1
|
Loos CMM, Urschel KL. Current understanding of insulin dysregulation and its relationship with carbohydrate and protein metabolism in horses. Domest Anim Endocrinol 2025; 92:106940. [PMID: 40073599 DOI: 10.1016/j.domaniend.2025.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Insulin dysregulation (ID) is a common metabolic disorder in horses, characterized by hyperinsulinemia and/or peripheral insulin resistance. The critical role of hyperinsulinemia in endocrinopathic laminitis has driven research into the insulinotropic effects of dietary nutrients and the reciprocal impact of ID on nutrient metabolism. The relationship between ID and carbohydrate metabolism has been extensively studied; however, the effects of ID on protein metabolism in horses remain largely unexplored. This review begins with an overview of the importance of insulin in the regulation of muscle protein synthesis and degradation and then examines the current understanding of the interplay between ID and protein and carbohydrate metabolism in horses. Horses with ID exhibit altered resting plasma amino acid concentrations and shifts in postprandial amino acid dynamics. Recent work illustrated that ID horses had higher levels of plasma amino acids following a protein meal and delayed postprandial clearance from the blood compared to non-ID horses. The postprandial muscle synthetic response does not seem to be diminished in ID horses, but alterations in key cellular signaling molecules have been reported. ID horses display a pronounced hyperinsulinemic response following the consumption of feeds providing a range of protein, non-structural carbohydrate, starch and water-soluble carbohydrate intakes. Recent studies have shown that ID horses have an increased postprandial incretin response, contributing to the observed hyperinsulinemia. To minimize the postprandial insulin response, thresholds for carbohydrate consumption have recently been proposed. Similar thresholds should be established for protein to aid in the refinement of nutritional strategies to manage ID horses.
Collapse
Affiliation(s)
- C M M Loos
- Versele-Laga, Cavalor Equine Nutrition, Belgium.
| | - K L Urschel
- University of Kentucky, Department of Animal and Food Sciences, Lexington, KY, USA
| |
Collapse
|
2
|
Liu J, Shang X, Zhang X, Chen Y, Zhang B, Tang W, Li L, Chen R, Jan C, Hu W, Yusufu M, Wang Y, Zhu Z, He M, Zhang L. Metabolomic network reveals novel biomarkers for type 2 diabetes mellitus in the UK Biobank study. Diabetes Obes Metab 2025; 27:3335-3346. [PMID: 40171861 PMCID: PMC12046487 DOI: 10.1111/dom.16351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/27/2025] [Accepted: 03/08/2025] [Indexed: 04/04/2025]
Abstract
AIMS To identify hub metabolic biomarkers that constructively shape the type 2 diabetes mellitus (T2DM) risk network. MATERIALS AND METHODS We analysed data from 98 831 UK Biobank participants, confirming T2DM diagnoses via medical records and International Classification of Diseases codes. Totally 168 circulating metabolites were quantified by nuclear magnetic resonance at baseline. Metabolome-wide association studies with Cox proportional hazards models were performed to identify statistically significant metabolites. Network analysis was applied to compute topological attributes (degree, betweenness, closeness and eigencentrality) and to detect small-world features (high clustering, short path lengths). Identified metabolites were used with XGBoost models to assess risk prediction performance. RESULTS Over a median 12-year follow-up, 114 metabolites were significantly associated with T2DM risk and clustered into three distinct small-world modules. Total triglycerides and large high-density lipoprotein (HDL) cholesterol emerged as the pivotal biomarkers in the 'risk' and 'protective' modules, respectively, as evidenced by their high eigencentrality. Moreover, total branched-chain amino acids (BCAAs) exhibited small-world network characteristics exclusively in pre-T2DM individuals, suggesting them as a potent early indicators. GlycA demonstrated high closeness centrality in females, implying a female-specific risk biomarker. CONCLUSIONS By constructing a metabolic network that captures the complex interrelationships among circulating metabolites, our study identified total triglycerides and large HDL cholesterol as central hubs in the T2DM risk metabolome network. BCAA and GlycA emerged as alarm indicators for pre-T2DM individuals and females, respectively. Network analysis not only elucidates the topological functional roles of biomarkers but also addresses the limitations of false positives and collinearity in single-metabolite studies, offering insights for metabolic pathway research and precision interventions.
Collapse
Affiliation(s)
- Jiahao Liu
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
| | - Xianwen Shang
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- Department of Ophthalmology, Guangdong Eye InstituteGuangdong Provincial People's Hospital, Guang‐dong Academy of Medical SciencesGuangzhouChina
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Eye InstituteGuangdong Provincial People's Hospital, Guang‐dong Academy of Medical SciencesGuangzhouChina
| | - Yutong Chen
- Faculty of Medicine, Nursing and Health ScienceMonash UniversityClaytonVictoriaAustralia
| | - Beiou Zhang
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
| | - Wentao Tang
- Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Li Li
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
| | - Ruiye Chen
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
| | - Catherine Jan
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
| | - Wenyi Hu
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
| | - Mayinuer Yusufu
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
| | - Yujie Wang
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
| | - Zhuoting Zhu
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
| | - Mingguang He
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- Ophthalmology, Department of SurgeryUniversity of MelbourneMelbourneVictoriaAustralia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuang‐ZhouChina
| | - Lei Zhang
- Phase I Clinical Trial Research WardThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- China‐Australia Joint Research Center for Infectious Diseases, School of Public HealthXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
- Artificial Intelligence and Modelling in Epidemiology ProgramMelbourne Sexual Health Centre, Alfred HealthMelbourneVictoriaAustralia
- School of Translational Medicine, Faculty of Medicine, Nursing and Health SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Ragland KJ, Travis KB, Spry ER, Zaman T, Lundin PM, Vaughan RA. The Effect of Dexamethasone-Mediated Atrophy on Mitochondrial Function and BCAA Metabolism During Insulin Resistance in C2C12 Myotubes. Metabolites 2025; 15:322. [PMID: 40422898 DOI: 10.3390/metabo15050322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Background: Muscle loss during sarcopenia and atrophy is also commonly associated with age-related insulin resistance. Interestingly, branched-chain amino acids (BCAA) which are known for stimulating muscle protein synthesis are commonly elevated during insulin resistance and sarcopenic obesity. Objectives: This study investigated the effects of the interplay between atrophy and insulin resistance on insulin sensitivity, mitochondrial metabolism, and BCAA catabolic capacity in a myotube model of skeletal muscle insulin resistance. Methods: C2C12 myotubes were treated with dexamethasone to induce atrophy. Insulin resistance was induced via hyperinsulinemia. Gene and expression were measured using qRT-PCR and Western blot, while mitochondrial and lipid content were assessed using fluorescent staining. Cell metabolism was analyzed via Seahorse metabolic assays. Results: Both dexamethasone-induced atrophy and insulin resistance independently reduced insulin-stimulated pAkt levels, as well as mitochondrial function and content. However, neither treatment affected gene or protein expression associated with mitochondrial biogenesis or content. Although dexamethasone independently reduced insulin sensitivity in otherwise previously insulin-sensitive cells, dexamethasone had no significant effect on extracellular BCAA content. Conclusions: Our findings indicate the metabolic interplay between atrophy and insulin resistance and demonstrate that both can reduce mitochondrial function, though only limited effects were observed on indicators of BCAA catabolism and utilization. This emphasizes the need for future studies to investigate the mechanisms that underlie atrophy and other metabolic disorders to develop new interventions.
Collapse
Affiliation(s)
- Kayla J Ragland
- Department of Health and Human Performance, High Point University, High Point, NC 27268, USA
| | - Kipton B Travis
- Department of Health and Human Performance, High Point University, High Point, NC 27268, USA
| | - Emmalie R Spry
- Department of Health and Human Performance, High Point University, High Point, NC 27268, USA
| | - Toheed Zaman
- Department of Chemistry, High Point University, High Point, NC 27268, USA
| | - Pamela M Lundin
- Department of Chemistry, High Point University, High Point, NC 27268, USA
| | - Roger A Vaughan
- Department of Health and Human Performance, High Point University, High Point, NC 27268, USA
| |
Collapse
|
4
|
Nemoto S, Uchida K, Kubota T, Nakayama M, Han YW, Koyasu S, Ohno H. Tetraspanin7 in adipose tissue remodeling and its impact on metabolic health. Mol Metab 2025; 97:102168. [PMID: 40368161 DOI: 10.1016/j.molmet.2025.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025] Open
Abstract
OBJECTIVE We previously identified tetraspanin 7 (Tspan7) as a candidate gene influencing body weight in an obesity-related gene screening study. However, the mechanisms underlying its involvement in body weight regulation remained unclear. This study aims to investigate the role of TSPAN7 from a metabolic perspective. METHODS We utilized genetically modified mice, including adipose tissue-specific Tspan7-knockout and Tspan7-overexpressing models, as well as human adipose-derived stem cells with TSPAN7 knockdown and overexpression. Morphological, molecular, and omics analyses, including proteomics and transcriptomics, were performed to investigate TSPAN7 function. Physiological effects were assessed by measuring blood markers associated with lipid regulation under metabolic challenges, such as high-fat feeding and aging. RESULTS We show that TSPAN7 is involved in regulating lipid droplet formation and stabilization. Tspan7-knockout mice exhibited an increased proportion of small-sized adipocytes and a reduced visceral-to-subcutaneous fat ratio. This shift in fat distribution was associated with improved insulin sensitivity and altered branched-chain amino acid metabolism, as evidenced by increased expression of the branched-chain α-keto acid dehydrogenase complex subunit B in Tspan7-modified mice. Mechanistically, TSPAN7 deficiency promoted subcutaneous fat expansion, alleviating metabolic stress on visceral fat, a major contributor to insulin resistance. CONCLUSIONS TSPAN7 influences lipid metabolism by modulating adipose tissue remodeling, particularly under metabolic challenges, such as high-fat diet exposure and aging. Its modulation enhances subcutaneous fat storage capacity while mitigating visceral fat accumulation, leading to improved insulin sensitivity. These findings position TSPAN7 as a potential target for therapeutic interventions aimed at improving metabolic health and preventing obesity-related diseases.
Collapse
Affiliation(s)
- Shino Nemoto
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
| | - Kazuyo Uchida
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Tetsuya Kubota
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan; Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan; Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Yong-Woon Han
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
5
|
Ramzy A, Abdelmoneim TK, Arafat M, Mokhtar M, Bakkar A, Mokhtar A, Anwar W, Magdeldin S, Enany S. Metabolomic analysis reveals key changes in amino acid metabolism in colorectal cancer patients. Amino Acids 2025; 57:22. [PMID: 40314699 PMCID: PMC12048468 DOI: 10.1007/s00726-025-03448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/05/2025] [Indexed: 05/03/2025]
Abstract
The number of colorectal cancer (CRC) patients is steadily growing worldwide, particularly in developing nations. Nonetheless, recent advances in early detection studies and therapy alternatives have reduced CRC mortality in affluent countries, despite rising incidence. Gut microbiota and their metabolites may contribute to tumor growth and reduced therapeutic efficacy. This preliminary study sought to uncover metabolic fingerprints in colorectal cancer patients. It also emphasizes the correlation between the gut microbiome, microbial metabolism, and altered metabolites in CRC. In this study, stool samples from 20 CRC patients and matched healthy controls were enrolled. Untargeted metabolomics approach based on an ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-MS/MS) were applied. Statistical approaches, pathway enrichment analysis, and network analysis were employed to unleash CRC perturbed metabolic pathways and putative biomarkers. The study identified a distinct manually curated metabolite profile that is substantially linked to CRC. The steroidogenesis, aspartate, tryptophan (Trp), and urea cycle were the most significant pathways that concurrently contributed to CRC.Prominently, among other pathways, Trp metabolism was identified as a critical pathway, indicating a possible connection between the development of CRC and gut microbiota. In a nutshell the notable resulted metabolites reveal auspicious biomarkers for the initial diagnosis as well as surveilling of CRC progression. This preliminary study highlights the potential involvement that gut bacteria may contribute in CRC patients. Further investigation into the composition of the gut microbiome associated with this metabolic profile may lead to the identification of novel biomarkers for early detection and possible targets for treatment.
Collapse
Grants
- (AI 42547) The work presented here is funded by the Armed Force College of Medicine, Cairo, Egypt, and it is partially supported by Science, Technology & Innovation Funding Authority (STDF) under grant (AI 42547).
- (AI 42547) The work presented here is funded by the Armed Force College of Medicine, Cairo, Egypt, and it is partially supported by Science, Technology & Innovation Funding Authority (STDF) under grant (AI 42547).
- The work presented here is funded by the Armed Force College of Medicine, Cairo, Egypt, and it is partially supported by Science, Technology & Innovation Funding Authority (STDF) under grant (AI 42547).
Collapse
Affiliation(s)
- Asmaa Ramzy
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Taghreed Khaled Abdelmoneim
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Menna Arafat
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha Mokhtar
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Ashraf Bakkar
- Faculty of Biotechnology, October for Modern Sciences and Arts, Giza, Egypt
| | - Amany Mokhtar
- Biomedical Research Department, Armed Force College of Medicine (AFCM), Cairo, Egypt
- Community Medicine Department, Ain Shams University, Cairo, Egypt
| | - Wagida Anwar
- Biomedical Research Department, Armed Force College of Medicine (AFCM), Cairo, Egypt
- Community Medicine Department, Ain Shams University, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Shymaa Enany
- Biomedical Research Department, Armed Force College of Medicine (AFCM), Cairo, Egypt.
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
6
|
Huang S, Wang X, Wang M, Lin J, Ren J, Lu C, Fu J, Zhang Y, Wang X, Xiao J, Guo J, Zhou H. S-9-PAHSA Protects Against High-Fat Diet-Induced Diabetes-Associated Cognitive Impairment via Gut Microbiota Regulation. CNS Neurosci Ther 2025; 31:e70417. [PMID: 40325622 PMCID: PMC12052735 DOI: 10.1111/cns.70417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/07/2025] [Accepted: 04/20/2025] [Indexed: 05/07/2025] Open
Abstract
AIM Diabetes-associated cognitive impairment (DACI) is a common complication of Type 2 diabetes mellitus (T2DM), with its mechanisms and treatments for DACI remaining incompletely clarified. This study investigated the protective efficacy of the novel lipid S-enantiomer of 9-palmitic acid esters of hydroxy stearic acids (S-9-PAHSA, S9P) in a high-fat diet-induced DACI mouse model. METHODS Mice were randomly assigned to three groups: normal diet (ND), high-fat diet (HFD), and HFD + 30 mg/kg/day S9P (HFD + S9P). Fasting blood glucose (FBG), intraperitoneal glucose tolerance test (IPGTT), and insulin tolerance test (ITT) were conducted to assess blood glucose homeostasis. Morris Water Maze and Y maze tests evaluated cognitive function, and neuronal status was examined through pathological analysis, Golgi staining, and transmission electron microscopy (TEM). Colonic barrier integrity was assessed using periodic acid-Schiff and Alcian blue staining (AB-PAS) and immunohistochemistry (IHC) staining. Intestinal microbiota composition was analyzed by 16S rDNA sequencing, and serum metabolic characteristics were determined by metabolomics sequencing. RESULTS S9P improved glucose homeostasis and alleviated cognitive decline in DACI mice. It also mitigated neuronal damage, dendritic degeneration, and synaptic damage, while restoring colonic barrier integrity and ameliorating gut microbiome imbalances, insulin resistance, and lipid imbalance. Additionally, S9P regulated metabolite profiles and the PI3K/AKT/mTOR signaling pathways, and reduced astrocyte activation and neuroinflammatory responses in the hippocampus of HFD-induced DACI mice. CONCLUSION S9P had a protective effect against HFD-induced diabetic cognitive impairment closely related to the modulation of the gut-brain axis, suggesting that S9P has the potential to become a new therapeutic approach for DACI.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Geriatric of Huashan Hospital, National Clinical Research Center for Aging and MedicineFudan UniversityShanghaiChina
| | - Xinru Wang
- Department of Geriatric of Huashan Hospital, National Clinical Research Center for Aging and MedicineFudan UniversityShanghaiChina
| | - Meng Wang
- Department of Geriatric of Huashan Hospital, National Clinical Research Center for Aging and MedicineFudan UniversityShanghaiChina
| | - Jinhong Lin
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced MaterialsChinese Academy of SciencesShanghaiChina
| | - Jiaoqi Ren
- Department of Geriatric of Huashan Hospital, National Clinical Research Center for Aging and MedicineFudan UniversityShanghaiChina
| | - Chenyu Lu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Jiayu Fu
- Department of Geriatric of Huashan Hospital, National Clinical Research Center for Aging and MedicineFudan UniversityShanghaiChina
| | - Yanli Zhang
- Department of Geriatric of Huashan Hospital, National Clinical Research Center for Aging and MedicineFudan UniversityShanghaiChina
| | - Xuechun Wang
- Department of Geriatric of Huashan Hospital, National Clinical Research Center for Aging and MedicineFudan UniversityShanghaiChina
| | - Jichang Xiao
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced MaterialsChinese Academy of SciencesShanghaiChina
| | - Jingchun Guo
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Houguang Zhou
- Department of Geriatric of Huashan Hospital, National Clinical Research Center for Aging and MedicineFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Li H, Seugnet L. Decoding the nexus: branched-chain amino acids and their connection with sleep, circadian rhythms, and cardiometabolic health. Neural Regen Res 2025; 20:1350-1363. [PMID: 39075896 PMCID: PMC11624887 DOI: 10.4103/nrr.nrr-d-23-02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 07/31/2024] Open
Abstract
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Xijing Hospital, Xi’an, Shaanxi Province, China
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of the Brain Arousal Systems (WAKING), Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Bron, France
| |
Collapse
|
8
|
Hart TL, Kris-Etherton PM, Petersen KS. Pecan Intake Improves Lipoprotein Particle Concentrations Compared with Usual Intake in Adults at Increased Risk of Cardiometabolic Diseases: A Randomized Controlled Trial. J Nutr 2025; 155:1459-1465. [PMID: 40113170 DOI: 10.1016/j.tjnut.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Pecan consumption consistently improves lipoproteins, but less research has investigated the effect of pecans on lipoprotein subfractions. OBJECTIVES The aim was to investigate the effect of substitution of usual snack foods with 57 g/d of pecans on lipoprotein particle subfractions and apolipoproteins compared with continuing usual intake after 12 wk. Exploratory analyses evaluated effects on early markers of insulin resistance including the Lipoprotein Insulin Resistance Index (LP-IR), Diabetes Risk Index, and GlycA. METHODS A 12-wk, randomized, 2-armed parallel trial in adults at risk of cardiometabolic disease was conducted. Participants were instructed to either consume 57 g/d of pecans in place of usual snacks or to continue their usual intake. Plasma samples collected at baseline and 12 wk were analyzed for lipoproteins, apolipoproteins, and GlycA by proton nuclear magnetic resonance spectroscopy. Between-group differences in the change from baseline were evaluated with linear regression. RESULTS In total, 138 participants were randomly assigned (n = 69 per group) and 130 participants (pecan group n = 62; usual diet group n = 68) completed the trial. The pecan group had a greater reduction from baseline in the concentrations of apolipoprotein B (apoB) [-4.38 mg/dL; 95% confidence interval (CI): -8.02, -0.73], total low-density lipoprotein particles (-75.3 nmol/L; 95% CI: -144, -6.93), total triglyceride-rich lipoprotein particles (TRL-P) (-20.4 nmol/L; 95% CI: -33.8, -7.03), large (-1.47 nmol/L; 95% CI: -2.69, -0.26) and small (-11.3 nmol/L; 95% CI: -22.4, -0.27) TRL-P and the LP-IR (-4.42 points; 95% CI: -8.14, -0.69), and greater increases from baseline in the concentration of large high-density lipoprotein particles (0.35 μmol/L; 95% CI: 0.07, 0.63) compared with the usual diet group. CONCLUSIONS Incorporating 57 g/d of pecans into the diet in place of usual snacks for 12 wk improved apoB, atherogenic lipoprotein subfractions, and the LP-IR in adults at risk of cardiometabolic diseases. This trial was registered at clinicaltrials.gov as NCT05071807.
Collapse
Affiliation(s)
- Tricia L Hart
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Kristina S Petersen
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
9
|
Lee SH, Lira-Albarrán S, Rinaudo PF. Proteomic and metabolomic insights into oxidative stress response activation in mouse embryos generated by in vitro fertilization. Hum Reprod Open 2025; 2025:hoaf022. [PMID: 40416391 PMCID: PMC12101870 DOI: 10.1093/hropen/hoaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/26/2025] [Indexed: 05/27/2025] Open
Abstract
STUDY QUESTION How different is the global proteomic and metabolic profile of mouse blastocysts generated by IVF, cultured in optimal (5% O2) or stressful (20% O2) conditions, compared to in vivo generated blastocysts? SUMMARY ANSWER We found that in IVF-generated embryos: (i) the proteome was more sensitive to high oxygen levels than the global metabolomic profile; (ii) enzymes involved in splicing and the spliceosome are altered; (iii) numerous metabolic pathways, particularly amino acids metabolism, are altered (iv) there is activation of the integrated stress response (ISR) and downregulation of mTOR pathways. WHAT IS KNOWN ALREADY IVF culture conditions are known to affect the gene expression of embryos. However, comprehensive data on the global metabolic and proteomic changes that occur in IVF-generated embryos are unknown. STUDY DESIGN SIZE DURATION Mouse embryos were generated by natural mating (in vivo control or flushed blastocyst-FB-group) or by IVF using KSOM medium and two distinct oxygen concentrations: 5% O2 (optimal) and 20% O2 (stressful). Proteomic and metabolomic analyses were performed using state-of-the-art mass spectrometry techniques in triplicate (n = 100 blastocysts per replicate), allowing for detailed profiling of protein and metabolite alterations in each group. PARTICIPANTS/MATERIALS SETTING METHODS Mouse blastocysts were collected from CD-1 and B6D2F1 strains as specified above. High-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for proteomics, while high-performance liquid chromatography coupled with mass spectrometry (HILIC-MS) was used for metabolomics. In addition, Immunofluorescence was used to assess the activation of stress response pathways, including the ISR. MAIN RESULTS AND THE ROLE OF CHANCE Proteomic analysis revealed significant changes in protein expression in embryos cultured under 20% O2 compared to 5% O2 and in vivo embryos. Compared to in vivo embryos, IVF embryos cultured under 20% O2 exhibited 599 differentially expressed proteins, with an increase in proteins involved in oxidative stress responses, aminoacyl-tRNA synthesis, and spliceosome pathways. In contrast, IVF embryos cultured under 5% O2 showed fewer changes, with 426 differentially expressed proteins, though still reflecting significant alterations compared to in vivo embryos. These results indicate that embryos in stressful conditions (20% O2) exhibit a stronger stress response and alterations in critical pathways for protein synthesis and DNA repair. Metabolomic analysis revealed that embryos cultured under 20% O2 showed changes in branch-chained amino acid levels, and decreased levels of key metabolites of the TCA cycle and pentose phosphate pathway. Embryos cultured under 5% O2 had increased pyruvate levels, suggesting altered glycolysis. Immunofluorescence confirmed that oxidative stress markers such as GCN2, EIF2α, and ATF4 were upregulated in IVF embryos, indicating ISR activation. Overall, IVF and embryo culture have a direct impact on embryo proteomes and metabolomes affecting amino acid metabolism and stress-related pathways. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Results in a murine model should be extrapolated with caution to human embryos. WIDER IMPLICATIONS OF THE FINDINGS These findings offer valuable insights into how different IVF culture conditions, specifically oxygen levels, impact the global metabolic and proteomic profiles of embryos. These findings provide critical insights into the profound impact of IVF culture conditions, particularly oxygen levels, on the global metabolic and proteomic landscapes of embryos. By identifying key metabolic pathways disrupted by oxidative stress, we highlight the potential clinical importance of proteomic and metabolomic analyses in understanding embryo quality, improving ART, and ultimately enhancing pregnancy outcomes. The integration of metabolomic and proteomic data offers a comprehensive understanding of how oxidative stress influences cellular function. These insights have direct clinical relevance, providing a foundation for optimizing ART protocols to mitigate oxidative stress. STUDY FUNDING/COMPETING INTERESTS This work was supported by grant R01 HD108166-01A1 from the National Institute of Child Health and Human Development (NICHD) to P.F.R. The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Collapse
Affiliation(s)
- Seok Hee Lee
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Saúl Lira-Albarrán
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Paolo F Rinaudo
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Toki R, Fushiki S, Kojima S, Sutoh Y, Otsuka-Yamasaki Y, Harada S, Iida M, Hirata A, Miyagawa N, Matsumoto M, Edagawa S, Miyake A, Kuwabara K, Hirayama A, Sugimoto M, Sato A, Amano K, Soga T, Tomita M, Arakawa K, Kinoshita K, Sakurai-Yageta M, Tamiya G, Ohmomo H, Shimizu A, Okamura T, Takebayashi T. Genome-wide association study of plasma amino acids and Mendelian randomization for cardiometabolic traits. Sci Rep 2025; 15:14569. [PMID: 40281240 PMCID: PMC12032298 DOI: 10.1038/s41598-025-98992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Plasma amino acids (AAs) have emerged as promising biomarkers for metabolic disorders, yet their causality remains unclear. We aimed to investigate the genetic determinants of AA levels in a cohort of 10,333 individuals and their causal effects on cardiometabolic traits using Mendelian randomization (MR). Plasma levels of 20 AAs were quantified using capillary electrophoresis mass spectrometry. Genome-wide association studies were conducted using BOLT-LMM and heritability estimation via LDSC analysis. Causal effects of AAs on 11 cardiometabolic traits were examined using two-sample MR analyses. We identified 85 locus-metabolite associations across 43 genes for 18 AAs, including 44 novel loci linked to metabolic genes. Heritability for AAs was estimated at 16%. MR analysis demonstrated cystine to positively associate with systolic blood pressure (SBP) (β = 0.056, SE = 0.010), while serine indicated protective effects on SBP (β = - 0.040, SE = 0.011), diastolic BP (β = - 0.044, SE = 0.010), and coronary artery disease (odds ratio 0.888, SE = 0.028). We identified potentially novel genetic loci associated with AA levels and demonstrated robust causal associations between several AAs and cardiometabolic traits. These findings reinforce the importance of AAs as potential biomarkers and therapeutic targets in cardiometabolic health.
Collapse
Affiliation(s)
- Ryota Toki
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Sotaro Fushiki
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- Konica Minolta, Inc, Chiyoda-ku, Tokyo, Japan
| | - Shun Kojima
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- Konica Minolta, Inc, Chiyoda-ku, Tokyo, Japan
| | - Yoichi Sutoh
- Division of Bioinformation Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa-gun, Iwate, Japan
- Division of Bioinformation Analysis, Institute for Biomedical Sciences, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Yayoi Otsuka-Yamasaki
- Division of Bioinformation Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa-gun, Iwate, Japan
- Division of Bioinformation Analysis, Institute for Biomedical Sciences, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Miho Iida
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Aya Hirata
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Naoko Miyagawa
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Minako Matsumoto
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shun Edagawa
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Atsuko Miyake
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Kazuyo Kuwabara
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Kaori Amano
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi, Japan
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Mika Sakurai-Yageta
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Center for Advanced Intelligence Project, RIKEN, Wako, Saitama, Japan
| | - Hideki Ohmomo
- Division of Bioinformation Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa-gun, Iwate, Japan
- Division of Bioinformation Analysis, Institute for Biomedical Sciences, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Atsushi Shimizu
- Division of Bioinformation Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa-gun, Iwate, Japan
- Division of Bioinformation Analysis, Institute for Biomedical Sciences, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Tomonori Okamura
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Toru Takebayashi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
11
|
Liu W, Wang L, Ou J, Peng D, Zhang Y, Chen W, Wang Y. Gut Microbiota Metabolites and Chronic Diseases: Interactions, Mechanisms, and Therapeutic Strategies. Int J Mol Sci 2025; 26:3752. [PMID: 40332366 PMCID: PMC12027615 DOI: 10.3390/ijms26083752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
The gut microbiota, shaped by factors such as diet, lifestyle, and genetics, plays a pivotal role in regulating host metabolism, immune function, and overall health. The diversity and balance of the gut microbiota are closely linked to the onset and progression of various chronic diseases. A growing body of evidence has demonstrated that alterations in the composition, function, and metabolites of the gut microbiota are significantly associated with cardiovascular diseases, including hypertension, atherosclerosis, and heart failure; metabolic disorders such as obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease; and gastrointestinal conditions like inflammatory bowel disease and colorectal cancer. Despite substantial advances in microbiome research, challenges remain in fully elucidating the causal relationships between the gut microbiota and disease, as well as in translating these insights into clinical applications. This review aims to investigate the regulatory pathways via which the gut microbiota affects cardiovascular health, metabolic function, and gastrointestinal disease. Additionally, it highlights emerging strategies for the prevention and treatment of these chronic conditions, focusing on microbiota-targeted therapies and personalized dietary interventions as promising approaches for improving health outcomes.
Collapse
Affiliation(s)
- Wenwen Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.L.); (L.W.); (J.O.); (D.P.); (W.C.)
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.L.); (L.W.); (J.O.); (D.P.); (W.C.)
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Hefei 230012, China
| | - Jinmei Ou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.L.); (L.W.); (J.O.); (D.P.); (W.C.)
- Anhui Key Laboratory of New Manufacturing Technology of Chinese Medicine Pieces, Hefei 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.L.); (L.W.); (J.O.); (D.P.); (W.C.)
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Hefei 230012, China
| | - Yue Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.L.); (L.W.); (J.O.); (D.P.); (W.C.)
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.L.); (L.W.); (J.O.); (D.P.); (W.C.)
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Hefei 230012, China
- Anhui Key Laboratory of New Manufacturing Technology of Chinese Medicine Pieces, Hefei 230012, China
| | - Yanyan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.L.); (L.W.); (J.O.); (D.P.); (W.C.)
- Ministry of Education-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Hefei 230012, China
| |
Collapse
|
12
|
Tambets R, Kronberg J, van der Graaf A, Jesse M, Abner E, Võsa U, Rahu I, Taba N, Kolde A, Yarish D, Fischer K, Kutalik Z, Esko T, Alasoo K, Palta P. Genome-wide association study for circulating metabolic traits in 619,372 individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.10.15.24315557. [PMID: 40297438 PMCID: PMC12036396 DOI: 10.1101/2024.10.15.24315557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Interpreting genetic associations with complex traits can be greatly improved by detailed understanding of the molecular consequences of these variants. However, although genome-wide association studies (GWAS) for common complex diseases routinely profile 1M+ individuals, studies of molecular phenotypes have lagged behind. We performed a GWAS meta-analysis for 249 circulating metabolic traits in the Estonian Biobank and the UK Biobank in up to 619,372 individuals, identifying 88,604 significant locus-metabolite associations and 8,774 independent lead variants, including 987 lead variants with a minor allele frequency less than 1%. We demonstrate how common and low-frequency associations converge on shared genes and pathways, bridging the gap between rare-variant burden testing and common-variant GWAS. We used Mendelian randomisation (MR) to explore putative causal links between metabolic traits, coronary artery disease and type 2 diabetes (T2D). Surprisingly, up to 85% of the tested metabolite-disease pairs had statistically significant genome-wide MR estimates, likely reflecting complex indirect effects driven by horisontal pleiotropy. To avoid these pleiotropic effects, we used cis-MR to test the phenotypic impact of inhibiting specific drug targets. We found that although plasma levels of branched-chain amino acids (BCAAs) have been associated with T2D in both observational and genome-wide MR studies, inhibiting the BCAA catabolism pathway to lower BCAA levels is unlikely to reduce T2D risk. Our publicly available results provide a valuable novel resource for GWAS interpretation and drug target prioritisation.
Collapse
Affiliation(s)
- Ralf Tambets
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Jaanika Kronberg
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Mihkel Jesse
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Erik Abner
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ida Rahu
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Nele Taba
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anastassia Kolde
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | | | - Krista Fischer
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Unisanté, University of Lausanne, Lausanne, Switzerland
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Priit Palta
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
13
|
Yang SJ, Yu XK, Zuo Q. Branched- Chain Fatty Acids and Obesity: A Narrative Review. Nutr Rev 2025:nuaf022. [PMID: 40207993 DOI: 10.1093/nutrit/nuaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Branched- chain fatty acids (BCFAs) are a category of saturated fatty acids that are commonly present in various organisms and play a crucial role in a variety of metabolic reactions, including anticancer, lipid-lowering, anti-inflammatory, and neuroprotective actions. Currently, there is growing interest in the relationship between BCFAs and obesity. Branched- chain fatty acids regulate the gene expression of related enzymes by activating PPARα and sterol regulatory element-binding protein-1c, thereby reducing triglyceride synthesis in the body. Additionally, BCFAs reduce inflammation by decreasing the expression of pro-inflammatory factors in obesity such as cyclooxygenase-2, interleukin-6, and lipoxygenase-15 genes. Branched- chain fatty acids can also expedite the conversion of branched chain amino acids to BCFAs to regulate obesity-induced insulin resistance. In this article we provide a comprehensive review of research progress on how BCFAs affect obesity from the perspectives of lipid metabolism, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Shi-Jiao Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xin-Kai Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Qun Zuo
- School of Sports Performance, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
14
|
Wang L, Shi F, Cao Y, Xie L. Multiple roles of branched-chain amino acid metabolism in tumour progression. J Biomed Sci 2025; 32:41. [PMID: 40205401 PMCID: PMC11983764 DOI: 10.1186/s12929-025-01132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
Metabolic reprogramming enables tumour cells to sustain their continuous proliferation and adapt to the ever-changing microenvironment. Branched-chain amino acids (BCAAs) and their metabolites are involved in intracellular protein synthesis and catabolism, signal transduction, epigenetic modifications, and the maintenance of oxidative homeostasis. Alterations in BCAA metabolism can influence the progression of various tumours. However, how BCAA metabolism is dysregulated differs among depending on tumour type; for example, it can manifest as decreased BCAA metabolism leading to BCAA accumulation, or as enhanced BCAA uptake and increased catabolism. In this review, we describe the role of BCAA metabolism in the progression of different tumours. As well as discuss how BCAA metabolic reprogramming drives tumour therapy resistance and evasion of the antitumour immune response, and how these pro-cancer effects are achieved in part by activating the mTORC signalling pathway. In-depth investigations into the potential mechanisms by which BCAA metabolic reprogramming affects tumorigenesis and tumour progression can enhance our understanding of the relationship between metabolism and cancer and provide new strategies for cancer therapy.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Longlong Xie
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine (Hunan Children's Hospital), Central South University, Changsha, 410078, China.
| |
Collapse
|
15
|
Lu DL, Zhang MS, Wang FB, Dai ZJ, Li ZW, Ni JT, Feng WJ, Zhang FG, Dai J, Wang HN, Deng JJ, Luo XC. Nutritional value improvement of soybean meal through solid-state fermentation by proteases-enhanced Streptomyces sp. SCUT-3. Int J Biol Macromol 2025; 298:140035. [PMID: 39828158 DOI: 10.1016/j.ijbiomac.2025.140035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
With the global population expected to reach 10 billion by the 2050s, the demand for protein will surge, intensifying the need for high protein utilization efficiency. This study investigates the use of protease-enhanced Streptomyces sp. SCUT-3-3940 to degrade soybean meal (SBM) via solid-state fermentation (SSF). Optimized conditions resulted in anti-nutritional factors elimination and high soluble protein recovery (41.1 g/100 g), including bioactive oligopeptides (17.3 g/100 g) with antihypertensive and antioxidant properties. The degradation also produced free amino acids rich in essential amino acids, and other nutrient enhancing compounds. The fermented SBM (FSBM) exhibited superior digestibility, making it a valuable protein source. In a 60-day largemouth bass trial, replacing 10 % SBM with FSBM in feed significantly improved feed intake and weight gain. This method offers an efficient, eco-friendly, and cost-effective solution to address global protein shortages.
Collapse
Affiliation(s)
- De-Lin Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Ming-Shu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Fu-Bao Wang
- Guangdong Jieda Feed Company, Ltd., Guangdong Special Aquatic Functional Feed Engineering Technology Research Center, Foshan 528211, China
| | - Zhen-Jie Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Zhi-Wei Li
- GuangZhou XiaoChun Biotechnology Company, Ltd., Room 1001-A056, No. 190 Kaitai Avenue, Huangpu District, Guangzhou 510535, China
| | - Jing-Tao Ni
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Wen-Jing Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Fu-Gen Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Jun Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Hai-Ning Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Jun-Jin Deng
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Germplasm Resources Conservation and Utilization, Guangzhou 510640, China.
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China.
| |
Collapse
|
16
|
Tesoriere G, Pilesi E, De Rosa M, Giampaoli O, Patriarca A, Spagnoli M, Chiocciolini F, Tramonti A, Contestabile R, Sciubba F, Vernì F. Vitamin B6 deficiency produces metabolic alterations in Drosophila. Metabolomics 2025; 21:42. [PMID: 40123014 PMCID: PMC11930875 DOI: 10.1007/s11306-025-02236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Pyridoxal 5'-phosphate (PLP), the biologically active form of vitamin B6 is involved in 4% of cellular enzymatic activities and its deficiency is responsible for or contributes to several human diseases. The study of underlying mechanisms is still in its infancy and requires suitable model organisms. In Drosophila the deficiency of vitamin B6 produces chromosome aberrations and hallmarks of human diseases including diabetes and cancer. However, the effects of vitamin B6 deficiency have never been examined at a metabolic level. OBJECTIVES This study evaluates the metabolic changes in vitamin B6 deficient Drosophila larvae with the aim of validating flies as a suitable model for diseases associated to vitamin B6 deficiency. METHODS To induce vitamin B6 deficiency we fed Drosophila wild type larvae with 4-deoxypyridoxine (4DP), a PLP antagonist. By HPLC analysis we verified that the 4DP treatment was effective in inducing vitamin B6 deficiency. Using an NMR-based metabolomic approach we compared the metabolites in larval extracts from untreated and 4DP-fed larvae. RESULTS The NMR spectra analysis identified quantitative differences for sixteen metabolites out of forty, including branched chain and aromatic amino acids, glucose, and lipids, thus revealing interesting possible associations with the phenotypes showed by vitamin B6 deficient flies. CONCLUSIONS Our results validate Drosophila as a suitable model to study in depth the molecular mechanisms underlying human diseases associated with vitamin B6 deficiency and confirmed that 4DP treatment is effective in inducing vitamin B6 deficiency.
Collapse
Affiliation(s)
- Giulia Tesoriere
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Eleonora Pilesi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Michele De Rosa
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Ottavia Giampaoli
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Adriano Patriarca
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mariangela Spagnoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, 00078, Monte Porzio Catone, Italy
| | - Federica Chiocciolini
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185, Rome, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185, Rome, Italy
| | - Roberto Contestabile
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza, University of Rome, 00185, Rome, Italy
| | - Fabio Sciubba
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
17
|
Abdi Dezfouli R, Zargar Balajam N, Heshmat R, Shafiee G. The efficacy of Sarcomeal® oral supplementation plus vitamin D3 on muscle parameters, metabolic factors, and quality of life in diabetic sarcopenia: a randomized controlled clinical trial. Aging Clin Exp Res 2025; 37:81. [PMID: 40075050 PMCID: PMC11903600 DOI: 10.1007/s40520-025-02969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
AIM To investigate the efficacy of Sarcomeal® sachet, as a protein supplement, plus vitamin D3 on muscle parameters, metabolic factors, and quality of life (QoL) in individuals with diabetes and sarcopenia. METHODS Sixty individuals were randomized into the control or intervention group. The intervention group received a daily dose of one Sarcomeal sachet and 1000 IU of vitamin D and both groups were recommended to consume protein-rich food, be educated about the disease, and perform physical activity for 12 weeks. Various assessments including muscle parameters, blood tests, and QoL were conducted at the beginning and the end of the trial. RESULTS Over 12 weeks, although the intervention group had significant improvements in mean skeletal muscle mass index (SMI) (change: 0.17[0.016, 0.329] kg/m²; p < 0.05) and handgrip strength (change: 1.33[0.256, 2.410] kg; p < 0.05), differences between groups were not statistically significant. However, significant improvements were observed in lean mass (1.70 [0.749, 2.665] kg; P < 0.01) and lean mass index (0.62[0.287, 0.954] kg/m2; P < 0.01) between groups. Weight was maintained in the intervention arm, whereas the control arm experienced significant weight loss (1.87 [0.654, 3.109] kg; P < 0.01). Participants in the intervention arm did not show significant changes in blood parameters. The most reported side effects were loss of appetite (50%) and stomach heaviness (20.8%). CONCLUSION This mixture of supplements significantly improved lean muscle mass, preserved physical function, and helped maintain weight, supporting its potential as a strategy to counter muscle loss and enhance the QoL in diabetic sarcopenia patients. CLINICAL TRIAL REGISTRATION This trial is registered at the Iranian Registry of Clinical Trials (IRCT) with IRCT20230831059311N1 ID.
Collapse
Affiliation(s)
- Ramin Abdi Dezfouli
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Zargar Balajam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Huang B, Yang Y, Liu J, Zhang B, Lin N. Ubiquitination regulation of mitochondrial homeostasis: a new sight for the treatment of gastrointestinal tumors. Front Immunol 2025; 16:1533007. [PMID: 40134432 PMCID: PMC11933043 DOI: 10.3389/fimmu.2025.1533007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Mitochondrial homeostasis (MH) refers to the dynamic balance of mitochondrial number, function, and quality within cells. Maintaining MH is significant in the occurrence, development, and clinical treatment of Gastrointestinal (GI) tumors. Ubiquitination, as an important post-translational modification mechanism of proteins, plays a central role in the regulation of MH. Over the past decade, research on the regulation of MH by ubiquitination has focused on mitochondrial biogenesis, mitochondrial dynamics, Mitophagy, and mitochondrial metabolism during these processes. This review summarizes the mechanism and potential therapeutic targets of ubiquitin (Ub)-regulated MH intervention in GI tumors.
Collapse
Affiliation(s)
- Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yulin Yang
- School of Clinical Chinese Medicine, Gansu University of Chinese Medicine, Gansu, China
| | - Jinming Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
19
|
Esmaeili V, Alizadeh A, Zendehdel M, Habibi M, Pezeshki A, Dizavi A, Vesali S, Gilani MAS, Nahid M, Shahverdi A. Branched-chain and Aromatic Amino Acids in Blood and Seminal Plasma are Associated with Sperm Parameters; A Practice within a Fertility Clinic Considering the Metabolic Syndrome. Reprod Sci 2025; 32:757-768. [PMID: 39885000 DOI: 10.1007/s43032-024-01779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/24/2024] [Indexed: 02/01/2025]
Abstract
The metabolomic approach has recently been used in the assessment of semen quality and male fertility. Additionally, the crucial roles of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) in metabolic syndrome (MetS) were reported. However, little information exists about the association between BCAAs and AAAs with semen parameters, particularly in men with and without MetS. Our objective was to explore the association between BCAAs and AAAs in blood and seminal plasma and sperm parameters in men with MetS (MetS +) and without MetS (MetS-). In a cross-sectional study between January-July 2022, we investigated 98 men (age: 25-42 years; MetS + : n = 28 and MetS-: n = 70) at Royan Institute, Tehran, Iran. All participants underwent anthropometric indices measurements using standard protocols. From each participant, a single fasting blood sample was collected on the same day that the semen sample was collected. The BCAAs and AAAs in blood and seminal plasma were measured using high-performance liquid chromatography (HPLC). The aromatase activity (total testosterone/ estradiol ratio) was significantly lower in MetS + (0.16) than MetS- (0.35) (p = 0.016). Semen parameters were similar between the MetS + and the MetS- groups. All BCAA and AAA family members, except tryptophan, were higher in the blood plasma of men with metabolic syndrome. Meanwhile, the seminal plasma of BCAA and AAAs were similar. Intriguingly, Valine in blood (r = -0.329; p < 0.001) and seminal (r = -0.237; p < 0.05) plasma were correlated with abnormal sperm morphology in patients without metabolic syndrome (MetS-). Further research is necessary to validate these findings and to explore the underlying mechanisms and interactions between the plasma BCAAs and AAAs and sperm parameters.
Collapse
Affiliation(s)
- Vahid Esmaeili
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - AliReza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Gyn-medicum, Center for Reproductive Medicine, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Department of Basic and Population Based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Morteza Zendehdel
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Habibi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alireza Dizavi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samira Vesali
- Department of Basic and Population Based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
- Department of Basic and Population Based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran.
| |
Collapse
|
20
|
Ribeiro G, Schellekens H, Cuesta-Marti C, Maneschy I, Ismael S, Cuevas-Sierra A, Martínez JA, Silvestre MP, Marques C, Moreira-Rosário A, Faria A, Moreno LA, Calhau C. A menu for microbes: unraveling appetite regulation and weight dynamics through the microbiota-brain connection across the lifespan. Am J Physiol Gastrointest Liver Physiol 2025; 328:G206-G228. [PMID: 39811913 DOI: 10.1152/ajpgi.00227.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior. Therefore, the role of the microbiota-gut-brain axis in appetite and obesity is receiving increased attention. Omics approaches such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics in appetite and weight regulation offer new opportunities for featuring obesity phenotypes. Furthermore, gut-microbiota-targeted approaches such as pre-, pro-, post-, and synbiotic, personalized nutrition, and fecal microbiota transplantation are novel avenues for precision treatments. The aim of this narrative review is 1) to provide an overview of the role of the microbiota-gut-brain axis in appetite regulation across the lifespan and 2) to discuss the potential of omics and gut microbiota-targeted approaches to deepen understanding of appetite regulation and obesity.
Collapse
Affiliation(s)
- Gabriela Ribeiro
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Cristina Cuesta-Marti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Ivie Maneschy
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Shámila Ismael
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Amanda Cuevas-Sierra
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - Marta P Silvestre
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cláudia Marques
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - André Moreira-Rosário
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Faria
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Luis A Moreno
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Conceição Calhau
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Kim H, Rebholz CM. Insights from omics research on plant-based diets and cardiometabolic health. Trends Endocrinol Metab 2025:S1043-2760(25)00023-2. [PMID: 39984401 DOI: 10.1016/j.tem.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
Plant-based diets emphasize higher intake of plant foods and are low in animal products. Individuals following plant-based diets have a lower risk of chronic conditions; however, the mechanisms underlying these associations are not completely understood. Omics data have opened opportunities to investigate the mechanistic effect of dietary intake on health outcomes. Here, we review omics analyses of plant-based diets in feeding and observational studies, showing that although metabolomics and proteomics identified candidate biomarkers and distinct pathways modifiable by plant-based diets, current evidence from transcriptomics and methylomics is limited. We also argue that future studies should examine how unhealthful plant-based diets are associated with a higher risk of health outcomes and integrate multiple omics data from feeding studies to provide further mechanistic insights.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA; Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA; Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Osman AA, Chin SF, Teh LK, Abdullah N, Abdul Murad NA, Jamal R. Lipids as key biomarkers in unravelling the pathophysiology of obesity-related metabolic dysregulation. Heliyon 2025; 11:e42197. [PMID: 39995923 PMCID: PMC11848079 DOI: 10.1016/j.heliyon.2025.e42197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/06/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Background and objective Obesity is intricately linked with metabolic disturbances. The comprehensive exploration of metabolomes is important in unravelling the complexities of obesity development. This study was aimed to discern unique metabolite signatures in obese and lean individuals using liquid chromatography-mass spectrometry quadruple time-of-flight (LC-MS/Q-TOF), with the goal of elucidating their roles in obesity. Methods A total of 160 serum samples (Discovery, n = 60 and Validation, n = 100) of obese and lean individuals with stable Body Mass Index (BMI) values were retrieved from The Malaysian Cohort biobank. Metabolic profiles were obtained using LC-MS/Q-TOF in dual-polarity mode. Metabolites were identified using a molecular feature and chemical formula algorithm, followed by a differential analysis using MetaboAnalyst 5.0. Validation of potential metabolites was conducted by assessing their presence through collision-induced dissociation (CID) using a targeted tandem MS approach. Results A total of 85 significantly differentially expressed metabolites (p-value <0.05; -1.5 < FC > 1.5) were identified between the lean and the obese individuals, with the lipid class being the most prominent. A stepwise logistic regression revealed three metabolites associated with increased risk of obesity (14-methylheptadecanoic acid, 4'-apo-beta,psi-caroten-4'al and 6E,9E-octadecadienoic acid), and three with lower risk of obesity (19:0(11Me), 7,8-Dihydro-3b,6a-dihydroxy-alpha-ionol 9-[apiosyl-(1->6)-glucoside] and 4Z-Decenyl acetate). The model exhibited outstanding performance with an AUC value of 0.95. The predictive model underwent evaluation across four machine learning algorithms consistently demonstrated the highest predictive accuracy of 0.821, aligning with the findings from the classical logistic regression statistical model. Notably, the presence of 4'-apo-beta,psi-caroten-4'-al showed a statistically significant difference between the lean and obese individuals among the metabolites included in the model. Conclusions Our findings highlight the significance of lipids in obesity-related metabolic alterations, providing insights into the pathophysiological mechanisms contributing to obesity. This underscores their potential as biomarkers for metabolic dysregulation associated with obesity.
Collapse
Affiliation(s)
- Anis Adibah Osman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Wilayah Persekutuan, 56000, Kuala Lumpur, Malaysia
| | - Siok-Fong Chin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Wilayah Persekutuan, 56000, Kuala Lumpur, Malaysia
| | - Lay-Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Wilayah Persekutuan, 56000, Kuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Wilayah Persekutuan, 56000, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Wilayah Persekutuan, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Lewis KA, Stroebel BM, Kanaya AM, Aouizerat B, Longoria KD, Flowers E. Metabolomic Signatures in Adults with Metabolic Syndrome Indicate Preclinical Disruptions in Pathways Associated with High-Density Lipoprotein Cholesterol, Sugar Alcohols. RESEARCH SQUARE 2025:rs.3.rs-5989567. [PMID: 39989952 PMCID: PMC11844646 DOI: 10.21203/rs.3.rs-5989567/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Metabolic syndrome is a pressing public health issue and risk factor for the development of type 2 diabetes (T2D) and cardiovascular disease (CVD), yet clinical practice is lacking in biomarkers that represent pre-clinical perturbations of the heterogenous subtypes of risk. This study aimed to characterize the baseline metabolome in relation to known clinical characteristics of risk in a sample of obese adults. Methods Untargeted metabolome data from N = 126 plasma samples with baseline data from a previously completed study including obese adults with metabolic syndrome. Metabolites were acquired using validated liquid chromatography mass spectrometry methods with 15-25 internal standards quantified by peak heights. Pearson's correlations were used to determine relationships between baseline metabolites, sample characteristics (e.g., age, body mass index (BMI)), and atherosclerotic clinical characteristics (e.g., high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglycerides), adjusting for multiple comparisons using the Benjamini-Hochberg False Discovery Rate (FDR) method. Differences in metabolite levels between clinical classifications of dysglycemia (e.g., normal, prediabetes, diabetes) at baseline were assessed using ANOVA and adjusted for multiple comparisons and adjusted for covariates. Results The sample consisted primarily of female (74%) participants, predominantly white (70%), with an average age of 56 years. After FDR adjustment, two baseline metabolites were significantly associated with age (xylose, threitol), two with BMI (shikimic acid, propane-1,3-diol), one with LDL (tocopherol-alpha), and 42 with HDL cholesterol. Three metabolites were significantly associated with fasting blood glucose (FBG) levels at baseline (glucose, gluconic acid lactone, pelargonic acid). Conclusions This study identified novel metabolite associations with known markers of T2D and CVD risk. Specific metabolites, such as alpha-tocopherol, branched-chain amino acids (BCAAs), and sugar-derived metabolites like mannose and xylose, were significantly associated with age, BMI, lipid profiles, and glucose measures. Although most sample participants had normal HDL cholesterol at baseline, 42 metabolites including branched chain amino acids were significantly associated with HDL, suggesting pre-clinical perturbations in biological pathways associated with both diabetes and cardiovascular comorbidities. Metabolomic signatures Specific to prediabetes and metabolic syndrome can enhance risk stratification and enable targeted prevention strategies for T2D. Longitudinal studies are needed to understand how these associations change over time in at-risk individuals compared with controls.
Collapse
Affiliation(s)
- K A Lewis
- University of California, San Francisco
| | | | | | | | | | | |
Collapse
|
24
|
Oguh AU, Haemmerle MW, Sen S, Rozo AV, Shrestha S, Cartailler JP, Fazelinia H, Ding H, Preza S, Yang J, Yang X, Sussel L, Alvarez-Dominguez JR, Doliba N, Spruce LA, Arrojo E Drigo R, Stoffers DA. E3 ligase substrate adaptor SPOP fine-tunes the UPR of pancreatic β cells. Genes Dev 2025; 39:261-279. [PMID: 39797759 PMCID: PMC11789638 DOI: 10.1101/gad.352010.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/07/2024] [Indexed: 01/13/2025]
Abstract
The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific Spop deletion mouse strain (Spop βKO) and found that Spop is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux. Integration of proteomic, TF-regulatory gene network, and biochemical analyses identified XBP1 as a functionally important SPOP substrate in pancreatic β cells. Furthermore, loss of SPOP strengthened the IRE1α-XBP1 axis of unfolded protein response (UPR) signaling. ER stress promoted proteasomal degradation of SPOP, supporting a model whereby SPOP fine-tunes XBP1 activation during the UPR. These results position SPOP as a regulator of β-cell function and proper UPR activation.
Collapse
Affiliation(s)
- Alexis U Oguh
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Matthew W Haemmerle
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Sabyasachi Sen
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Andrea V Rozo
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Shristi Shrestha
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Jean-Philippe Cartailler
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19146, USA
| | - Hua Ding
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19146, USA
| | - Sam Preza
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Juxiang Yang
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Xiaodun Yang
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Lori Sussel
- Department of Pediatrics and Cell and Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Juan R Alvarez-Dominguez
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Nicolai Doliba
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA
| | - Lynn A Spruce
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19146, USA
| | - Rafael Arrojo E Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Doris A Stoffers
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;
| |
Collapse
|
25
|
Liang J, Vitale T, Zhang X, Jackson TD, Yu D, Jedrychowski M, Gygi SP, Widlund HR, Wucherpfennig KW, Puigserver P. Selective deficiency of mitochondrial respiratory complex I subunits Ndufs4/6 causes tumor immunogenicity. NATURE CANCER 2025; 6:323-337. [PMID: 39824999 DOI: 10.1038/s43018-024-00895-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/10/2024] [Indexed: 01/20/2025]
Abstract
Cancer cells frequently rewire their metabolism to support proliferation and evade immune surveillance, but little is known about metabolic targets that could increase immune surveillance. Here we show a specific means of mitochondrial respiratory complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of either Ndufs4 or Ndufs6, but not other CI subunits, induces an immune-dependent growth attenuation in melanoma and breast cancer models. We show that deletion of Ndufs4 induces expression of the major histocompatibility complex (MHC) class I co-activator Nlrc5 and antigen presentation machinery components, most notably H2-K1. This induction of MHC-related genes is driven by a pyruvate dehydrogenase-dependent accumulation of mitochondrial acetyl-CoA, which leads to an increase in histone H3K27 acetylation within the Nlrc5 and H2-K1 promoters. Taken together, this work shows that selective CI inhibition restricts tumor growth and that specific targeting of Ndufs4 or Ndufs6 increases T cell surveillance and ICB responsiveness.
Collapse
Affiliation(s)
- Jiaxin Liang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tevis Vitale
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xixi Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas D Jackson
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Deyang Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hans R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
26
|
Yang M, Xie Q, Wang J, Zha A, Chen J, Jiang Q, Kang M, Deng Q, Yin Y, Tan B. Ningxiang pig-derived lactobacillus reuteri modulates host intramuscular fat deposition via branched-chain amino acid metabolism. MICROBIOME 2025; 13:32. [PMID: 39891238 PMCID: PMC11786426 DOI: 10.1186/s40168-024-02013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND Gut microbiota has been extensively demonstrated to modulate host lipid metabolism. Higher intramuscular fat (IMF) accumulation in Chinese indigenous breed pigs is associated with their special gut microbiota structure. However, the specific microbes and metabolic pathways responsible for lipid deposition are still poorly understood. RESULTS In the present study, a comparative analysis of the gut microbiota and metabolome in obese Ningxiang (NX) pigs and lean Duroc × Landrace × Yorkshire (DLY) pigs was conducted. The results revealed a higher abundance of gut lactobacilli and a correlation of branched-chain amino acid (BCAA) metabolism pathway in NX pigs. We proceeded to verify the roles of various lactobacilli strains originating from NX pigs in BCAA metabolism and lipids deposition in SD rats. We demonstrated that L. reuteri is a fundamental species responsible for modulating lipid deposition in NX pigs and that increased circulating levels of BCAA are positively linked to greater lipid deposition. Additionally, it has been verified that L. reuteri originating from NX pigs has the ability to improve BCAA synthesis in the gut and enhance IMF content in lean DLY pigs. The expression of genes related to lipid synthesis was also significantly upregulated. CONCLUSIONS Taken together, our results imply that NX pig-derived L. reuteri regulates BCAA metabolism and plays a potential role in improving the meat quality of lean pig breeds through modulation of host intramuscular lipid deposition. The results provide a new strategy for improving the meat quality of commercial pigs by influencing host metabolism through supplementing dietary additives. Video Abstract.
Collapse
Affiliation(s)
- Mei Yang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Qian Xie
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Jing Wang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Andong Zha
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, P. R. China
| | - Jiashun Chen
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Qian Jiang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Meng Kang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Qiuchun Deng
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Yulong Yin
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China.
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, P. R. China.
| | - Bie Tan
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China.
| |
Collapse
|
27
|
Patterson JS, Jasbi P, Jin Y, Gu H, Allison MA, Reuter C, Rana BK, Natarajan L, Sears DD. Metabolome Alterations Associated with Three-Month Sitting-Time Reduction Among Sedentary Postmenopausal Latinas with Cardiometabolic Disease Risk. Metabolites 2025; 15:75. [PMID: 39997700 PMCID: PMC11857752 DOI: 10.3390/metabo15020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Incidence of cardiometabolic disease among U.S. Hispanics/Latinos is higher than in non-Hispanic Whites. Prolonged sitting duration is prevalent in older adults, and compounded with menopause, greatly increases cardiometabolic risk in postmenopausal women. Metabolomic analyses of interventions to reduce sitting are lacking and mechanistic understanding of health-promoting behavior change in postmenopausal Latinas is needed. Methods: To address this knowledge gap, an exploratory analysis investigated the plasma metabolome impact of a 12-week increased standing intervention among sedentary postmenopausal Latinas with overweight or obesity. From a parent-randomized controlled trial, a subset of Best Responders (n = 43) was selected using parameters of highest mean change in sitting bout duration and total sitting time; baseline variable-Matched Controls (n = 43) were selected using random forest modeling. Targeted LC-MS/MS analysis of archived baseline and 12-week plasma samples was conducted. Metabolite change was determined using a covariate-controlled general linear model and multivariate testing was performed. A false discovery rate correction was applied to all analyses. Results: Best Responders significantly changed time sitting (-110.0 ± 11.0 min; -21%), standing (104.6 ± 10.1 min; 40%), and sitting in bouts >30 min (-102.3 ± 13.9 min; -35%) compared to Matched Controls (7.1 ± 9.8 min, -7.8 ± 9.0 min, and -4.6 ± 12.7 min, respectively; all p < 0.001). Twelve-week metabolite change was significantly different between the two groups for 24 metabolites (FDR < 0.05). These were primarily related to amino acid metabolism, improved blood flow, and ATP production. Enzyme enrichment analysis predicted significant changes regulating glutamate, histidine, phenylalanine, and mitochondrial short-chain fatty acid catabolism. Pathway analysis showed significant intervention effects on glutamate metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis, potentially indicating reduced cardiometabolic disease risk. Conclusions: Replacing nearly two hours of daily sitting time with standing and reduced prolonged sitting bouts significantly improved metabolomic profiles associated with cardiometabolic risk among postmenopausal Latinas.
Collapse
Affiliation(s)
- Jeffrey S. Patterson
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Paniz Jasbi
- School of Molecular Science, Arizona State University, Phoenix, AZ 85004, USA
| | - Yan Jin
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Matthew A. Allison
- Department of Family Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Chase Reuter
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037, USA
| | - Brinda K. Rana
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92037, USA
| | - Loki Natarajan
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92037, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Dorothy D. Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (J.S.P.)
- School of Molecular Science, Arizona State University, Phoenix, AZ 85004, USA
- Department of Family Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92037, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Deng X, Tang C, Fang T, Li T, Li X, Liu Y, Zhang X, Sun B, Sun H, Chen L. Disruption of branched-chain amino acid homeostasis promotes the progression of DKD via enhancing inflammation and fibrosis-associated epithelial-mesenchymal transition. Metabolism 2025; 162:156037. [PMID: 39317264 DOI: 10.1016/j.metabol.2024.156037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND AND AIMS The disrupted homeostasis of branched-chain amino acids (BCAAs, including leucine, isoleucine, and valine) has been strongly correlated with diabetes with a potential causal role. However, the relationship between BCAAs and diabetic kidney disease (DKD) remains to be established. Here, we show that the elevated BCAAs from BCAAs homeostatic disruption promote DKD progression unexpectedly as an independent risk factor. METHODS AND RESULTS Similar to other tissues, the suppressed BCAAs catabolic gene expression and elevated BCAAs abundance were detected in the kidneys of type 2 diabetic mice and individuals with DKD. Genetic and nutritional studies demonstrated that the elevated BCAAs from systemic disruption of BCAAs homeostasis promoted the progression of DKD. Of note, the elevated BCAAs promoted DKD progression without exacerbating diabetes in the animal models of type 2 DKD. Mechanistic studies demonstrated that the elevated BCAAs promoted fibrosis-associated epithelial-mesenchymal transition (EMT) by enhancing the activation of proinflammatory macrophages through mTOR signaling. Furthermore, pharmacological enhancement of systemic BCAAs catabolism using small molecule inhibitor attenuated type 2 DKD. Finally, the elevated BCAAs also promoted DKD progression in type 1 diabetic mice without exacerbating diabetes. CONCLUSION BCAA homeostatic disruption serves as an independent risk factor for DKD and restoring BCAA homeostasis pharmacologically or dietarily represents a promising therapeutic strategy to ameliorate the progression of DKD.
Collapse
Affiliation(s)
- Xiaoqing Deng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Chao Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Affiliated Huzhou Hospital, Zhejiang University School of Medicine, China
| | - Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yajin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xuejiao Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Haipeng Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
29
|
Feng S, Wang J, Peng Q, Zhang P, Jiang Y, Zhang H, Song X, Li Y, Huang W, Zhang D, Deng C. Schisandra sphenanthera extract modulates sweet taste receptor pathway, IRS/PI3K, AMPK/mTOR pathway and endogenous metabolites against T2DM. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156348. [PMID: 39740377 DOI: 10.1016/j.phymed.2024.156348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Southern Schisandra is the dried and matured fruit of Schisandra sphenanthera Rehd. et Wils. in the family of Magnoliaceae; Traditional medicine reports that Schisandra sphenanthera has astringent and astringent properties, benefiting qi and promoting the production of body fluid, tranquilising the heart and calming the mind; it is clinically utilized for prolonged cough, thirst due to injury of the body fluid, internal heat and thirst, palpitation and insomnia, etc., and thirst belongs to the category of diabetes mellitus; the literature reports and the preliminary study of our team showed that Schisandra sphenanthera can be used to prevent and control diabetes mellitus. PURPOSE In the research, we investigated the mechanism of action of SDP against T2DM by integrating pharmacodynamics, endogenous metabolite assays and signalling pathways. MATERIALS AND METHODS UPLC-MS/MS was used to identify the chemical constituents. HPLC was utilized to determine the content of eight lignan-like components in SDP. A T2DM rat model was established by the combined induction of high-fat and high-sugar feed and STZ, and the mechanism of action of SDP on T2DM was investigated by using biochemical indices, Western blot analysis of protein expression, mRNA expression, immunohistochemistry and endogenous metabolites. RESULTS The chemical components in SDP were determined by UPLC-MS/MS and HPLC, and biochemical indicators determined that SDP has the effects of lowering blood glucose, anti-glycolipid metabolism, and anti-oxidative stress, and is able to restore pathological damage in the liver and pancreas, activate the PI3K/AKT, AMPK/mTOR, and sweetness receptor signalling pathways, restore the sweetness receptor mRNAs, and modulate the urinary compounds such as malic acid, γ-aminobutyric acid, leucine, N-acetylaspartic acid and other compounds thereby achieving the therapeutic effect of T2DM. CONCLUSION SDP can ameliorate diabetes-induced symptoms related to elevated blood glucose, dyslipidaemia, elevated fasting insulin levels and impaired glucose tolerance in rats; the anti-T2DM of SDP may be through the regulation of the sweet taste receptor pathway, the PI3K/AKT/mTOR and the AMPK/mTOR signalling pathway, which leads to the development of a normal level and exerts an antidiabetic effect.
Collapse
Affiliation(s)
- Shibo Feng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Jiaojiao Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Qin Peng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Panpan Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Yi Jiang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Huawei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Yuze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Wenli Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China.
| |
Collapse
|
30
|
Hemachandra S, Rathnayake SN, Jayamaha AA, Francis BS, Welmillage D, Kaur DN, Zaw HK, Zaw LT, Chandra HA, Abeysekera ME. Fecal Microbiota Transplantation as an Alternative Method in the Treatment of Obesity. Cureus 2025; 17:e76858. [PMID: 39901991 PMCID: PMC11788455 DOI: 10.7759/cureus.76858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 02/05/2025] Open
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for various health conditions, particularly obesity and metabolic disorders. This review examines the mechanisms underlying FMT, including its role in restoring gut microbiota diversity and enhancing immunomodulatory functions, which are essential for maintaining overall health. Recent studies indicate that FMT can significantly improve body weight and metabolic parameters, suggesting its potential as an alternative or complementary treatment to current obesity therapies. However, the effectiveness of FMT depends on several factors, including the composition of the donor microbiota, recipient characteristics, and concomitant medications or dietary interventions. Despite its great promise, challenges such as standardized protocols, donor screening, and the need for a deeper understanding of gut microbiota dynamics remain key hurdles. Future research should focus on elucidating the specific microbial compositions necessary for optimal therapeutic outcomes and exploring personalized FMT approaches tailored to individual patient profiles. This evolving field presents exciting opportunities for innovative strategies in obesity treatment, warranting further investigation and clinical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hein K Zaw
- Gastroenterology, Nanjing Medical University, Nanjing, CHN
| | - Lin T Zaw
- Gastroenterology, Nanjing Medical University, Nanjing, CHN
| | | | | |
Collapse
|
31
|
Alhasan KA, King MA, Pattar BSB, Lewis IA, Lopaschuk GD, Greenway SC. Anaplerotic filling in heart failure: a review of mechanism and potential therapeutics. Cardiovasc Res 2024; 120:2166-2178. [PMID: 39570879 PMCID: PMC11687400 DOI: 10.1093/cvr/cvae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/01/2025] Open
Abstract
Heart failure (HF) is a complex syndrome and a leading cause of mortality worldwide. While current medical treatment is based on known pathophysiology and is effective for many patients, the underlying cellular mechanisms are poorly understood. Energy deficiency is a characteristic of HF, marked by complex alterations in metabolism. Within the tricarboxylic acid cycle, anaplerosis emerges as an essential metabolic process responsible for replenishing lost intermediates, thereby playing a crucial role in sustaining energy metabolism and consequently cardiac function. Alterations in cardiac anaplerosis are commonly observed in HF, demonstrating potential for therapeutic intervention. This review discusses recent advances in understanding the anaplerotic adaptations that occur in HF. We also explore therapeutics that can directly modulate anaplerosis or are likely to confer cardioprotective effects through anaplerosis, which could potentially be implemented to rescue the failing heart.
Collapse
Affiliation(s)
- Karm A Alhasan
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Melissa A King
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Badal S B Pattar
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | - Steven C Greenway
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
32
|
Sha Z, Freda PJ, Bhandary P, Ghosh A, Matsumoto N, Moore JH, Hu T. Distinct network patterns emerge from Cartesian and XOR epistasis models: a comparative network science analysis. BioData Min 2024; 17:61. [PMID: 39732697 DOI: 10.1186/s13040-024-00413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Epistasis, the phenomenon where the effect of one gene (or variant) is masked or modified by one or more other genes, significantly contributes to the phenotypic variance of complex traits. Traditionally, epistasis has been modeled using the Cartesian epistatic model, a multiplicative approach based on standard statistical regression. However, a recent study investigating epistasis in obesity-related traits has identified potential limitations of the Cartesian epistatic model, revealing that it likely only detects a fraction of the genetic interactions occurring in natural systems. In contrast, the exclusive-or (XOR) epistatic model has shown promise in detecting a broader range of epistatic interactions and revealing more biologically relevant functions associated with interacting variants. To investigate whether the XOR epistatic model also forms distinct network structures compared to the Cartesian model, we applied network science to examine genetic interactions underlying body mass index (BMI) in rats (Rattus norvegicus). RESULTS Our comparative analysis of XOR and Cartesian epistatic models in rats reveals distinct topological characteristics. The XOR model exhibits enhanced sensitivity to epistatic interactions between the network communities found in the Cartesian epistatic network, facilitating the identification of novel trait-related biological functions via community-based enrichment analysis. Additionally, the XOR network features triangle network motifs, indicative of higher-order epistatic interactions. This research also evaluates the impact of linkage disequilibrium (LD)-based edge pruning on network-based epistasis analysis, finding that LD-based edge pruning may lead to increased network fragmentation, which may hinder the effectiveness of network analysis for the investigation of epistasis. We confirmed through network permutation analysis that most XOR and Cartesian epistatic networks derived from the data display distinct structural properties compared to randomly shuffled networks. CONCLUSIONS Collectively, these findings highlight the XOR model's ability to uncover meaningful biological associations and higher-order epistasis derived from lower-order network topologies. The introduction of community-based enrichment analysis and motif-based epistatic discovery emphasize network science as a critical approach for advancing epistasis research and understanding complex genetic architectures.
Collapse
Affiliation(s)
- Zhendong Sha
- School of Computing, Queen's University, 557 Goodwin Hall, 21-25 Union St, Kingston, K7L 2N8, Ontario, Canada
| | - Philip J Freda
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Priyanka Bhandary
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Attri Ghosh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Nicholas Matsumoto
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA.
| | - Ting Hu
- School of Computing, Queen's University, 557 Goodwin Hall, 21-25 Union St, Kingston, K7L 2N8, Ontario, Canada.
| |
Collapse
|
33
|
Vo DK, Trinh KTL. Emerging Biomarkers in Metabolomics: Advancements in Precision Health and Disease Diagnosis. Int J Mol Sci 2024; 25:13190. [PMID: 39684900 DOI: 10.3390/ijms252313190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Metabolomics has come to the fore as an efficient tool in the search for biomarkers that are critical for precision health approaches and improved diagnostics. This review will outline recent advances in biomarker discovery based on metabolomics, focusing on metabolomics biomarkers reported in cancer, neurodegenerative disorders, cardiovascular diseases, and metabolic health. In cancer, metabolomics provides evidence for unique oncometabolites that are important for early disease detection and monitoring of treatment responses. Metabolite profiling for conditions such as neurodegenerative and mental health disorders can offer early diagnosis and mechanisms into the disease especially in Alzheimer's and Parkinson's diseases. In addition to these, lipid biomarkers and other metabolites relating to cardiovascular and metabolic disorders are promising for patient stratification and personalized treatment. The gut microbiome and environmental exposure also feature among the influential factors in biomarker discovery because they sculpt individual metabolic profiles, impacting overall health. Further, we discuss technological advances in metabolomics, current clinical applications, and the challenges faced by metabolomics biomarker validation toward precision medicine. Finally, this review discusses future opportunities regarding the integration of metabolomics into routine healthcare to enable preventive and personalized approaches.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
34
|
Gopal RK, Ganesh PS, Pathoor NN. Synergistic Interplay of Diet, Gut Microbiota, and Insulin Resistance: Unraveling the Molecular Nexus. Mol Nutr Food Res 2024; 68:e2400677. [PMID: 39548908 DOI: 10.1002/mnfr.202400677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/04/2024] [Indexed: 11/18/2024]
Abstract
This comprehensive review explores the intricate relationship between gut microbiota, diet, and insulin resistance, emphasizing the novel roles of diet-induced microbial changes in influencing metabolic health. It highlights how diet significantly influences gut microbiota composition, with different dietary patterns fostering diverse microbial communities. These diet-induced changes in the microbiome impact human metabolism by affecting inflammation, energy balance, and insulin sensitivity, particularly through microbial metabolites like short-chain fatty acids (SCFAs). Focusing the key mediators like endotoxemia and systemic inflammation, and introduces personalized microbiome-based therapeutic strategies, it also investigates the effects of dietary components-fiber, polyphenols, and lipids-on microbiota and insulin sensitivity, along with the roles of protein intake and amino acid metabolism. The study compares the effects of Western and Mediterranean diets on the microbiota-insulin resistance axis. Therapeutic implications, including probiotics, fecal microbiota transplantation (FMT), and personalized diets, are discussed. Key findings reveal that high-fat diets, especially those rich in saturated fats, contribute to dysbiosis and increased intestinal permeability, while high-fiber diets promote beneficial bacteria and SCFAs. The review underscores the future potential of food and microbiota interventions for preventing or managing insulin resistance.
Collapse
Affiliation(s)
- Rajesh Kanna Gopal
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, 600077, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, 600077, India
| | - Naji Naseef Pathoor
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
35
|
Ali SR, Nkembo AT, Tipparaju SM, Ashraf M, Xuan W. Sarcopenia: recent advances for detection, progression, and metabolic alterations along with therapeutic targets. Can J Physiol Pharmacol 2024; 102:697-708. [PMID: 39186818 PMCID: PMC11663012 DOI: 10.1139/cjpp-2024-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Sarcopenia, a disorder marked by muscle loss and dysfunction, is a global health concern, particularly in aging populations. Sarcopenia is intricately related to various health conditions, including obesity, dysphagia, and frailty, which underscores the complexity. Despite recent advances in metabolomics and other omics data for early detection and treatment, the precise characterization and diagnosis of sarcopenia remains challenging. In the present review we provide an overview of the complex metabolic mechanisms that underlie sarcopenia, with particular emphasis on protein, lipid, carbohydrate, and bone metabolism. The review highlights the importance of leucine and other amino acids in promoting muscle protein synthesis and clarifies the critical role played by amino acid metabolism in preserving muscular health. In addition, the review provides insights regarding lipid metabolism on sarcopenia, with an emphasis on the effects of inflammation and insulin resistance. The development of sarcopenia is largely influenced by insulin resistance, especially with regard to glucose metabolism. Overall, the review emphasizes the complex relationship between bone and muscle health by highlighting the interaction between sarcopenia and bone metabolism. Furthermore, the review outlines various therapeutic approaches and potential biomarkers for diagnosing sarcopenia. These include pharmacological strategies such as hormone replacement therapy and anabolic steroids as well as lifestyle modifications such as exercise, nutrition, and dietary changes.
Collapse
Affiliation(s)
- Syeda Roohina Ali
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Augustine T Nkembo
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Muhammad Ashraf
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| |
Collapse
|
36
|
Lim JJ, Prodhan UK, Silvestre MP, Liu AY, McLay J, Fogelholm M, Raben A, Poppitt SD, Cameron-Smith D. Low serum glycine strengthens the association between branched-chain amino acids and impaired insulin sensitivity assessed before and after weight loss in a population with pre-diabetes: The PREVIEW_NZ cohort. Clin Nutr 2024; 43:17-25. [PMID: 39423758 DOI: 10.1016/j.clnu.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
AIM Accumulation of circulating branched-chain amino acids (BCAA) is a hallmark feature of impaired insulin sensitivity. As intracellular BCAA catabolism is dependent on glycine availability, we hypothesised that the concurrent measurement of circulating glycine and BCAA may yield a stronger association with markers of insulin sensitivity than either BCAA or glycine alone. This study therefore examined the correlative relationships of BCAA, BCAA and glycine together, plus glycine alone on insulin sensitivity-related markers before and after an 8-week low energy diet (LED) intervention. METHODS This is a secondary analysis of the PREVIEW (PREVention of diabetes through lifestyle Intervention and population studies in Europe and around the World) Study New Zealand sub-cohort. Eligible participants with pre-diabetes at baseline who achieved ≥8 % body weight loss following an LED intervention were included, of which 167 paired (Week 0 and Week 8) blood samples were available for amino acid analysis. Glycemic and other data were retrieved from the PREVIEW consortium database. Repeated measures linear mixed models were used to test the association between amino acids and insulin sensitivity-related markers (HOMA2-IR, glucose, insulin, and C-peptide). RESULTS Elevated BCAA was associated with impaired insulin sensitivity (p < 0.05), with strength of association (ηp2) almost doubled when glycine was added to the model. However, glycine in isolation was not associated with insulin sensitivity-related markers. The magnitude (β-estimates) of positive association between BCAA and HOMA2-IR, and inverse association between glycine and HOMA2-IR, increased when body weight was higher (Body weight∗BCAA, Body weight∗glycine, p < 0.05, both). CONCLUSION Low serum glycine strengthened the association between BCAA and impaired insulin sensitivity. Given that glycine is necessary to facilitate intracellular BCAA catabolism, measurement of glycine is necessary to complement BCAA analysis to comprehensively understand the contribution of amino acid metabolism in insulin sensitivity. CLINICAL TRIAL REGISTRATION This study was registered with ClinicalTrials.gov (NCT01777893).
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand.
| | - Utpal K Prodhan
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marta P Silvestre
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; CINTESIS, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Amy Y Liu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jessica McLay
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Mikael Fogelholm
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand; Department of Medicine, University of Auckland, Auckland, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand; Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Singapore, Singapore
| |
Collapse
|
37
|
Lyu J, Lim JY, Han Y, Na K, Jung S, Park YJ. Protein source associated with risk of metabolic syndrome in adults with low and adequate protein intake: A prospective cohort study of middle-aged and older adults. J Nutr Health Aging 2024; 28:100393. [PMID: 39418750 DOI: 10.1016/j.jnha.2024.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES Metabolic syndrome is associated with an increased risk of diabetes, cardiovascular disease, and all-cause mortality. Some evidence suggests that the cardiometabolic health benefits of protein intake may vary by the source (animal or plant); however, the evidence is inconsistent. This study aimed to assess the risk of developing metabolic syndrome according to the protein source. PARTICIPANTS Among a total of 3,310 participants aged 40 years or older in the Ansan and Ansung population based prospective cohort, 1,543 incident cases of metabolic syndrome were identified between 2007 and 2018. MEASUREMENTS Dietary intake was assessed using a validated food frequency questionnaire. Cox proportional hazards models were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) by quintile (Q), adjusting for demographics and health-related lifestyle factors. RESULTS Higher intake of animal protein (HRquintile5 (Q5) vs quintile1 (Q1) [95% CIs]: 0.76 [0.59-0.96], P-trend ≤ 0.0307) and a higher relative intake of animal protein (HRQ5 vs.Q1: 0.78 [0.64-0.95], P-trend ≤ 0.0017) were associated with a significantly decreased risk of developing metabolic syndrome. In subgroup analyses, associations between the risk of metabolic syndrome and the relative intake of animal and plant protein differed according to whether the total protein intake was within the recommended nutrient intake (RNI). Specifically, significant associations were observed only among those with a total protein consumption below the RNI (HRQ5vs Q1 [95% CIs]: 0.72 [0.56-0.93] for the relative intake of animal protein), but not among those consuming above the RNI. This association was more significant in women than in men. CONCLUSION A higher absolute and relative intake of animal protein were associated with a significantly decreased risk of metabolic syndrome, particularly among those who consumed less than the RNI of protein.
Collapse
Affiliation(s)
- Jieun Lyu
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Chungcheongbuk-do 28159, Republic of Korea; Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joong-Yeon Lim
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Chungcheongbuk-do 28159, Republic of Korea
| | - Yerim Han
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Khuhee Na
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seungyoun Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
38
|
Cendrowski J, Wrobel M, Mazur M, Jary B, Maurya R, Wang S, Korostynski M, Dziewulska A, Rohm M, Kuropka P, Pudelko-Malik N, Mlynarz P, Dobrzyn A, Zeigerer A, Miaczynska M. NFκB and JNK pathways mediate metabolic adaptation upon ESCRT-I deficiency. Cell Mol Life Sci 2024; 81:458. [PMID: 39560723 DOI: 10.1007/s00018-024-05490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/17/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
Endosomal Sorting Complexes Required for Transport (ESCRTs) are crucial for delivering membrane receptors or intracellular organelles for lysosomal degradation which provides the cell with lysosome-derived nutrients. Yet, how ESCRT dysfunction affects cell metabolism remained elusive. To address this, we analyzed transcriptomes of cells lacking TSG101 or VPS28 proteins, components of ESCRT-I subcomplex. ESCRT-I deficiency reduced the expression of genes encoding enzymes involved in oxidation of fatty acids and amino acids, such as branched-chain amino acids, and increased the expression of genes encoding glycolytic enzymes. The changes in metabolic gene expression were associated with Warburg effect-like metabolic reprogramming that included intracellular accumulation of lipids, increased glucose/glutamine consumption and lactate production. Moreover, depletion of ESCRT-I components led to expansion of the ER and accumulation of small mitochondria, most of which retained proper potential and performed ATP-linked respiration. Mechanistically, the observed transcriptional reprogramming towards glycolysis in the absence of ESCRT-I occurred due to activation of the canonical NFκB and JNK signaling pathways and at least in part by perturbed lysosomal degradation. We propose that by activating the stress signaling pathways ESCRT-I deficiency leads to preferential usage of extracellular nutrients, like glucose and glutamine, for energy production instead of lysosome-derived nutrients, such as fatty acids and branched-chain amino acids.
Collapse
Affiliation(s)
- Jaroslaw Cendrowski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| | - Marta Wrobel
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michal Mazur
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Bartosz Jary
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ranjana Maurya
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Surui Wang
- Institute for Diabetes and Cancer, Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, University Hospital, Heidelberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Michal Korostynski
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Anna Dziewulska
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, University Hospital, Heidelberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Patryk Kuropka
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Natalia Pudelko-Malik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Piotr Mlynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, University Hospital, Heidelberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
39
|
Schuppelius B, Schüler R, Pivovarova-Ramich O, Hornemann S, Busjahn A, Machann J, Kruse M, Park SQ, Kabisch S, Csanalosi M, Ost AC, Pfeiffer AFH. Alterations in Glucagon Levels and the Glucagon-to-Insulin Ratio in Response to High Dietary Fat or Protein Intake in Healthy Lean Adult Twins: A Post Hoc Analysis. Nutrients 2024; 16:3905. [PMID: 39599691 PMCID: PMC11597242 DOI: 10.3390/nu16223905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Emerging data support evidence of the essential role of glucagon for lipid metabolism. However, data on the role of dietary fat intake for glucagon secretion is limited. This analysis investigated whether altering nutritional fat intake affects glucagon levels in healthy subjects. Methods: A total of 92 twins (age: 31 ± 14 years, BMI: 23 ± 3 kg/m2) consumed two 6-week diets: first a low-fat, high-carbohydrate diet (LFD) followed by an isocaloric high-fat, low-carbohydrate diet (HFD). In total, 24 twins (age: 39 ± 15 years, BMI: 24 ± 2 kg/m2) continued with a high-protein diet (HPD). Clinical investigations were performed after 6 weeks of the LFD, after 1 and 6 weeks of the HFD and after 6 weeks of the HPD. Results: The LFD caused a significant decrease in fasting glucagon (-27%, p < 0.001) compared to baseline. After 6 weeks of the HFD, glucagon increased (117%, p < 0.001 vs. LFD), while free fatty acids decreased. Six weeks of the HPD further increased glucagon levels (72%, p = 0.502 vs. HFD), although fasting amino acid levels remained constant. Fasting insulin and HOMA-IR moderately increased after one week of the HFD, while six weeks of the HPD significantly decreased both. The fasting glucagon-to-insulin ratio decreased during the LFD (p < 0.001) but increased after the HFD (p < 0.001) and even further increased after the HPD (p = 0.018). Liver fat, triglycerides and blood glucose did not increase during the HFD. The heritability of glucagon levels was 45% with the LFD. Conclusions: An HFD increases glucagon levels and the glucagon-to-insulin ratio under isocaloric conditions compared to an LFD in healthy lean subjects. This rise in glucagon may represent a metabolic response to prevent hepatic steatosis, as glucagon increases have been previously shown to induce hepatic fat oxidation.
Collapse
Affiliation(s)
- Bettina Schuppelius
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rita Schüler
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Olga Pivovarova-Ramich
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Department of Molecular Metabolism and Precision Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Andreas Busjahn
- HealthTwiSt GmbH, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Section of Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Geissweg 3, 72076 Tübingen, Germany
| | - Michael Kruse
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Soyoung Q. Park
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Neuroscience Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefan Kabisch
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Marta Csanalosi
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anne-Cathrin Ost
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany
| |
Collapse
|
40
|
Diniz TG, de Assis CS, de Sousa BRV, Batista KS, Silva AS, de Queiroga Evangelista IW, Viturino MGM, do Nascimento YM, da Silva EF, Tavares JF, Monteiro MGCA, Dos Santos Fechine CPN, E Silva AL, Persuhn DC. Analysis of metabolites associated with ADIPOQ genotypes in individuals with type 2 diabetes mellitus. Sci Rep 2024; 14:28093. [PMID: 39543306 PMCID: PMC11564893 DOI: 10.1038/s41598-024-79686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Diabetes mellitus (DM) is a significant public health problem and it is known that the identification of molecular markers involved in glycemic control can impact disease control. Although the rs266729 polymorphism located in the promoter of the adiponectin gene (ADP) has been shown to be a candidate for involvement in glycemic control, the genotypic groups have never been characterized in terms of metabolomic aspects. Objective: Analyze the metabolites present in the rs266729 genotype groups. 127 diabetic individuals were compared according to the rs266729 genotype groups CC and GC + GG (RFLP-PCR). Blood plasma metabolites were classified by nuclear magnetic resonance (NMR), and the metabolic pathways of each group using the MetaboAnalyst tool. Insulin therapy (p = 0.049) was more frequent in the GC + GG rs266729 group. Lactate, alanine, glutamine, aspartate, lipid, lysine, isoleucine, citrulline, cholesterol, and fucose impacted the CC group and aspartate, beta-glucose, glutamate, pyruvate, proline, and 2-oxoglutarate impacted the CG + GG group. The glucose-alanine pathway, malate-aspartate transport, and urea cycle impacted the CC group (D-glucose, glutamic acid, L-alanine, oxoglutaric acid, and pyruvic acid). The glutamine/glutamate ratio is likely to be related to the causes of rs266729 influencing the risk of diabetes.
Collapse
Affiliation(s)
- Tainá Gomes Diniz
- Post-Graduate Program in Nutrition Science, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | - Kamila Sabino Batista
- Semi Arid National Institute - INSA/MCTI, Campina Grande, Paraíba, CEP: 58434-700, Brazil
| | - Alexandre Sérgio Silva
- Department of Physical Education, Federal University of Paraiba (UFPB), Joao Pessoa, PB, Brazil
| | | | - Marina Gonçalves Monteiro Viturino
- Ophthalmology, Otolaryngology and Oral and Maxillofacial Surgery Unit, Lauro Wanderley University Hospital, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Yuri Mangueira do Nascimento
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Evandro Ferreira da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Josean Fechine Tavares
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | | | | | - Anauara Lima E Silva
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Darlene Camati Persuhn
- Department of Molecular Biology/CCEN, Federal University of Paraiba (UFPB), Joao Pessoa, PB, Brazil.
| |
Collapse
|
41
|
Davis EW, Hsiao HH, Barone N, Rosario S, Cannioto R. Clinically relevant body composition phenotypes are associated with distinct circulating cytokine and metabolomic milieus in epithelial ovarian cancer patients. Front Immunol 2024; 15:1419257. [PMID: 39575261 PMCID: PMC11578747 DOI: 10.3389/fimmu.2024.1419257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/11/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Preclinical evidence suggests that host obesity is associated with tumor progression due to immuno-metabolic dysfunction, but the impact of obesity on immunity and clinical outcomes in patients is poorly understood, with some studies suggesting an obesity paradox. We recently reported that high-adiposity and low-muscle body composition phenotypes are associated with striking increases in epithelial ovarian cancer (EOC) mortality and we observed no evidence of an obesity paradox. However, whether at-risk versus optimal body composition phenotypes are associated with distinct immuno-metabolic milieus remains a fundamental gap in knowledge. Herein, we defined differentially abundant circulating immuno-metabolic biomarkers according to body composition phenotypes in EOC. Methods Muscle and adiposity cross-sectional area (cm2) was assessed using CT images from 200 EOC patients in The Body Composition and Epithelial Ovarian Cancer Survival Study at Roswell Park. Adiposity was dichotomized as low versus high; patients with skeletal muscle index (SMI) <38.5 (muscle cm2/height m2) were classified as low SMI (sarcopenia). Joint-exposure phenotypes were categorized as: Fit (normal SMI/low-adiposity), Overweight/Obese (normal SMI/high-adiposity), Sarcopenia/Obese (low SMI/high adiposity), and Sarcopenia/Cachexia (low SMI/low-adiposity). Treatment-naïve serum samples were assessed using Biocrates MxP Quant 500 for targeted metabolomics and commercially available Luminex kits for adipokines and Th1/Th2 cytokines. Limma moderated T-tests were used to identify differentially abundant metabolites and cytokines according to body composition phenotypes. Results Patients with 'risk' phenotypes had significantly increased abundance of metabolites and cytokines that were unique according to body composition phenotype. Specifically, the metabolites and cytokines in increased abundance in the at-risk phenotypes are implicated in immune suppression and tumor progression. Conversely, increased abundance of lauric acid, IL-1β, and IL-2 in the Fit phenotype was observed, which have been previously implicated in tumor suppression and anti-tumor immunity. Conclusion In this pilot study, we identified several significantly differentially abundant metabolites according to body composition phenotypes, confirming that clinically significant joint-exposure body composition phenotypes are also biologically distinct. Although we observed evidence that at-risk phenotypes were associated with increased abundance of immuno-metabolic biomarkers indicated in immune suppression, additional confirmatory studies focused on defining the link between body composition and immune cell composition and spatial relationships in the EOC tumor microenvironment are warranted.
Collapse
Affiliation(s)
- Evan W. Davis
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Hua-Hsin Hsiao
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nancy Barone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Spencer Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Rikki Cannioto
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
42
|
Rentería MS, Montoya JAP, Romero GS, de Jesús González Piñuelas L, López-Barradas AM, Granados-Portillo O, Chagollán MG, Suárez ALP, Gillevet PM, Magaña NV, Peña Rodríguez M. Impact of Dietary Patterns and Serum Amino Acid Profile on Metabolic Syndrome Development in Mexican Women with Polycystic Ovary Syndrome. Int J Mol Sci 2024; 25:11821. [PMID: 39519371 PMCID: PMC11547086 DOI: 10.3390/ijms252111821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the main endocrine disorder in women of reproductive age worldwide. This condition is often associated with various metabolic alterations that contribute to the development of metabolic syndrome (MetS). Recent research suggests that branched-chain amino acid (BCAA) dysregulation is observed in PCOS. This study aims to investigate the relationship between dietary patterns, body composition, metabolic analytes, and serum amino acid levels in Mexican women with PCOS. Utilizing a cross-sectional design, we found that both study groups, PCOS (n = 24) and PCOS + MetS (n = 21), exhibited increased relative fat mass and dietary habits characterized by high simple sugar intake and low protein consumption, correlating with levels of relative fat mass and leptin. Notably, serum concentrations of BCAAs and glutamic acid were significantly elevated in the PCOS + MetS group. Our findings suggest that a metabolic approach may enhance the prediction and management of MetS in women with PCOS, highlighting the importance of dietary interventions in this population.
Collapse
Affiliation(s)
- Midory Sánchez Rentería
- Master in Medical Microbiology, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Jorge Arturo Parra Montoya
- Servicio de Ginecología y Obstetricia, Hospital Civil Juan I. Menchaca, Guadalajara 44340, Mexico; (J.A.P.M.); (G.S.R.)
| | - Geraldine Sosa Romero
- Servicio de Ginecología y Obstetricia, Hospital Civil Juan I. Menchaca, Guadalajara 44340, Mexico; (J.A.P.M.); (G.S.R.)
| | - Lizbeth de Jesús González Piñuelas
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.d.J.G.P.); (N.V.M.)
| | - Adriana M. López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (A.M.L.-B.); (O.G.-P.)
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (A.M.L.-B.); (O.G.-P.)
| | - Mariel García Chagollán
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.C.); (A.L.P.S.)
| | - Ana Laura Pereira Suárez
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.C.); (A.L.P.S.)
| | - Patrick M. Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, VA 20110, USA;
| | - Natali Vega Magaña
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.d.J.G.P.); (N.V.M.)
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.C.); (A.L.P.S.)
| | - Marcela Peña Rodríguez
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.d.J.G.P.); (N.V.M.)
| |
Collapse
|
43
|
Trillos-Almanza MC, Aguilar MM, Buist-Homan M, Bomer N, Gomez KA, de Meijer VE, van Vilsteren FGI, Blokzijl H, Moshage H. Branched-chain amino acids and their metabolites decrease human and rat hepatic stellate cell activation. Mol Biol Rep 2024; 51:1116. [PMID: 39495311 PMCID: PMC11534903 DOI: 10.1007/s11033-024-10027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND End-stage liver diseases (ESLDs) are a significant global health challenge due to their high prevalence and severe health impacts. Despite the severe outcomes associated with ESLDs, therapeutic options remain limited. Targeting the activation of hepatic stellate cells (HSCs), key drivers of extracellular matrix accumulation during liver injury presents a novel therapeutic approach. In ESLDs patients, branched-chain amino acids (BCAAs, leucine, isoleucine and valine) levels are decreased, and supplementation has been proposed to attenuate liver fibrosis and improve regeneration. However, their effects on HSCs require further investigation. OBJECTIVE To evaluate the efficacy of BCAAs and their metabolites, branched-chain α-keto acids (BCKAs), in modulating HSCs activation in human and rat models. METHODS Primary HSCs from rats and cirrhotic and non-cirrhotic human livers, were cultured and treated with BCAAs or BCKAs to assess their effects on both preventing (from day 1 of isolation) and reversing (from day 7 of isolation) HSCs activation. RESULTS In rat HSCs, leucine and BCKAs significantly reduced fibrotic markers and cell proliferation. In human HSCs, the metabolite of isoleucine decreased cell proliferation around 85% and increased the expression of branched-chain ketoacid dehydrogenase. The other metabolites also showed antifibrotic effects in HSCs from non-cirrhotic human livers. CONCLUSION BCAAs and their respective metabolites inhibit HSC activation with species-specific responses. Further research is needed to understand how BCAAs influence liver fibrogenesis. BCKAs supplementation could be a strategic approach for managing ESLDs, considering the nutritional status and amino acid profiles of patients.
Collapse
Affiliation(s)
- Maria Camila Trillos-Almanza
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| | - Magnolia Martinez Aguilar
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Karla Arevalo Gomez
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Frederike G I van Vilsteren
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
44
|
Streubel MK, Baumgartner A, Meier-Vollrath I, Frambach Y, Brandenburger M, Kisch T. Transcriptomics of Subcutaneous Tissue of Lipedema Identified Differentially Expressed Genes Involved in Adipogenesis, Inflammation, and Pain. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6288. [PMID: 39525887 PMCID: PMC11548906 DOI: 10.1097/gox.0000000000006288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Background Lipedema is a disease typically affecting women with a symmetrical, painful fat distribution disorder, which is hypothesized to be caused by impaired adipogenesis, inflammation, and extracellular matrix remodeling, leading to fibrosis and the development of edema in lipedema subcutaneous adipose tissue. The pathogenesis and molecular processes leading to lipedema have not yet been clarified. Methods A whole transcriptome analysis of subcutaneous tissue of lipedema stages I (n = 12), II (n = 9), and III (n = 8) compared with hypertrophied subcutaneous tissue (n = 4) was performed. Further data about hormonal substitution and body morphology were collected. The study is registered at ClinicalTrials.gov (NCT05861583). Results We identified several differentially expressed genes involved in mechanisms leading to the development of lipedema. Some genes, such as PRKG2, MEDAG, CSF1R, BICC1, ERBB4, and ACP5, are involved in adipogenesis, regulating the development of mature adipocytes from mesenchymal stem cells. Other genes, such as MAFB, C1Q, C2, CD68, CD209, CD163, CD84, BCAT1, and TREM2, are predicted to be involved in lipid accumulation, hypertrophy, and the inflammation process. Further genes such as SHTN1, SCN7A, and SCL12A2 are predicted to be involved in the regulation and transmission of pain. Conclusions In summary, the pathogenesis and development of lipedema might be caused by alterations in adipogenesis, inflammation, and extracellular matrix remodeling, leading to fibrosis and the formation of edema resulting in this painful disease. These processes differ from hypertrophied adipose tissue and may therefore play a main role in the formation of lipedema.
Collapse
Affiliation(s)
- Maria Karolin Streubel
- From the University of Luebeck, Luebeck, Germany
- University Hospital Schleswig-Holstein, Luebeck, Germany
| | | | | | | | - Matthias Brandenburger
- Fraunhofer Research Institution for Individualized and Cell Based Medical Engineering, IMTE, Luebeck, Germany
| | - Tobias Kisch
- From the University of Luebeck, Luebeck, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Praxisklinik Kronshagen, Kiel-Kronshagen, Germany
| |
Collapse
|
45
|
Carreras-Torres R, Galván-Femenía I, Farré X, Cortés B, Díez-Obrero V, Carreras A, Moratalla-Navarro F, Iraola-Guzmán S, Blay N, Obón-Santacana M, Moreno V, de Cid R. Multiomic integration analysis identifies atherogenic metabolites mediating between novel immune genes and cardiovascular risk. Genome Med 2024; 16:122. [PMID: 39449064 PMCID: PMC11515386 DOI: 10.1186/s13073-024-01397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Understanding genetic-metabolite associations has translational implications for informing cardiovascular risk assessment. Interrogating functional genetic variants enhances our understanding of disease pathogenesis and the development and optimization of targeted interventions. METHODS In this study, a total of 187 plasma metabolite levels were profiled in 4974 individuals of European ancestry of the GCAT| Genomes for Life cohort. Results of genetic analyses were meta-analysed with additional datasets, resulting in up to approximately 40,000 European individuals. Results of meta-analyses were integrated with reference gene expression panels from 58 tissues and cell types to identify predicted gene expression associated with metabolite levels. This approach was also performed for cardiovascular outcomes in three independent large European studies (N = 700,000) to identify predicted gene expression additionally associated with cardiovascular risk. Finally, genetically informed mediation analysis was performed to infer causal mediation in the relationship between gene expression, metabolite levels and cardiovascular risk. RESULTS A total of 44 genetic loci were associated with 124 metabolites. Lead genetic variants included 11 non-synonymous variants. Predicted expression of 53 fine-mapped genes was associated with 108 metabolite levels; while predicted expression of 6 of these genes was also associated with cardiovascular outcomes, highlighting a new role for regulatory gene HCG27. Additionally, we found that atherogenic metabolite levels mediate the associations between gene expression and cardiovascular risk. Some of these genes showed stronger associations in immune tissues, providing further evidence of the role of immune cells in increasing cardiovascular risk. CONCLUSIONS These findings propose new gene targets that could be potential candidates for drug development aimed at lowering the risk of cardiovascular events through the modulation of blood atherogenic metabolite levels.
Collapse
Affiliation(s)
- Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190, Salt, Girona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Iván Galván-Femenía
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Xavier Farré
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Grup de Recerca en Impacte de Les Malalties Cròniques I Les Seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Beatriz Cortés
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Virginia Díez-Obrero
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
| | - Anna Carreras
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Ferran Moratalla-Navarro
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Grup de Recerca en Impacte de Les Malalties Cròniques I Les Seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Natalia Blay
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Grup de Recerca en Impacte de Les Malalties Cròniques I Les Seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Mireia Obón-Santacana
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Víctor Moreno
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain.
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain.
| | - Rafael de Cid
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain.
- Grup de Recerca en Impacte de Les Malalties Cròniques I Les Seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain.
| |
Collapse
|
46
|
Saparuddin F, Mohd Nawi MN, Ahmad Zamri L, Mansor F, Md Noh MF, Omar MA, Abdul Aziz NS, Wahab NA, Mediani A, Rajab NF, Sharif R. Metabolite, Biochemical, and Dietary Intake Alterations Associated with Lifestyle Interventions in Obese and Overweight Malaysian Women. Nutrients 2024; 16:3501. [PMID: 39458496 PMCID: PMC11510420 DOI: 10.3390/nu16203501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/28/2024] Open
Abstract
Differences in metabolic regulation among obesity phenotypes, specifically metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO) women, may lead to varied responses to interventions, which could be elucidated through metabolomics. Therefore, this study aims to investigate the differences in metabolite profiles between MHO and MUO women and the changes following a lifestyle intervention. Serum samples from 36 MHO and 34 MUO women who participated in a lifestyle intervention for weight loss were analysed using untargeted proton nuclear magnetic resonance spectroscopy (1H NMR) at baseline and 6 months post-intervention. Anthropometric, clinical, and dietary intake parameters were assessed at both time points. Both groups showed differential metabolite profiles at baseline and after six months. Seven metabolites, including trimethylamine-N-oxide (TMAO), arginine, ribose, aspartate, carnitine, choline, and tyrosine, significantly changed between groups post-intervention, which all showed a decreasing pattern in MHO. Significant reductions in body weight and body mass index (BMI) in the MUO correlated with changes in the carnitine and tyrosine levels. In conclusion, metabolite profiles differed significantly between MHO and MUO women before and after a lifestyle intervention. The changes in carnitine and tyrosine levels in MUO were correlated with weight loss, suggesting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Fatin Saparuddin
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Mohd Naeem Mohd Nawi
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Liyana Ahmad Zamri
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Mohd Azahadi Omar
- Sector for Biostatistic and Data Repository, National Institute of Heath, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | | | - Norasyikin A. Wahab
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Nor Fadilah Rajab
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Razinah Sharif
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
47
|
Yang X, Li W, Li W, Liu H, Wang L, Leng J, Fan Y, Yang X, Liu M, Hu G. Dietary intakes of branch chained amino acids and obesity risk among Chinese gestational diabetes women. Front Nutr 2024; 11:1436450. [PMID: 39449822 PMCID: PMC11500634 DOI: 10.3389/fnut.2024.1436450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Epidemiological studies have assessed the correlation between daily dietary branch chain amino acid (BCAA) intakes and the risk of obesity, however, the findings from these studies were inconsistent and investigations among GDM women were few. Objective The present study was to investigate the associations of daily BCAA intakes with the risks of overweight and abdominal obesity among women with prior gestational diabetes mellitus (GDM) postpartum. Method We performed a cross-sectional study of 1,263 women with prior GDM at 1-5 years post-delivery. Logistic regression models were used to estimate the associations of daily dietary intakes of BCAAs with the risks of overweight and abdominal obesity. Results The multivariable-adjusted odds ratios (ORs) across quartiles of daily BCAA intakes postpartum were 1.42 (95% confidence interval [CI] 1.02-1.97), 1.00 (reference), 1.21 (95% CI 0.88-1.68), and 1.31 (95% CI 0.95-1.81) for general overweight, and 1.38 (95% CI 0.99-1.90), 1.00, 1.19 (95% CI 0.86-1.64), and 1.43 (95% CI 1.04-1.98) for abdominal obesity, respectively. Women with the lowest quartile of daily BCAA intakes significantly increased the risks of general overweight (OR 1.49; 95 %CI 1.06-2.09) and abdominal obesity (OR 1.50; 95 %CI 1.08-2.11) compared with women at quartile 2 of daily BCAA intakes after further adjustment of daily energy intake. Conclusion The present study indicated that daily lower BCAA intakes were associated with increased risks of general overweight and abdominal obesity among women with prior GDM.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Weiqin Li
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Wei Li
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Huikun Liu
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Leishen Wang
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Junhong Leng
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Yuxin Fan
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xilin Yang
- Department of Epidemiology, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Hu
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
48
|
Grankvist N, Jönsson C, Hedin K, Sundqvist N, Sandström P, Björnsson B, Begzati A, Mickols E, Artursson P, Jain M, Cedersund G, Nilsson R. Global 13C tracing and metabolic flux analysis of intact human liver tissue ex vivo. Nat Metab 2024; 6:1963-1975. [PMID: 39210089 PMCID: PMC11496108 DOI: 10.1038/s42255-024-01119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Liver metabolism is central to human physiology and influences the pathogenesis of common metabolic diseases. Yet, our understanding of human liver metabolism remains incomplete, with much of current knowledge based on animal or cell culture models that do not fully recapitulate human physiology. Here, we perform in-depth measurement of metabolism in intact human liver tissue ex vivo using global 13C tracing, non-targeted mass spectrometry and model-based metabolic flux analysis. Isotope tracing allowed qualitative assessment of a wide range of metabolic pathways within a single experiment, confirming well-known features of liver metabolism but also revealing unexpected metabolic activities such as de novo creatine synthesis and branched-chain amino acid transamination, where human liver appears to differ from rodent models. Glucose production ex vivo correlated with donor plasma glucose, suggesting that cultured liver tissue retains individual metabolic phenotypes, and could be suppressed by postprandial levels of nutrients and insulin, and also by pharmacological inhibition of glycogen utilization. Isotope tracing ex vivo allows measuring human liver metabolism with great depth and resolution in an experimentally tractable system.
Collapse
Affiliation(s)
- Nina Grankvist
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Jönsson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Karin Hedin
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Biomedical engineering, Linköping University, Linköping, Sweden
| | - Nicolas Sundqvist
- Department of Biomedical engineering, Linköping University, Linköping, Sweden
| | - Per Sandström
- Department of Surgery, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bergthor Björnsson
- Department of Surgery, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Arjana Begzati
- Department of Medicine & Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | | | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Mohit Jain
- Department of Medicine & Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Sapient Bioanalytics, San Diego, CA, USA
| | - Gunnar Cedersund
- Department of Biomedical engineering, Linköping University, Linköping, Sweden
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
- Division of Cardiovascular Medicine, Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
49
|
Huang H, Chen H, Yao Y, Lou X. Branched-chain amino acids supplementation induces insulin resistance and pro-inflammatory macrophage polarization via INFGR1/JAK1/STAT1 signal pathway. Mol Med 2024; 30:149. [PMID: 39267003 PMCID: PMC11391606 DOI: 10.1186/s10020-024-00894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Obesity is a global epidemic, and the low-grade chronic inflammation of adipose tissue in obese individuals can lead to insulin resistance and type 2 diabetes. Adipose tissue macrophages (ATMs) are the main source of pro-inflammatory cytokines in adipose tissue, making them an important target for therapy. While branched-chain amino acids (BCAA) have been strongly linked to obesity and type 2 diabetes in humans, the relationship between BCAA catabolism and adipose tissue inflammation is unclear. This study aims to investigate whether disrupted BCAA catabolism influences the function of adipose tissue macrophages and the secretion of pro-inflammatory cytokines in adipose tissue, and to determine the underlying mechanism. This research will help us better understand the role of BCAA catabolism in adipose tissue inflammation, obesity, and type 2 diabetes. METHODS In vivo, we examined whether the BCAA catabolism in ATMs was altered in high-fat diet-induced obesity mice, and if BCAA supplementation would influence obesity, glucose tolerance, insulin sensitivity, adipose tissue inflammation and ATMs polarization in mice. In vitro, we isolated ATMs from standard chow and high BCAA-fed group mice, using RNA-sequencing to investigate the potential molecular pathway regulated by BCAA accumulation. Finally, we performed targeted gene silence experiment and used immunoblotting assays to verify our findings. RESULTS We found that BCAA catabolic enzymes in ATMs were influenced by high-fat diet induced obesity mice, which caused the accumulation of both BCAA and its downstream BCKA. BCAA supplementation will cause obesity and insulin resistance compared to standard chow (STC) group. And high BCAA diet will induce pro-inflammatory cytokines including Interlukin-1beta (IL-1β), Tumor Necrosis Factor alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) secretion in adipose tissue as well as promoting ATMs M1 polarization (pro-inflammatory phenotype). Transcriptomic analysis revealed that a high BCAA diet would activate IFNGR1/JAK1/STAT1 pathway, and IFNGR1 specific silence can abolish the effect of BCAA supplementation-induced inflammation and ATMs M1 polarization. CONCLUSIONS The obesity mice model reveals the catabolism of BCAA was disrupted which will cause the accumulation of BCAA, and high-level BCAA will promote ATMs M1 polarization and increase the pro-inflammatory cytokines in adipose tissue which will cause the insulin resistance in further. Therefore, reducing the circulating level of BCAA can be a therapeutic strategy in obesity and insulin resistance patients.
Collapse
Affiliation(s)
- Huaying Huang
- Department of Endocrinology and Metabolism, JinHua Municipal Central Hospital, No. 365, Renmin East Road, Wucheng District, Jinhua, Zhejiang, China
| | - Heye Chen
- Department of Endocrinology and Metabolism, JinHua Municipal Central Hospital, No. 365, Renmin East Road, Wucheng District, Jinhua, Zhejiang, China
| | - Yu Yao
- Department of Neurology, JinHua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Xueyong Lou
- Department of Endocrinology and Metabolism, JinHua Municipal Central Hospital, No. 365, Renmin East Road, Wucheng District, Jinhua, Zhejiang, China.
| |
Collapse
|
50
|
González-Domínguez Á, Savolainen O, Domínguez-Riscart J, Landberg R, Lechuga-Sancho A, González-Domínguez R. Probing erythrocytes as sensitive and reliable sensors of metabolic disturbances in the crosstalk between childhood obesity and insulin resistance: findings from an observational study, in vivo challenge tests, and ex vivo incubation assays. Cardiovasc Diabetol 2024; 23:336. [PMID: 39261864 PMCID: PMC11391635 DOI: 10.1186/s12933-024-02395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Although insulin resistance (IR) is among the most frequent and pathogenically relevant complications accompanying childhood obesity, its role in modulating and exacerbating obesity pathophysiology has not yet been completely clarified. METHODS To get deeper insights into the interplay between childhood obesity and IR, we leveraged a comprehensive experimental design based on a combination of observational data, in vivo challenge tests (i.e., oral glucose tolerance test), and ex vivo assays (i.e., incubation of erythrocytes with insulin) using a population comprising children with obesity and IR, children with obesity without IR, and healthy controls, from whom plasma and erythrocyte samples were collected for subsequent metabolomics analysis. RESULTS Children with concomitant IR showed exacerbated metabolic disturbances in the crosstalk between endogenous, microbial, and environmental determinants, including failures in energy homeostasis, amino acid metabolism, oxidative stress, synthesis of steroid hormones and bile acids, membrane lipid composition, as well as differences in exposome-related metabolites associated with diet, exposure to endocrine disruptors, and gut microbiota. Furthermore, challenge tests and ex vivo assays revealed a deleterious impact of IR on individuals' metabolic flexibility, as reflected in blunted capacity to regulate homeostasis in response to hyperinsulinemia, at both systemic and erythroid levels. CONCLUSIONS Thus, we have demonstrated for the first time that metabolite alterations in erythrocytes represent reliable and sensitive biomarkers to disentangle the metabolic complexity of IR and childhood obesity. This study emphasizes the crucial need of addressing inter-individual variability factors, such as the presence of comorbidities, to obtain a more accurate understanding of obesity-related molecular mechanisms.
Collapse
Affiliation(s)
- Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Otto Savolainen
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Jesús Domínguez-Riscart
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain
- Unidad de Endocrinología Pediátrica y Diabetes, Servicio de Pediatría, Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Alfonso Lechuga-Sancho
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain
- Unidad de Endocrinología Pediátrica y Diabetes, Servicio de Pediatría, Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
- Departamento Materno Infantil y Radiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, 11009, Spain
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain.
| |
Collapse
|