shown therapeutic potential in experimental autoimmune encephalomyelitis (EAE). As a non-invasive method of drug administration, intranasal delivery is anticipated to emerge as a novel option for the treatment of central nervous system (CNS) disorders. Therefore, this study aims to treat EAE by nasal exosomes and explore its specific mechanism, especially its impact on the blood-brain barrier (BBB). METHODS BMSCs-Exos were isolated and characterized. An EAE model was then established, and these exosomes were administered intranasally to the mice. Changes in body weight and clinical scores were monitored following treatment to assess the efficacy. Additionally, inflammatory infiltrates and demyelination in the CNS were evaluated, alongside the quantification of expression levels of BBB-related adhesion molecules and tight junction (TJ) proteins. RESULTS Intranasal delivery of BMSCs-Exos ameliorates the severity of EAE disease, reducing inflammatory infiltration in the CNS and demyelination in the spinal cord. This treatment did not influence the differentiation of T cells in the spleen. Furthermore, the nasal delivery of BMSCs-Exos enhances the integrity of TJs in the cerebral cortex and spinal cord, as well as inhibiting the expression of adhesion molecules. These exosomes promote the expression of TJ-related markers in bEnd3 cells, including ZO-1, Occludin, and Claudin 5. At the same time, they suppress the expression of adhesion molecule-related markers, such as ICAM1 and VCAM1. CONCLUSIONS Our study suggests that intranasal administration of BMSCs-Exos significantly reduces inflammatory infiltration and demyelination in the CNS of EAE mice. Furthermore, this treatment does not influence the differentiation of T cells in the spleen. Additionally, nasal reinfusion of BMSCs-Exos can improve the integrity of the BBB in EAE mice.
Collapse
Affiliation(s)
- Junfeng Wu
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Anqi Li
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Yu Shi
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Yanping Wang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Jingyu Luo
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Wei Zhuang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Xiaoru Ma
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Zhixin Qiao
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Xin Xiu
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Xiujuan Lang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Xijun Liu
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Bo Sun
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin, China
| | - Yumei Liu
- Department of Neurobiology, Harbin Medical University, Harbin, China.
| |
Collapse
|
18
|
Zhu A, Jiang Y, Pan L, Li J, Huang Y, Shi M, Di L, Wang L, Wang R. Cell inspired delivery system equipped with natural membrane structures in applications for rescuing ischemic stroke. J Control Release 2025; 377:54-80. [PMID: 39547421 DOI: 10.1016/j.jconrel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Ischemic stroke (IS), accounting for 87 % of stroke incidences, constitutes a paramount health challenge owing to neurological impairments and irreversible tissue damage arising from cerebral ischemia. Chief among therapeutic obstacles are the restrictive penetration of the blood-brain barrier (BBB) and insufficient targeting precision, hindering the accumulation of drugs in ischemic brain areas. Motivated by the remarkable capabilities of natural membrane-based delivery vehicles in achieving targeted delivery and traversing the BBB, thanks to their biocompatible architecture and bioactive components, numerous membrane-engineered systems such as cells, cell membranes and extracellular vesicles have emerged as promising platforms to augment IS treatment efficacy with the help of nanotechnology. This review consolidates the primary pathological manifestations following IS, elucidates the unique functionalities of natural membrane drug delivery systems (DDSs) with nanotechnology, as well as delineates the structural characteristics of various natural membranes alongside rational design strategies employed. The review illuminates both the potential and challenges encountered when employing natural membrane DDSs in IS drug therapy, offering fresh perspectives and insights for devising efficacious and practical delivery systems tailored to IS intervention.
Collapse
Affiliation(s)
- Anran Zhu
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Longxiang Pan
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao Huang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Shi
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruoning Wang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
19
|
Chen M, Wang J, Liu Y, Cui X, Liang J, Lei N, Xiao Y, Wang Q, Fan Y, Zhang X. Injectable biomimetic microcarriers harness synergistic effects of paracrine factors and cellular membranes to alleviate osteoarthritis. CHEMICAL ENGINEERING JOURNAL 2025; 503:158451. [DOI: 10.1016/j.cej.2024.158451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Zhang Y, Liu Z, Chopp M, Millman M, Li Y, Cepparulo P, Kemper A, Li C, Zhang L, Zhang ZG. Small extracellular vesicles derived from cerebral endothelial cells with elevated microRNA 27a promote ischemic stroke recovery. Neural Regen Res 2025; 20:224-233. [PMID: 38767487 PMCID: PMC11246145 DOI: 10.4103/nrr.nrr-d-22-01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/14/2023] [Accepted: 01/22/2024] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00030/figure1/v/2024-05-14T021156Z/r/image-tiff Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery. Our previous in vitro study demonstrated that exosomes/small extracellular vesicles (sEVs) isolated from cerebral endothelial cells (CEC-sEVs) of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a (miR-27a) is an elevated miRNA in ischemic CEC-sEVs. In the present study, we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a (27a-sEVs) further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs. 27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector. Small EVs isolated from CECs transfected with a scramble vector (Scra-sEVs) were used as a control. Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs. An array of behavior assays was used to measure neurological function. Compared with treatment of ischemic stroke with Scra-sEVs, treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side, and significantly improved neurological outcomes. In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth. Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone, while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a, and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone. Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs. Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes. Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Michael Millman
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Yanfeng Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | - Amy Kemper
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | |
Collapse
|
21
|
Peng B, Mohammed FS, Tang X, Liu J, Sheth KN, Zhou J. Nanotechnology approaches to drug delivery for the treatment of ischemic stroke. Bioact Mater 2025; 43:145-161. [PMID: 39386225 PMCID: PMC11462157 DOI: 10.1016/j.bioactmat.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Ischemic stroke is a major global public health concern that lacks effective treatment options. A significant challenge lies in delivering therapeutic agents to the brain due to the restrictive nature of the blood-brain barrier (BBB). The BBB's selectivity hampers the delivery of therapeutically relevant quantities of agents to the brain, resulting in a lack of FDA-approved pharmacotherapies for stroke. In this article, we review therapeutic agents that have been evaluated in clinical trials or are currently undergoing clinical trials. Subsequently, we survey strategies for synthesizing and engineering nanoparticles (NPs) for drug delivery to the ischemic brain. We then provide insights into the potential clinical translation of nanomedicine, offering a perspective on its transformative role in advancing stroke treatment strategies. In summary, existing literature suggests that drug delivery represents a major barrier for clinical translation of stroke pharmacotherapies. While nanotechnology has shown significant promise in addressing this challenge, further advancements aimed at improving delivery efficiency and simplifying formulations are necessary for successful clinical translation.
Collapse
Affiliation(s)
- Bin Peng
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Farrah S. Mohammed
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| | - Xiangjun Tang
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurosurgery, Taihe Hospital, Hubei, 442000, PR China
| | - Jia Liu
- Department of Neurosurgery, New Haven, CT, 06510, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| |
Collapse
|
22
|
Lu D, Sun H, Fan H, Li N, Li Y, Yin X, Fan Y, Sun H, Wang S, Xin T. Regulation of nerve cells and therapeutic potential in central nervous system injury using microglia-derived exosomes. Neuroscience 2024; 563:84-92. [PMID: 39521323 DOI: 10.1016/j.neuroscience.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The intercellular communication within the central nervous system (CNS) is of great importance for in maintaining brain function, homeostasis, and CNS regulation. When the equilibrium of CNS is disrupted or injured, microglia are immediately activated and respond to CNS injury. Microglia-derived exosomes are capable of participating in intercellular communication within the CNS by transporting various bioactive substances, including nucleic acids, proteins, lipids, amino acids, and metabolites. Nevertheless, microglia activation is a double-edged sword. Activated microglia can coordinate the neural repair process and, conversely, can amplify tissue injury and impede CNS repair. This work reviewed the roles of exosomes derived from microglia stimulated by different environments (mainly lipopolysaccharide, interleukin-4, and other specific preconditioning) in CNS injury and their possible therapeutic potentials. This work focuses on the regulation of exosomes derived from microglia stimulated by different environments on nerve cells. Meanwhile, we summarized the molecular mechanisms by which the relevant exosomes exert regulatory effects. Exosomes, derived from microglia stimulated by different environments, regulate other nerve cells during the repair of CNS injury, having beneficial or detrimental effects on CNS repair. A comprehensive understanding of the molecular mechanisms underlying their role can provide a robust foundation for the clinical treatment of CNS injury.
Collapse
Affiliation(s)
- Dongxiao Lu
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Haohan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Hao Fan
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China; Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250021, China
| | - Nianlu Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Yang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Hao Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China; Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
23
|
Qin C, Dong MH, Tang Y, Chu YH, Zhou LQ, Zhang H, Yang S, Zhang LY, Pang XW, Zhu LF, Wang W, Tian DS. The foam cell-derived exosomal miRNA Novel-3 drives neuroinflammation and ferroptosis during ischemic stroke. NATURE AGING 2024; 4:1845-1861. [PMID: 39468286 DOI: 10.1038/s43587-024-00727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
Large artery atherosclerosis (LAA) is a prevalent cause of acute ischemic stroke (AIS). Understanding the mechanisms linking atherosclerosis to stroke is essential for developing appropriate intervention strategies. Here, we found that the exosomal miRNA Novel-3 is selectively upregulated in the plasma of patients with LAA-AIS. Notably, Novel-3 was predominantly expressed in macrophage-derived foam cells, and its expression correlated with atherosclerotic plaque vulnerability in patients undergoing carotid endarterectomy. Exploring the function of Novel-3 in a mouse model of cerebral ischemia, we found that Novel-3 exacerbated ischemic injury and targeted microglia and macrophages expressing ionized calcium-binding adapter molecule 1 in peri-infarct regions. Mechanistically, Novel-3 increased ferroptosis and neuroinflammation by interacting with striatin (STRN) and downregulating the phosphoinositide 3-kinase-AKT-mechanistic target of rapamycin signaling pathway. Blocking Novel-3 activity or overexpressing STRN provided neuroprotection under ischemic conditions. Our findings suggest that exosomal Novel-3, which is primarily derived from macrophage-derived foam cells, targets microglia and macrophages in the brain to induce neuroinflammation and could serve as a potential therapeutic target for patients with stroke who have atherosclerosis.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Wang L, Yang H, Zhang C, Zhang Y, He Y, Liu Y, Ma P, Li J, Fan Z. A blood glucose fluctuation-responsive delivery system promotes bone regeneration and the repair function of Smpd3-reprogrammed BMSC-derived exosomes. Int J Oral Sci 2024; 16:65. [PMID: 39616150 PMCID: PMC11608271 DOI: 10.1038/s41368-024-00328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 04/12/2025] Open
Abstract
Blood glucose fluctuation leads to poor bone defect repair in patients with type 2 diabetes (T2DM). Strategies to safely and efficiently improve the bone regeneration disorder caused by blood glucose fluctuation are still a challenge. Neutral sphingophospholipase 2 (Smpd3) is downregulated in jawbone-derived bone marrow mesenchymal stem cells (BMSCs) from T2DM patients. Here, we investigated the effect of Smpd3 on the osteogenic differentiation of BMSCs and utilized exosomes from stem cells overexpressing Smpd3 as the main treatment based on the glucose responsiveness of phenylboronic acid-based polyvinyl alcohol crosslinkers and the protease degradability of gelatin nanoparticles. The combined loading of Smpd3-overexpressing stem cell-derived exosomes (Exos-Smpd3) and nanosilver ions (Ns) to construct a hydrogel delivery system (Exos-Smpd3@Ns) promoted osteogenesis and differentiation of BMSCs in a glucose-fluctuating environment, ectopic osteogenesis of BMSCs in a glucose-fluctuating environment and jawbone regeneration of diabetic dogs in vitro. Mechanistically, Smpd3 promoted the osteogenesis and differentiation of jawbone-derived BMSCs by activating autophagy in the jawbone and inhibiting macrophage polarization and oxidative stress caused by blood glucose fluctuations. These results reveal the role and mechanism of Smpd3 and the Smpd3 overexpression exosome delivery system in promoting BMSC function and bone regeneration under blood glucose fluctuations, providing a theoretical basis and candidate methods for the treatment of bone defects in T2DM patients.
Collapse
Affiliation(s)
- Lingxiao Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Periodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yilin He
- Department of Dental Implant Center, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Pan Ma
- Department of Dental Implant Center, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jun Li
- Department of Dental Implant Center, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
25
|
Wang L, Yang H, Zhang C, Zhang Y, He Y, Liu Y, Ma P, Li J, Fan Z. A blood glucose fluctuation-responsive delivery system promotes bone regeneration and the repair function of Smpd3-reprogrammed BMSC-derived exosomes. Int J Oral Sci 2024; 16:65. [DOI: 3.doi: 10.1038/s41368-024-00328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 05/19/2025] Open
Abstract
AbstractBlood glucose fluctuation leads to poor bone defect repair in patients with type 2 diabetes (T2DM). Strategies to safely and efficiently improve the bone regeneration disorder caused by blood glucose fluctuation are still a challenge. Neutral sphingophospholipase 2 (Smpd3) is downregulated in jawbone-derived bone marrow mesenchymal stem cells (BMSCs) from T2DM patients. Here, we investigated the effect of Smpd3 on the osteogenic differentiation of BMSCs and utilized exosomes from stem cells overexpressing Smpd3 as the main treatment based on the glucose responsiveness of phenylboronic acid-based polyvinyl alcohol crosslinkers and the protease degradability of gelatin nanoparticles. The combined loading of Smpd3-overexpressing stem cell-derived exosomes (Exos-Smpd3) and nanosilver ions (Ns) to construct a hydrogel delivery system (Exos-Smpd3@Ns) promoted osteogenesis and differentiation of BMSCs in a glucose-fluctuating environment, ectopic osteogenesis of BMSCs in a glucose-fluctuating environment and jawbone regeneration of diabetic dogs in vitro. Mechanistically, Smpd3 promoted the osteogenesis and differentiation of jawbone-derived BMSCs by activating autophagy in the jawbone and inhibiting macrophage polarization and oxidative stress caused by blood glucose fluctuations. These results reveal the role and mechanism of Smpd3 and the Smpd3 overexpression exosome delivery system in promoting BMSC function and bone regeneration under blood glucose fluctuations, providing a theoretical basis and candidate methods for the treatment of bone defects in T2DM patients.
Collapse
|
26
|
Zhou W, Jiang X, Gao J. Extracellular vesicles for delivering therapeutic agents in ischemia/reperfusion injury. Asian J Pharm Sci 2024; 19:100965. [PMID: 39640057 PMCID: PMC11617990 DOI: 10.1016/j.ajps.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/29/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemia/reperfusion (I/R) injury is marked by the restriction and subsequent restoration of blood supply to an organ. This process can exacerbate the initial tissue damage, leading to further disorders, disability, and even death. Extracellular vesicles (EVs) are crucial in cell communication by releasing cargo that regulates the physiological state of recipient cells. The development of EVs presents a novel avenue for delivering therapeutic agents in I/R therapy. The therapeutic potential of EVs derived from stem cells, endothelial cells, and plasma in I/R injury has been actively investigated. Therefore, this review aims to provide an overview of the pathological process of I/R injury and the biophysical properties of EVs. We noted that EVs serve as nontoxic, flexible, and multifunctional carriers for delivering therapeutic agents capable of intervening in I/R injury progression. The therapeutic efficacy of EVs can be enhanced through various engineering strategies. Improving the tropism of EVs via surface modification and modulating their contents via preconditioning are widely investigated in preclinical studies. Finally, we summarize the challenges in the production and delivery of EV-based therapy in I/R injury and discuss how it can advance. This review will encourage further exploration in developing efficient EV-based delivery systems for I/R treatment.
Collapse
Affiliation(s)
- Weihang Zhou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
27
|
Alizadeh SD, Jahani S, Rukerd MRZ, Tabrizi R, Masoomi R, Banihashemian SZ, Tabatabaei MSHZ, Ghodsi Z, Pour-Rashidi A, Harrop J, Rahimi-Movaghar V. Human studies of the efficacy and safety of stem cells in the treatment of diabetic peripheral neuropathy: a systematic review and meta-analysis. Stem Cell Res Ther 2024; 15:442. [PMID: 39563393 PMCID: PMC11577959 DOI: 10.1186/s13287-024-04033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE To assess the efficacy and safety of stem cell therapy in human studies for diabetic peripheral neuropathy (DPN). METHODS A comprehensive literature review was performed across multiple databases, including Ovid MEDLINE ALL, Embase via Ovid SP, Scopus, Web of Science Core Collection, and Cochrane CENTRAL, up to January 31, 2024. Keywords and controlled vocabularies related to diabetic neuropathy and stem cell therapy were used. Inclusion criteria encompassed all controlled trials examining stem cell therapy for DPN, excluding animal or in vitro studies, review papers, conference abstracts, and editor letters. Data extraction and risk of bias assessment were independently performed by multiple reviewers using standardized tools. RESULTS Out of 5431 initial entries, seven were included. Stem cell therapies included bone marrow-derived mononuclear cells and umbilical cord-derived mesenchymal stem cells, administered mainly via intramuscular transplantation. Meta-analysis indicated significant improvements in motor nerve conduction velocity (weighted mean differences (WMD): 2.2, 95% CI 1.6-2.8) and sensory nerve conduction velocity (WMD: 1.9, 95% CI 1.1-2.6). Vibration perception threshold and Toronto Clinical Scoring System scores decreased significantly (WMD: - 2.9, 95% CI - 4.0, - 1.8, and WMD: - 3.6, 95% CI - 5.0, - 2.2, respectively). Sensitivity analysis and subgroup analysis confirmed the robustness and specificity of these findings. The complications were pain and swelling at the injection sites, which disappeared in a few days. CONCLUSION Stem cell therapy shows significant promise in improving clinical outcomes for DPN, with evident benefits in nerve conduction and sensory parameters. Further research is needed to consolidate these findings and optimize therapeutic protocols.
Collapse
Affiliation(s)
- Seyed Danial Alizadeh
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Jahani
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Science, Fasa, Iran
| | - Rasoul Masoomi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Zahra Ghodsi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Pour-Rashidi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Founder of Neurosurgical Research Network, Universal Scientific Education and Research Network, Tehran, Iran
| | - James Harrop
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Universal Scientific Education and Research Network, Tehran, Iran.
| |
Collapse
|
28
|
Wang S, He Q, Qu Y, Yin W, Zhao R, Wang X, Yang Y, Guo ZN. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy. Neural Regen Res 2024; 19:2430-2443. [PMID: 38526280 PMCID: PMC11090435 DOI: 10.4103/1673-5374.391313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 03/26/2024] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide, with limited treatment options available in clinical practice. The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function. Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect. Neural stem cells regulate multiple physiological responses, including nerve repair, endogenous regeneration, immune function, and blood-brain barrier permeability, through the secretion of bioactive substances, including extracellular vesicles/exosomes. However, due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation, limitations in the treatment effect remain unresolved. In this paper, we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke, review current neural stem cell therapeutic strategies and clinical trial results, and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells. We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
Collapse
Affiliation(s)
- Siji Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qianyan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenjing Yin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuyutian Wang
- Department of Breast Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
29
|
Wang Z, Dai J, He H, Si T, Ng K, Zheng S, Zhou X, Zhou Z, Yuan H, Yang M. Cellulose Nanofibrils of High Immunoaffinity for Efficient Enrichment of Small Extracellular Vesicles. SMALL METHODS 2024; 8:e2400426. [PMID: 38678531 PMCID: PMC11579556 DOI: 10.1002/smtd.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 05/01/2024]
Abstract
Extracellular vesicles (EVs), crucial in facilitating the transport of diverse molecular cargoes for intercellular communication, have shown great potential in diagnostics, therapeutics, and drug delivery. The challenge of developing effective preparation methods for EVs is heightened by their intrinsic heterogeneity and complexity. Here, a novel strategy for high EV enrichment is developed by utilizing EV-affinitive-modified cellulose nanofibrils. Specifically, modified cellulose with rich carboxyl groups has outstanding dispersing properties, able to be dispersed into cellulose nanofibrils in solution. These cellulose nanofibrils are utilized as scaffolds for the immobilization of EV-affinitive antibody of CD63 by chemical conjugation. The CD63-modified nanofibrils demonstrate a superior EV capture efficiency of 86.4% compared with other reported methods. The high performance of this system is further validated by the efficient capture of EVs from biological blood plasma, allowing the detection of bioactive markers from EV-derived miRNAs and proteins. The authors envision that these modified cellulose nanofibrils of enhanced capability on EV enrichment will open new avenues in various biomedical applications.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000P. R. China
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jun Dai
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000P. R. China
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Tongxu Si
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Kaki Ng
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Shuang Zheng
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Present address:
Department of Civil EngineeringUniversity of Hong KongPokfulamHong KongP. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000P. R. China
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Zhihang Zhou
- Department of Gastroenterologythe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Huijun Yuan
- Department of Biochip CenterWuwei Tumor Hospital of Gansu ProvinceGansu730000P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000P. R. China
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
30
|
Xu K, Zhao X, He Y, Guo H, Zhang Y. Stem cell-derived exosomes for ischemic stroke: a conventional and network meta-analysis based on animal models. Front Pharmacol 2024; 15:1481617. [PMID: 39508049 PMCID: PMC11537945 DOI: 10.3389/fphar.2024.1481617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Objective We aimed to evaluate the efficacy of stem cell-derived exosomes for treating ischemic stroke and to screen for the optimal administration strategy. Methods We searched PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases for relevant studies published from their inception to 31 December 2023. Conventional and network meta-analyses of the routes of administration, types, and immune compatibility of stem cell-derived exosomes were performed using the cerebral infarct volume (%) and modified neurological severity score (mNSS) as outcome indicators. Results A total of 38 randomized controlled animal experiments were included. Conventional meta-analysis showed that compared with the negative control group: intravenous administration significantly reduced the cerebral infarct volume (%) and mNSS; intranasal administration significantly reduced the cerebral infarct volume (%); and intracerebral administration significantly reduced the mNSS. Adipose-derived mesenchymal stem cell-derived exosomes (ADSC-Exos), bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos), dental pulp stem cell-derived exosomes (DPSC-Exos) and neural stem cell-derived exosomes (NSC-Exos) significantly reduced the cerebral infarct volume (%) and mNSS; Endothelial progenitor cell-derived exosomes (EPC-Exos), embryonic stem cell-derived exosomes (ESC-Exos), induced pluripotent stem cell-derived exosomes (iPSC-Exos) and neural progenitor cell-derived exosomes (NPC-Exos) significantly reduced the cerebral infarct volume (%); Umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-Exos) significantly reduced the mNSS; and there was no significant difference between urogenital stem cell-derived exosomes (USC-Exos) and negative controls. Engineered modified exosomes had better efficacy than unmodified exosomes. Both allogeneic and xenogeneic stem cell-derived exosomes significantly reduced the cerebral infarct volume (%) and the mNSS. The network meta-analysis showed that intravenous administration was the best route of administration for reducing the cerebral infarct volume (%) and mNSS. Among the 10 types of stem cell-derived exosomes that were administered intravenously, BMSC-Exos were the best type for reducing the cerebral infarct volume (%) and the mNSS. Allogeneic exosomes had the best efficacy in reducing the cerebral infarct volume (%), whereas xenogeneic stem cell-derived exosomes had the best efficacy in reducing the mNSS. Conclusion This meta-analysis, by integrating the available evidence, revealed that intravenous administration is the best route of administration, that BMSC-Exos are the best exosome type, that allogeneic exosomes have the best efficacy in reducing the cerebral infarct volume (%), and that xenogeneic exosomes have the best efficacy in reducing mNSS, which can provide options for preclinical studies. In the future, more high-quality randomized controlled animal experiments, especially direct comparative evidence, are needed to determine the optimal administration strategy for stem cell-derived exosomes for ischemic stroke. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42024497333, PROSPERO, CRD42024497333.
Collapse
Affiliation(s)
- Kangli Xu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuxuan He
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongxin Guo
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
31
|
Krotofil M, Tota M, Siednienko J, Donizy P. Emerging Paradigms in Cancer Metastasis: Ghost Mitochondria, Vasculogenic Mimicry, and Polyploid Giant Cancer Cells. Cancers (Basel) 2024; 16:3539. [PMID: 39456632 PMCID: PMC11506636 DOI: 10.3390/cancers16203539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The capacity of cancer cells to migrate from a primary tumor, disseminate throughout the body, and eventually establish secondary tumors is a fundamental aspect of metastasis. A detailed understanding of the cellular and molecular mechanisms underpinning this multifaceted process would facilitate the rational development of therapies aimed at treating metastatic disease. Although various hypotheses and models have been proposed, no single concept fully explains the mechanism of metastasis or integrates all observations and experimental findings. Recent advancements in metastasis research have refined existing theories and introduced new ones. This review evaluates several novel/emerging theories, focusing on ghost mitochondria (GM), vasculogenic mimicry (VM), and polyploid giant cancer cells (PGCCs).
Collapse
Affiliation(s)
- Mateusz Krotofil
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Maciej Tota
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Jakub Siednienko
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
- Department of Pathology and Clinical Cytology, Jan Mikulicz-Radecki University Hospital, 50-556 Wroclaw, Poland
| |
Collapse
|
32
|
He J, Qian L, Li Z, Wang Y, Liu K, Wei H, Sun Y, He J, Yao K, Weng J, Hu X, Zhang D, He Y. A tissue bandage for pelvic ganglia injury. Nat Commun 2024; 15:8972. [PMID: 39419980 PMCID: PMC11487282 DOI: 10.1038/s41467-024-53302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Neurogenic bladder often occurs after pelvic ganglia injury. Its symptoms, like severe urinary retention and incontinence, have a significant impact on individuals' quality of life. Unfortunately, there are currently no effective treatments available for this type of injury. Here, we designed a fiber-enhanced tissue bandage for injured pelvic ganglia. Tight junctions formed in tissue bandages create a mini tissue structure that enhances resistance in an in vivo environment and delivers growth factors to support the healing of ganglia. Strength fibers are similar to clinical bandages and guarantee ease of handling. Furthermore, tissue bandages can be stored at low temperatures over 5 months without compromising cell viability, meeting the requirements for clinical products. A tissue bandage was applied to a male rat with a bilateral major pelvic ganglia crush injury. Compared to the severe neurogenic bladder symptoms observed in the injury and scaffold groups, tissue bandages significantly improved bladder function. We found that tissue bandage increases resistance to mechanical injury by boosting the expression of cytoskeletal proteins within the major pelvic ganglia. Overall, tissue bandages show promise as a practical therapeutic approach for ganglia repair, offering hope for developing more effective treatments for this thorny condition.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Lin Qian
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhuang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanpeng Wang
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kai Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haibin Wei
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiaoyan He
- Department of Postgraduate Education, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiahao Weng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuanhan Hu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
33
|
Zhou X, He S, He J, Xiong Y, Hu Z, Xian H, Guo G, Tan S, Ouyang D, Liu R, Gao Z, Zhu X, Abulimiti A, Zheng S, Hu D. HUC-MSC-derived exosomes repaired the damage induced by hydroquinone to 16HBE cells via miR-221/PTEN pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117120. [PMID: 39357375 DOI: 10.1016/j.ecoenv.2024.117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Mesenchymal stem cell - originated exosomes (MSC-exo) are promising non-cellular treatment agents for various diseases. The present study aimed to explore whether human umbilical cord MSC - originated exosomes (HUC-MSC-exo) have the function of protecting human cells (16HBE) against the damage caused by HQ and the related mechanism. HUC-MSC-exo was isolated with differential gradient ultracentrifugation method and characterized by using transmission electron microscope (TEM). 16HBE cells were used as the tool cells and co-cultured with HUC-MSC-exo. Confocal laser scanning microscope was employed to confirm the ingestion of HUC-MSC-exo by 16HBE. Cell proliferation, migration, oxidative stress, DNA and chromosome damages of 16HBE were analyzed under HQ stress, and the role of miR-221/PTEN axis was investigated. Our data showed that under HQ stress, different groups of cells exhibited significantly decreased proliferation and migration abilities, and significant oxidative stress, DNA and chromosome damage effects. HUC-MSC-exo could alleviate the cytotoxic, oxidative stress and genotoxic damage effects of HQ on 16HBE cells. Mechanistically, HQ exposure up-regulated the level of miR-221 and down-regulated PTEN, while HUC-MSC-exo could significantly reduce the level of miR-221 and promote PTEN expression, which was involved in alleviating the toxic effects of HQ on 16HBE cells. Our data indicates that HUC-MSC-exo can alleviate the oxidative stress, cytotoxic and genotoxic effects of HQ on 16HBE cells via miR-221/PTEN pathway, and it may be a promising agent for protecting against the toxicity of HQ.
Collapse
Affiliation(s)
- Xiaotao Zhou
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan District, Shenzhen City 518000, PR China
| | - Shanshan He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Jiayi He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Yiren Xiong
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Zuqing Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Hongyi Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Guoqiang Guo
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan District, Shenzhen City 518000, PR China
| | - Suqin Tan
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Di Ouyang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Renyi Liu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Zhenjie Gao
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Xiaoqi Zhu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Abudumijiti Abulimiti
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Sujin Zheng
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Dalin Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China.
| |
Collapse
|
34
|
Kapoor KS, Harris K, Arian KA, Ma L, Schueng Zancanela B, Church KA, McAndrews KM, Kalluri R. High throughput and rapid isolation of extracellular vesicles and exosomes with purity using size exclusion liquid chromatography. Bioact Mater 2024; 40:683-695. [PMID: 39290685 PMCID: PMC11407901 DOI: 10.1016/j.bioactmat.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as potential biomarkers for diagnosing a range of diseases without invasive procedures. Extracellular vesicles also offer advantages compared to synthetic vesicles for delivery of various drugs; however, limitations in segregating EVs from other particles and soluble proteins have led to inconsistent EV retrieval rates with low levels of purity. Here, we report a new high-yield (88.47 %) and rapid (<20 min) EV isolation method termed size exclusion - fast protein liquid chromatography (SE-FPLC). We show SE-FPLC can effectively isolate EVs from multiple sources including EVs derived from human and mouse cells and serum samples. The results indicate that SE-FPLC can successfully remove highly abundant protein contaminants such as albumin and lipoprotein complexes, which can represent a major hurdle in large scale isolation of EVs. The high-yield nature of SE-FPLC allows for easy industrial scaling up of EV production for various clinical utilities. SE-FPLC also enables analysis of small volumes of blood for use in point-of-care diagnostics in the clinic. Collectively, SE-FPLC offers many advantages over current EV isolation methods and offers rapid clinical translation.
Collapse
Affiliation(s)
- Kshipra S Kapoor
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Kristen Harris
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kent A Arian
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lihua Ma
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Beatriz Schueng Zancanela
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kaira A Church
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
35
|
Liu Y, Yang P, Wang J, Peng W, Zhao J, Wang Z. MiRNA Regulates Ferroptosis in Cardiovascular and Cerebrovascular Diseases. DNA Cell Biol 2024; 43:492-509. [PMID: 39417991 DOI: 10.1089/dna.2024.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) significantly contribute to global mortality and morbidity due to their complex pathogenesis involving multiple biological processes. Ferroptosis is an important physiological process in CCVDs, manifested by an abnormal increase in intracellular iron concentration. MiRNAs, a key class of noncoding RNA molecules, are crucial in regulating CCVDs through pathways like glutathione-glutathione peroxidase 4, glutamate/cystine transport, iron metabolism, lipid metabolism, and other oxidative stress pathways. This article summarizes the progress of miRNAs' regulation on CCVDs, aiming to provide insights for the diagnosis and treatment of CCVDs.
Collapse
Affiliation(s)
- Yiman Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Peijuan Yang
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Jingjing Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Wu Peng
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Jinli Zhao
- Emergency Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
36
|
Wang YY, Li K, Wang JJ, Hua W, Liu Q, Sun YL, Qi JP, Song YJ. Bone marrow-derived mesenchymal stem cell-derived exosome-loaded miR-129-5p targets high-mobility group box 1 attenuates neurological-impairment after diabetic cerebral hemorrhage. World J Diabetes 2024; 15:1979-2001. [PMID: 39280179 PMCID: PMC11372641 DOI: 10.4239/wjd.v15.i9.1979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic intracerebral hemorrhage (ICH) is a serious complication of diabetes. The role and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived exosomes (BMSC-exo) in neuroinflammation post-ICH in patients with diabetes are unknown. In this study, we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation. AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage. METHODS BMSC-exo were isolated from mouse BMSC media. This was followed by transfection with microRNA-129-5p (miR-129-5p). BMSC-exo or miR-129-5p-overexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucose-affected BV2 cells for in vitro analyses. The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1 (HMGB1). Quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors, such as HMGB1, interleukin 6, interleukin 1β, toll-like receptor 4, and tumor necrosis factor α. Brain water content, neural function deficit score, and Evans blue were used to measure the neural function of mice. RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery. MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation. Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases. Furthermore, we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA. CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes, thereby improving the neurological function of the brain.
Collapse
Affiliation(s)
- Yue-Ying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ke Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Jun Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yu-Lan Sun
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ji-Ping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yue-Jia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
37
|
Wang YY, Li K, Wang JJ, Hua W, Liu Q, Sun YL, Qi JP, Song YJ. Bone marrow-derived mesenchymal stem cell-derived exosome-loaded miR-129-5p targets high-mobility group box 1 attenuates neurological-impairment after diabetic cerebral hemorrhage. World J Diabetes 2024; 15:1978-2000. [DOI: 10.4239/wjd.v15.i9.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic intracerebral hemorrhage (ICH) is a serious complication of diabetes. The role and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived exosomes (BMSC-exo) in neuroinflammation post-ICH in patients with diabetes are unknown. In this study, we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.
AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.
METHODS BMSC-exo were isolated from mouse BMSC media. This was followed by transfection with microRNA-129-5p (miR-129-5p). BMSC-exo or miR-129-5p-overexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucose-affected BV2 cells for in vitro analyses. The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1 (HMGB1). Quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors, such as HMGB1, interleukin 6, interleukin 1β, toll-like receptor 4, and tumor necrosis factor α. Brain water content, neural function deficit score, and Evans blue were used to measure the neural function of mice.
RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery. MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation. Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases. Furthermore, we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.
CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes, thereby improving the neurological function of the brain.
Collapse
Affiliation(s)
- Yue-Ying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ke Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Jun Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yu-Lan Sun
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ji-Ping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yue-Jia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
38
|
Jiang S, Hu L, Zhou H, Wu J, Zhou J, Yu X, Chen G. Novel Therapeutic Mechanisms and Strategies for Intracerebral Hemorrhage: Focusing on Exosomes. Int J Nanomedicine 2024; 19:8987-9007. [PMID: 39246427 PMCID: PMC11378801 DOI: 10.2147/ijn.s473611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a primary, non-traumatic cerebral event associated with substantial mortality and disability. Despite advancements in understanding its etiology and refining diagnostic techniques, a validated treatment to significantly improve ICH prognosis remains elusive. Exosomes, a subtype of extracellular vesicles, encapsulate bioactive components, predominantly microRNAs (miRNAs), facilitating and regulating intercellular communication. Currently, exosomes have garnered considerable interests in clinical transformation for their nanostructure, minimal immunogenicity, low toxicity, inherent stability, and the ability to traverse the blood-brain barrier. A wealth of studies has demonstrated that exosomes can improve the prognosis of ICH through anti-apoptosis, neurogenesis, angiogenesis, anti-inflammation, immunomodulation, and autophagy, primarily via the transportation or overexpression of selected miRNAs. More importantly, exosomes can be easily customized with specific miRNAs or bioactive compounds to establish delivery systems, broadening their potential applications. This review focuses on the therapeutic potential of exosomes in ICH, reviewing the mechanisms of molecular biology mediated by certain miRNAs, discussing the benefits, challenges, and future prospects in ICH treatment. We hope comprehensive understanding of exosomes based on miRNAs will provide new insights into the treatment of ICH and guide the translation of exosome's research from laboratory to clinical practice.
Collapse
Affiliation(s)
- Shandong Jiang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| | - Jianan Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| | - Jiayin Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| | - Xian Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| |
Collapse
|
39
|
Liu C, Sun L, Worden H, Ene J, Zeng OZ, Bhagu J, Grant SC, Bao X, Jung S, Li Y. Profiling biomanufactured extracellular vesicles of human forebrain spheroids in a Vertical-Wheel Bioreactor. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70002. [PMID: 39211409 PMCID: PMC11350274 DOI: 10.1002/jex2.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Extracellular vesicles (EVs) secreted by human brain cells have great potential as cell-free therapies in various diseases, including stroke. However, because of the significant amount of EVs needed in preclinical and clinical trials, EV application is still challenging. Vertical-Wheel Bioreactors (VWBRs) have designed features that allow for scaling up the generation of human forebrain spheroid EVs under low shear stress. In this study, EV secretion by human forebrain spheroids derived from induced pluripotent stem cells as 3D aggregates and on Synthemax II microcarriers in VWBRs were investigated with static aggregate culture as a control. The spheroids were characterized by metabolite and transcriptome analysis. The isolated EVs were characterized by nanoparticle tracking analysis, electron microscopy, and Western blot. The EV cargo was analyzed using proteomics and miRNA sequencing. The in vitro functional assays of an oxygen and glucose-deprived stroke model were conducted. Proof of concept in vivo study was performed, too. Human forebrain spheroid differentiated on microcarriers showed a higher growth rate than 3D aggregates. Microcarrier culture had lower glucose consumption per million cells and lower glycolysis gene expression but higher EV biogenesis genes. EVs from the three culture conditions showed no differences in size, but the yields from high to low were microcarrier cultures, dynamic aggregates, and static aggregates. The cargo is enriched with proteins (proteomics) and miRNAs (miRNA-seq), promoting axon guidance, reducing apoptosis, scavenging reactive oxygen species, and regulating immune responses. Human forebrain spheroid EVs demonstrated the ability to improve recovery in an in vitro stroke model and in vivo. Human forebrain spheroid differentiation in VWBR significantly increased the EV yields (up to 240-750 fold) and EV biogenesis compared to static differentiation due to the dynamic microenvironment and metabolism change. The biomanufactured EVs from VWBRs have exosomal characteristics and more therapeutic cargo and are functional in in vitro assays, which paves the way for future in vivo stroke studies.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | | | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Olivia Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Jamini Bhagu
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeFloridaUSA
| | - Samuel C. Grant
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeFloridaUSA
| | - Xiaoping Bao
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | | | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
40
|
Yao X, He D, Wei P, Niu Z, Chen H, Li L, Fu P, Wang Y, Lou S, Qian S, Zheng J, Zuo G, Wang K. DNA Nanomaterial-Empowered Surface Engineering of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306852. [PMID: 38041689 DOI: 10.1002/adma.202306852] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Extracellular vesicles (EVs) are cell-secreted biological nanoparticles that are critical mediators of intercellular communication. They contain diverse bioactive components, which are promising diagnostic biomarkers and therapeutic agents. Their nanosized membrane-bound structures and innate ability to transport functional cargo across major biological barriers make them promising candidates as drug delivery vehicles. However, the complex biology and heterogeneity of EVs pose significant challenges for their controlled and actionable applications in diagnostics and therapeutics. Recently, DNA molecules with high biocompatibility emerge as excellent functional blocks for surface engineering of EVs. The robust Watson-Crick base pairing of DNA molecules and the resulting programmable DNA nanomaterials provide the EV surface with precise structural customization and adjustable physical and chemical properties, creating unprecedented opportunities for EV biomedical applications. This review focuses on the recent advances in the utilization of programmable DNA to engineer EV surfaces. The biology, function, and biomedical applications of EVs are summarized and the state-of-the-art achievements in EV isolation, analysis, and delivery based on DNA nanomaterials are introduced. Finally, the challenges and new frontiers in EV engineering are discussed.
Collapse
Affiliation(s)
- Xuxiang Yao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Dongdong He
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Pengyao Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Zitong Niu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Hao Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Pan Fu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Yiting Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China
| | - Saiyun Lou
- Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
- Ningbo Second Hospital, Ningbo, 315010, P. R. China
| | - Sihua Qian
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Jianping Zheng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Guokun Zuo
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| |
Collapse
|
41
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
42
|
Zhou J, Li F, Jia B, Wu Z, Huang Z, He M, Weng H, So KF, Qu W, Fu QL, Zhou L. Intranasal delivery of small extracellular vesicles reduces the progress of amyotrophic lateral sclerosis and the overactivation of complement-coagulation cascade and NF-ĸB signaling in SOD1 G93A mice. J Nanobiotechnology 2024; 22:503. [PMID: 39174972 PMCID: PMC11340036 DOI: 10.1186/s12951-024-02764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive motoneuron degeneration, and effective clinical treatments are lacking. In this study, we evaluated whether intranasal delivery of mesenchymal stem cell-derived small extracellular vesicles (sEVs) is a strategy for ALS therapy using SOD1G93A mice. In vivo tracing showed that intranasally-delivered sEVs entered the central nervous system and were extensively taken up by spinal neurons and some microglia. SOD1G93A mice that intranasally received sEV administration showed significant improvements in motor performances and survival time. After sEV administration, pathological changes, including spinal motoneuron death and synaptic denervation, axon demyelination, neuromuscular junction degeneration and electrophysiological defects, and mitochondrial vacuolization were remarkably alleviated. sEV administration attenuated the elevation of proinflammatory cytokines and glial responses. Proteomics and transcriptomics analysis revealed upregulation of the complement and coagulation cascade and NF-ĸB signaling pathway in SOD1G93A mouse spinal cords, which was significantly inhibited by sEV administration. The changes were further confirmed by detecting C1q and NF-ĸB expression using Western blots. In conclusion, intranasal administration of sEVs effectively delays the progression of ALS by inhibiting neuroinflammation and overactivation of the complement and coagulation cascades and NF-ĸB signaling pathway and is a potential option for ALS therapy.
Collapse
Affiliation(s)
- Jinrui Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Fuxiang Li
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Guangzhou, 510632, P. R. China
| | - Bin Jia
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Guangzhou, 510632, P. R. China
| | - Zicong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Zhonghai Huang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Guangzhou, 510632, P. R. China
| | - Meiting He
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Guangzhou, 510632, P. R. China
| | - Huandi Weng
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Guangzhou, 510632, P. R. China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Guangzhou, 510632, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P. R. China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, P. R. China
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical, Neuroscience Institute of Jinan University, Guangzhou, 510632, P. R. China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, P. R. China
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, 130041, P. R. China.
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China.
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China.
- Otorhinolaryngology Hospital, Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road II 58, Guangzhou, 510080, P. R. China.
| | - Libing Zhou
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Guangzhou, 510632, P. R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P. R. China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, P. R. China.
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical, Neuroscience Institute of Jinan University, Guangzhou, 510632, P. R. China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, P. R. China.
- Guangdong-Hongkong-Macau CNS Regeneration Institute, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, P. R. China.
| |
Collapse
|
43
|
Zhou W, Li H, Song J, Suo F, Gu M, Qi S. Healthy Plasma Exosomes Exert Potential Neuroprotective Effects against Methylmalonic Acid-Induced Hippocampal Neuron Injury. ACS Chem Neurosci 2024; 15:3022-3033. [PMID: 39026168 DOI: 10.1021/acschemneuro.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Exosomes have shown good potential for alleviating neurological deficits and delaying memory deterioration, but the neuroprotective effects of exosomes remain unknown. Methylmalonic acidemia is a metabolic disorder characterized by the accumulation of methylmalonic acid (MMA) in various tissues that inhibits neuronal survival and function, leading to accelerated neurological deterioration. Effective therapies to mitigate these symptoms are lacking. The purpose of this study was to explore the neuroprotective effects of plasma exosomes on cells and a mouse model of MMA-induced injury. We evaluated the ability of plasma exosomes to reduce the neuronal apoptosis, cross the blood-brain barrier, and affect various parameters related to neuronal function. MMA promoted cell apoptosis, disrupted the metabolic balance, and altered the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), and synaptophysin-1 (Syp-1), and these changes may be involved in MMA-induced neuronal apoptosis. Additionally, plasma exosomes normalized learning and memory and protected against MMA-induced neuronal apoptosis. Our findings indicate that neurological deficits are linked to the pathogenesis of methylmalonic acidemia, and healthy plasma exosomes may exert neuroprotective and therapeutic effects by altering the expression of exosomal microRNAs, facilitating neuronal functional recovery in the context of this inherited metabolic disease. Intravenous plasma-derived exosome treatment may be a novel clinical therapeutic strategy for methylmalonic acidemia.
Collapse
Affiliation(s)
- Wei Zhou
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221004, P.R China
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Huizhong Li
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Jinxiu Song
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
| | - Feng Suo
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Maosheng Gu
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221004, P.R China
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
- Medical and Technology School, Xuzhou Medical University, Xuzhou 221004, P.R China
| |
Collapse
|
44
|
Jin H, Liu J, Wang D. Antioxidant Potential of Exosomes in Animal Nutrition. Antioxidants (Basel) 2024; 13:964. [PMID: 39199210 PMCID: PMC11351667 DOI: 10.3390/antiox13080964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
This review delves into the advantages of exosomes as novel antioxidants in animal nutrition and their potential for regulating oxidative stress. Although traditional nutritional approaches promote oxidative stress defense systems in mammalian animals, several issues remain to be solved, such as low bioavailability, targeted tissue efficiency, and high-dose by-effect. As an important candidate offering regulation opportunities concerned with cellular communication, disease prevention, and physiology regulation in multiple biological systems, the potential of exosomes in mediating redox status in biological systems has not been well described. A previously reported relationship between redox system regulation and circulating exosomes suggested exosomes as a fundamental candidate for both a regulator and biomarker for a redox system. Herein, we review the effects of oxidative stress on exosomes in animals and the potential application of exosomes as antioxidants in animal nutrition. Then, we highlight the advantages of exosomes as redox regulators due to their higher bioavailability and physiological heterogeneity-targeted properties, providing a theoretical foundation and feed industry application. Therefore, exosomes have shown great potential as novel antioxidants in the field of animal nutrition. They can overcome the limitations of traditional antioxidants in terms of dosage and side effects, which will provide unprecedented opportunities in nutritional management and disease prevention, and may become a major breakthrough in the field of animal nutrition.
Collapse
Affiliation(s)
| | | | - Diming Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.L.)
| |
Collapse
|
45
|
Wang Q, Guo W, Niu L, Zhou Y, Wang Z, Chen J, Chen J, Ma J, Zhang J, Jiang Z, Wang B, Zhang Z, Li C, Jian Z. 3D-hUMSCs Exosomes Ameliorate Vitiligo by Simultaneously Potentiating Treg Cells-Mediated Immunosuppression and Suppressing Oxidative Stress-Induced Melanocyte Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404064. [PMID: 38887870 PMCID: PMC11336971 DOI: 10.1002/advs.202404064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Vitiligo is an autoimmune disease characterized by epidermal melanocyte destruction, with abnormal autoimmune responses and excessive oxidative stress as two cardinal mechanisms. Human umbilical mesenchymal stem cells-derived exosomes (hUMSCs-Exos) are regarded as promising therapeutic choice for autoimmune diseases due to potent immunosuppressive and anti-oxidative properties, which can be potentiated under 3D cell culture condition. Nevertheless, whether exosomes derived from 3D spheroids of hUMSCs (3D-Exos) exhibit considerable therapeutic effect on vitiligo and the underlying mechanism remain elusive. In this study, systemic administration of 3D-Exos showed a remarkable effect in treating mice with vitiligo, as revealed by ameliorated skin depigmentation, less CD8+T cells infiltration, and expanded Treg cells in skin, and 3D-Exos exerted a better effect than 2D-Exos. Mechanistically, 3D-Exos can prominently facilitate the expansion of Treg cells in vitiligo lesion and suppress H2O2-induced melanocytes apoptosis. Forward miRNA profile analysis and molecular experiments have demonstrated that miR-132-3p and miR-125b-5p enriched in 3D-Exos greatly contributed to these biological effects by targeting Sirt1 and Bak1 respectively. In aggregate, 3D-Exos can efficiently ameliorate vitiligo by simultaneously potentiating Treg cells-mediated immunosuppression and suppressing oxidative stress-induced melanocyte damage via the delivery of miR-132-3p and miR-125b-5p. The employment of 3D-Exos will be a promising treament for vitiligo.
Collapse
Affiliation(s)
- Qi Wang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Weinan Guo
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Liaoran Niu
- Department of Digestive SurgeryXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Yuqi Zhou
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zeqian Wang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jianru Chen
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jiaxi Chen
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jingjing Ma
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jia Zhang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhaoting Jiang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Bo Wang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhe Zhang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Chunying Li
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Zhe Jian
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
46
|
Ahmed LA, Al-Massri KF. Exploring the Role of Mesenchymal Stem Cell-Derived Exosomes in Diabetic and Chemotherapy-Induced Peripheral Neuropathy. Mol Neurobiol 2024; 61:5916-5927. [PMID: 38252384 PMCID: PMC11249772 DOI: 10.1007/s12035-024-03916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
Diabetic and chemotherapy-induced peripheral neuropathies are known for long-term complications that are associated with uncontrolled hyperglycemia and cancer treatment, respectively. Peripheral neuropathy often requires long-term therapy and could persist after treatment provoking detrimental effects on the patient's quality of life. Despite continuous drug discoveries, development of efficient therapies is still needed for the significant management of diabetic and chemotherapy-induced peripheral neuropathy. Exosomes are nanosized extracellular vesicles that show great promise recently in tissue regeneration and injury repair compared to their parent stem cells. Herein, we provided a summary for the use of mesenchymal stem cell-derived exosomes in diabetic and chemotherapy-induced peripheral neuropathy in addition to recent advancements and ways proposed for the enhancement of their efficacy in these diseases.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| | - Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
47
|
Liu X, Chen Y, Zhang T. Mechanism study of BMSC-exosomes combined with hyaluronic acid gel in the treatment of posttraumatic osteoarthritis. Heliyon 2024; 10:e34192. [PMID: 39100446 PMCID: PMC11295849 DOI: 10.1016/j.heliyon.2024.e34192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Objective To explore the mechanism and efficacy of gel in the treatment of posttraumatic osteoarthritis (PTOA), combined with hyaluronic acid (HA) and bone marrow mesenchymal stem cell exosomes (BMSC-EXOs), and to explain its role in alleviating oxidative stress damage induced by mitochondrial reactive oxygen species (ROS). Methods How is the therapeutic potential of toa influenced by bone marrow mesenchymal stem cells-EXO to be evaluated both in vitro and in vivo. In vitro, BMSC-EXOs were extracted and characterized from rat specimens and labeled with Dil. Rat primary chondrocytes were then isolated to create a cellular PTOA model. BMSC-EXOs + HA group, BMSC-EXOs + HA + 740Y-P group, model group, BMSC-EXOs group, HA group, and control group were included in the cell group, and the function of cartilage matrix and the level of oxidative stress could be evaluated. Cartilage matrix integrity and oxidative stress can be assessed by grouping rats. At the same time, a rat model of ptosis can be established by excision of the anterior cruciate ligament, and joint rehabilitation, with pro-inflammatory and Enzyme-linked immunosorbent assay (ELISA) can be used to determine anti-inflammatory markers. Result sThe combined use of BMSC-EXOs and HA gel was found to significantly reduce oxidative stress in chondrocytes and PTOA rat models, improving cartilage mechanical properties more effectively than BMSC-EXOs alone. Conclusion BMSC-EXOs combined with HA gel offer a promising treatment for PTOA by modulating damage caused by mitochondrial ROS-induced oxidative stress.
Collapse
Affiliation(s)
- Xianqiang Liu
- Beichen District Hospital of Traditional Chinese Medicine, China
| | - Yongshuai Chen
- Beichen District Hospital of Traditional Chinese Medicine, China
| | - Tao Zhang
- Beichen District Hospital of Traditional Chinese Medicine, China
| |
Collapse
|
48
|
Yang X, Wang X, Xia J, Jia J, Zhang S, Wang W, He W, Song X, Chen L, Niu P, Chen T. Small extracellular vesicles-derived from 3d cultured human nasal mucosal mesenchymal stem cells during differentiation to dopaminergic progenitors promote neural damage repair via miR-494-3p after manganese exposed mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116569. [PMID: 38878331 DOI: 10.1016/j.ecoenv.2024.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
Manganese (Mn) exposure is a common environmental risk factor for Parkinson's disease (PD), with pathogenic mechanisms associated with dopaminergic neuron damage and neuroinflammation. Mesenchymal stem cells (MSCs)-derived small extracellular vesicles (sEVs) have emerged as a novel therapeutic approach for neural damage repair. The functional sEVs released from MSCs when they are induced into dopaminergic progenitors may have a better repair effect on neural injury. Therefore, we collected sEVs obtained from primary human nasal mucosal mesenchymal stem cells (hnmMSC-sEVs) or cells in the process of dopaminergic progenitor cell differentiation (da-hnmMSC-sEVs), which were cultured in a 3D dynamic system, and observed their repair effects and mechanisms of Mn-induced neural damage by intranasal administration of sEVs. In Mn-exposed mice, sEVs could reach the site of brain injury after intranasal administration, da-hnmMSC enhanced the repair effects of sEVs in neural damage and behavioral competence, as evidenced by restoration of motor dysfunction, enhanced neurogenesis, decreased microglia activation, up-regulation of anti-inflammatory factors, and down-regulation of pro-inflammatory factors. The transcriptomics of hnmMSC-sEVs and da-hnmMSC-sEVs revealed that miRNAs, especially miR-494-3p in sEVs were involved in neuroprotective and anti-inflammatory effects. Overexpression of miR-494-3p in sEVs inhibited Mn-induced inflammation and neural injury, and its repair mechanism might be related to the down-regulation of CMPK2 and NLRP3 in vitro experiments. Thus, intranasal delivery of da-hnmMSC-sEVs is an effective strategy for the treatment of neural injury repair.
Collapse
Affiliation(s)
- Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiao Xia
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Jiaxin Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shixuan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Weiwei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Song
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
49
|
Detante O, Legris L, Moisan A, Rome C. Cell Therapy and Functional Recovery of Stroke. Neuroscience 2024; 550:79-88. [PMID: 38013148 DOI: 10.1016/j.neuroscience.2023.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Stroke is the most common cause of disability. Brain repair mechanisms are often insufficient to allow a full recovery. Stroke damage involve all brain cell type and extracellular matrix which represent the crucial "glio-neurovascular niche" useful for brain plasticity. Regenerative medicine including cell therapies hold great promise to decrease post-stroke disability of many patients, by promoting both neuroprotection and neural repair through direct effects on brain lesion and/or systemic effects such as immunomodulation. Mechanisms of action vary according to each grafted cell type: "peripheral" stem cells, such as mesenchymal stem cells (MSC), can provide paracrine trophic support, and neural stem/progenitor cells (NSC) or neurons can act as direct cells' replacements. Optimal time window, route, and doses are still debated, and may depend on the chosen medicinal product and its expected mechanism such as neuroprotection, delayed brain repair, systemic effects, or graft survival and integration in host network. MSC, mononuclear cells (MNC), umbilical cord stem cells and NSC are the most investigated. Innovative approaches are implemented concerning combinatorial approaches with growth factors and biomaterials such as injectable hydrogels which could protect a cell graft and/or deliver drugs into the post-stroke cavity at chronic stages. Through main publications of the last two decades, we provide in this review concepts and suggestions to improve future translational researches and larger clinical trials of cell therapy in stroke.
Collapse
Affiliation(s)
- Olivier Detante
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France; Stroke Unit, Neurology, CHU Grenoble Alpes, CS10217, 38043 Grenoble, France; Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France.
| | - Loic Legris
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France; Stroke Unit, Neurology, CHU Grenoble Alpes, CS10217, 38043 Grenoble, France; Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France.
| | - Anaick Moisan
- Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France; Cell Therapy and Engineering Unit, EFS Rhône Alpes, 464 route de Lancey, 38330 Saint Ismier, France.
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France; Stroke Unit, Neurology, CHU Grenoble Alpes, CS10217, 38043 Grenoble, France; Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
50
|
Sharma NK, Dwivedi P, Bhushan R, Maurya PK, Kumar A, Dakal TC. Engineering circular RNA for molecular and metabolic reprogramming. Funct Integr Genomics 2024; 24:117. [PMID: 38918231 DOI: 10.1007/s10142-024-01394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The role of messenger RNA (mRNA) in biological systems is extremely versatile. However, it's extremely short half-life poses a fundamental restriction on its application. Moreover, the translation efficiency of mRNA is also limited. On the contrary, circular RNAs, also known as circRNAs, are a common and stable form of RNA found in eukaryotic cells. These molecules are synthesized via back-splicing. Both synthetic circRNAs and certain endogenous circRNAs have the potential to encode proteins, hence suggesting the potential of circRNA as a gene expression machinery. Herein, we aim to summarize all engineering aspects that allow exogenous circular RNA (circRNA) to prolong the time that proteins are expressed from full-length RNA signals. This review presents a systematic engineering approach that have been devised to efficiently assemble circRNAs and evaluate several aspects that have an impact on protein production derived from. We have also reviewed how optimization of the key components of circRNAs, including the topology of vector, 5' and 3' untranslated sections, entrance site of the internal ribosome, and engineered aptamers could be efficiently impacting the translation machinery for molecular and metabolic reprogramming. Collectively, molecular and metabolic reprogramming present a novel way of regulating distinctive cellular features, for instance growth traits to neoplastic cells, and offer new possibilities for therapeutic inventions.
Collapse
Affiliation(s)
- Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith (Deemed University), P.O. Banasthali Vidyapith Distt. Tonk, Rajasthan, 304 022, India.
| | - Pragya Dwivedi
- Department of Bioscience and Biotechnology, Banasthali Vidyapith (Deemed University), P.O. Banasthali Vidyapith Distt. Tonk, Rajasthan, 304 022, India
| | - Ravi Bhushan
- Department of Zoology, M.S. College, Motihari, Bihar, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|