1
|
Jacobo-Delgado YM, Trujillo-Paez V, Santos-Mena A, Felix-Arellano C, Gonzalez-Curiel I, De Jesus-González LA, Rivas-Santiago B. Repurposing of activating transcription factor 3 (ATF3) activator molecules with potential wound-healing effects. Injury 2025; 56:112314. [PMID: 40220516 DOI: 10.1016/j.injury.2025.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Wound healing is a complex and regulated process that involves the coordinated action of key signaling pathways. Activating transcription factor 3 (ATF3) is a stress-inducible protein that has recently emerged as a critical modulator of cellular responses to injury, including those involved in wound healing. AIM The aim of this study was to explore the repurposing of existing pharmacological agents to activate ATF3 and evaluate their potential to enhance wound healing factors. METHODS We selected three compounds: retin-A, furosemide, and acrivastine based on their ability to modulate ATF3 expression and assessed their effects on wound healing processes in primary cell cultures. We evaluated wound healing-related genes such as LL-37, HBD-2, HBD-3, and VEGFA by qPCR, and a wound healing scratch assay using keratinocytes was conducted to evaluate cell migration. RESULTS Interestingly, retin-A induced the expression of key wound healing-related genes, including HBD-2, HBD-3, LL-37, and VEGF. Also, retin-A was the only compound showing wound healing effects, while furosemide and acrivastine did not exhibit any noticeable activity. CONCLUSION Our research highlights the potential of retin-A as therapeutic agents to improve wound healing, particularly in chronic wound models.
Collapse
Affiliation(s)
- Yolanda M Jacobo-Delgado
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro ZIP code 98000, Zacatecas, Mexico
| | - Valentin Trujillo-Paez
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro ZIP code 98000, Zacatecas, Mexico
| | - Alan Santos-Mena
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro ZIP code 98000, Zacatecas, Mexico
| | - Camelia Felix-Arellano
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro ZIP code 98000, Zacatecas, Mexico
| | - Irma Gonzalez-Curiel
- Faculty of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - Luis A De Jesus-González
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro ZIP code 98000, Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro ZIP code 98000, Zacatecas, Mexico.
| |
Collapse
|
2
|
Huang Z, Qian X, Xu Y, Kaindi ST, Pakaya CD, Zhang J. [Hair transplantation in wound healing and scar repair in special areas]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2025; 39:647-654. [PMID: 40368870 DOI: 10.7507/1002-1892.202502051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Objective To review recent advances in the application of hair transplantation in wound healing and scar repair in special areas. Methods An extensive review of the literature on the application of hair transplantation in wound healing and scar repair in special areas was conducted, focusing on cellular functions, molecular mechanisms, and clinical applications. Results Hair transplantation has been shown to effectively promote wound healing and scar repair in special areas. The underlying mechanisms are complex, but current understanding emphasizes a strong association with hair follicle-associated stem cells (including epidermal stem cells, dermal papilla cells, dermal sheath cells, etc). Conclusion The application of hair transplantation in wound healing and scar repair in special areas remains in its early stages. Further investigation into its mechanisms of action is essential, and randomized controlled trials are needed to establish its efficacy.
Collapse
Affiliation(s)
- Zhewei Huang
- Fourth Clinical Medical College Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou Zhejiang, 310013, P. R. China
- Department of Medical Beauty, Hangzhou First People's Hospital Affiliated to Medical College of West Lake University, Hangzhou Zhejiang, 310006, P. R. China
| | - Xifei Qian
- Fourth Clinical Medical College Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou Zhejiang, 310013, P. R. China
- Department of Medical Beauty, Hangzhou First People's Hospital Affiliated to Medical College of West Lake University, Hangzhou Zhejiang, 310006, P. R. China
| | - Yanwen Xu
- Department of Medical Beauty, Hangzhou First People's Hospital Affiliated to Medical College of West Lake University, Hangzhou Zhejiang, 310006, P. R. China
| | - Samuel Tumaini Kaindi
- Fourth Clinical Medical College Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou Zhejiang, 310013, P. R. China
| | - Collins Daniel Pakaya
- Fourth Clinical Medical College Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou Zhejiang, 310013, P. R. China
| | - Jufang Zhang
- Department of Medical Beauty, Hangzhou First People's Hospital Affiliated to Medical College of West Lake University, Hangzhou Zhejiang, 310006, P. R. China
| |
Collapse
|
3
|
Wang H, Wu S, Bai X, Pan D, Ning Y, Wang C, Guo L, Guo J, Gu Y. Mesenchymal Stem Cell-Derived Exosomes Hold Promise in the Treatment of Diabetic Foot Ulcers. Int J Nanomedicine 2025; 20:5837-5857. [PMID: 40351704 PMCID: PMC12065540 DOI: 10.2147/ijn.s516533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic foot ulcers (DFU) represent one of the most common side effects of diabetes, significantly impacting patients' quality of life and imposing considerable financial burdens on families and society at large. Despite advancements in therapies targeting lower limb revascularization and various medications and dressings, outcomes for patients with severe lesions remain limited. A recent breakthrough in DFU treatment stems from the development of mesenchymal stem cells (MSCs). MSCs have shown promising results in treating various diseases and skin wounds due to their ability for multidirectional differentiation and immunomodulation. Recent studies highlight that MSCs primarily repair tissue through their paracrine activities, with exosomes playing a crucial role as the main biologically active components. These exosomes transport proteins, mRNA, DNA, and other substances, facilitating DFU treatment through immunomodulation, antioxidant effects, angiogenesis promotion, endothelial cell migration and proliferation, and collagen remodeling. Mesenchymal stem cell-derived exosomes (MSC-Exo) not only deliver comparable therapeutic effects to MSCs but also mitigate adverse reactions like immune rejection associated with MSCs transplantation. This article provides an overview of DFU pathophysiology and explores the mechanisms and research progress of MSC-Exo in DFU therapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Sensen Wu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Xinyu Bai
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yachan Ning
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| |
Collapse
|
4
|
Zheng C, Wu Y, Luan F, Wei C, Zhang C, Liu W, Wang W, Chen J. Advances in biomimetic hydrogel for articular cartilage defect repair: Enabling immunomodulation and chondrogenesis. Colloids Surf B Biointerfaces 2025; 253:114760. [PMID: 40359898 DOI: 10.1016/j.colsurfb.2025.114760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/22/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
Articular cartilage defects, as a core pathologic feature in the progression of osteoarthritis, and their irreversible degenerative changes lead to functional impairment and socioeconomic burden for tens of millions of patients worldwide. Hydrogels have become key biomaterials in cartilage regeneration with the three-dimensional network structure, programmable mechanical properties, and cell-adaptive microenvironment of biomimetic extracellular matrix. In recent years, several hydrogel systems with in vitro/in vivo repair potential have been developed by modulating the material topology, dynamic mechanical response, and delivery of bioactive factors, and some of them have entered the clinical translation stage. This review systematically explains the biomimetic design principles of hydrogels. It analyzes the immunomodulation and chondrogenic mechanisms mediated by hydrogels, providing a theoretical framework for the development of next-generation smart cartilage repair materials.
Collapse
Affiliation(s)
- Chenxiao Zheng
- Department ofOrthopaedics and Traumatology, Zhongshan Hospital of Traditional ChineseMedicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Yurui Wu
- Department ofOrthopaedics and Traumatology, Zhongshan Hospital of Traditional ChineseMedicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Feifan Luan
- Department ofOrthopaedics and Traumatology, Zhongshan Hospital of Traditional ChineseMedicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Chunwei Wei
- Department ofOrthopaedics and Traumatology, Zhongshan Hospital of Traditional ChineseMedicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Chunye Zhang
- Biomedical and HealthTechnology Innovation Platform, National University of Singapore (Suzhou)Research Institute, Suzhou, Jiangsu 215123, China
| | - Wenjun Liu
- Zhejiang ShangyueBiotechnology Research Center, Hangzhou, Zhejiang 310018, China
| | - Wenjun Wang
- Biomedical and HealthTechnology Innovation Platform, National University of Singapore (Suzhou)Research Institute, Suzhou, Jiangsu 215123, China.
| | - Jiayi Chen
- Department ofOrthopaedics and Traumatology, Zhongshan Hospital of Traditional ChineseMedicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China.
| |
Collapse
|
5
|
Naseraei MM, Adeli H, Nabavi SR, Salimi-Kenari H, Mansour RN, Sarkati AG. Exploring the potential of incorporating ZIF-67 into electrospun poly (vinyl alcohol)/chitosan nanofibrous mats for wound healing. Int J Biol Macromol 2025; 308:141898. [PMID: 40074137 DOI: 10.1016/j.ijbiomac.2025.141898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The current research emphasis is on the development of wound dressings that can inhibit bacterial infections and facilitate the treatment of complex wound healing processes. In this study, nanofibrous mats of polyvinyl alcohol/chitosan/ZIF-67(PVA/Cs/ZIF-67) were prepared using an electrospinning technique, to investigate their antibacterial and regenerative properties in a rat model of full-thickness skin wounds. ZIF-67 nanoparticles, with an average size of approximately 373.5 nm and a high specific surface area of 1849 m2 g-1, were synthesized. The structural characteristics of the mats were analyzed using FTIR and FESEM. TEM and EDS analysis confirmed the presence of ZIF-67 crystals on the surface of the scaffolds. The PVA/Cs/ZIF-67 nanofibrous mat exhibits the requisite porosity, swelling ratio, WVTR, contact angle, and satisfactory mechanical properties in both dry and wet conditions. The cytotoxicity test demonstrated that the nanofibers containing ZIF-67 nanoparticles are biocompatible and capable of supporting cell adhesion. Moreover, the nanofibers exhibit notable antibacterial activity up to 90 %. Additionally, in animal studies, the PVA/Cs/ZIF-67 nanofibrous mat demonstrated superior efficacy in wound healing, accompanied by reduced inflammation and enhanced skin remodeling. This substantiates the considerable potential of the PVA/Cs/ZIF-67 nanofibrous mat as a wound dressing for full-thickness skin wound healing.
Collapse
Affiliation(s)
- Maedeh M Naseraei
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran
| | - Hassan Adeli
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran.
| | - Seyed Reza Nabavi
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Hamed Salimi-Kenari
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran
| | - Reyhaneh Nassiri Mansour
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aref Gholami Sarkati
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Kumar S, Verma YK. Wound healing by enhancing cell proliferation: a thermoreversible formulation containing raloxifene. Cell Tissue Bank 2025; 26:22. [PMID: 40272605 DOI: 10.1007/s10561-025-10171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
The challenge of ineffective wound healing, leading to chronic conditions necessitates the development of novel therapeutics strategies. Currently, a plethora of ailments have been researched and marketed globally to accelerate angiogenesis, re-epithelization, collagen synthesis, and proliferation. However, clinical translation remains challenging and requires rigorous pre- and post-clinical screening. Here, we have developed a formulation encapsulating Raloxifene, a repurposed drug, aimed to induce accelerated wound healing. Four different formulations (Forms 1, 2, 3, and 4) incorporating alginate, poloxamer 407 (P407), LiCl, and fetal bovine serum were prepared. Formulations were characterized by scanning electron microscopy, Fourier Transformation infrared spectroscopy, and rheology. In vitro assessments encompassing cell viability, cell migration, and drug release profile were conducted, subsequently, the in vivo wound healing potential was evaluated in Sprague Dawley (SD) rats. In results, we observed significant (p-value<0.05) wound healing by Form 3 at 14th due to up-regulation of TGFꞵ, Col-I and GSK3β genes. The histology results showed complete development of epidermis, endoderm and collagen fibers by Form 3, leading to complete healing. This formulation shows promise for clinical application in accelerated wound healing processes.
Collapse
Affiliation(s)
- Subodh Kumar
- Regenerative Biology Research Lab, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yogesh Kumar Verma
- Regenerative Biology Research Lab, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
7
|
Tsai Y, Sun J, Liu Y, Chong C, Zheng D, Zhang Y, Yu L. Investigating the Therapeutic Potential of Salvianolic Acid B in Ischemic Wound Healing: In Vivo and In Vitro Study. Aesthetic Plast Surg 2025:10.1007/s00266-025-04816-w. [PMID: 40227459 DOI: 10.1007/s00266-025-04816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/28/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Ischemic wounds pose a challenge to conventional treatments due to insufficient blood and oxygen supply, exacerbating patient distress and often rendering traditional treatments ineffective. Thus, improving the healing rate of ischemic wounds remains a significant challenge requiring further research and solutions. METHODS HaCaT and HUVEC were exposed to Sal-B under hypoxic conditions in vitro to assess proliferation, migration, and angiogenesis. Further, the mechanisms of action were investigated. In vivo, a mouse ischemic wound model was treated with Sal-B topically, with group comparisons including control (PBS), VEGF (100 ng/ml), and Sal-B (50 μmol/L, 100 μmol/L) utilizing immunofluorescence and H&E staining. RESULTS Salvianolic acid B notably increased HaCaT and HUVEC proliferation, migration, and tube formation in vitro and improved ischemic wound healing rates in vivo. It modulated crucial factors such as HIF-1α, TGF-β, MMP2, and bFGF. CONCLUSION This study indicates that salvianolic acid B promotes the healing of ischemic wounds under hypoxic conditions through multiple mechanisms. Specifically, salvianolic acid B effectively reduces the expression of HIF-1α while increasing the levels of TGF-β and bFGF, which are crucial for cell proliferation and new blood vessel formation during the wound healing process. Additionally, salvianolic acid B significantly enhances the proliferation, migration, and tube formation of HaCaT and HUVEC, accelerating wound closure, validating its potential for clinical application and highlighting new treatment strategies. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- YiTung Tsai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People'S Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - JiaMing Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People'S Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - YuXin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People'S Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - ChioHou Chong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People'S Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - DanNing Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People'S Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People'S Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Li Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People'S Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Fu X, Li J, Yang S, Jing J, Zheng Q, Zhang T, Xu Z. Blood-brain barrier repair: potential and challenges of stem cells and exosomes in stroke treatment. Front Cell Neurosci 2025; 19:1536028. [PMID: 40260076 PMCID: PMC12009835 DOI: 10.3389/fncel.2025.1536028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/12/2025] [Indexed: 04/23/2025] Open
Abstract
Stroke is characterized with high morbidity, mortality and disability all over the world, and one of its core pathologies is blood-brain barrier (BBB) dysfunction. BBB plays a crucial physiological role in protecting brain tissues and maintaining homeostasis in central nervous system (CNS). BBB dysfunction serves as a key factor in the development of cerebral edema, inflammation, and further neurological damage in stroke patients. Currently, stem cells and their derived exosomes have shown remarkable potential in repairing the damaged BBB and improving neurological function after stroke. Stem cells repair the integrity of BBB through anti-inflammatory, antioxidant, angiogenesis and regulation of intercellular signaling mechanisms, while stem cell-derived exosomes, as natural nanocarriers, further enhance the therapeutic effect by carrying active substances such as proteins, RNAs and miRNAs. This review will present the latest research advances in stem cells and their exosomes in stroke treatment, as well as the challenges of cell source, transplantation timing, dosage, and route of administration in clinical application, aiming to discuss their mechanisms of repairing BBB integrity and potential for clinical application, and proposes future research directions. Stem cells and exosomes are expected to provide new strategies for early diagnosis and precise treatment of stroke, and promote breakthroughs in the field of stroke.
Collapse
Affiliation(s)
- Xiaochen Fu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Jia Li
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Shoujun Yang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiapeng Jing
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Qinzhi Zheng
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Ting Zhang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Wang S, Huang Z, Zhou L, Li J, Li H, Jiang T, Lin L, Zhang Z, Fang Y, Zhang R. Therapeutic potential of recombinant human type XVII collagen in wound healing and bullous pemphigoid: From bench to bedside. Eur J Pharm Sci 2025; 207:107031. [PMID: 39914723 DOI: 10.1016/j.ejps.2025.107031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
OBJECTIVE To investigate the effects of recombinant human type XVII collagen (RHCXVII) on the proliferation and adhesion of primary human keratinocytes (HPKCs) and to observe its clinical efficacy and safety in bullous pemphigoid (BP). METHODS The RHCXVII was produced by genetic recombination technology and characterized by Fourier transform infrared (FTIR) spectroscopy. HPKCs were obtained from human foreskin and seeded onto culture plates coated with RHCXVII at concentrations of 10, 50 and 100μg/ml. The proliferation and relative adhesion of HPKCs were assessed by Cell Counting Kit-8 (CCK-8) and adhesion assays, respectively. Trajectories and velocities of HPKCs were recorded using a living cell imaging platform. To assess the effects of RHCXVII on HPKCs, E-cadherin, integrinα6 and laminin α3 mRNA levels were measured using reverse transcription-polymerase chain reaction (RT-PCR) assays. The patient test sites were treated with RHCXVII, while the contralateral sides served as controls. This was performed in combination with systemic glucocorticoid treatment. Bilateral wound healing was recorded at various time points and the efficacy in BP was assessed. RESULTS RHCXVII exhibited the anticipated structural characteristics of recombinant collagen and was deemed suitable for utilization in the present study. HPKCs demonstrated robust growth in culture plates precoated with RHCXVII, expressing keratin 15 (K15). After 3, 5 and 7 days, RHCXVII at a concentration of 10 µg/ml significantly promoted the proliferation of HPKCs (P<0.05). Furthermore, the optimal relative adhesion of HPKCs was observed when cells were cultured on RHCXVII at a concentration of 100 µg/ml (P<0.01). The mRNA levels of E-cadherin, integrinα6 and lamininα3 in HPKCs cultivated in wells coated with RHCXVII were considerably higher compared to the control group (P<0.05). The study encompassed a total of 12 patients. The mean time to resolution of lesions on the treated sides was 11.08 days, significantly shorter than the 13.42 days observed on the control sides. The mean time to blister resolution was 2.3 days shorter on the treated sides than on the controls. By day 7, the percentage improvement in wound healing compared to the baseline was 7.75 % greater on the treated sides than on the control sides. The study noted a high level of patient satisfaction and no occurrence of significant adverse events. CONCLUSION RHCXVII has the capacity to promote HPKC growth and adherence. In clinical applications, it has been demonstrated to accelerate wound healing in patients with bullous diseases (BD), thereby reducing the risk of subsequent secondary infection. Its potential as an adjunct treatment for wound repair in diseases such as BD merits further investigation.
Collapse
Affiliation(s)
- Suqin Wang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Zeyu Huang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Lailai Zhou
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Jiajia Li
- Jiangsu Trautec Medical Technology Co., Ltd., Changzhou, Jiangsu, 213100, China
| | - Haihang Li
- Jiangsu Trautec Medical Technology Co., Ltd., Changzhou, Jiangsu, 213100, China
| | - Tingting Jiang
- Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, 10 Kangfu Road, Wuhu, 241000, China
| | - Li Lin
- Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, 10 Kangfu Road, Wuhu, 241000, China
| | - Zhiqiang Zhang
- Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, 10 Kangfu Road, Wuhu, 241000, China
| | - Yuxia Fang
- Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, 10 Kangfu Road, Wuhu, 241000, China
| | - Ruzhi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, 10 Kangfu Road, Wuhu, 241000, China.
| |
Collapse
|
10
|
Ma DJ, Li TH, Yang SY, Yu JJ, Li ST, Yu Y, Liu Y, Zang J, Kong L, Li XT. Self-assembling Bletilla polysaccharide nanogels facilitate healing of acute and infected wounds via inflammation control and antibacterial activity. Int J Biol Macromol 2025; 299:140125. [PMID: 39842574 DOI: 10.1016/j.ijbiomac.2025.140125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Wound healing is one of the fundamental problems faced by the medical profession. Thus, there is a need for the development of biomaterials that are safe, economically viable, possess anti-inflammatory and antibacterial characteristics, and enhance wound healing. In this study, we designed a nanomicelle of Bletilla striata polysaccharide (BSP) self-loaded with Azithromycin (AZI). The properties are improved by physically blending Carbomer 940 (CBM) with Gelatin (GEL) to serve as the hydrogel matrix. The preparation was made by combining the nanomicelle, used as the precursor solution, with the gel matrix. It was designed to treat wound infections and promote healing. Relevant experiments indicate its excellent biocompatibility. The hydrogel not only promotes cell migration, proliferation, angiogenesis, and collagen deposition associated with skin healing, but also regulates the polarization of macrophages from the M1 to M2 phenotype, as well as the expression of related factors. Additionally, in vitro experiments demonstrate its good antibacterial activity. In addition, we demonstrated the gel's anti-inflammatory, antibacterial, and pro-healing effects in acute wounds and methicillin-resistant Staphylococcus aureus (MRSA) wounds. Therefore, the nanomicellar gel enhances antibacterial activity and related immune regulation, offering a new direction in the treatment of acute and chronic wounds.
Collapse
Affiliation(s)
- De-Jin Ma
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Tian-Hua Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Su-Yu Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Jun-Jie Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Shu-Tong Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China.
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China.
| |
Collapse
|
11
|
Xu M, Zhang M, Wu J, Wang J, Wu H, Xu X. Esculin promotes skin wound healing in mice and regulates the Wnt/β-catenin signaling pathway. Cytojournal 2025; 22:32. [PMID: 40260065 PMCID: PMC12010908 DOI: 10.25259/cytojournal_184_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/25/2025] [Indexed: 04/23/2025] Open
Abstract
Objective Previous studies reported that esculin could protect against renal ischemia-reperfusion injury and liver injury, but its mechanism of action in skin wound healing is unclear. The Wnt/β-catenin signaling pathway plays a positive role in the wound healing process. This study aimed to investigate the effects of esculin on the rate and quality of skin wound healing in mice and explore its regulatory role in the Wnt/b-catenin signaling pathway. Material and Methods Circular full-thickness skin wounds with a diameter of 8 mm were created on the backs of C57BL/6 mice, which were administered with 20 and 40 mg•kg-1 esculin through gastric lavage. Wound healing was monitored, and samples collected on day 14 were analyzed through hematoxylin-eosin and Masson staining to assess granulation tissue formation and collagen deposition. Immunohistochemistry, immunofluorescence, and Western blot evaluated markers of collagen synthesis, proliferation, angiogenesis, and proteins in the Wnt/b-catenin signaling pathway. National institutes of health/3T3 cells treated with esculin (50 and 200 μM) were analyzed for proliferating cell nuclear antigen (PCNA) expression to assess proliferative activity. Results Compared with the model group, the esculin-treated groups exhibited significantly enhanced wound healing (P < 0.05), increased skin epithelial thickness (P < 0.01), and promoted extracellular matrix formation in mice. In addition, esculin significantly raised type I collagen alpha-1 chain and type III collagen alpha-1 chain protein levels (P < 0.05), boosted the expression of the cell proliferation marker PCNA and the vascular marker cluster of differentiation 31 in the dermis (P < 0.05), and upregulated proteins related to the Wnt/b-catenin signaling pathway and increased glycogen synthase kinase 3 beta phosphorylation in skin wound and NIH/3T3 cells (P < 0.05). Conclusion Esculin could upregulate and activate the Wnt/b-catenin signaling pathway to promote wound healing.
Collapse
Affiliation(s)
- Mian Xu
- Department of Dermatology, Wenzhou Central Hospital, Wenzhou, China
| | - Mengsi Zhang
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| | - Jingjing Wu
- Department of Dermatology, Wenzhou Central Hospital, Wenzhou, China
| | - Jinmeng Wang
- Department of Dermatology, Wenzhou Central Hospital, Wenzhou, China
| | - Huaze Wu
- Department of Dermatology, Wenzhou Central Hospital, Wenzhou, China
| | - Xianting Xu
- Department of Dermatology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
12
|
Wang M, Nan H, Wang M, Yang S, Liu L, Wang HH, Nie Z. Responsive DNA artificial cells for contact and behavior regulation of mammalian cells. Nat Commun 2025; 16:2410. [PMID: 40069211 PMCID: PMC11897219 DOI: 10.1038/s41467-025-57770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
Artificial cells have emerged as synthetic entities designed to mimic the functionalities of natural cells, but their interactive ability with mammalian cells remains challenging. Herein, we develop a generalizable and modular strategy to engineer DNA-empowered stimulable artificial cells designated to regulate mammalian cells (STARM) via synthetic contact-dependent communication. Constructed through temperature-controlled DNA self-assembly involving liquid-liquid phase separation (LLPS), STARMs feature organized all-DNA cytoplasm-mimic and membrane-mimic compartments. These compartments can integrate functional nucleic acid (FNA) modules and light-responsive gold nanorods (AuNRs) to establish a programmable sense-and-respond mechanism to specific stimuli, such as light or ions, orchestrating diverse biological functions, including tissue formation and cellular signaling. By combining two designer STARMs into a dual-channel system, we achieve orthogonally regulated cellular signaling in multicellular communities. Ultimately, the in vivo therapeutic efficacy of STARM in light-guided muscle regeneration in living animals demonstrates the promising potential of smart artificial cells in regenerative medicine.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Biology, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hexin Nan
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Meixia Wang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Biology, Hunan University, Changsha, PR China
| | - Sihui Yang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Lin Liu
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China.
- College of Biology, Hunan University, Changsha, PR China.
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, PR China.
| | - Zhou Nie
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China.
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China.
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, PR China.
| |
Collapse
|
13
|
Liu Y, Wang P, Li J, Chen L, Shu B, Wang H, Liu H, Zhao S, Zhou J, Chen X, Xie J. Single-cell RNA sequencing reveals the impaired epidermal differentiation and pathological microenvironment in diabetic foot ulcer. BURNS & TRAUMA 2025; 13:tkae065. [PMID: 40040959 PMCID: PMC11879498 DOI: 10.1093/burnst/tkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 03/06/2025]
Abstract
Background Diabetic foot ulcer (DFU) is one of the most common and complex complications of diabetes, but the underlying pathophysiology remains unclear. Single-cell RNA sequencing (scRNA-seq) has been conducted to explore novel cell types or molecular profiles of DFU from various perspectives. This study aimed to comprehensively analyze the potential mechanisms underlying impaired re-epithelization of DFU in a single-cell perspective. Methods We conducted scRNA-seq on tissues from human normal skin, acute wound, and DFU to investigate the potential mechanisms underlying impaired epidermal differentiation and the pathological microenvironment. Pseudo-time and lineage inference analyses revealed the distinct states and transition trajectories of epidermal cells under different conditions. Transcription factor analysis revealed the potential regulatory mechanism of key subtypes of keratinocytes. Cell-cell interaction analysis revealed the regulatory network between the proinflammatory microenvironment and epidermal cells. Laser-capture microscopy coupled with RNA sequencing (LCM-seq) and multiplex immunohistochemistry were used to validate the expression and location of key subtypes of keratinocytes. Results Our research provided a comprehensive map of the phenotypic and dynamic changes that occur during epidermal differentiation, alongside the corresponding regulatory networks in DFU. Importantly, we identified two subtypes of keratinocytes: basal cells (BC-2) and diabetes-associated keratinocytes (DAK) that might play crucial roles in the impairment of epidermal homeostasis. BC-2 and DAK showed a marked increase in DFU, with an inactive state and insufficient motivation for epidermal differentiation. BC-2 was involved in the cellular response and apoptosis processes, with high expression of TXNIP, IFITM1, and IL1R2. Additionally, the pro-differentiation transcription factors were downregulated in BC-2 in DFU, indicating that the differentiation process might be inhibited in BC-2 in DFU. DAK was associated with cellular glucose homeostasis. Furthermore, increased CCL2 + CXCL2+ fibroblasts, VWA1+ vascular endothelial cells, and GZMA+CD8+ T cells were detected in DFU. These changes in the wound microenvironment could regulate the fate of epidermal cells through the TNFSF12-TNFRSF12A, IFNG-IFNGR1/2, and IL-1B-IL1R2 pathways, which might result in persistent inflammation and impaired epidermal differentiation in DFU. Conclusions Our findings offer novel insights into the pathophysiology of DFU and present potential therapeutic targets that could improve wound care and treatment outcomes for DFU patients.
Collapse
Affiliation(s)
- Yiling Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Peng Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Jingting Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Lei Chen
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Bin Shu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Hanwen Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Hengdeng Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Shixin Zhao
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Junli Zhou
- Department of Burn and Plastic Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), No. 3 Wandao Road, Dongguan 523000, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People’s Hospital of Foshan, No. 3 Lingnan Road, Foshan 528000, China
| | - Julin Xie
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| |
Collapse
|
14
|
Lu ZJ, Ye JG, Li JN, Liang JB, Zhou M, Hu QL, Zhang QK, Lin YH, Zheng YF. Single-Cell Multiomics Analysis of Early Wound Response Programs in the Mouse Corneal Epithelium. Invest Ophthalmol Vis Sci 2025; 66:9. [PMID: 40042873 PMCID: PMC11892537 DOI: 10.1167/iovs.66.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/11/2025] [Indexed: 03/12/2025] Open
Abstract
Purpose Wound healing is crucial for restoring homeostasis in living organisms. Although wound response mechanisms have been studied extensively, the gene regulatory programs involved remain to be elucidated. Here, we used single-cell RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) analysis to profile the regulatory landscape of mouse corneal epithelium in early wound response. Methods We used our previously published single-cell data sets of homeostatic adult mouse corneal epithelium as the unwounded group. The wounded group data sets were obtained by sequencing the epithelium after an annular epithelial wound. Following the integration of the relevant data sets, the Seurat and ArchR packages were employed for single-cell RNA-seq and single-cell ATAC-seq data processing and downstream analysis, respectively. The Monocle 2 was used for pseudo-time analysis, CellChat for intercellular communication analysis, and pySCENIC for analyzing transcription factors. The expression of key genes was validated via immunofluorescence staining and quantitative real-time PCR. Results Our data show that the number of cell type-specific genes decreases and the number of common transcriptional responses increases in early wound response. Concurrently, we find that the chromatin accessibility landscape undergoes significant changes across all epithelial cell types and that the wound-induced open regions are similarly distributed across the genome. Motif enrichment analysis shows that Fosl1/AP-1 binding site is highly enriched among the opened regions. However, by assessing the correlation between changes in chromatin accessibility and gene expression, we observe that only a small subset of wound-induced genes shows a high correlation with the accessibility of nearby chromatin. Conclusions Our study provides a detailed single-cell landscape for transcriptomic and epigenetic changes in mouse corneal epithelium during early wound response, which improved our understanding of the mechanisms of wound healing.
Collapse
Affiliation(s)
- Zhao-Jing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin-Guo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing-Ni Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiang-Bo Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ming Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qiu-Ling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qi-Kai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu-Heng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying-Feng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Zhuge D, Yang S, Pan X, Xiao Y, Wang X, Wang W, Gao W, Lu A, Shi B, Chen B, Zhao Y. Ultrasound-Triggered Oxygen Release System for Accelerating Wound Healing of Diabetic Foot Ulcers. Adv Healthc Mater 2025; 14:e2403224. [PMID: 39790093 DOI: 10.1002/adhm.202403224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Diabetic foot ulcer (DFU) is a common complication of chronic diabetes mellitus. Oxygen plays a critical role in the healing process of DFU wounds by promoting cell migration and neovascularization. However, clinical hyperbaric oxygen (HBO) therapy predominantly uses systemic oxygen administration, posing challenges in inadequate DFU local oxygen penetration and potential ectopic organs oxygen toxicity. To address these challenges, a strategy to encapsulate oxygen with lipid microbubbles (OMBs) and incorporate them into a body temperature-sensitive heparin-pluronic copolymer hydrogel (HP/OMBs) have been developed. HP/OMBs showed high biocompatibility both in vitro and in vivo. After in situ administration, oxygen can be released from HP/OMBs to the local deep site of the DFU wounds under ultrasound (US) triggering. Thus, given its biocompatibility and practicality, the combined action of HP/OMBs and the US has important translational value in accelerating diabetic chronic wound healing.
Collapse
Affiliation(s)
- Deli Zhuge
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, 315302, China
| | - Siting Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiehua Pan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yingnan Xiao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinji Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenqian Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenli Gao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, 315302, China
| | - Ailing Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, 315302, China
| | - Binbin Shi
- Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Bin Chen
- Department of Ultrasound, First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Shenzhen, 518035, China
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, 315302, China
| |
Collapse
|
16
|
Minjares M, Thepsuwan P, Zhang K, Wang JM. Unfolded protein responses: Dynamic machinery in wound healing. Pharmacol Ther 2025; 267:108798. [PMID: 39826569 PMCID: PMC11881203 DOI: 10.1016/j.pharmthera.2025.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Skin wound healing is a dynamic process consisting of multiple cellular and molecular events that must be tightly coordinated to repair the injured tissue efficiently. The healing pace is decided by the type of injuries, the depth and size of the wounds, and whether wound infections occur. However, aging, comorbidities, genetic factors, hormones, and nutrition also impact healing outcomes. During wound healing, cells undergo robust processes of synthesizing new proteins and degrading multifunctional proteins. This imposes an increasing burden on the endoplasmic reticulum (ER), causing ER stress. Unfolded protein response (UPR) represents a collection of highly conserved stress signaling pathways originated from the ER to maintain protein homeostasis and modulate cell physiology. UPR is known to be beneficial for tissue healing. However, when excessive ER stress exceeds ER's folding potential, UPR pathways trigger cell apoptosis, interrupting tissue regeneration. Understanding how UPR pathways modulate the skin's response to injuries is critical for new interventions toward the control of acute and chronic wounds. Herein, in this review, we focus on the participation of the canonical and noncanonical UPR pathways during different stages of wound healing, summarize the available evidence demonstrating UPR's unique position in balancing homeostasis and pathophysiology of healing tissues, and highlight the understudied areas where therapeutic opportunities may arise.
Collapse
Affiliation(s)
- Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA
| | | | - Kezhong Zhang
- Centers for Molecular Medicine and Genetics, Wayne State University, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, USA.
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA; Centers for Molecular Medicine and Genetics, Wayne State University, USA; Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
17
|
Yampolsky M, Bachelet I, Fuchs Y. Wound localization and housing conditions dictate repair dynamics and scar formation. Lab Anim (NY) 2025; 54:68-73. [PMID: 40011792 DOI: 10.1038/s41684-025-01520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025]
Abstract
Wound healing is a highly orchestrated process involving diverse cells and molecular interplays. Although wound healing assays are commonly used in the field of tissue repair, these experiments exhibit high variability due to their multifactorial nature, with many design factors remaining understudied. Here we report that precise localization of the wound site as well as the housing conditions have a pivotal role in dictating the healing dynamics in mice. We explore these key factors and highlight overlooked aspects of the repair process.
Collapse
|
18
|
Fan Y, Yang J, Xie Y, Yang X, Zhu H, Liu Y, Xia Z, Ji S, Yang R. Inflammatory memory-activated biomimetic nanovesicles regulate neutrophil plasticity and metabolic reprogramming for rapid diabetic wound healing via targeting miR-193a-5p/TLR4/JNK/P38 MAPK pathways. J Nanobiotechnology 2025; 23:115. [PMID: 39962468 PMCID: PMC11834291 DOI: 10.1186/s12951-025-03193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
Diabetic wound therapy faces significant challenges due to the complexity of the wound microenvironment, especially dysregulated immune cell responses and persistent pro-inflammatory sate. Targeting immune cells to reverse pathological wound conditions has increasingly become a promising strategy to promote diabetic wound healing. It has been reported that prolonged memory to acute inflammation sensitizes epidermal stem cells (EpSCs) to tissue damage. The increasing importance of interactions between immune cells and tissue stem cells has raised interest in the potential of EpSCs to induce inflammatory adaptations in diabetic wounds, and meanwhile, the inflammation memory patterns also provide new insight in EpSCs for tissue repair. Here, bioinspired cell-derived mimetic nanovesicles (MNVs) were obtained from inflammation memory-activated EpSCs. LPS treatment could trigger acute inflammation response and activate inflammation memory. MNVs derived from LPS-pretreated EpSCs (LEM) can effectively promote diabetic wound healing by manipulating crucial neutrophil regulatory mechanisms. The in vitro and in vivo studies demonstrated that LEM could stimulate neutrophil mitochondrial metabolic reprogramming, overcome phenotypic switching deficiency of neutrophils, and skew neutrophils toward N2 anti-inflammatory phenotype via regulating miR-193a-5p/TLR4/ JNK/P38 MAPK pathways in diabetic models. Our findings highlighted the great potential of inflammation memory in EpSCs, and also provided an alternative for diabetic wound treatment.
Collapse
Affiliation(s)
- Yunlong Fan
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
- Chinese PLA Medical School, Beijing, 100853, China
| | - Jiaman Yang
- Zhujiang Hospital, Southern Medical University or The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510599, China
| | - Yulin Xie
- Zhujiang Hospital, Southern Medical University or The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510599, China
| | - Xin Yang
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - He Zhu
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Yuanyuan Liu
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
- Chinese PLA Medical School, Beijing, 100853, China
| | - Zhikuan Xia
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China.
- Chinese PLA Medical School, Beijing, 100853, China.
- Zhujiang Hospital, Southern Medical University or The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510599, China.
| | - Shuaifei Ji
- Chinese PLA Medical School, Beijing, 100853, China.
| | - Rongya Yang
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China.
- Chinese PLA Medical School, Beijing, 100853, China.
- Zhujiang Hospital, Southern Medical University or The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510599, China.
| |
Collapse
|
19
|
Huang K, Mi B, Xiong Y, Fu Z, Zhou W, Liu W, Liu G, Dai G. Angiogenesis during diabetic wound repair: from mechanism to therapy opportunity. BURNS & TRAUMA 2025; 13:tkae052. [PMID: 39927093 PMCID: PMC11802347 DOI: 10.1093/burnst/tkae052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 02/11/2025]
Abstract
Diabetes mellitus, a pervasive chronic metabolic disorder, is often associated with complications such as impaired wound healing. Various factors, most notably vascular deficiency, govern the wound repair process in diabetic patients, significantly impeding diabetic wound healing; therefore, angiogenesis and its role in diabetic wound repair have emerged as important areas of research. This review aims to delve into the mechanisms of angiogenesis, the effects of diabetes on angiogenesis, and the association between angiogenesis and diabetic wound repair. This will ultimately offer valuable guidance regarding the ideal timing of diabetic wound treatment in a clinical setting.
Collapse
Affiliation(s)
- Kang Huang
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Bobin Mi
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Yuan Xiong
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Zicai Fu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Wenyun Zhou
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Wanjun Liu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Guohui Liu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Guandong Dai
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| |
Collapse
|
20
|
Brandes N, Hahn H, Uhmann A. CD4 expression controls epidermal stem cell balance. Sci Rep 2025; 15:4185. [PMID: 39905055 PMCID: PMC11794708 DOI: 10.1038/s41598-025-87915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
The balance of stem cell populations is essential for the maintenance, renewal, and repair of the mammalian epidermis. Here, we report that CD4, which is a typical marker of helper T cells, monocytes, macrophages, and dendritic cells, is also expressed on murine K5+ keratinocytes. Lineage tracing of CD4+ cells reveals that their epidermal progeny has self-renewal abilities and clonogenic potential. The progeny of CD4+ epidermal cells contributes to epidermal renewal and progressively colonizes the interfollicular epidermis and hair follicles with age, thereby developing to all epidermal lineages. Wound healing studies furthermore show that the progeny of CD4+ epidermal cells accumulates at wound sites. Finally, using CD4 knockout mice we demonstrate that CD4 expression is essential for maintaining fast-cycling epidermal stem cells during homeostasis and that CD4 loss mitigates the age-related decline in wound repair capacity. Collectively, our data support the conclusion that CD4 expression is required for long-term maintenance of the epidermal stem cell balance.
Collapse
Affiliation(s)
- Nadine Brandes
- Institute of Human Genetics, Tumor Genetics Group, Universitätsmedizin Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Heidi Hahn
- Institute of Human Genetics, Tumor Genetics Group, Universitätsmedizin Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Anja Uhmann
- Institute of Human Genetics, Tumor Genetics Group, Universitätsmedizin Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
| |
Collapse
|
21
|
Sun X, Zhong R, Wu C, Ye S, Yuan H, Fang Z, Chen J, Cheng D, Hao L, Chu L, Wang L. 3D Printed Titanium Scaffolds with Bi-Directional Gradient QK-Functionalized Surface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2406421. [PMID: 39811993 DOI: 10.1002/adma.202406421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/09/2024] [Indexed: 01/16/2025]
Abstract
3D printed titanium scaffold has promising applications in orthopedics. However, the bioinert titanium presents challenges for promoting vascularization and tissue growth within the porous scaffold for stable osteointegration. In this study, a modular porous titanium scaffold is created using 3D printing and a gradient-surface strategy to immobilize QK peptide on the surface with a bi-directional gradient distribution. This design featured high peptide density in the interior and low peptide density on both ends, aiming to induce cell migration from ends to interior and subsequently enhance vascularization and osteointegration within the scaffold. In vitro results showed that besides the inherent bioactivity, the gradient distribution of QK positively correlated with endothelial cell migration and promoted angiogenesis. In vivo assay was performed by a segmental bone defect model in rabbit and a spine repair model in sheep. Various staining and Micro-CT results demonstrated that compared to that with uniformly QK-functionalized surface, the scaffold with bi-directional gradient QK-functionalized surface (Ti-G) significantly encouraged new tissue growth toward the interior of the scaffold, subsequently facilitated angiogenesis and osteointegration. This study provides an effective strategy for enhancing the bioactivity of peptide-functionalized scaffolds through the concept of bi-directional gradients, and holds potential for various 3D printed scaffolds.
Collapse
Affiliation(s)
- Xiaoyun Sun
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Ru Zhong
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Congcong Wu
- Jinan Center for Disease Control and Prevention, Jinan, 250001, China
| | - Silin Ye
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Haipeng Yuan
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Zhou Fang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Junjian Chen
- Guangzhou Huare Medical Equipment Co., Ltd., Guangzhou, 511447, China
- Guangdong Institute of Advanced Biomaterials and Medical Devices, Guangzhou, 510000, China
| | - Delin Cheng
- Guangzhou Huare Medical Equipment Co., Ltd., Guangzhou, 511447, China
- Guangdong Institute of Advanced Biomaterials and Medical Devices, Guangzhou, 510000, China
| | - Lijing Hao
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Guangdong Institute of Advanced Biomaterials and Medical Devices, Guangzhou, 510000, China
| | - Lei Chu
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
22
|
Wu X, Gu R, Tang M, Mu X, He W, Nie X. Elucidating the dual roles of apoptosis and necroptosis in diabetic wound healing: implications for therapeutic intervention. BURNS & TRAUMA 2025; 13:tkae061. [PMID: 39845196 PMCID: PMC11752647 DOI: 10.1093/burnst/tkae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 01/24/2025]
Abstract
Wound healing is a complex and multistep biological process that involves the cooperation of various cell types. Programmed cell death, including apoptosis and necrotizing apoptosis, plays a crucial role in this process. Apoptosis, a controlled and orderly programmed cell death regulated by genes, helps eliminate unnecessary or abnormal cells and maintain internal environmental stability. It also regulates various cell functions and contributes to the development of many diseases. In wound healing, programmed cell death is essential for removing inflammatory cells and forming scars. On the other hand, necroptosis, another form of programmed cell death, has not been thoroughly investigated regarding its role in wound healing. This review explores the changes and apoptosis of specific cell groups during wound healing after an injury and delves into the potential underlying mechanisms. Furthermore, it briefly discusses the possible mechanisms linking wound inflammation and fibrosis to apoptosis in wound healing. By understanding the relationship between apoptosis and wound healing and investigating the molecular mechanisms involved in apoptosis regulation, new strategies for the clinical treatment of wound healing may be discovered.
Collapse
Affiliation(s)
- Xingqian Wu
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Ming Tang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, United States
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
23
|
Li P, Li Y, Yao J, Li LL. Peptide-Induced Hydrogelation with Ordered Metal-Organic Framework Nanoparticles Generating Reactive Oxygen Species for Integrated Wound Repair. Adv Healthc Mater 2025; 14:e2403292. [PMID: 39639393 DOI: 10.1002/adhm.202403292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Hydrogels, with their high water content and flexible nature, are a promising class of medical dressings for combating bacterial wound infections. However, their development has been hindered by low sterilization efficiency. Here, this issue is addressed by designing a peptide hydrogel that assembles ordered metal-organic framework (MOF) nanoparticles with photocatalytic bactericidal activity. Specifically, a short peptide, Nap-Gly-Phe-Phe-His (Nap-GFFH), is used to induce the assembly of zinc-imidazolate MOF (ZIF-8) into a hydrogel (NHZ gel). This innovative structure integrates three key features: 1) ZIF-8 nanoparticles are encapsulated within the hydrogel, overcoming their inherent brittleness, insolubility, and limited moldability; 2) the ordered ZIF-8 structure enhances charge transfer, enabling efficient generation of reactive oxygen species (ROS); and 3) ZIF-8 simultaneously improves the photocatalytic bactericidal efficiency and mechanical properties of the hydrogel. The NHZ gel demonstrates remarkable antibacterial performance, achieving >99.9% and 99.99% inactivation of Escherichia coli and Staphylococcus aureus, respectively, within 15 min of simulated solar radiation. Additionally, the NHZ gel exhibits excellent biocompatibility, water retention, and exudate absorption, highlighting its broad potential for wound healing.
Collapse
Affiliation(s)
- Ping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Yiying Li
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, New Energy and Material College, China University of Petroleum-Beijing, Beijing, 102249, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Jiahui Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Li-Li Li
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| |
Collapse
|
24
|
Peng L, Tian Y, Wu X, Liu F, Zhou M, Wu Z, Xia Y, Liu X, Cheng C. Suppression of TRIM72-mediated endoplasmic reticulum stress facilitates FOXM1 promotion of diabetic ulcer healing. Wound Repair Regen 2025; 33:e13247. [PMID: 39721954 PMCID: PMC11669624 DOI: 10.1111/wrr.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Foot ulcers are amongst the most prevalent complications of diabetes, known for their delayed healing process. Recent research indicates that the transcription factor forkhead box M1 (FOXM1) plays a role in promoting diabetic ulcer repair. However, the precise mechanisms underlying FOXM1 functions in this context remain unclear. This study aimed to clarify the role of tripartite motif-containing protein 72 (TRIM72)-mediated endoplasmic reticulum stress in FOXM1 promotive effects. Immunohistochemistry revealed that FOXM1 expression was significantly reduced in the lesion tissues of diabetic foot ulcer patients. In vitro experiments revealed a decrease in FOXM1 expression in cultured dermal fibroblasts under high glucose conditions. Activating FOXM1 with a plasmid accelerated the proliferation, migration, and differentiation of dermal fibroblasts and mitigated endoplasmic reticulum stress under high glucose conditions. Additionally, ChIP and luciferase reporter gene assays confirmed that FOXM1 suppressed TRIM72 expression transcriptionally by binding to its promoter. Furthermore, high glucose induced ubiquitination of adenosine 5'-monophosphate-activated protein kinase alpha (AMPKα), whilst inactivation of AMPKα signalling reversed the aforementioned effects of FOXM1 on cells. Finally, the FOXM1-overexpressing plasmid was transfected in vivo, which promoted wound healing in a murine diabetic ulcer model. In conclusion, FOXM1 reduces endoplasmic reticulum stress by inhibiting TRIM72-mediated AMPKα ubiquitination, thereby accelerating the healing of diabetic ulcers.
Collapse
Affiliation(s)
- Lingling Peng
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yaning Tian
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiangkai Wu
- Department of HorticultureXinjiang Agricultural UniversityUrumqiChina
| | - Fengqi Liu
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Mingzhu Zhou
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zixi Wu
- Wuhan Britain‐China International SchoolWuhanChina
| | - Yumin Xia
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaoming Liu
- Department of DermatologySouthern University of Science and Technology HospitalShenzhenChina
| | - Chuantao Cheng
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
25
|
Dai Y, Zhang Q, Gu R, Chen J, Ye P, Zhu H, Tang M, Nie X. Metal ion formulations for diabetic wound healing: Mechanisms and therapeutic potential. Int J Pharm 2024; 667:124889. [PMID: 39481815 DOI: 10.1016/j.ijpharm.2024.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Metals are vital in human physiology, which not only act as enzyme catalysts in the processes of superoxide dismutase and glucose phosphorylation, but also affect the redox process, osmotic adjustment, metabolism and neural signals. However, metal imbalances can lead to diseases such as diabetes, which is marked by chronic hyperglycemia and affects wound healing. The hyperglycemic milieu of diabetes impairs wound healing, posing significant challenges to patient quality of life. Wound healing encompasses a complex cascade of hemostasis, inflammation, proliferation, and remodeling phases, which are susceptible to disruption in hyperglycemic conditions. In recent decades, metals have emerged as critical facilitators of wound repair by enhancing antimicrobial properties (e.g., iron and silver), providing angiogenic stimulation (copper), promoting antioxidant activity and growth factor synthesis (zinc), and supporting wound closure (calcium and magnesium). Consequently, research has pivoted towards the development of metal ion-based therapeutics, including innovative formulations such as nano-hydrogels, nano-microneedle dressings, and microneedle patches. Prepared by combining macromolecular materials such as chitosan, hyaluronic acid and sodium alginate with metals, aiming at improving the management of diabetic wounds. This review delineates the roles of key metals in human physiology and evaluates the application of metal ions in diabetic wound management strategies.
Collapse
Affiliation(s)
- Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
26
|
Kang D, Wang X, Chen W, Mao L, Zhang W, Shi Y, Xie J, Yang R. Epidermal stem cell-derived exosomes improve wound healing by promoting the proliferation and migration of human skin fibroblasts. BURNS & TRAUMA 2024; 12:tkae047. [PMID: 39687464 PMCID: PMC11647520 DOI: 10.1093/burnst/tkae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 12/18/2024]
Abstract
Background Epidermal stem cells (ESCs) are primarily located in the basal layer of the epidermis and play a crucial role in wound healing. ESCs-derived exosomes (ESCs-Exo) are emerging as promising candidates for skin regeneration and wound healing. However, the underlying mechanisms remain unclear. This study aims to investigate the role and mechanisms of ESCs-Exo in promoting the proliferation, migration, and collagen synthesis of human skin fibroblasts (HSFBs). Methods This study generated, isolated, and characterized ESC-Exos. The effects of ESCs-Exo on the proliferation of human skin fibroblasts (HSFBs) were detected via Cell Counting Kit-8 (CCK8), 5-Ethynyl-2'-deoxyuridine (EdU), and Proliferating Cell Nuclear Antigen (PCNA) and Marker of Proliferation Ki-67 (MKI67) gene expression methods. The effect of ESCs-Exo on the migration of HSFBs was detected via a transwell assay and a scratch test. The concentrations of collagen secreted by the HSFBs and the mRNAs of the two kinds of collagen expressed by the HSFBs were analyzed. We also analyzed the phosphorylation of Protein Kinase N1 (PKN1) and the expression of cyclins via western blotting. Finally, the effect of ESCs-Exo on wound healing was verified by animal experiments, and the key genes and signaling pathways of ESCs-Exo were excavated by transcriptomic analysis. Results Western blotting revealed that the exosomes of ESCs highly expressed established markers such as Alix, CD63, and CD9. ESC-Exos significantly promoted HSFB proliferation and migration in a dose-dependent manner, as well as HSFB collagen synthesis, and effectively increased the ratio of collagen III/I. In addition, bioinformatics analysis showed that the expression of key gene C-X-C motif chemokine ligand 9 was lower in the ESCs-Exo group, which may promote wound healing by regulating PKN1-cyclin and tumor necrosis factor signaling pathways. Animal experiments demonstrated that ESCs-Exo could reduce inflammation and accelerate wound healing. Conclusions In this study, we found that ESCs-Exo may improve wound healing by promoting the proliferation and migration of HSFBs.
Collapse
Affiliation(s)
- Deni Kang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, 1 Panfu Road, Yuexiu District, Guangzhou City, Guangdong Province, 510180, China
| | - Xiaoxiang Wang
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Second Road, Yuexiu District, Guangzhou City, Guangdong Province, 510062, China
| | - Wentao Chen
- Department of Medical cosmetology, Foshan Second People's Hospital, 78 Weiguo Road, Chancheng District, Foshan City, Guangdong Province, 528000, China
| | - Lujia Mao
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, 1 Panfu Road, Yuexiu District, Guangzhou City, Guangdong Province, 510180, China
| | - Weiqiang Zhang
- The First Clinical Medical College, Guangdong Medical University, 2 Wenming East Road, Xiashan District, Zhanjiang City, Guangdong Province, 524002, China
| | - Yan Shi
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi Province, 330006, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Second Road, Yuexiu District, Guangzhou City, Guangdong Province, 510062, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, 1 Panfu Road, Yuexiu District, Guangzhou City, Guangdong Province, 510180, China
| |
Collapse
|
27
|
Lu J, Zhang W, Zhu Y, Luo P, Tong X, Xie S, Jiang L, Guo X, Huang J, Gu M, Ding X, Xian S, Huang R, Ji S, Xia Z. Revealing the Therapeutic Potential of Stem Cells in Burn Healing: A Deeper Understanding of the Therapeutic Mechanisms of Epidermal Stem Cells and Mesenchymal Stem Cells. Stem Cells Int 2024; 2024:1914585. [PMID: 39717868 PMCID: PMC11666318 DOI: 10.1155/2024/1914585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 12/25/2024] Open
Abstract
Background: Burns are a global public health issue and a major cause of disability and death around the world. Stem cells, which are the undifferentiated cells with the potential for indefinite proliferation and multilineage differentiation, have the ability to replace injured skin and facilitate the wound repair process through paracrine mechanisms. In light of this, the present study aims to conduct a bibliometric analysis in order to identify research hotspots of stem cell-related burns and assess global research tendencies. Methods: To achieve this objective, we retrieved scientific publications on burns associated with stem cells covering the period from January 1, 1978, to October 13, 2022, from the Web of Science Core Collection (WoSCC). Bibliometric analyses, including production and collaboration analyses between countries, institutions, authors, and journals, as well as keyword and topic analyses, were conducted using the bibliometrix R package, CiteSpace, and VOSviewer. Results: A total of 1648 burns associated with stem cell documents were published and listed on WOSCC. The most contributive country, institution, journal, and author were the United States, LV Prasad Eye Institute, Burns, and Scheffer C.G. Tseng, respectively. More importantly, combined with historical direct citation network, trend topic analysis, keyword co-occurrence network, and substantial literature analysis, we eventually summarized the research hotspots and frontiers on burns associated stem cell reasearch. Conclusion: The present study obtained deep insight into the developing trends and research hotspots on burns associated with stem cells, which arouses growing concerns and implies increasing clinical implications. The mechanism and therapeutics of epidermal stem cells (ESCs) for burn wounds and the mechanism of mesenchymal stem cells (MSCs) and MSC-derived exosomes for burns wounds are two research hotspots in this field.
Collapse
Affiliation(s)
- Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Pengfei Luo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Sujie Xie
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Xinran Ding
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shuyuan Xian
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| |
Collapse
|
28
|
Chen L, Zhang Y, Wang K, Jin M, Chen Q, Wang S, Hu W, Cai Z, Li Y, Li S, Gao Y, Zhou S, Peng Q. A patch comprising human umbilical cord-derived hydrogel and mesenchymal stem cells promotes pressure ulcer wound healing. ENGINEERED REGENERATION 2024; 5:433-442. [DOI: 10.1016/j.engreg.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
29
|
Li FXZ, Liu JJ, Lei LM, Li YH, Xu F, Lin X, Cui RR, Zheng MH, Guo B, Shan SK, Tang KX, Li CC, Wu YY, Duan JY, Cao YC, Wu YL, He SY, Chen X, Wu F, Yuan LQ. Mechanism of cold exposure delaying wound healing in mice. J Nanobiotechnology 2024; 22:723. [PMID: 39568002 PMCID: PMC11577949 DOI: 10.1186/s12951-024-03009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Cold temperatures have been shown to slow skin wound healing. However, the specific mechanisms underlying cold-induced impairment of wound healing remain unclear. Here, we demonstrate that small extracellular vesicles derived from cold-exposed mouse plasma (CT-sEVs) decelerate re-epithelialization, increase scar width, and weaken angiogenesis. CT-sEVs are enriched with miRNAs involved in the regulation of wound healing-related biological processes. Functional assays revealed that miR-423-3p, enriched in CT-sEVs, acts as a critical mediator in cold-induced impairment of angiogenic responses and poor wound healing by inhibiting phosphatase and poly(A) binding protein cytoplasmic 1 (PABPC1). These findings indicate that cold delays wound healing via miR-423-3p in plasma-derived sEVs through the inhibition of the ERK or AKT phosphorylation pathways. Our results enhance understanding of the molecular mechanisms by which cold exposure delays soft tissue wound healing.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jun-Jie Liu
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, Hunan, 410008, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ye-Hui Li
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Rong-Rong Cui
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ye-Chi Cao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yan-Lin Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Si-Yang He
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xi Chen
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
30
|
Li H, Zhou Y, Gu J, Zhong W, Li X, Liu X, Qiao Z, Liu Y. Hyperbranched Thermosensitive Polymer-AuNP Composite Probe for Temperature Colorimetric Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:7124. [PMID: 39598902 PMCID: PMC11598191 DOI: 10.3390/s24227124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024]
Abstract
Temperature detection is particularly important in the medical and scientific fields. Although there are various temperature detection methods, most of them focus on broad temperature detection, and basic research in specific fields, especially the detection of subtle temperature changes (32-34 °C) during wound infection, is still insufficient. For this purpose, a novel colorimetric temperature sensing probe is designed in this paper, which can quickly and intuitively respond to small temperature changes within a specific range through color changes. In this paper, hyperbranched polyethyleneimine (HPEI) was modified by isobutyrylation to prepare hyperbranched temperature-sensitive polymer (HPEI-IBAm). And it was combined with gold nanoparticles (AuNPs) prepared by a sodium citrate reduction method to construct an HPEI-IBAm-AuNP colorimetric probe. The probe exhibits excellent stability, even at salt concentrations of up to 12 g/L, thanks to the abundant amino functional groups and the large steric hindrance effect unique to HPEI-IBAm. In particular, the temperature detection range of the probe is precisely locked within 32-34 °C, enabling it to respond quickly and accurately to small temperature changes of only 2 °C. This feature is perfectly suited to the practical needs of temperature detection in infected wounds. The linear fitting coefficient of the temperature response is as high as 0.9929, ensuring the accuracy of the test results. The detection performance of the probe remained highly consistent over 10 cycles, fully proving its excellent reusability and durability. In addition, a flexible colorimetric sensor was prepared by combining the probe with polydimethylsiloxane (PDMS) film. This sensor is capable of rapidly detecting human skin temperature in real time, achieving an accuracy of 99.07% to 100.61%. It can provide a possible solution to the challenges of delayed and difficult temperature detection caused by different body parts and uneven surfaces, among others. This demonstrates its extensive practical value and potential, and it is expected to be further applied in the monitoring of wound infections.
Collapse
Affiliation(s)
- Huidong Li
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China; (H.L.); (W.Z.); (X.L.)
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; (Y.Z.); (J.G.)
| | - Yao Zhou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; (Y.Z.); (J.G.)
| | - Junqi Gu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; (Y.Z.); (J.G.)
| | - Wenjie Zhong
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China; (H.L.); (W.Z.); (X.L.)
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; (Y.Z.); (J.G.)
| | - Xinlong Li
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China; (H.L.); (W.Z.); (X.L.)
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; (Y.Z.); (J.G.)
| | - Xunyong Liu
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China; (H.L.); (W.Z.); (X.L.)
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; (Y.Z.); (J.G.)
| | - Zhuhui Qiao
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China; (H.L.); (W.Z.); (X.L.)
| | - Yi Liu
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China; (H.L.); (W.Z.); (X.L.)
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; (Y.Z.); (J.G.)
| |
Collapse
|
31
|
Chen M, Zou F, Wang P, Hu W, Shen P, Wu X, Xu H, Rui Y, Wang X, Wang Y. Dual-Barb Microneedle with JAK/STAT Inhibitor-Loaded Nanovesicles Encapsulation for Tendinopathy. Adv Healthc Mater 2024; 13:e2401512. [PMID: 39030889 DOI: 10.1002/adhm.202401512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Tendon stem/progenitor cells (TSPCs) are crucial for tendon repair, regeneration, and homeostasis. Dysfunction of TSPCs, due to aberrant activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, contributes to tendinopathy. Unfortunately, the effectiveness of conventional subcutaneous injection targeting at suppressing JAK/STAT signaling pathway is limited due to the passive diffusion of drugs away from the injury site. Herein, a novel poly-gamma-glutamic acid (γ-PGA) dual-barb microneedle (MN) path loaded with TSPCs-derived nanovesicles (NVs) containing JAK/STAT inhibitor WP1066 (MN-WP1066-NVs) for tendinopathy treatment is designed. The dual-barb design of the MN ensures firm adhesion to the skin, allowing for sustained and prolonged release of WP1066-NVs, facilitating enhanced TSPCs self-renewal, migration, and stemness in tendinopathy. In vitro and in vivo experiments demonstrate that the degradation of γ-PGA patch tips facilitates the gradual release of WP1066-NVs at the lesion site. This release alleviates inflammation, suppresses extracellular matrix degradation, and restores normal tendon histological structure by inhibiting the JAK/STAT pathway. These findings suggest that the multifunctional dual-barb MN patch offers a novel and effective therapeutic strategy for tendinopathy treatment.
Collapse
Affiliation(s)
- Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fengkai Zou
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Department of Orthopaedics, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Pei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenbo Hu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Peng Shen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xinyuan Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
32
|
Gadre P, Markova P, Ebrahimkutty M, Jiang Y, Bouzada FM, Watt FM. Emergence and properties of adult mammalian epidermal stem cells. Dev Biol 2024; 515:129-138. [PMID: 39059680 DOI: 10.1016/j.ydbio.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
In this review we discuss how the mammalian interfollicular epidermis forms during development, maintains homeostasis, and is repaired following wounding. Recent studies have provided new insights into the relationship between the stem cell compartment and the differentiating cell layers; the ability of differentiated cells to dedifferentiate into stem cells; and the epigenetic memory of epidermal cells following wounding.
Collapse
Affiliation(s)
- Purna Gadre
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Pavlina Markova
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | | | - Yidan Jiang
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Francisco M Bouzada
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Fiona M Watt
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| |
Collapse
|
33
|
Chen C, Huang Y, Shi L, Zhou L, Zhou S, Wan H, Yang X, Zhao J. Allogeneic fibroblasts ameliorate intervertebral disc degeneration by reducing osteophytes in rabbits. Front Med (Lausanne) 2024; 11:1488727. [PMID: 39554496 PMCID: PMC11567068 DOI: 10.3389/fmed.2024.1488727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Low back pain (LBP) was commonly induced by intervertebral disc degeneration (IVDD), which is accompanied by the loss of disc height and osteophyte generation. Cell-based therapy is a promising treatment for preventing the degeneration of interverbral disc. In our study, allogeneic fibroblasts are shown to ameliorate intervertebral disc degeneration by reducing osteophytes in rabbits. Methods We established a rabbits-derived fibroblast (Rab-Fib) which could be expanded in vitro and constructed puncture-induced intervertebral disc degeneration rabbit model. Histologic and imaging examinations and analyses were performed after 2 weeks, 3 months, and 12 months. Results Our data indicate that stable and reliably-extracted allogeneic fibroblasts can effectively ameliorate intervertebral disc degeneration by reducing osteophytes. Conclusion Our study provides a basis for advancing the further translation of fibroblasts in intervertebral disc therapy.
Collapse
Affiliation(s)
- Chen Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhuo Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People’s Hospital, Shanghai, China
| | - Lei Shi
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- FibroX Therapeutics Inc., Shanghai, China
| | - Shenao Zhou
- FibroX Therapeutics Inc., Shanghai, China
- Celliver Biotechnology Inc., Shanghai, China
| | - Hongjin Wan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Liang X, Huang C, Liu H, Chen H, Shou J, Cheng H, Liu G. Natural hydrogel dressings in wound care: Design, advances, and perspectives. CHINESE CHEM LETT 2024; 35:109442. [DOI: 10.1016/j.cclet.2023.109442] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
35
|
Xiao A, Jiang X, Hu Y, Li H, Jiao Y, Yin D, Wang Y, Sun H, Wu H, Lin L, Chang T, Liu F, Yang K, Huang Z, Sun Y, Zhai P, Fu Y, Kong S, Mu W, Wang Y, Yu X, Chang L. A Degradable Bioelectronic Scaffold for Localized Cell Transfection toward Enhancing Wound Healing in a 3D Space. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404534. [PMID: 39183503 DOI: 10.1002/adma.202404534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Indexed: 08/27/2024]
Abstract
Large skin wounds, with extensive surface area and deep vertical full-thickness involvement, can pose significant challenges in clinical settings. Traditional routes for repairing skin wounds encompass three hallmarks: 1) scab formation for hemostasis; 2) proliferation and migration of epidermal cells for wound closure; 3) proliferation, migration, and functionalization of fibroblasts and endothelial cells for dermal remodeling. However, this route face remarkable challenges to healing large wounds, usually leading to disordered structures and loss of functions in the regenerated skin, due to limited control on the transition among the three stages. In this work, an implantable bioelectronics is developed that enables the synchronization of the three stages, offering accelerated and high-quality healing of large skin wounds. The system efficiently electro-transfect local cells near the wounds, forcing cellular proliferation, while providing a 3D porous environments for synchronized migration of epidermal and dermal cells. In vivo experiments demonstrated that the system achieved synchronous progression of multiple layers within the wounds, leading to the reconstruction of a complete skin structure similar to healthy skin, which presents a new avenue for the clinical translation of large wound healing.
Collapse
Affiliation(s)
- Ao Xiao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinran Jiang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yongyan Hu
- Laboratory Animal Center, Peking University First Hospital, Beijing, 100034, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yanli Jiao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Dedong Yin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Yuqiong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hong Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Han Wu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Long Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Tianrui Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Kuan Yang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhaocun Huang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Penghua Zhai
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Yao Fu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Shenshen Kong
- Laboratory Animal Center, Peking University First Hospital, Beijing, 100034, China
| | - Wei Mu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Yi Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
36
|
Sarate RM, Hochstetter J, Valet M, Hallou A, Song Y, Bansaccal N, Ligare M, Aragona M, Engelman D, Bauduin A, Campàs O, Simons BD, Blanpain C. Dynamic regulation of tissue fluidity controls skin repair during wound healing. Cell 2024; 187:5298-5315.e19. [PMID: 39168124 DOI: 10.1016/j.cell.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
During wound healing, different pools of stem cells (SCs) contribute to skin repair. However, how SCs become activated and drive the tissue remodeling essential for skin repair is still poorly understood. Here, by developing a mouse model allowing lineage tracing and basal cell lineage ablation, we monitor SC fate and tissue dynamics during regeneration using confocal and intravital imaging. Analysis of basal cell rearrangements shows dynamic transitions from a solid-like homeostatic state to a fluid-like state allowing tissue remodeling during repair, as predicted by a minimal mathematical modeling of the spatiotemporal dynamics and fate behavior of basal cells. The basal cell layer progressively returns to a solid-like state with re-epithelialization. Bulk, single-cell RNA, and epigenetic profiling of SCs, together with functional experiments, uncover a common regenerative state regulated by the EGFR/AP1 axis activated during tissue fluidization that is essential for skin SC activation and tissue repair.
Collapse
Affiliation(s)
- Rahul M Sarate
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Joel Hochstetter
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Manon Valet
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Adrien Hallou
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nordin Bansaccal
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Melanie Ligare
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mariaceleste Aragona
- Novo Nordisk Foundation Center for Stem Cell Biology, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dan Engelman
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anaïs Bauduin
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany.
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Cedric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium; WEL Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
37
|
Marnin L, Valencia LM, Bogale HN, Laukaitis-Yousey HJ, Rolandelli A, Ferraz CR, O’Neal AJ, Schmitter-Sánchez AD, Cuevas EB, Nguyen TT, Leal-Galvan B, Rickert DM, Mendes MT, Samaddar S, Butler LR, Singh N, Cabrera Paz FE, Oliver JD, Jameson JM, Munderloh UG, Oliva Chávez AS, Mulenga A, Park S, Serre D, Pedra JH. Tick extracellular vesicles undermine epidermal wound healing during hematophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566612. [PMID: 37986907 PMCID: PMC10659423 DOI: 10.1101/2023.11.10.566612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species. We demonstrate through single cell RNA sequencing and murine genetics that wildtype animals infested with EV-deficient Ixodes scapularis display a unique population of keratinocytes with an overrepresentation of pathways connected to wound healing. Tick feeding affected keratinocyte proliferation in a density-dependent manner, which relied on EVs and dendritic epidermal T cells (DETCs). This occurrence was linked to phosphoinositide 3-kinase activity, keratinocyte growth factor (KGF) and transforming growth factor β (TGF-β) levels. Collectively, we uncovered a strategy employed by a blood-feeding arthropod that impairs the integrity of the epithelial barrier, contributing to ectoparasite fitness.
Collapse
Affiliation(s)
- Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luisa M. Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanna J. Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Camila Rodrigues Ferraz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anya J. O’Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Axel D. Schmitter-Sánchez
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - Emily Bencosme Cuevas
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Thu-Thuy Nguyen
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David M. Rickert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M. Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L. Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francy E. Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Julie M Jameson
- Department of Biology, California State University San Marcos, San Marcos, CA, USA
| | | | | | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Sangbum Park
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - David Serre
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H.F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Guo Z, Qu Q, Yang L, Zhao Y, Li H, Fu D, Zhang J, Fan Z, Wang J, Liu B, Wang Z, Hu Z, Miao Y. A randomized controlled trial on hair follicular-derived microtissue for promoting wound healing and alleviating postoperative complications after hair transplantation. J Plast Reconstr Aesthet Surg 2024; 96:136-145. [PMID: 39084027 DOI: 10.1016/j.bjps.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Hair transplantation, particularly through follicular unit extraction (FUE), can lead to postoperative complications, such as numbness, itching, and pain in donor areas, primarily because of delayed wound healing. Efficient management of donor-site healing is crucial to mitigate these complications and improve overall patient outcomes. OBJECTIVE This study aimed to assess the efficacy of hair follicular-derived microtissue (HFMT) in promoting wound healing and alleviating postoperative complications in donor areas after FUE hair transplantation. METHODS Perifollicular tissue obtained during the trimming phase of hair transplantation was processed into HFMT and analyzed for its properties using histological and molecular techniques. In a single-blind, split-scalp study involving 98 participants, Group A received HFMT or mupirocin, whereas Group B received HFMT or no treatment. Dermatoscopic images were captured postoperatively, and visual analog scale scores were used to evaluate pain, itching, and numbness. RESULTS HFMT-treated donor sites in Group A demonstrated a significantly higher wound closure ratio on postoperative day 3 than mupirocin-treated sites. Pain scores for HFMT-treated sites were consistently lower on postoperative days 3, 5, and 7. Similar trends were observed for itching scores. Group B exhibited outcomes comparable with Group A. CONCLUSION The application of HFMT homogenates effectively accelerated wound healing and alleviated donor-site complications after FUE hair transplantation.
Collapse
Affiliation(s)
- Zehong Guo
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lunan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingjie Zhao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haoyang Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Danlan Fu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiaxian Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bingcheng Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
39
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
40
|
Egea V, Lutterberg K, Steinritz D, Rothmiller S, Steinestel K, Caca J, Nerlich A, Blum H, Reschke S, Khani S, Bartelt A, Worek F, Thiermann H, Weber C, Ries C. Targeting miR-497-5p rescues human keratinocyte dysfunction upon skin exposure to sulfur mustard. Cell Death Dis 2024; 15:585. [PMID: 39127703 PMCID: PMC11316827 DOI: 10.1038/s41419-024-06974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Sulfur mustard (SM) is a highly toxic chemical warfare agent. Exposure to SM results in various pathologies including skin lesions with subsequent impaired wound healing. To date, there are no effective treatments available. Here we discover a SM-triggered pathomechanism involving miR-497-5p and its target survivin which contributes to keratinocyte dysfunction. Transcriptome analysis using RNA-seq in normal human epidermal keratinocytes (NHEK) revealed that SM evoked differential expression of 1896 mRNAs and 25 miRNAs with many of these RNAs known to be involved in keratinocyte function and wound healing. We demonstrated that keratinocyte differentiation and proliferation were efficiently regulated by miRNAs induced in skin cells after exposure to SM. The inhibition of miR-497-5p counteracted SM-induced premature differentiation and stimulated proliferation of NHEK. In addition, we showed that microneedle-mediated transdermal application of lipid-nanoparticles containing miR-497-5p inhibitor restored survivin biosynthesis and cellular functionality upon exposure to SM using human skin biopsies. Our findings expand the current understanding of SM-associated molecular toxicology in keratinocytes and highlight miR-497-5p as feasible clinical target for specific skin therapy in SM-exposed patients and beyond.
Collapse
Affiliation(s)
- Virginia Egea
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) in Munich, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Karina Lutterberg
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) in Munich, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Jan Caca
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) in Munich, Munich, Germany
| | - Andreas Nerlich
- Institute of Pathology, Academic Clinic Munich-Bogenhausen, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Sajjad Khani
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) in Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) in Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) in Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Ries
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) in Munich, Munich, Germany.
| |
Collapse
|
41
|
Majie A, Saha R, Sarkar A, Bhowmik R, Karmakar S, Sharma V, Deokar K, Haque AU, Tripathy SS, Sarkar B. A novel chitosan-PEG hydrogel embedded with in situ silver nanoparticles of Clerodendrum glandulosum Lindl. extract: evaluation of its in vivo diabetic wound healing properties using an image-guided machine learning model. Biomater Sci 2024; 12:4242-4261. [PMID: 39011583 DOI: 10.1039/d4bm00349g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The pathophysiology of chronic wounds related to diabetes mellitus is a result of a series of complications induced by hyperglycemia. The symptoms include impaired growth factor production, decreased keratinocyte proliferation and migration, reduced angiogenesis and cytokine synthesis, lowered matrix metalloproteinase (MMP) production, neuropathy, reduced nitric oxide synthase production, decreased fibroblast synthesis and migration, and impaired inflammatory cell functions. This multifaceted mechanism of diabetic wounds needs a suitable novel topical formulation that can deliver the active constituent by a controlled means, target the various stages of wound healing, absorb the wound exudates, and prevent secondary infections. To meet the above requirements, the Clerodendrum glandulosum (CG) extract reduced silver nanoparticle (AgNP) impregnated chitosan-polyethylene glycol (PEG) hydrogel was synthesized. The findings of the physicochemical characterization studies suggested that the hydrogel exhibited excellent formulation characteristics and showed controlled release for seven days, making it suitable for chronic wound healing studies. In subsequent studies, these formulations showed good antioxidant and antimicrobial properties, and hemocompatibility, with the least cytotoxic properties. The results of the diabetic wound healing studies showed a faster wound closure rate and improved extracellular matrix formation. These antioxidant, antimicrobial, anti-inflammatory and wound-healing properties suggest that the CG-AgNP loaded chitosan-PEG hydrogel is a promising material for novel topical formulation of diabetic wounds.
Collapse
Affiliation(s)
- Ankit Majie
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India, 835215.
| | - Rajdeep Saha
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India, 835215.
| | - Arnab Sarkar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Rudranil Bhowmik
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Vishal Sharma
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India, 835215.
| | - Kaushal Deokar
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India, 835215.
| | - Asad Ul Haque
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India, 835215.
| | - Sanjaya Shankar Tripathy
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India, 835215.
| | - Biswatrish Sarkar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India, 835215.
| |
Collapse
|
42
|
Thompson T, Flanagan S, Ortega-Gonzalez D, Zhu T, Yuan X. Immediate but Temporal Response: The Role of Distal Epithelial Cells in Wound Healing. Stem Cell Rev Rep 2024; 20:1587-1598. [PMID: 38760627 PMCID: PMC11323234 DOI: 10.1007/s12015-024-10734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Efficient oral mucosal wound healing requires coordinated responses from epithelial progenitor cells, yet their spatiotemporal recruitment and activation remain unclear. Using a mouse model of palatal mucosal wound healing, we investigated the dynamics of epithelial cells during this process. Proliferation analysis revealed that, in addition to the expected proliferation center near the wound edge, distal cell populations rapidly activated post-injury by elevating their mitotic activity. These distal cells displayed predominant lateral expansion in the basal layer, suggesting roles beyond just tissue renewal. However, while proximal proliferation center cells sustained heightened proliferation until re-epithelialization was completed, distal cells restored basal turnover rates before wound closure, indicating temporally confined contributions. Lineage tracing of Wnt-responsive epithelial cells showed remarkable clone expansion in basal layers both proximally and distally after wounding, contrasting with gradual clone expansion in homeostasis. Although prioritizing tissue repair, epithelial progenitor cells maintained differentiation programs and barrier functions, with the exception of the leading edge. At the leading edge, we found accelerated cell turnover, but the differentiation program was suspended. In summary, our findings uncovered that oral wound re-epithelialization involves two phases: an initial widespread response with proliferation of proximal and distal cells, followed by proliferation confined to the wound proximal region. Uncovering these stage-specific healing mechanisms provides insights for developing targeted therapeutic strategies to improve wound care.
Collapse
Affiliation(s)
- Tyler Thompson
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Shannan Flanagan
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Dayane Ortega-Gonzalez
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Tianli Zhu
- Department of Biomedical Sciences and Comprehensive Care, School of Dentistry, Indiana University, Indianapolis, IN, USA
| | - Xue Yuan
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA.
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
43
|
Albagli O, Pelczar H. [Cell dedifferentiation maintains the melanocyte stem cell population in the hair follicle]. Med Sci (Paris) 2024; 40:616-619. [PMID: 39303111 DOI: 10.1051/medsci/2024089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Affiliation(s)
- Olivier Albagli
- Équipe photobiologie, CNRS UMR 8256, Institut de biologie Paris-Seine, Sorbonne université, Paris, France
| | - Hélène Pelczar
- UFR 927 Sciences de la vie, Sorbonne université, Paris, France
| |
Collapse
|
44
|
Dermitzakis I, Kampitsi DD, Manthou ME, Evangelidis P, Vakirlis E, Meditskou S, Theotokis P. Ontogeny of Skin Stem Cells and Molecular Underpinnings. Curr Issues Mol Biol 2024; 46:8118-8147. [PMID: 39194698 DOI: 10.3390/cimb46080481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Dimitria Kampitsi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Evangelidis
- Hematology Unit-Hemophilia Centre, 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
45
|
Trompet D, Melis S, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone development and repair. J Bone Miner Res 2024; 39:633-654. [PMID: 38696703 DOI: 10.1093/jbmr/zjae069] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Bone development, growth, and repair are complex processes involving various cell types and interactions, with central roles played by skeletal stem and progenitor cells. Recent research brought new insights into the skeletal precursor populations that mediate intramembranous and endochondral bone development. Later in life, many of the cellular and molecular mechanisms determining development are reactivated upon fracture, with powerful trauma-induced signaling cues triggering a variety of postnatal skeletal stem/progenitor cells (SSPCs) residing near the bone defect. Interestingly, in this injury context, the current evidence suggests that the fates of both SSPCs and differentiated skeletal cells can be considerably flexible and dynamic, and that multiple cell sources can be activated to operate as functional progenitors generating chondrocytes and/or osteoblasts. The combined implementation of in vivo lineage tracing, cell surface marker-based cell selection, single-cell molecular analyses, and high-resolution in situ imaging has strongly improved our insights into the diversity and roles of developmental and reparative stem/progenitor subsets, while also unveiling the complexity of their dynamics, hierarchies, and relationships. Albeit incompletely understood at present, findings supporting lineage flexibility and possibly plasticity among sources of osteogenic cells challenge the classical dogma of a single primitive, self-renewing, multipotent stem cell driving bone tissue formation and regeneration from the apex of a hierarchical and strictly unidirectional differentiation tree. We here review the state of the field and the newest discoveries in the origin, identity, and fates of skeletal progenitor cells during bone development and growth, discuss the contributions of adult SSPC populations to fracture repair, and reflect on the dynamism and relationships among skeletal precursors and differentiated cell lineages. Further research directed at unraveling the heterogeneity and capacities of SSPCs, as well as the regulatory cues determining their fate and functioning, will offer vital new options for clinical translation toward compromised fracture healing and bone regenerative medicine.
Collapse
Affiliation(s)
- Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrei S Chagin
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
46
|
Yuan J, Hou Q, He X, Zhong L, Li M, Fu X, Liu H. Chitosan-taurine nanoparticles cross-linked carboxymethyl chitosan hydrogels facilitate both acute and chronic diabetic wound healing. Int J Biol Macromol 2024; 273:132762. [PMID: 38876232 DOI: 10.1016/j.ijbiomac.2024.132762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Wound dressing diligently facilitate healing by fostering hemostasis, immunoregulation, the angiogenesis, and collagen deposition. Our methodology entails fabricating chitosan-taurine nanoparticles (CS-Tau) through an ionic gelation method. The morphology of CS-Tau was observed utilizing Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Dynamic Light Scattering (DLS). The nanoparticles are subsequently incorporated into carboxymethyl chitosan hydrogels for crosslinking by EDC-NHS, yielding hydrogel dressings (CMCS-CS-Tau) designed to extend the duration of taurine release. In vitro investigations confirmed that these innovative compound dressings displayed superior biodegradation, biocompatibility, cytocompatibility, and non-toxicity, in addition to possessing anti-inflammatory properties, and stimulating the proliferation and mobility of human umbilical vein endothelial cells (HUVECs). Experiments conducted on mice models with full-thickness skin removal demonstrated that CMCS-CS-Tau efficaciously aided in wound healing by spurring angiogenesis, and encouraging collagen deposition. CMCS-CS-Tau can also minimize inflammation and promote collagen deposition in chronic diabetic wound. Hence, CMCS-CS-Tau promotes both acute and chronic diabetic wound healing. Furthermore, the sustained release mechanism of CMCS-CS-Tau on taurine reveals promising potential for extending its clinical utility in relation to various biological effects of taurine.
Collapse
Affiliation(s)
- Jifang Yuan
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing 100853, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing 100853, China
| | - Xiaofeng He
- Department of Diagnostic Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lingzhi Zhong
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing 100853, China
| | - Meirong Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing 100853, China; Center for Drug Evaluation, National Medical Products Administration, Beijing 100076, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing 100853, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China.
| | - Hongchen Liu
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
47
|
Hegde A, Ghosh S, Ananthan ASHP, Kataria S, Dutta A, Prabhu S, Khedkar SU, Dutta A, Jamora C. Extracellular Caspase-1 induces hair stem cell migration in wounded and inflamed skin conditions. J Cell Biol 2024; 223:e202306028. [PMID: 38587472 PMCID: PMC11001599 DOI: 10.1083/jcb.202306028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/18/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
The wound-healing process is a paradigm of the directed migration of various pools of stem cells from their niche to the site of injury where they replenish damaged cells. Two decades have elapsed since the observation that wounding activates multipotent hair follicle stem cells to infiltrate the epidermis, but the cues that coax these cells out of their niche remain unknown. Here, we report that Caspase-1, a protein classically known as an integral component of the cytosolic inflammasome, is secreted upon wounding and has a non-canonical role in the extracellular milieu. Through its caspase activation recruitment domain (CARD), Caspase-1 is sufficient to initiate the migration of hair follicle stem cells into the epidermis. Uncovering this novel function of Caspase-1 also facilitates a deeper understanding of the mechanistic basis of the epithelial hyperplasia found to accompany numerous inflammatory skin diseases.
Collapse
Affiliation(s)
- Akshay Hegde
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- School of Chemical and Biotechnology (SCBT), Shanmugha Arts, Science, Technology and Research Academy (SASTRA), Deemed to be University, Thanjavur, India
| | - Subhasri Ghosh
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Akhil SHP Ananthan
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sunny Kataria
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Abhik Dutta
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- School of Chemical and Biotechnology (SCBT), Shanmugha Arts, Science, Technology and Research Academy (SASTRA), Deemed to be University, Thanjavur, India
| | - Srilekha Prabhu
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sneha Uday Khedkar
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Anupam Dutta
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
48
|
Matsuda A, Hasegawa T, Ikeda Y, Wada A, Ikeda S. Histological and molecular restoration of type VII collagen in Recessive dystrophic epidermolysis bullosa mouse skin by topical injection of keratinocyte-like cells differentiated from human adipose-derived mesenchymal stromal cells. J Dermatol Sci 2024; 115:42-50. [PMID: 38876908 DOI: 10.1016/j.jdermsci.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by mutations in the COL7A1 gene, which encodes type VII collagen (COL7), the main constituent of anchoring fibrils for attaching the epidermis to the dermis. Persistent skin erosions frequently result in intractable ulcers in RDEB patients. Adipose-derived mesenchymal stromal cells (AD-MSCs) are easily harvested in large quantities and have low immunogenicity. Therefore, they are suitable for clinical use, including applications involving allogeneic cell transplantation. Keratinocyte-like cells transdifferentiated from AD-MSCs (KC-AD-MSCs) express more COL7 than undifferentiated AD-MSCs and facilitate skin wound healing with less contracture. Therefore, these cells can be used for skin ulcer treatment in RDEB patients. OBJECTIVE We investigated whether KC-AD-MSCs transplantation ameliorated the RDEB phenotype severity in the grafted skin of a RDEB mouse model (col7a1-null) on the back of the immunodeficient mouse. METHODS KC-AD-MSCs were intradermally injected into the region surrounding the skin grafts, and this procedure was repeated after 7 days. After a further 7-day interval, the skin grafts were harvested. RESULTS Neodeposition of COL7 and generation of anchoring fibrils at the dermal-epidermal junction were observed, although experiments were based on qualitative. CONCLUSION KC-AD-MSCs may correct the COL7 insufficiency, repair defective/reduced anchoring fibrils, and improve skin integrity in RDEB patients.
Collapse
Affiliation(s)
- Akinori Matsuda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Toshio Hasegawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Yuri Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Akino Wada
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Japan.
| |
Collapse
|
49
|
Lang X, Xu L, Li L, Feng X. The Mechanism of Catalpol to Improve Oxidative Damage of Dermal Fibroblasts Based on Nrf2/HO-1 Signaling Pathway. Drug Des Devel Ther 2024; 18:2287-2297. [PMID: 38915869 PMCID: PMC11194171 DOI: 10.2147/dddt.s467569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024] Open
Abstract
Objective Catalpol, as a natural medicine small-molecule drug, has been proven to have anti-inflammatory and antioxidant pharmacological effects. Methods The effect of catalpol on oxidative damage of mouse epidermal fibroblast L929 model and its mechanism were investigated by using hydrogen peroxide model, CCK8 method, flow cytometry, and Western blot. Results The effect of catalpol on Nrf2/HO-1 signaling pathway was further studied to improve oxidative stress in cell models. The results showed that catalpol had no cytotoxicity to L929 cells, and inhibited the apoptosis of L929 cells after oxidative damage in a concentration-dependent manner, thus playing a role in cell protection. The oxidative damage of cells was inhibited by up-regulating the expression of the signature protein of Nrf2/HO-1 signaling pathway and inhibiting the interstitial formation of cells. Conclusion This study is a preliminary study on the protective function of catalpol against oxidation and apoptosis in dermal fibroblasts, which can provide a theoretical basis and drug guidance for promoting skin wound healing in the later stage.
Collapse
Affiliation(s)
- Xiaona Lang
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Liyan Xu
- Orthopedic Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Lu Li
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Xin Feng
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
50
|
Liu X, Wang B. Adipose stem cell-derived exosomes promote wound healing by regulating the let-7i-5p/GAS7 axis. J Cosmet Dermatol 2024; 23:2279-2287. [PMID: 38429909 DOI: 10.1111/jocd.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Injury to skin tissue is devastating for human health, making it imperative to devise strategies for hastening wound healing. Normal wound healing is a complex process comprising overlapping steps, including hemostasis, inflammatory response, proliferation, and matrix remodeling. This study investigated the effects of adipose stem cell-derived exosomes (ADSC-exos) on wound healing and the underlying mechanisms. METHODS In vitro hydrogen peroxide (H2O2)-treated human keratinocyte (HaCaT) cell lines and in vivo animal wound models were established for this purpose. The cell migration was assessed using transwell and wound healing assays, while exosome biomarker expressions were studied using western blot. Moreover, adipose stem cells were identified using flow cytometry, alizarin red S and oil red O staining, and transmission electron microscopy. RESULTS Results indicated that H2O2 treatment inhibited the cell viability and migration of HaCaT cells while being promoted by ADSC-exos. Mechanistic investigations revealed that microRNA-let-7i-5p (let-7i-5p) in ADSC-exos was carried into the HaCaT cells, inhibiting the expression of growth arrest-specific-7 (GAS7). Rescue experiments further verified these results, which indicated that GAS7 overexpression reversed the effect of let-7i-5p on the viability and migration of HaCaT cells, suggesting ADSC-exos promoted wound healing via the let-7i-5p/GAS7 axis. CONCLUSION Adipose stem cell-derived-exos enhanced the viability and migration of HaCaT via carrying let-7i-5p and targeting GAS7, ultimately promoting wound healing in rats.
Collapse
Affiliation(s)
- Xiaosong Liu
- Department of Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Biao Wang
- Department of Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|