1
|
Zhao X, Qiu Y, Liang L, Fu X. Interkingdom signaling between gastrointestinal hormones and the gut microbiome. Gut Microbes 2025; 17:2456592. [PMID: 39851261 PMCID: PMC11776477 DOI: 10.1080/19490976.2025.2456592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/12/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The interplay between the gut microbiota and gastrointestinal hormones plays a pivotal role in the health of the host and the development of diseases. As a vital component of the intestinal microecosystem, the gut microbiota influences the synthesis and release of many gastrointestinal hormones through mechanisms such as modulating the intestinal environment, producing metabolites, impacting mucosal barriers, generating immune and inflammatory responses, and releasing neurotransmitters. Conversely, gastrointestinal hormones exert feedback regulation on the gut microbiota by modulating the intestinal environment, nutrient absorption and utilization, and the bacterial biological behavior and composition. The distributions of the gut microbiota and gastrointestinal hormones are anatomically intertwined, and close interactions between the gut microbiota and gastrointestinal hormones are crucial for maintaining gastrointestinal homeostasis. Interventions leveraging the interplay between the gut microbiota and gastrointestinal hormones have been employed in the clinical management of metabolic diseases and inflammatory bowel diseases, such as bariatric surgery and fecal microbiota transplantation, offering promising targets for the treatment of dysbiosis-related diseases.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ye Qiu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Guvenc F, Danska JS. The intestinal microbiome in type 1 diabetes: bridging early childhood exposures with translational advances. Curr Opin Immunol 2025; 94:102553. [PMID: 40179800 DOI: 10.1016/j.coi.2025.102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Type 1 diabetes (T1D) results from T cell-mediated destruction of pancreatic β-cells, requiring lifelong insulin therapy and glycemic monitoring. While genetic risk, particularly HLA class II, is well established, rising T1D incidence and earlier onset suggest environmental modifiers. Mouse models show that microbiome alterations influence β-cell autoimmunity, and human studies link microbiome composition to T1D, though specific microbial regulators remain unidentified. We examine host-microbiome interactions, including studies implicating enteroviruses in modulating islet autoimmunity. Mechanistic discoveries of microbial effects on diabetes have emerged from mouse model studies. We consider clinical applications, including microbiota-targeted therapies and biomarkers of microbiome-immune crosstalk. Future research should integrate microbial, genetic, environmental, and immune data using multi-omic approaches. Collaborative efforts combining immunology, microbiology, and clinical metadata will drive discovery and precision medicine in T1D.
Collapse
Affiliation(s)
- Furkan Guvenc
- Hospital for Sick Children Research Institute, Program in Genetics and Genome Biology, Department of Immunology, University of Toronto, ON, Canada
| | - Jayne S Danska
- Hospital for Sick Children Research Institute, Program in Genetics and Genome Biology, Department of Immunology, University of Toronto, ON, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, ON, Canada.
| |
Collapse
|
3
|
Schoultz I, Claesson MJ, Dominguez‐Bello MG, Fåk Hållenius F, Konturek P, Korpela K, Laursen MF, Penders J, Roager H, Vatanen T, Öhman L, Jenmalm MC. Gut microbiota development across the lifespan: Disease links and health-promoting interventions. J Intern Med 2025; 297:560-583. [PMID: 40270478 PMCID: PMC12087861 DOI: 10.1111/joim.20089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The gut microbiota plays a pivotal role in human life and undergoes dynamic changes throughout the human lifespan, from infancy to old age. During our life, the gut microbiota influences health and disease across life stages. This review summarizes the discussions and presentations from the symposium "Gut microbiota development from infancy to old age" held in collaboration with the Journal of Internal Medicine. In early infancy, microbial colonization is shaped by factors such as mode of delivery, antibiotic exposure, and milk-feeding practices, laying the foundation for subsequent increased microbial diversity and maturation. Throughout childhood and adolescence, microbial maturation continues, influencing immune development and metabolic health. In adulthood, the gut microbiota reaches a relatively stable state, influenced by genetics, diet, and lifestyle. Notably, disruptions in gut microbiota composition have been implicated in various inflammatory diseases-including inflammatory bowel disease, Type 1 diabetes, and allergies. Furthermore, emerging evidence suggests a connection between gut dysbiosis and neurodegenerative disorders such as Alzheimer's disease. Understanding the role of the gut microbiota in disease pathogenesis across life stages provides insights into potential therapeutic interventions. Probiotics, prebiotics, and dietary modifications, as well as fecal microbiota transplantation, are being explored as promising strategies to promote a healthy gut microbiota and mitigate disease risks. This review focuses on the gut microbiota's role in infancy, adulthood, and aging, addressing its development, stability, and alterations linked to health and disease across these critical life stages. It outlines future research directions aimed at optimizing the gut microbiota composition to improve health.
Collapse
Affiliation(s)
- Ida Schoultz
- School of Medical SciencesFaculty of Medicine and Health Örebro UniversityOrebroSweden
| | | | - Maria Gloria Dominguez‐Bello
- Department of Biochemistry & Microbiology and of AnthropologyRutgers University–New BrunswickNew BrunswickNew JerseyUSA
| | - Frida Fåk Hållenius
- Department of Food Technology, Engineering and NutritionLund UniversityLundSweden
| | - Peter Konturek
- Department of Medicine, Thuringia Clinic SaalfeldTeaching Hospital of the University JenaJenaGermany
| | - Katri Korpela
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - H. Roager
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksbergDenmark
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Department of Microbiology, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| |
Collapse
|
4
|
Zhang R, Wang MY, Zhang XQ, Gong YW, Guo YF, Shen JH. Self-care activities mediate self-perceived burden and depression in Chinese patients with type 2 diabetes. World J Psychiatry 2025; 15:104766. [DOI: 10.5498/wjp.v15.i5.104766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Diabetes is becoming increasingly common and has become an important global health issue. In addition to physical damage, diabetes often leads to psychological complications, such as depressive symptoms. Self-care is considered to be the cornerstone of type 2 diabetes mellitus (T2DM) management. This research evaluated depression and explored the associations between self-care activities, self-perceived burden, and depression among T2DM patients in China.
AIM To investigate the self-care activities and the association between depression and self-perceived burden among Chinese inpatients with T2DM.
METHODS A cross-sectional study was conducted in participants with T2DM. The data collected encompassed basic characteristics, diabetes self-care activities, depression levels, and self-perceived burdens. Bootstrapping was utilized to assess the mediating role of diabetes self-care activities.
RESULTS There were 599 T2DM patients in the survey, and 71.8% had been diagnosed with the disease for 1–10 years. There were significant correlations between self-care activities, depression, and self-perceived burden. The significant coefficients for paths a (B = -0.281, P < 0.001) and b (B = -0.041, P < 0.05) suggested negative associations between self-perceived burden and self-care behavior and between self-care activities and depression. The indirect effect (path a × b) of self-perceived burden on depression through self-care behaviors was significant (B = 0.020, P < 0.05), with a 95% bias-corrected bootstrap confidence interval of 0.007–0.036.
CONCLUSION The mediating model presented here highlights the role of self-care activities in exerting both direct and indirect effects on depression in participants with T2DM.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Endocrinology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde 415000, Hunan Province, China
| | - Mei-Yan Wang
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde 415000, Hunan Province, China
| | - Xue-Qing Zhang
- Department of Nursing, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde 415000, Hunan Province, China
| | - You-Wen Gong
- Department of Nursing, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde 415000, Hunan Province, China
| | - Ya-Fen Guo
- Department of Nursing, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde 415000, Hunan Province, China
| | - Jin-Hua Shen
- Department of Nursing, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde 415000, Hunan Province, China
- Department of General Surgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde 415000, Hunan Province, China
| |
Collapse
|
5
|
Takeuchi T, Miyauchi E, Nakanishi Y, Ito Y, Kato T, Yaguchi K, Kawasumi M, Tachibana N, Ito A, Shimamoto S, Matsuyama A, Sasaki N, Kimura I, Ohno H. Acetylated cellulose suppresses body mass gain through gut commensals consuming host-accessible carbohydrates. Cell Metab 2025:S1550-4131(25)00223-2. [PMID: 40381616 DOI: 10.1016/j.cmet.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/14/2024] [Accepted: 04/18/2025] [Indexed: 05/20/2025]
Abstract
Effective approaches to preventing and treating obesity are urgently needed. Although current strategies primarily focus on direct modulation of host metabolism, another promising approach may involve limiting nutrient availability through regulation of the gut microbiota, which links diet and host physiology. Here, we report that acetylated cellulose (AceCel), which markedly alters gut bacterial composition and function, reduces body mass gain in both wild-type and obese mice. AceCel limits carbohydrate oxidation and promotes fatty acid oxidation in the host liver in a microbiota-dependent manner. We further show that acetate enhances carbohydrate fermentation by the gut commensal Bacteroides thetaiotaomicron, depleting host-accessible simple sugars in the gut of AceCel-fed mice. These findings highlight the potential of AceCel as a prebiotic that regulates carbohydrate metabolism in both bacteria and host, offering promise as a therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Eiji Miyauchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yusuke Ito
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsuki Yaguchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masami Kawasumi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Tachibana
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ayumi Ito
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shu Shimamoto
- Tokyo Headquarters, Daicel Corporation, Tokyo, Japan
| | | | - Nobuo Sasaki
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan; Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
6
|
Mukhopadhya I, Louis P. Gut microbiota-derived short-chain fatty acids and their role in human health and disease. Nat Rev Microbiol 2025:10.1038/s41579-025-01183-w. [PMID: 40360779 DOI: 10.1038/s41579-025-01183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/15/2025]
Abstract
Short-chain fatty acids (SCFAs) are a group of organic compounds produced by the fermentation of dietary fibre by the human gut microbiota. They play diverse roles in different physiological processes of the host with implications for human health and disease. This Review provides an overview of the complex microbial metabolism underlying SCFA formation, considering microbial interactions and modulating factors of the gut environment. We explore the multifaceted mechanistic interactions between SCFAs and the host, with a particular focus on the local actions of SCFAs in the gut and their complex interactions with the immune system. We also discuss how these actions influence intestinal and extraintestinal diseases and emerging therapeutic strategies using SCFAs.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Petra Louis
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
7
|
Fang X, Zhang Y, Huang X, Miao R, Zhang Y, Tian J. Gut microbiome research: Revealing the pathological mechanisms and treatment strategies of type 2 diabetes. Diabetes Obes Metab 2025. [PMID: 40230225 DOI: 10.1111/dom.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025]
Abstract
The high prevalence and disability rate of type 2 diabetes (T2D) caused a huge social burden to the world. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. With in-depth research on the pathogenesis of T2D and growing advances in microbiome sequencing technology, the association between T2D and gut microbiota has been confirmed. The gut microbiota participates in the regulation of inflammation, intestinal permeability, short-chain fatty acid metabolism, branched-chain amino acid metabolism and bile acid metabolism, thereby affecting host glucose and lipid metabolism. Interventions focusing on the gut microbiota are gaining traction as a promising approach to T2D management. For example, dietary intervention, prebiotics and probiotics, faecal microbiota transplant and phage therapy. Meticulous experimental design and choice of analytical methods are crucial for obtaining accurate and meaningful results from microbiome studies. How to design gut microbiome research in T2D and choose different machine learning methods for data analysis are extremely critical to achieve personalized precision medicine.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyue Huang
- First Clinical Medical College, Changzhi Medical College, Shanxi, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Qin X, Chen M, He B, Chen Y, Zheng Y. Role of short-chain fatty acids in non-alcoholic fatty liver disease and potential therapeutic targets. Front Microbiol 2025; 16:1539972. [PMID: 40248431 PMCID: PMC12003400 DOI: 10.3389/fmicb.2025.1539972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is increasing worldwide and has become the greatest potential risk for cirrhosis and hepatocellular carcinoma. The metabolites produced by the gut microbiota act as signal molecules that mediate the interaction between microorganisms and the host and have biphasic effects on human health. The gut microbiota and its metabolites, short-chain fatty acids (SCFAs), have been discovered to ameliorate many prevalent liver diseases, including NAFLD. Currently, SCFAs have attracted widespread attention as potential therapeutic targets for NAFLD, but the mechanism of action has not been fully elucidated. This article summarizes the mechanisms of short-chain fatty acids of gut microbiota metabolites to regulate the metabolism of glucose and lipid, maintain the intestinal barrier, alleviate the inflammatory response, and improve the oxidative stress to improve NAFLD, in order to provide a reference for clinical application.
Collapse
Affiliation(s)
- Xiang Qin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Mengyao Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuelin Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
9
|
Ding G, Yang X, Li Y, Wang Y, Du Y, Wang M, Ye R, Wang J, Zhang Y, Chen Y, Zhang Y. Gut microbiota regulates gut homeostasis, mucosal immunity and influences immune-related diseases. Mol Cell Biochem 2025; 480:1969-1981. [PMID: 39060829 DOI: 10.1007/s11010-024-05077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
The intestinal microbiome constitutes a sophisticated and massive ecosystem pivotal for maintaining gastrointestinal equilibrium and mucosal immunity via diverse pathways. The gut microbiota is continuously reshaped by multiple environmental factors, thereby influencing overall wellbeing or predisposing individuals to disease state. Many observations reveal an altered microbiome composition in individuals with autoimmune conditions, coupled with shifts in metabolic profiles, which has spurred ongoing development of therapeutic interventions targeting the microbiome. This review delineates the microbial consortia of the intestine, their role in sustaining gastrointestinal stability, the association between the microbiome and immune-mediated pathologies, and therapeutic modalities focused on microbiome modulation. We emphasize the entire role of the intestinal microbiome in human health and recommend microbiome modulation as a viable strategy for disease prophylaxis and management. However, the application of gut microbiota modification for the treatment of immune-related diseases, such as fecal microbiota transplantation and probiotics, remain quite challenging. Therefore, more research is needed into the role and mechanisms of these therapeutics.
Collapse
Affiliation(s)
- Guoao Ding
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
- Department of Life Science, Anhui University, Hefei, 230061, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ying Li
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Ying Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yujie Du
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Meng Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Ruxin Ye
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Jingjing Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yongkang Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yajun Chen
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yan Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China.
- Department of Life Science, Anhui University, Hefei, 230061, China.
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
10
|
Zhao T, Wang C, Liu Y, Li B, Shao M, Zhao W, Zhou C. The role of polysaccharides in immune regulation through gut microbiota: mechanisms and implications. Front Immunol 2025; 16:1555414. [PMID: 40230839 PMCID: PMC11994737 DOI: 10.3389/fimmu.2025.1555414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/05/2025] [Indexed: 04/16/2025] Open
Abstract
Polysaccharides, as complex carbohydrates, play a pivotal role in immune modulation and interactions with the gut microbiota. The diverse array of dietary polysaccharides influences gut microbial ecology, impacting immune responses, metabolism, and overall well-being. Despite their recognized benefits, there is limited understanding of the precise mechanisms by which polysaccharides modulate the immune system through the gut microbiota. A comprehensive search of Web of Science, PubMed, Google Scholar, and Embase up to May 2024 was conducted to identify relevant studies. This study employs a systematic approach to explore the interplay between polysaccharides and the gut microbiota, focusing on cytokine-mediated and short-chain fatty acid (SCFA)-mediated pathways. The findings underscore the significant role of polysaccharides in shaping the composition and function of the gut microbiota, thereby influencing immune regulation and metabolic processes. However, further research is necessary to elucidate the detailed molecular mechanisms and translate these findings into clinical applications.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Congyue Wang
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Yuhan Liu
- Department of Medical Oncology, Anshan Cancer Hospital, Anshan, China
| | - Bo Li
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Mingjia Shao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Wuyang Zhao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Chuang Zhou
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| |
Collapse
|
11
|
Tillett BJ, Dwiyanto J, Secombe KR, George T, Zhang V, Anderson D, Duggan E, Giri R, Loo D, Stoll T, Morrison M, Begun J, Hill MM, Gurzov EN, Bell KJ, Saad S, Barlow CK, Creek DJ, Chong CW, Mariño E, Hamilton-Williams EE. SCFA biotherapy delays diabetes in humanized gnotobiotic mice by remodeling mucosal homeostasis and metabolome. Nat Commun 2025; 16:2893. [PMID: 40133336 PMCID: PMC11937418 DOI: 10.1038/s41467-025-58319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Type 1 diabetes (T1D) is linked to an altered gut microbiota characterized by reduced short-chain fatty acid (SCFA) production. Oral delivery of a SCFA-yielding biotherapy in adults with T1D was followed by increased SCFAs, altered gut microbiota and immunoregulation, as well as delaying diabetes in preclinical models. Here, we show that SCFA-biotherapy in humans is accompanied by remodeling of the gut proteome and mucosal immune homeostasis. Metabolomics showed arginine, glutamate, nucleotide and tryptophan metabolism were enriched following the SCFA-biotherapy, and found metabolites that correlated with glycemic control. Fecal microbiota transfer demonstrated that the microbiota of SCFA-responders delayed diabetes progression in humanized gnotobiotic mice. The protected mice increased similar metabolite pathways to the humans including producing aryl-hydrocarbon receptor ligands and reducing inflammatory mucosal immunity and increasing IgA production in the gut. These data demonstrate that a potent SCFA immunomodulator promotes multiple beneficial pathways and supports targeting the microbiota as an approach against T1D. Trial registration: Australia New Zealand Clinical Trials Registry ACTRN12618001391268.
Collapse
Affiliation(s)
- Bree J Tillett
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jacky Dwiyanto
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kate R Secombe
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas George
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vivian Zhang
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
| | - Emily Duggan
- Translational Research Institute, Brisbane, QLD, Australia
| | - Rabina Giri
- Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
| | - Dorothy Loo
- Translational Research Institute, Brisbane, QLD, Australia
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mark Morrison
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jakob Begun
- Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Kirstine J Bell
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
| | - Chun Wie Chong
- Monash University Microbiome Research Centre, School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Eliana Mariño
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
- ImmunoBiota Therapeutics Pty Ltd, Melbourne, VIC, Australia.
| | | |
Collapse
|
12
|
Li L, Zhang Y, Huang Z, Hong Y, Cheng L, Gu Z. Steric Inhibition by Butyryl Groups on Gut Microbial Amylases Significantly Impacts In Vitro Fecal Fermentation of Butyrylated Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6943-6954. [PMID: 40048501 DOI: 10.1021/acs.jafc.4c10445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Colonic starch fermentation requires the assistance of gut microbial amylases (GMAs). However, it remains unknown whether chemically substituted butyryl groups induce a steric inhibitory effect on GMAs analogous to that observed with pancreatic amylase during the intestinal digestion of butyrylated starch. In this study, we investigated the in vitro fermentation and enzymatic hydrolysis performance of three types of butyrylated starch. The results showed that the esterolysis of butyryl groups was a rate-limiting process, and the fermentation of butyrylated starch was partially inhibited by steric inhibition of the butyryl groups on GMAs. X-ray photoelectron spectroscopy (XPS) results further confirmed the negative correlation between the fermentation rate of starch and the relative content of butyryl groups accessible to the gut microbiota. Moreover, analyses of the enzymatic characteristics and the resulting hydrolysate composition demonstrated that a relatively high multiple attack degree (MAD) made GMAs more susceptible to steric inhibition by butyryl groups, thus producing more malto-oligosaccharides, which are preferred by butyrate-producing bacteria. These findings provide important insights into the fermentation behavior of butyrylated starch from the perspective of interactions between microbial amylases and starch.
Collapse
Affiliation(s)
- Lingjin Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zehao Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
| |
Collapse
|
13
|
Khan M, Alteneder M, Reiter W, Krausgruber T, Dobnikar L, Madern M, Waldherr M, Bock C, Hartl M, Ellmeier W, Henriksson J, Boucheron N. Single-cell and chromatin accessibility profiling reveals regulatory programs of pathogenic Th2 cells in allergic asthma. Nat Commun 2025; 16:2565. [PMID: 40089475 PMCID: PMC11910648 DOI: 10.1038/s41467-025-57590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Lung pathogenic T helper type 2 (pTh2) cells are important in mediating allergic asthma, but fundamental questions remain regarding their heterogeneity and epigenetic regulation. Here we investigate immune regulation in allergic asthma by single-cell RNA sequencing in mice challenged with house dust mite, in the presence and absence of histone deacetylase 1 (HDAC1) function. Our analyses indicate two distinct highly proinflammatory subsets of lung pTh2 cells and pinpoint thymic stromal lymphopoietin (TSLP) and Tumour Necrosis Factor Receptor Superfamily (TNFRSF) members as important drivers to generate pTh2 cells in vitro. Using our in vitro model, we uncover how signalling via TSLP and a TNFRSF member shapes chromatin accessibility at the type 2 cytokine gene loci by modulating HDAC1 repressive function. In summary, we have generated insights into pTh2 cell biology and establish an in vitro model for investigating pTh2 cells that proves useful for discovering molecular mechanisms involved in pTh2-mediated allergic asthma.
Collapse
Affiliation(s)
- Matarr Khan
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Marlis Alteneder
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Wolfgang Reiter
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Center for Medical Data Science, Institute of Artificial Intelligence, Vienna, Austria
| | - Lina Dobnikar
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Moritz Madern
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Monika Waldherr
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
- FH Campus Wien, Department of Applied Life Sciences/Bioengineering/Bioinformatics, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Center for Medical Data Science, Institute of Artificial Intelligence, Vienna, Austria
| | - Markus Hartl
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Johan Henriksson
- Umeå University, Umeå Centre for Microbial Research (UCMR), Integrated Science Lab (Icelab), Department of Molecular Biology, Umeå, Sweden
| | - Nicole Boucheron
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria.
| |
Collapse
|
14
|
Liu R, Zhang J, Chen S, Xiao Y, Hu J, Zhou Z, Xie L. Intestinal mucosal immunity and type 1 diabetes: Non-negligible communication between gut and pancreas. Diabetes Obes Metab 2025; 27:1045-1064. [PMID: 39618164 PMCID: PMC11802406 DOI: 10.1111/dom.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 02/08/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated pancreatic β cell loss, resulting in lifelong absolute insulin deficiency and hyperglycaemia. Environmental factors are recognized as a key contributor to the development of T1D, with the gut serving as a primary interface for environmental stimuli. Recent studies have revealed that the alterations in the intestinal microenvironment profoundly affect host immune responses, contributing to the aetiology and pathogenesis of T1D. However, the dominant intestinal immune cells and the underlying mechanisms remain incompletely elucidated. In this review, we provide an overview of the possible mechanisms of the intestinal mucosal system that underpin the pathogenesis of T1D, shedding light on the roles of both non-classical and classical immune cells in T1D. Our goal is to gain insights into how modulating these immune components may hold potential implications for T1D prevention and provide novel perspectives for immune-mediated therapy.
Collapse
Affiliation(s)
- Ruonan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jing Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
15
|
Blok L, Hanssen N, Nieuwdorp M, Rampanelli E. From Microbes to Metabolites: Advances in Gut Microbiome Research in Type 1 Diabetes. Metabolites 2025; 15:138. [PMID: 39997763 PMCID: PMC11857261 DOI: 10.3390/metabo15020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Type 1 diabetes (T1D) is a severe chronic T-cell mediated autoimmune disease that attacks the insulin-producing beta cells of the pancreas. The multifactorial nature of T1D involves both genetic and environmental components, with recent research focusing on the gut microbiome as a crucial environmental factor in T1D pathogenesis. The gut microbiome and its metabolites play an important role in modulating immunity and autoimmunity. In recent years, studies have revealed significant alterations in the taxonomic and functional composition of the gut microbiome associated with the development of islet autoimmunity and T1D. These changes include reduced production of short-chain fatty acids, altered bile acid and tryptophan metabolism, and increased intestinal permeability with consequent perturbations of host (auto)immune responses. Methods/Results: In this review, we summarize and discuss recent observational, mechanistic and etiological studies investigating the gut microbiome in T1D and elucidating the intricate role of gut microbes in T1D pathogenesis. Moreover, we highlight the recent advances in intervention studies targeting the microbiota for the prevention or treatment of human T1D. Conclusions: A deeper understanding of the evolution of the gut microbiome before and after T1D onset and of the microbial signals conditioning host immunity may provide us with essential insights for exploiting the microbiome as a prognostic and therapeutic tool.
Collapse
Affiliation(s)
- Lente Blok
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Nordin Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| |
Collapse
|
16
|
Zhu L, Yang X. Gut Microecological Prescription: A Novel Approach to Regulating Intestinal Micro-Ecological Balance. Int J Gen Med 2025; 18:603-626. [PMID: 39931312 PMCID: PMC11807788 DOI: 10.2147/ijgm.s504616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
The intestinal microecology is comprises intestinal microorganisms and other components constituting the entire ecosystem, presenting characteristics of stability and dynamic balance. Current research reveals intestinal microecological imbalances are related to various diseases. However, fundamental research and clinical applications have not been effectively integrated. Considering the importance and complexity of regulating the intestinal microecological balance, this study provides an overview of the high-risk factors affecting intestinal microecology and detection methods. Moreover, it proposes the definition of intestinal microecological imbalance and the definition, formulation, and outcomes of gut microecological prescription to facilitate its application in clinical practice, thus promoting clinical research on intestinal microecology and improving the quality of life of the population.
Collapse
Affiliation(s)
- Lingping Zhu
- The Affiliated Nanhua Hospital, Department of General Practice, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
- School of Public Health, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Xuefeng Yang
- The Affiliated Nanhua Hospital, Department of General Practice, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| |
Collapse
|
17
|
Li J, Xie Z, Yang L, Guo K, Zhou Z. The impact of gut microbiome on immune and metabolic homeostasis in type 1 diabetes: Clinical insights for prevention and treatment strategies. J Autoimmun 2025; 151:103371. [PMID: 39883994 DOI: 10.1016/j.jaut.2025.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Type 1 diabetes (T1D) is a complex disease triggered by a combination of genetic and environmental factors, where abnormal autoimmune responses lead to progressive damage of the pancreatic β cells and severe glucose metabolism disorder. Recent studies have increasingly highlighted the close link between gut microbiota dysbiosis and the development of T1D. This review delves into existing population studies to explore the intricate interactions between the gut microbiota and the immune and metabolic homeostasis in T1D. It summarizes how changes in the structure and function of the gut microbiota are closely associated with the onset and progression of T1D across its natural course and clinical stages. More importantly, based on evidence accumulated from clinical observations and trials, we pioneer the discussion on gut microbiota-based T1D prevention and treatment strategies, this not only enriches our understanding of the complex pathological mechanisms of T1D but also provides potential directions for developing novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
18
|
Kennedy EC, Ross FC, O'Shea CA, Lavelle A, Ross P, Dempsey E, Stanton C, Hawkes CP. Observational study protocol: the faecal microbiome in the acute stage of new-onset paediatric type 1 diabetes in an Irish cohort. BMJ Open 2025; 15:e089206. [PMID: 39890137 PMCID: PMC11784173 DOI: 10.1136/bmjopen-2024-089206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/06/2024] [Indexed: 02/03/2025] Open
Abstract
INTRODUCTION Type 1 diabetes (T1D) is an autoimmune-mediated disorder caused by the destruction of pancreatic beta cells. Although there is an underlying genetic predisposition to developing T1D, the trigger is multifactorial and likely includes environmental factors. The intestinal microbiome has been identified as one such factor. Previous studies have illustrated differences in the microbiota of people with T1D compared with healthy controls. This study aims to describe the evolution of the microbiome and metabolome during the first year of clinical T1D, or stage 3 T1D diagnosis, and investigate whether there are differences in the microbiome and metabolome of children who present with and without diabetic ketoacidosis. The study will also explore possible associations between the microbiome, metabolome, glycaemic control and beta cell reserve. METHODS AND ANALYSIS This prospective cohort study will include children with newly diagnosed T1D and sibling controls (n=100, males and females) and their faecal microbiome will be characterised using shotgun metagenomic sequencing at multiple time points during the first year of diagnosis. We will develop a microbial culture biobank based on culturomic studies of stool samples from the healthy controls that will support future investigation. Metabolomic analysis will aim to identify additional biomarkers which may be involved in disease presentation and progression. Through this initial exploratory study, we aim to identify specific microbial biomarkers which may be used as future interventional targets throughout the various stages of T1D progression. ETHICS AND DISSEMINATION This study has been approved by the Clinical Research Ethics Committee of the Cork Teaching Hospitals. Study results will be available to patients with T1D and their families, carers, support networks and microbiome societies and other researchers. TRIAL REGISTRATION NUMBER The clinicaltrials.gov registration number for this trial is NCT06157736.
Collapse
Affiliation(s)
- Elaine Catherine Kennedy
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Fiona Catherine Ross
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Aonghus Lavelle
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre Moorepark, Moorepark, Ireland
| | - Colin Patrick Hawkes
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Slater AS, Hickey RM, Davey GP. Interactions of human milk oligosaccharides with the immune system. Front Immunol 2025; 15:1523829. [PMID: 39877362 PMCID: PMC11772441 DOI: 10.3389/fimmu.2024.1523829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
Human milk oligosaccharides (HMOs) are abundant, diverse and complex sugars present in human breast milk. HMOs are well-characterized barriers to microbial infection and by modulating the human microbiome they are also thought to be nutritionally beneficial to the infant. The structural variety of over 200 HMOs, including neutral, fucosylated and sialylated forms, allows them to interact with the immune system in various ways. Clinically, HMOs impact allergic diseases, reducing autoimmune and inflammatory responses, and offer beneficial support to the preterm infant immune health. This review examines the HMO composition and associated immunomodulatory effects, including interactions with immune cell receptors and gut-associated immune responses. These immunomodulatory properties highlight the potential for HMO use in early stage immune development and for use as novel immunotherapeutics. HMO research is rapidly evolving and promises innovative treatments for immune-related conditions and improved health outcomes.
Collapse
Affiliation(s)
- Alanna S. Slater
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Lai Y, Huang X, Sun H, Hui Q, Hu S. Research Progress in the Relationship between Intestinal Flora and Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2025; 25:281-290. [PMID: 38956918 DOI: 10.2174/0118715303308965240624054156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Diabetes mellitus is a common chronic metabolic disease characterized by a high incidence and disability rate. Intestinal flora refers to the microbial community that lives in the intestines and plays a crucial role in maintaining intestinal health and the human immune system. In recent years, an increasing body of research has revealed a close relationship between intestinal flora and diabetes. The pathophysiological mechanisms between them have also been constantly uncovered, and the regulation of intestinal flora has shown promising efficacy in the adjuvant treatment of diabetes. This study mainly summarized the characteristics and mechanisms of intestinal flora in patients with diabetes in recent years, as well as the methods of regulating intestinal flora to prevent and treat diabetes, and prospected the future research direction. This will offer a theoretical basis for the clinical adjuvant treatment of diabetes with intestinal flora and the development of new drugs.
Collapse
Affiliation(s)
- Yingji Lai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianfeng Huang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongwei Sun
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Hui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanshan Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
21
|
Li N, Xu T, Wu Z, Zhao Y, Ruan M, Xu H, Chen W, Wang H, Wang S, Wang Y, Liang Q. Arabinogalactan from Cynanchum atratum induces tolerogenic dendritic cells in gut to restrain autoimmune response and alleviate collagen-induced arthritis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156269. [PMID: 39586124 DOI: 10.1016/j.phymed.2024.156269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease characterized by multiple joints lesions. Tolerogenic dendritic cells (tolDCs) play crucial roles in maintaining immune homeostasis. The immunomodulatory activity of plant-derived arabinogalactan (AGs) has been well investigated, however, whether AGs could suppress autoimmune responses by inducing tolDCs is remain unclear. DESIGN Collagen-induced arthritis (CIA, a mouse model of RA) mice were utilized to ascertain the role of AGs (obtained from Cynanchum atratum) in autoimmune responses. An antibiotic cocktail was administered to eliminate gut microbiota. Germ-free (GF) and Toll-like receptor 2 (TLR2) knockout mice were used to determine the function of AGs in intestinal immune cells. RESULTS The oral administration of dietary AGs substantially reduced the severity of CIA and rebalanced the ratio of regulatory T cells (Tregs) to T helper 17 (Th17) cells. Although the antibiotic cocktail depleted the mice's gut microbiota, AGs had a therapeutic effect on their CIA. AGs restored Treg/Th17 homeostasis by inducing CD103+ tolDCs, regardless of the gut microbiota of the GF mice. Coculture experiments confirmed that AGs induced tolDCs and transforming growth factor β (TGF-β) secretion, leading to Treg amplification. RNA sequencing and TLR2 knockout experiments revealed that AGs induced tolDCs through a TLR2-mediated mechanism. Preventive interventions with AGs established a tolerogenic intestinal immune microenvironment, which delayed the onset and progression of CIA. AGs functioned synergistically with tofacitinib, a JAK inhibitor, to effectively restore Treg/Th17 balance and alleviate CIA. CONCLUSION This study introduces a novel microbiota-independent mechanism through which soluble dietary AGs inhibit systemic autoimmune responses. Our findings provide insights into the supplementation of dietary AGs in patients with preclinical or progressive RA.
Collapse
Affiliation(s)
- Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China
| | - Tianhao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China
| | - Zhaoshun Wu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China
| | - Yuchen Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China
| | - Ming Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China
| | - Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China.
| |
Collapse
|
22
|
Song P, Peng Z, Guo X. Gut microbial metabolites in cancer therapy. Trends Endocrinol Metab 2025; 36:55-69. [PMID: 39004537 DOI: 10.1016/j.tem.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
The gut microbiota plays a crucial role in maintaining homeostasis and promoting health. A growing number of studies have indicated that gut microbiota can affect cancer development, prognosis, and treatment through their metabolites. By remodeling the tumor microenvironment and regulating tumor immunity, gut microbial metabolites significantly influence the efficacy of anticancer therapies, including chemo-, radio-, and immunotherapy. Several novel therapies that target gut microbial metabolites have shown great promise in cancer models. In this review, we summarize the current research status of gut microbial metabolites in cancer, aiming to provide new directions for future tumor therapy.
Collapse
Affiliation(s)
- Panwei Song
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China.
| |
Collapse
|
23
|
Bhutta NK, Xu X, Jian C, Wang Y, Liu Y, Sun J, Han B, Wu S, Javeed A. Gut microbiota mediated T cells regulation and autoimmune diseases. Front Microbiol 2024; 15:1477187. [PMID: 39749132 PMCID: PMC11694513 DOI: 10.3389/fmicb.2024.1477187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Gut microbiota regulates the immune system, the development and progression of autoimmune diseases (AIDs) and overall health. Recent studies have played a crucial part in understanding the specific role of different gut bacterial strains and their metabolites in different AIDs. Microbial signatures in AIDs are revealed by advanced sequencing and metabolomics studies. Microbes such as Faecalibacterium prausnitzii, Akkermansia muciniphila, Anaerostipes caccae, Bacteroides sp., Roseburia sp., Blautia sp., Blautia faecis, Clostridium lavalense, Christensenellaceae sp., Coprococcus sp., Firmicutes sp., Ruminococcaceae sp., Lachnospiraceae sp., Megamonas sp., Monoglobus sp., Streptococcus pneumoniae and Bifidobacterium sp. help maintain immune homeostasis; whereas, Prevotella copri, Ruminococcus gnavus, Lactobacillus salivarius, Enterococcus gallinarum, Elizabeth menigoseptica, Collinsella sp., Escherichia sp., Fusobacterium sp., Enterobacter ludwigii, Enterobacteriaceae sp., Proteobacteria, Porphyromonas gingivalis, Porphyromonas nigrescens, Dorea sp., and Clostridium sp. cause immuno-pathogenesis. A complex web of interactions is revealed by understanding the influence of gut microbiota on immune cells and various T cell subsets such as CD4+ T cells, CD8+ T cells, natural killer T cells, γδ T cells, etc. Certain AIDs, including rheumatoid arthritis, diabetes mellitus, atopic asthma, inflammatory bowel disease and non-alcoholic fatty liver disease exhibit a state of dysbiosis, characterized by alterations in microbial diversity and relative abundance of specific taxa. This review summarizes recent developments in understanding the role of certain microbiota composition in specific AIDs, and the factors affecting specific regulatory T cells through certain microbial metabolites and also focuses the potential application and therapeutic significance of gut microbiota-based interventions as novel adjunctive therapies for AIDs. Further research to determine the precise association of each gut bacterial strain in specific diseases is required.
Collapse
Affiliation(s)
- Nabeel Khalid Bhutta
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiujin Xu
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cuiqin Jian
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yifan Wang
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Jinlyu Sun
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Department of Allergy, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bingnan Han
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Ansar Javeed
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
24
|
Ghahramanipour Z, Naseri B, Mardi A, Sohrabi S, Masoumi J, Baghbani E, Karimzadeh H, Baradaran B. Arginine vasopressin (AVP) treatment increases the expression of inhibitory immune checkpoint molecules in monocyte-derived dendritic cells. Immunol Res 2024; 73:6. [PMID: 39661295 DOI: 10.1007/s12026-024-09579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/03/2024] [Indexed: 12/12/2024]
Abstract
Arginine vasopressin (AVP) has disparate impacts on immune responses by divergent receptors on cells including DCs. This study was conducted with the aim of investigating the impact of AVP on the maturation and expression of the inhibitory immune checkpoint molecules in tolerogenic monocyte-derived DCs. CD14 marker was used to separate monocytes from peripheral blood mononuclear cells (PBMCs) by MACS method. To differentiate monocytes from DCs, we utilized GM-CSF and IL-4 cytokines. Tolerogenic DCs were generated using vitamin D3 and dexamethasone. We added LPS and AVP to the culture medium on day 6 after incubation of DCs at 37 °C. Finally, we assessed the surface molecules by flow cytometry and used real-time PCR to evaluate the expression of genes related to the inhibitory immune checkpoints. Based on the obtained data, AVP increased the expression of CD11c (P ≤ 0.0001), HLA-DR (P ≤ 0.01), and CD86 (P ≤ 0.01) in AVP-mDCs. Also, the expression of all the immune checkpoint genes including CTLA-4 (P ≤ 0.001), BTLA (P ≤ 0.001), PDL-1 (P ≤ 0.05), B7H7 (P ≤ 0.001), LAG3 (P ≤ 0.01), and VISTA (P ≤ 0.001) in AVP-mDCs was increased in comparison to the control group. Vasopressin caused the generation of mature and tolerogenic DCs. Our data may help to consider AVP-mDCs to take part in autoimmune disease therapy, transplanted tissue rejection impedance, and allergies.
Collapse
Affiliation(s)
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Karimzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Zha A, Qi M, Deng Y, Li H, Wang N, Wang C, Liao S, Wan D, Xiong X, Liao P, Wang J, Yin Y, Tan B. Gut Bifidobacterium pseudocatenulatum protects against fat deposition by enhancing secondary bile acid biosynthesis. IMETA 2024; 3:e261. [PMID: 39742294 PMCID: PMC11683477 DOI: 10.1002/imt2.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
Gut microbiome is crucial for lipid metabolism in humans and animals. However, how specific gut microbiota and their associated metabolites impact fat deposition remains unclear. In this study, we demonstrated that the colonic microbiome of lean and obese pigs differentially contributes to fat deposition, as evidenced by colonic microbiota transplantation experiments. Notably, the higher abundance of Bifidobacterium pseudocatenulatum was significantly associated with lower backfat thickness in lean pigs. Microbial-derived lithocholic acid (LCA) species were also significantly enriched in lean pigs and positively correlated with the abundance of B. pseudocatenulatum. In a high-fat diet (HFD)-fed mice model, administration of live B. pseudocatenulatum decreased fat deposition and enhances colonic secondary bile acid biosynthesis. Importantly, pharmacological inhibition of the bile salt hydrolase (BSH), which mediates secondary bile acid biosynthesis, impaired the anti-fat deposition effect of B. pseudocatenulatum in antibiotic-pretreated, HFD-fed mice. Furthermore, dietary LCA also decreased fat deposition in HFD-fed rats and obese pig models. These findings provide mechanistic insights into the anti-fat deposition role of B. pseudocatenulatum and identify BSH as a potential target for preventing excessive fat deposition in humans and animals.
Collapse
Affiliation(s)
- Andong Zha
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
- School of Basic Medical Science, Central South UniversityChangshaChina
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Yuankun Deng
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Hao Li
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Nan Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Chengming Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Simeng Liao
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Jing Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Yulong Yin
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Bi'e Tan
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| |
Collapse
|
26
|
Jørgensen KS, Pedersen SS, Hjorth SA, Billestrup N, Prause M. Protection of beta cells against cytokine-induced apoptosis by the gut microbial metabolite butyrate. FEBS J 2024. [PMID: 39569473 DOI: 10.1111/febs.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Type 1 diabetes (T1D) is characterized by immune cell infiltration in the islets of Langerhans, leading to the destruction of insulin-producing beta cells. This destruction is driven by secreted cytokines and cytotoxic T cells inducing apoptosis in beta cells. Butyrate, a metabolite produced by the gut microbiota, has been shown to have various health benefits, including anti-inflammatory and anti-diabetic effects. In this study, we investigated the potential protective effects of butyrate on cytokine-induced apoptosis in beta cells and explored the underlying mechanisms. Insulin-secreting INS-1E cells and isolated mouse islets were treated with interleukin-1beta (IL-1β) or a combination of IL-1β and interferon-gamma (IFN-γ) in the presence or absence of butyrate. We analyzed apoptosis, nitric oxide (NO) levels, expression of stress-related genes, and immune cell migration. Our results demonstrated that butyrate significantly attenuated cytokine-induced apoptosis in both INS-1E cells and mouse islets, accompanied by a reduction in NO levels. Butyrate also decreased the expression of endoplasmic reticulum (ER) stress markers such as Chop, phosphorylated eIF2α and Atf4, as well as some pro-apoptotic genes including Dp5 and Puma. Butyrate reduced the cytokine-induced expression of the chemokine genes Cxcl1 and Cxcl10 in mouse islets, as well as the chemotactic activity of THP-1 monocytes toward conditioned media from IL-1β-exposed islets. In conclusion, these findings indicate that butyrate protects beta cells from cytokine-induced apoptosis and ER stress, suggesting its potential as a therapeutic agent to prevent beta cell destruction in T1D.
Collapse
Affiliation(s)
- Kasper Suhr Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Signe Schultz Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Siv Annegrethe Hjorth
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nils Billestrup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michala Prause
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
27
|
Gui L, Zuo X, Feng J, Wang M, Chen Z, Sun Y, Qi J, Chen Z, Pathak JL, Zhang Y, Cui C, Zhang P, Guo X, Lv Q, Zhang X, Zhang Y, Gu J, Lin Z. Outgrowth of Escherichia is susceptible to aggravation of systemic lupus erythematosus. Arthritis Res Ther 2024; 26:191. [PMID: 39511594 PMCID: PMC11542361 DOI: 10.1186/s13075-024-03413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is linked to host gut dysbiosis. Here we performed faecal gut microbiome sequencing to investigate SLE-pathogenic gut microbes and their potential mechanisms. METHODS There were 134 healthy controls (HCs) and 114 SLE cases for 16 S ribosomal RNA (rRNA) sequencing and 97 HCs and 124 SLE cases for shotgun metagenomics. Faecal microbial changes and associations with clinical phenotypes were evaluated, and SLE-associated microbial genera were identified in amplicon analysis. Next, metagenomic sequencing was applied for accurate identification of microbial species and discovery of their metabolic pathways and immunogenic peptides both relevant to SLE. Finally, contribution of specific taxa to disease development was confirmed by oral gavage into lupus-prone MRL/lpr mice. RESULTS SLE patients had gut microbiota richness reduction and composition alteration, particularly lupus nephritis and active patients. Proteobacteria/Bacteroidetes (P/B) ratio was remarkably up-regulated, and Escherichia was identified as the dominantly expanded genus in SLE, followed by metagenomics accurately located Escherichia coli and Escherichia unclassified species. Significant associations primarily appeared among Escherichia coli, metabolic pathways of purine nucleotide salvage or peptidoglycan maturation and SLE disease activity index (SLEDAI), and between multiple epitopes from Escherichia coli and disease activity or renal involvement phenotype. Finally, gavage with faecal Escherichia revealed that it upregulated lupus-associated serum traits and aggravated glomerular lesions in MRL/lpr mice. CONCLUSION We characterize a novel SLE exacerbating Escherichia outgrowth and suggest its contribution to SLE procession may be partially associated with metabolite changes and cross-reactivity of gut microbiota-associated epitopes and host autoantigens. The findings could provide a deeper insight into gut Escherichia in the procession of SLE.
Collapse
Affiliation(s)
- Lian Gui
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Zuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junmei Feng
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingbang Wang
- Department of Neonatology, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, China
- Microbiome Therapy Center, Department of Experiment & Research, Medical School, South China Hospital, Shenzhen University, Shenzhen, China
| | - Zena Chen
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuhan Sun
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Qi
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhuanggui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yanli Zhang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunping Cui
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pingping Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinghua Guo
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Lv
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Zhang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zhiming Lin
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Campagnoli LIM, Marchesi N, Varesi A, Morozzi M, Mascione L, Ricevuti G, Esposito C, Galeotti N, Pascale A. New therapeutic avenues in multiple sclerosis: Is there a place for gut microbiota-based treatments? Pharmacol Res 2024; 209:107456. [PMID: 39389400 DOI: 10.1016/j.phrs.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The bidirectional interaction between the gut and the central nervous system (CNS), the so-called gut microbiota-brain axis, is reported to influence brain functions, thus having a potential impact on the development or the progression of several neurodegenerative disorders. Within this context, it has been documented that multiple sclerosis (MS), an autoimmune inflammatory, demyelinating, and neurodegenerative disease of the CNS, is associated with gastrointestinal symptoms, including constipation, dysphagia, and faecal incontinence. Moreover, some evidence suggests the existence of an altered gut microbiota (GM) composition in MS patients with respect to healthy individuals, as well as the potential influence of GM dysbiosis on typical MS features, including increased intestinal permeability, disruption of blood-brain barrier integrity, chronic inflammation, and altered T cells differentiation. Starting from these assumptions, the possible involvement of GM alteration in MS pathogenesis seems likely, and its restoration could represent a supplemental beneficial strategy against this disabling disease. In this regard, the present review will explore possible preventive approaches (including several dietary interventions, the administration of probiotics, prebiotics, synbiotics, and postbiotics, and the use of faecal microbiota transplantation) to be pursued as prophylaxis or in combination with pharmacological treatments with the aim of re-establishing a proper GM, thus helping to prevent the development of this disease or to manage it by alleviating symptoms or slowing down its progression.
Collapse
Affiliation(s)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| | - Angelica Varesi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Martina Morozzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Linda Mascione
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
29
|
Zhang S, Ma J, Ma Y, Yi J, Wang B, Wang H, Yang Q, Zhang K, Yan X, Sun D, You J. Engineering Probiotics for Diabetes Management: Advances, Challenges, and Future Directions in Translational Microbiology. Int J Nanomedicine 2024; 19:10917-10940. [PMID: 39493275 PMCID: PMC11530765 DOI: 10.2147/ijn.s492651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Background Diabetes Mellitus (DM) is a substantial health concern worldwide, and its incidence is progressively escalating. Conventional pharmacological interventions frequently entail undesirable side effects, and while probiotics offer benefits, they are hindered by constraints such as diminished stability and effectiveness within the gastrointestinal milieu. Given these complications, the advent of bioengineered probiotics is a promising alternative for DM management. Aim of Review The objective of this review is to provide an exhaustive synthesis of the most recent studies on the use of engineered probiotics in the management of DM. This study aimed to clarify the mechanisms through which these probiotics function, evaluate their clinical effectiveness, and enhance public awareness of their prospective advantages in the treatment of DM. Key Scientific Concepts of Review Scholarly critiques have explored diverse methodologies of probiotic engineering, including physical alteration, bioenrichment, and genetic manipulation. These techniques augment the therapeutic potency of probiotics by ameliorating gut microbiota, fortifying the intestinal barrier, modulating metabolic pathways, and regulating immune responses. Such advancements have established engineered probiotics as a credible therapeutic strategy for DM, potentially providing enhanced results compared to conventional treatments.
Collapse
Affiliation(s)
- Shenghao Zhang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, People’s Republic of China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, 324000, People’s Republic of China
| |
Collapse
|
30
|
Cadario F. Insights in Nutrition to Optimize Type 1 Diabetes Therapy. Nutrients 2024; 16:3639. [PMID: 39519472 PMCID: PMC11547730 DOI: 10.3390/nu16213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Nutrition is an essential part of therapy for type 1 diabetes and is constantly evolving, offering growing opportunities to prevent this disease, slow down its evolution, and mitigate it. An attempt was made to bring together the current state of knowledge. In the path from the preclinical phase of the disease to its clinical onset, there is a phase known as the "honeymoon period" or partial remission, where different possible dietary options for combatting this disease have been presented. The most commonly used dietary models were compared, and the most frequent co-existing pathologies, such as overweight, non-alcoholic fatty liver disease, dyslipidemia, celiac disease, and metabolic instability, were addressed from their nutritional and dietary perspectives to provide clinicians with an updated framework of knowledge and support researchers in further investigations into the topic. Finally, a glimpse into the possible interplay between nutrition and the gut microbiome, food security, and ultra-processed food is provided. It is hoped that clinicians treating people with type 1 diabetes will be provided with further opportunities for the daily management of their patients through personalized nutrition.
Collapse
Affiliation(s)
- Francesco Cadario
- Division of Pediatrics, University del Piemonte Orientale, 28100 Novara, Italy;
- Diabetes Research Institute Federation, Miami, FL 33163, USA
| |
Collapse
|
31
|
Zhou Z, Xu M, Xiong P, Yuan J, Zheng D, Piao S. Prognosis and outcome of latent autoimmune diabetes in adults: T1DM or T2DM? Diabetol Metab Syndr 2024; 16:242. [PMID: 39375804 PMCID: PMC11457386 DOI: 10.1186/s13098-024-01479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Latent Autoimmune Diabetes in Adults (LADA) is a type of diabetes mellitus often overlooked in clinical practice for its dual resemblance to Type 1 Diabetes Mellitus (T1DM) in pathogenesis and to Type 2 Diabetes Mellitus (T2DM) in clinical presentation. To better understand LADA's distinctiveness from T1DM and T2DM, we conducted a comprehensive review encompassing etiology, pathology, clinical features, treatment modalities, and prognostic outcomes. With this comparative lens, we propose that LADA defies simple classification as either T1DM or T2DM. The specific treatments for the disease are limited and should be based on the therapies of T1DM or T2DM that address specific clinical issues at different stages of the disease. It is crucial to identify LADA cases potentially misdiagnosed as T2DM, warranting prompt screening for poor blood sugar control, short-term blood sugar deterioration, and other conditions. If the prognosis for LADA is similar to T2DM, it can be managed as T2DM. However, if the prognosis fundamentally differs, early LADA screening is crucial to optimize patient outcomes and enhance research on tailored treatments. The pathogenesis of LADA is clear, so the prognosis may be the key to determining whether it can be classified as T2DM, which is also the direction of future research. On the one hand, this paper aims to provide suggestions for the clinical screening and treatment of LADA based on the latest progress and provide worthy directions for future research on LADA.
Collapse
Affiliation(s)
- Zhipeng Zhou
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingyue Xu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Pingjie Xiong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jing Yuan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Deqing Zheng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shenghua Piao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.
- Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
32
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
33
|
Zhang W, Tekreeti TA, Leung PSC, Tsuneyama K, Dhillon H, Rojas M, Heuer LS, Ridgway WM, Ansari AA, Young HA, Mackay CR, Gershwin ME. Dietary therapy of murine primary biliary cholangitis induces hepatocellular steatosis: A cautionary tale. Liver Int 2024; 44:2834-2846. [PMID: 39101371 PMCID: PMC11464203 DOI: 10.1111/liv.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND AND AIMS There is increased interest in utilizing dietary interventions to alter the progression of autoimmune diseases. These efforts are driven by associations of gut microbiota/metabolites with levels of short-chain fatty acids (SCFAs). Propionate is a key SCFA that is commonly used as a food preservative and is endogenously generated by bacterial fermentation of non-digestible carbohydrates in the gut. A thesis has suggested that a diet rich in propionate and other SCFAs can successfully modulate autoimmunity. Herein, we investigated the effect of long-term administration of propionylated high-amylose resistant starches (HAMSP) on the course of murine primary biliary cholangitis. MATERIALS AND METHODS Groups of female ARE-Del mice were fed an HAMSP diet either before or after disease onset. A detailed immunobiological analysis was performed involving autoantibodies and rigorous T-cell phenotyping, including enumeration of T-cell subsets in the spleen, liver, intestinal intraepithelial lymphocytes and lamina propria by flow cytometry. Histopathological scores were used to assess the frequency and severity of liver inflammation and damage to hepatocytes and bile ducts. RESULTS Our results demonstrate that a long-term propionate-yielding diet re-populated the T-cell pool with decreased naïve and central memory T-cell subsets and an increase in the effector memory T cells in mice. Similarly, long-term HAMSP intake reduced CD4+CD8+ double-positive T cells in intraepithelial lymphocytes and the intestinal lamina propria. Critically, HAMSP consumption led to moderate-to-severe hepatocellular steatosis in ARE-Del mice, independent of the stage of autoimmune cholangitis. CONCLUSIONS Our data suggest that administration of HAMSP induces both regulatory and effector T cells. Furthermore, HAMSP administration resulted in hepatocellular steatosis. Given the interest in dietary modulation of autoimmunity and because propionate is widely used as a food preservative, these data have significant implications. This study also provides new insights into the immunological and pathological effects of chronic propionate exposure.
Collapse
Affiliation(s)
- Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Taha Al Tekreeti
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Patrick SC Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School; Tokushima, Japan
| | - Harleen Dhillon
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Manuel Rojas
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S. Heuer
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - William M. Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Aftab A. Ansari
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, NCI at Frederick, Frederick, MD 21702
| | - Charles R. Mackay
- Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| |
Collapse
|
34
|
Liu M, Lu Y, Xue G, Han L, Jia H, Wang Z, Zhang J, Liu P, Yang C, Zhou Y. Role of short-chain fatty acids in host physiology. Animal Model Exp Med 2024; 7:641-652. [PMID: 38940192 PMCID: PMC11528394 DOI: 10.1002/ame2.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/08/2024] [Indexed: 06/29/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are major metabolites produced by the gut microbiota through the fermentation of dietary fiber, and they have garnered significant attention due to their close association with host health. As important mediators between the gut microbiota and the host, SCFAs serve as energy substrates for intestinal epithelial cells and maintain homeostasis in host immune and energy metabolism by influencing host epigenetics, activating G protein-coupled receptors, and inhibiting pathogenic microbial infections. This review provides a comprehensive summary of SCFAs synthesis and metabolism and offering an overview of the latest research progress on their roles in protecting gut health, enhancing energy metabolism, mitigating diseases such as cancer, obesity, and diabetes, modulating the gut-brain axis and gut-lung axis, and promoting bone health.
Collapse
Affiliation(s)
- Mingyue Liu
- Stem Cell Storage Center, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Yubo Lu
- School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Guoyu Xue
- Stem Cell Storage Center, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Le Han
- Prevention Health Section, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Hanbing Jia
- Department of Medical Imaging, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Zi Wang
- Department of Medical Imaging, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Jia Zhang
- Department of Obstetrical, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Peng Liu
- Department of Clinical Laboratory, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Chaojuan Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering MedicineBeihang UniversityBeijingChina
| | - Yingjie Zhou
- Department of Obstetrics and Gynecology, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| |
Collapse
|
35
|
Karimi M, Shirsalimi N, Hashempour Z, Salehi Omran H, Sedighi E, Beigi F, Mortezazadeh M. Safety and efficacy of fecal microbiota transplantation (FMT) as a modern adjuvant therapy in various diseases and disorders: a comprehensive literature review. Front Immunol 2024; 15:1439176. [PMID: 39391303 PMCID: PMC11464302 DOI: 10.3389/fimmu.2024.1439176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
The human gastrointestinal (GI) tract microbiome is a complex and all-encompassing ecological system of trillions of microorganisms. It plays a vital role in digestion, disease prevention, and overall health. When this delicate balance is disrupted, it can lead to various health issues. Fecal microbiota transplantation (FMT) is an emerging therapeutic intervention used as an adjuvant therapy for many diseases, particularly those with dysbiosis as their underlying cause. Its goal is to restore this balance by transferring fecal material from healthy donors to the recipients. FMT has an impressive reported cure rate between 80% and 90% and has become a favored treatment for many diseases. While FMT may have generally mild to moderate transient adverse effects, rare severe complications underscore the importance of rigorous donor screening and standardized administration. FMT has enormous potential as a practical therapeutic approach; however, additional research is required to further determine its potential for clinical utilization, as well as its safety and efficiency in different patient populations. This comprehensive literature review offers increased confidence in the safety and effectiveness of FMT for several diseases affecting the intestines and other systems, including diabetes, obesity, inflammatory and autoimmune illness, and other conditions.
Collapse
Affiliation(s)
- Mehdi Karimi
- Bogomolets National Medical University (NMU), Kyiv, Ukraine
| | - Niyousha Shirsalimi
- Faculty of Medicine, Hamadan University of Medical Science (UMSHA), Hamadan, Iran
| | - Zahra Hashempour
- School of Medicine, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Hossein Salehi Omran
- School of Medicine, Shahid Beheshti University of Medical Sciences (SBMUS), Tehran, Iran
| | - Eshagh Sedighi
- Department of Veterinary Medicine, Islamic Azad University Branch of Urmia, Urmia, Iran
| | - Farzan Beigi
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Masoud Mortezazadeh
- Department of Internal Medicine, Sina Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
36
|
Li J, Li B. EBNA-1 antibody and autoimmune rheumatic diseases: A Mendelian Randomization Study. Heliyon 2024; 10:e37045. [PMID: 39286141 PMCID: PMC11402932 DOI: 10.1016/j.heliyon.2024.e37045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Background Numerous studies have investigated a possible correlation between Epstein-Barr virus (EBV) and autoimmune rheumatic diseases (ARDs). However, establishing a cause-and-effect relationship remains a challenging endeavor. This study employs Mendelian randomization to examine the impact of EBV nuclear antigen-1 antibody (EBNA-1) antibody levels on the susceptibility to nine distinct ARDs, including rheumatoid arthritis (RA), primary Sjogren's syndrome (PSS), systemic lupus erythematosus (SLE), undifferentiated reactive arthritis (UA), systemic sclerosis (SSc), adult-onset Still's disease (AOSD), psoriatic arthritis (PsA), dermatomyositis (DM), and ankylosing spondylitis (AS). Methods The researchers applied a two-sample Mendelian randomization approach, utilizing online data from separate cohorts of European descent. We drew upon data from GWAS related to EBNA-1 antibody levels and the nine autoimmune-related disorders. Our primary analyses predominantly relied on the Inverse Variance Weighted methodology, complemented by a range of sensitivity assessments. Results Our analysis revealed significant direct associations between EBNA-1 antibody levels and the risk of developing PSS (95 % CI: 0.44 to 0.85, p = 0.003), PsA (95 % CI: 0.36 to 0.99, p = 0.044), AS (95 % CI: 0.07 to 0.88, p = 0.031), and UA (95 % CI: 0.56 to 0.96, p = 0.025). These results remained consistent through comprehensive sensitivity analyses. However, no clear associations were found for the other specified conditions. Conclusions Our findings provide compelling evidence that EBNA-1 antibody levels play a role in developing ARDs. These findings enhance our understanding of ARD pathogenesis and hold substantial promise for developing potential treatment strategies.
Collapse
Affiliation(s)
- Jinjiao Li
- Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Bao Li
- Qilu Medical University, Zibo, 255000, Shandong Province, China
| |
Collapse
|
37
|
Wang R, Li B, Huang B, Li Y, Liu Q, Lyu Z, Chen R, Qian Q, Liang X, Pu X, Wu Y, Chen Y, Miao Q, Wang Q, Lian M, Xiao X, Leung PSC, Gershwin ME, You Z, Ma X, Tang R. Gut Microbiota-Derived Butyrate Induces Epigenetic and Metabolic Reprogramming in Myeloid-Derived Suppressor Cells to Alleviate Primary Biliary Cholangitis. Gastroenterology 2024; 167:733-749.e3. [PMID: 38810839 DOI: 10.1053/j.gastro.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND & AIMS Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC. METHODS We measured fecal short-chain fatty acids levels using targeted gas chromatography-mass spectrometry and analyzed circulating MDSCs using flow cytometry in 2 independent PBC cohorts. Human and murine MDSCs were differentiated in vitro in the presence of butyrate, followed by transcriptomic, epigenetic (CUT&Tag-seq and chromatin immunoprecipitation-quantitative polymerase chain reaction), and metabolic (untargeted liquid chromatography-mass spectrometry, mitochondrial stress test, and isotope tracing) analyses. The in vivo role of butyrate-MDSCs was evaluated in a 2-octynoic acid-bovine serum albumin-induced cholangitis murine model. RESULTS Decreased butyrate levels and defective MDSC function were found in patients with incomplete response to ursodeoxycholic acid, compared with those with adequate response. Butyrate induced expansion and suppressive activity of MDSCs in a manner dependent on PPARD-driven fatty acid β-oxidation (FAO). Pharmaceutical inhibition or genetic knockdown of the FAO rate-limiting gene CPT1A abolished the effect of butyrate. Furthermore, butyrate inhibited HDAC3 function, leading to enhanced acetylation of lysine 27 on histone H3 at promoter regions of PPARD and FAO genes in MDSCs. Therapeutically, butyrate administration alleviated immune-mediated cholangitis in mice via MDSCs, and adoptive transfer of butyrate-treated MDSCs also displayed protective efficacy. Importantly, reduced expression of FAO genes and impaired mitochondrial physiology were detected in MDSCs from ursodeoxycholic acid nonresponders, and their impaired suppressive function was restored by butyrate. CONCLUSIONS We identify a critical role for butyrate in modulation of MDSC homeostasis by orchestrating epigenetic and metabolic crosstalk, proposing a novel therapeutic strategy for treating PBC.
Collapse
Affiliation(s)
- Rui Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiaoyan Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhuwan Lyu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xueying Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiting Pu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yi Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yu Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China; Division of Infectious Diseases, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Patrick S C Leung
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China; Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
38
|
Vatanen T, de Beaufort C, Marcovecchio ML, Overbergh L, Brunak S, Peakman M, Mathieu C, Knip M. Gut microbiome shifts in people with type 1 diabetes are associated with glycaemic control: an INNODIA study. Diabetologia 2024; 67:1930-1942. [PMID: 38832971 PMCID: PMC11410864 DOI: 10.1007/s00125-024-06192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
AIMS/HYPOTHESIS The gut microbiome is implicated in the disease process leading to clinical type 1 diabetes, but less is known about potential changes in the gut microbiome after the diagnosis of type 1 diabetes and implications in glucose homeostasis. We aimed to analyse potential associations between the gut microbiome composition and clinical and laboratory data during a 2 year follow-up of people with newly diagnosed type 1 diabetes, recruited to the Innovative approaches to understanding and arresting type 1 diabetes (INNODIA) study. In addition, we analysed the microbiome composition in initially unaffected family members, who progressed to clinical type 1 diabetes during or after their follow-up for 4 years. METHODS We characterised the gut microbiome composition of 98 individuals with newly diagnosed type 1 diabetes (ND cohort) and 194 autoantibody-positive unaffected family members (UFM cohort), representing a subgroup of the INNODIA Natural History Study, using metagenomic sequencing. Participants from the ND cohort attended study visits within 6 weeks from the diagnosis and 3, 6, 12 and 24 months later for stool sample collection and laboratory tests (HbA1c, C-peptide, diabetes-associated autoantibodies). Participants from the UFM cohort were assessed at baseline and 6, 12, 18, 24 and 36 months later. RESULTS We observed a longitudinal increase in 21 bacterial species in the ND cohort but not in the UFM cohort. The relative abundance of Faecalibacterium prausnitzii was inversely associated with the HbA1c levels at diagnosis (p=0.0019). The rate of the subsequent disease progression in the ND cohort, as assessed by change in HbA1c, C-peptide levels and insulin dose, was associated with the abundance of several bacterial species. Individuals with rapid decrease in C-peptide levels in the ND cohort had the lowest gut microbiome diversity. Nineteen individuals who were diagnosed with type 1 diabetes in the UFM cohort had increased abundance of Sutterella sp. KLE1602 compared with the undiagnosed UFM individuals (p=1.2 × 10-4). CONCLUSIONS/INTERPRETATION Our data revealed associations between the gut microbiome composition and the disease progression in individuals with recent-onset type 1 diabetes. Future mechanistic studies as well as animal studies and human trials are needed to further validate the significance and causality of these associations.
Collapse
Affiliation(s)
- Tommi Vatanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Carine de Beaufort
- Paediatric Endocrinology and Diabetology (DECCP), Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Soren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Chantal Mathieu
- Department of Chronic Diseases and Metabolism, Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
39
|
Xu Q, Guo M, Wang H, Liu H, Wei Y, Wang X, Mackay CR, Wang Q. A Butyrate-Yielding Dietary Supplement Prevents Acute Alcoholic Liver Injury by Modulating Nrf2-Mediated Hepatic Oxidative Stress and Gut Microbiota. Int J Mol Sci 2024; 25:9420. [PMID: 39273367 PMCID: PMC11395132 DOI: 10.3390/ijms25179420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Alcoholic liver disease (ALD) is a globally prevalent form of liver disease for which there is no effective treatment. Recent studies have found that a significant decrease in butyrate was closely associated with ALD development. Given the low compliance and delivery efficiency associated with oral-route butyrate administration, a highly effective butyrate-yielding dietary supplement, butyrylated high-amylose maize starch (HAMSB), is a good alternative approach. Here, we synthesized HAMSB, evaluated the effect of HAMSB on acute ALD in mice, compared its effect with that of oral administration of butyrate, and further studied the potential mechanism of action. The results showed HAMSB alleviated acute ALD in mice, as evidenced by the inhibition of hepatic-function impairment and the improvement in liver steatosis and lipid metabolism; in these respects, HAMSB supplementation was superior to oral sodium butyrate administration. These improvements can be attributed to the reduction of oxidative stress though the regulation of Nrf2-mediated antioxidant signaling in the liver and the improvement in the composition and function of microbiota in the intestine. In conclusion, HAMSB is a safe and effective dietary supplement for preventing acute ALD that could be useful as a disease-modifying functional food or candidate medicine.
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Mei Guo
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Haidi Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Haitao Liu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Yunbo Wei
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Xiao Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Charles R. Mackay
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
- Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Quanbo Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| |
Collapse
|
40
|
Wang N, Dilixiati Y, Xiao L, Yang H, Zhang Z. Different Short-Chain Fatty Acids Unequally Modulate Intestinal Homeostasis and Reverse Obesity-Related Symptoms in Lead-Exposed High-Fat Diet Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18971-18985. [PMID: 39146036 DOI: 10.1021/acs.jafc.4c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Our previous study showed that heavy metal lead (Pb) exposure exacerbates high-fat-diet (HFD)-induced metabolic damage and significantly depletes the gut microbiota-derived metabolite short-chain fatty acid (SCFA) levels. However, it remains unclear whether SCFA is a key metabolite involved in accelerating adverse consequences after Pb exposure. In this study, we explored the effects of exogenous supplementation of acetate, propionate, and butyrate on a metabolic disorder model in Pb-exposed HFD mice. We found that three SCFA interventions attenuated glycolipid metabolism disorders and liver damage, with butyrate performing the best effects in improving obesity-related symptoms. All three SCFA promoted the abundance of Muribaculaceae and Muribaculum, acetate specifically enriched Christensenellaceae, Blautia, and Ruminococcus, and butyrate specifically enriched Parasutterella, Rikenella, Prevotellaceae_UCG-001, and Bacteroides, which contributed to the positive promotion of SCFA production forming a virtuous cycle. Besides, butyrate inhibited Gram-negative bacteria Escherichia-Shigella. All of these events alleviated the intestinal Th17/Treg imbalance and inflammatory response through crosstalk between the G protein-coupled receptor (GPR)/histone deacetylase 3 (HDAC3) and lipopolysaccharide (LPS)/toll-like receptors 4 (TLR4)/nuclear factor κ-B (NF-κB) pathways and ultimately improved the intestinal barrier function. SCFA further upregulated the monocarboxylate transporter 1 (MCT1) and GPR43/adenosine 5'-monophosphate-activated protein kinase (AMPK) pathways to inhibit hepatic lipid accumulation. Overall, SCFA, especially butyrate, is an effective modulator to improve metabolic disorders in obese individuals exposed to heavy metals by targeting gut microecology.
Collapse
Affiliation(s)
- Nana Wang
- School of Public Health, Soochow University, Suzhou 215123, China
| | | | - Liang Xiao
- School of Public Health, Soochow University, Suzhou 215123, China
| | - Hui Yang
- School of Public Health, Soochow University, Suzhou 215123, China
| | - Zengli Zhang
- School of Public Health, Soochow University, Suzhou 215123, China
| |
Collapse
|
41
|
Fuhri Snethlage CM, de Wit D, Wortelboer K, Rampanelli E, Hanssen NMJ, Nieuwdorp M. Can fecal microbiota transplantations modulate autoimmune responses in type 1 diabetes? Immunol Rev 2024; 325:46-63. [PMID: 38752578 DOI: 10.1111/imr.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease targeting insulin-producing pancreatic beta cells. T1D is a multifactorial disease incorporating genetic and environmental factors. In recent years, the advances in high-throughput sequencing have allowed researchers to elucidate the changes in the gut microbiota taxonomy and functional capacity that accompany T1D development. An increasing number of studies have shown a role of the gut microbiota in mediating immune responses in health and disease, including autoimmunity. Fecal microbiota transplantations (FMT) have been largely used in murine models to prove a causal role of the gut microbiome in disease progression and have been shown to be a safe and effective treatment in inflammatory human diseases. In this review, we summarize and discuss recent research regarding the gut microbiota-host interactions in T1D, the current advancement in therapies for T1D, and the usefulness of FMT studies to explore microbiota-host immunity encounters in murine models and to shape the course of human type 1 diabetes.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Douwe de Wit
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol 2024; 24:577-595. [PMID: 38565643 DOI: 10.1038/s41577-024-01014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
The short-chain fatty acids (SCFAs) butyrate, propionate and acetate are microbial metabolites and their availability in the gut and other organs is determined by environmental factors, such as diet and use of antibiotics, that shape the diversity and metabolism of the microbiota. SCFAs regulate epithelial barrier function as well as mucosal and systemic immunity via evolutionary conserved processes that involve G protein-coupled receptor signalling or histone deacetylase activity. Indicatively, the anti-inflammatory role of butyrate is mediated through direct effects on the differentiation of intestinal epithelial cells, phagocytes, B cells and plasma cells, and regulatory and effector T cells. Intestinally derived SCFAs also directly and indirectly affect immunity at extra-intestinal sites, such as the liver, the lungs, the reproductive tract and the brain, and have been implicated in a range of disorders, including infections, intestinal inflammation, autoimmunity, food allergies, asthma and responses to cancer therapies. An ecological understanding of microbial communities and their interrelated metabolic states, as well as the engineering of butyrogenic bacteria may support SCFA-focused interventions for the prevention and treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Ka Lam
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Cui X, Wu Z, Zhou Y, Deng L, Chen Y, Huang H, Sun X, Li Y, Wang H, Zhang L, He J. A bibliometric study of global trends in T1DM and intestinal flora research. Front Microbiol 2024; 15:1403514. [PMID: 39027096 PMCID: PMC11254799 DOI: 10.3389/fmicb.2024.1403514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that seriously jeopardizes human physical and mental health and reduces quality of life. Intestinal flora is one of the critical areas of exploration in T1DM research. Objective This study aims to explore the research hotspot and development trend of T1DM and intestinal flora to provide research direction and ideas for researchers. Methods We used the Web of Science (WOS) Core Collection and searched up to 18 November 2023, for articles on studies of the correlation between T1DM and intestinal flora. CiteSpace, VOSviewers and R package "bibliometrix" were used to conduct this bibliometric analysis. Results Eventually, 534 documents met the requirements to be included, and as of 18 November 2023, there was an upward trend in the number of publications in the field, with a significant increase in the number of articles published after 2020. In summary, F Susan Wong (UK) was the author with the most publications (21), the USA was the country with the most publications (198), and the State University System of Florida (the United States) was the institution with the most publications (32). The keywords that appeared more frequently were T cells, fecal transplants, and short-chain fatty acids. The results of keywords with the most robust citation bursts suggest that Faecalibacterium prausnitzii and butyrate may become a focus of future research. Conclusion In the future, intestinal flora will remain a research focus in T1DM. Future research can start from Faecalibacterium prausnitzii and combine T cells, fecal bacteria transplantation, and short-chain fatty acids to explore the mechanism by which intestinal flora affects blood glucose in patients with T1DM, which may provide new ideas for the prevention and treatment of T1DM.
Collapse
Affiliation(s)
- Xinxin Cui
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Zhen Wu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yangbo Zhou
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Longji Deng
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yu Chen
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hanqiao Huang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangbin Sun
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yu Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Haixia Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Li Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jia He
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
44
|
Li JH, Zhang M, Zhang ZD, Pan XH, Pan LL, Sun J. GPR41 deficiency aggravates type 1 diabetes in streptozotocin-treated mice by promoting dendritic cell maturation. Acta Pharmacol Sin 2024; 45:1466-1476. [PMID: 38514862 PMCID: PMC11192896 DOI: 10.1038/s41401-024-01242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Disturbances in intestinal immune homeostasis predispose susceptible individuals to type 1 diabetes (T1D). G-protein-coupled receptor 41 (GPR41) is a receptor for short-chain fatty acids (SCFAs) mainly produced by gut microbiota, which plays key roles in maintaining intestinal homeostasis. In this study, we investigated the role of GPR41 in the progression of T1D. In non-obese diabetic (NOD) mice, we found that aberrant reduction of GPR41 expression in the pancreas and colons was associated with the development of T1D. GPR41-deficient (Gpr41-/-) mice displayed significantly exacerbated streptozotocin (STZ)-induced T1D compared to wild-type mice. Furthermore, Gpr41-/- mice showed enhanced gut immune dysregulation and increased migration of gut-primed IFN-γ+ T cells to the pancreas. In bone marrow-derived dendritic cells from Gpr41-/- mice, the expression of suppressor of cytokine signaling 3 (SOCS) was significantly inhibited, while the phosphorylation of STAT3 was significantly increased, thus promoting dendritic cell (DC) maturation. Furthermore, adoptive transfer of bone marrow-derived dendritic cells (BMDC) from Gpr41-/- mice accelerated T1D in irradiated NOD mice. We conclude that GPR41 is essential for maintaining intestinal and pancreatic immune homeostasis and acts as a negative regulator of DC maturation in T1D. GPR41 may be a potential therapeutic target for T1D.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mice
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/immunology
- Streptozocin
- Mice, Knockout
- Mice, Inbred NOD
- Mice, Inbred C57BL
- STAT3 Transcription Factor/metabolism
- Suppressor of Cytokine Signaling 3 Protein/metabolism
- Suppressor of Cytokine Signaling 3 Protein/genetics
- Interferon-gamma/metabolism
- Pancreas/metabolism
- Pancreas/pathology
- Pancreas/immunology
- Male
- Female
- Gastrointestinal Microbiome
Collapse
Affiliation(s)
- Jia-Hong Li
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Jiangnan University, Wuxi, 214023, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Ming Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhao-di Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Hua Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li-Long Pan
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Jiangnan University, Wuxi, 214023, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Jia Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
45
|
Xu H, Liu Z, Xu W, Zhang Y. Beneficial In Vitro Effects of Polysaccharide and Non-Polysaccharide Components of Dendrobium huoshanense on Gut Microbiota of Rats with Type 1 Diabetes as Opposed to Metformin. Molecules 2024; 29:2791. [PMID: 38930856 PMCID: PMC11206810 DOI: 10.3390/molecules29122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The extract of Dendrobium huoshanense, a traditional Chinese medicinal and food homologous plant belonging to the family Orchidaceae, was previously reported to have hypoglycemic and antioxidant effects. In this study, the direct effects of polysaccharide (DHP) and non-polysaccharide (NDHP) components of D. huoshanense, as well as its water extract (DHWE) were compared with that of metformin (an antidiabetic drug) on the gut microbiota (collected from fecal flora) of rats with streptozotocin-induced type 1 diabetes (T1D) using an in vitro fermentation method. The results showed that DHWE, DHP, and NDHP reduced pH and increased bacterial proliferation and short-chain fatty acid (SCFA) content in fermentation broth. DHWE, DHP, NDHP and metformin promoted the production of acetic and propionic acid, acetic acid, propionic acid and butyric acid, and propionic acid, respectively. DHWE, DHP, and NDHP reduced the abundance of Proteobacteria (subdominant pathogenic bacteria) and increased the abundance of Firmicutes (dominant beneficial gut bacteria). NDHP also reduced the abundance of Bacteroidetes (beneficial and conditional pathogenic). Metformin increased the abundance of Proteobacteria and reduced the abundance of Firmicutes and Bacteroidetes. At the genus level, NDHP promoted the proliferation of Megamonas and Megasphaera and decreased harmful bacteria (e.g., Klebsiella), and DHP increased the abundance of Prevotellaceae (opportunistic and usually harmless). By contrast, metformin increased the abundance of harmful bacteria (e.g., Citrobacter) and reduced the abundance of beneficial bacteria (e.g., Oscillospira). Our study indicates that DHWE, DHP, and NDHP are potentially more beneficial than metformin on the gut microbiota of T1D rats in vitro.
Collapse
Affiliation(s)
- Haijun Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (Z.L.); (W.X.); (Y.Z.)
- Engineering Laboratory of Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources in Anhui Province, Lu’an 237012, China
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu’an 237012, China
| | - Zhu Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (Z.L.); (W.X.); (Y.Z.)
| | - Wen Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (Z.L.); (W.X.); (Y.Z.)
| | - Yafei Zhang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (Z.L.); (W.X.); (Y.Z.)
| |
Collapse
|
46
|
Jepsen SD, Lund A, Matwiejuk M, Andresen L, Christensen KR, Skov S. Human milk oligosaccharides regulate human macrophage polarization and activation in response to Staphylococcus aureus. Front Immunol 2024; 15:1379042. [PMID: 38903508 PMCID: PMC11187579 DOI: 10.3389/fimmu.2024.1379042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are present in high numbers in milk of lactating women. They are beneficial to gut health and the habitant microbiota, but less is known about their effect on cells from the immune system. In this study, we investigated the direct effect of three structurally different HMOs on human derived macrophages before challenge with Staphylococcus aureus (S. aureus). The study demonstrates that individual HMO structures potently affect the activation, differentiation and development of monocyte-derived macrophages in response to S. aureus. 6´-Sialyllactose (6'SL) had the most pronounced effect on the immune response against S. aureus, as illustrated by altered expression of macrophage surface markers, pointing towards an activated M1-like macrophage-phenotype. Similarly, 6'SL increased production of the pro-inflammatory cytokines TNF-α, IL-6, IL-8, IFN-γ and IL-1β, when exposing cells to 6'SL in combination with S. aureus compared with S. aureus alone. Interestingly, macrophages treated with 6'SL exhibited an altered proliferation profile and increased the production of the classic M1 transcription factor NF-κB. The HMOs also enhanced macrophage phagocytosis and uptake of S. aureus. Importantly, the different HMOs did not notably affect macrophage activation and differentiation without S. aureus exposure. Together, these findings show that HMOs can potently augment the immune response against S. aureus, without causing inflammatory activation in the absence of S. aureus, suggesting that HMOs assist the immune system in targeting important pathogens during early infancy.
Collapse
Affiliation(s)
- Stine Dam Jepsen
- dsm-firmenich, Hørsholm, Denmark
- Immunology, Section for Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Astrid Lund
- Immunology, Section for Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Lars Andresen
- Immunology, Section for Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Søren Skov
- Immunology, Section for Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
47
|
Hijová E. Postbiotics as Metabolites and Their Biotherapeutic Potential. Int J Mol Sci 2024; 25:5441. [PMID: 38791478 PMCID: PMC11121590 DOI: 10.3390/ijms25105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review highlights the role of postbiotics, which may provide an underappreciated avenue doe promising therapeutic alternatives. The discovery of natural compounds obtained from microorganisms needs to be investigated in the future in terms of their effects on various metabolic disorders and molecular pathways, as well as modulation of the immune system and intestinal microbiota in children and adults. However, further studies and efforts are needed to evaluate and describe new postbiotics. This review provides available knowledge that may assist future research in identifying new postbiotics and uncovering additional mechanisms to combat metabolic diseases.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
48
|
Tan DSY, Akelew Y, Snelson M, Nguyen J, O’Sullivan KM. Unravelling the Link between the Gut Microbiome and Autoimmune Kidney Diseases: A Potential New Therapeutic Approach. Int J Mol Sci 2024; 25:4817. [PMID: 38732038 PMCID: PMC11084259 DOI: 10.3390/ijms25094817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiota and short chain fatty acids (SCFA) have been associated with immune regulation and autoimmune diseases. Autoimmune kidney diseases arise from a loss of tolerance to antigens, often with unclear triggers. In this review, we explore the role of the gut microbiome and how disease, diet, and therapy can alter the gut microbiota consortium. Perturbations in the gut microbiota may systemically induce the translocation of microbiota-derived inflammatory molecules such as liposaccharide (LPS) and other toxins by penetrating the gut epithelial barrier. Once in the blood stream, these pro-inflammatory mediators activate immune cells, which release pro-inflammatory molecules, many of which are antigens in autoimmune diseases. The ratio of gut bacteria Bacteroidetes/Firmicutes is associated with worse outcomes in multiple autoimmune kidney diseases including lupus nephritis, MPO-ANCA vasculitis, and Goodpasture's syndrome. Therapies that enhance SCFA-producing bacteria in the gut have powerful therapeutic potential. Dietary fiber is fermented by gut bacteria which in turn release SCFAs that protect the gut barrier, as well as modulating immune responses towards a tolerogenic anti-inflammatory state. Herein, we describe where the current field of research is and the strategies to harness the gut microbiome as potential therapy.
Collapse
Affiliation(s)
- Diana Shu Yee Tan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| | - Yibeltal Akelew
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| | - Matthew Snelson
- School of Biological Science, Monash University, Clayton, VIC 3168, Australia;
| | - Jenny Nguyen
- The Alfred Centre, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Kim Maree O’Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| |
Collapse
|
49
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
50
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|