1
|
Ali MA, Michel HE, Menze ET, Tadros MG, Wahdan SA. The potential neuroprotective effect of empagliflozin against depressive-like behavior induced by chronic unpredictable mild stress in rats: Involvement of NLRP3 inflammasome. Eur J Pharmacol 2025; 998:177525. [PMID: 40107336 DOI: 10.1016/j.ejphar.2025.177525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Depression is a prevalent and debilitating condition that has a severe negative impact on a person's life. Chronic stress exposure plays a substantial role in the development of depression. In the present study, rats were exposed to chronic unpredictable mild stress (CUMS) for four weeks. Empagliflozin (EMPA), a Sodium-Glucose Cotransporter-2 (SGLT-2) inhibitor, is an oral antidiabetic agent exhibiting antioxidant, anti-inflammatory, and antiapoptotic effects. This study aimed to examine the antidepressant effect of EMPA in an experimental animal model of depression induced by CUMS in rats and explore the probable underlying mechanisms. Rats were treated with EMPA, per-orally, at a dose of 10 mg/kg/day for four weeks. EMPA treatment counteracted CUMS-induced histopathological, biochemical and behavioral alterations. EMPA suppressed the CUMS-induced increase in the oxidative stress, inflammatory, and apoptotic markers, where levels of MDA, IL-1β, TNF-α, NF-κB, NLRP3 and active caspase 3 were reduced by 29.6 %, 24.8 %, 17.9 %, 36.6 %, 24.5 % and 41.5 %, respectively, compared to the disease group. Furthermore, EMPA decreased the level of the microglial activation marker, iba-1 by 24 % in comparison to the disease group. In addition, EMPA treatment decreased blood glucose levels by 39 %, decreased serum insulin levels by 60.6 %, decreased HOMA-IR by 76.5 % and increased GLUT 4 expression, compared to the CUMS group, all which proves that EMPA has an effect insulin signaling and alleviates insulin resistance. Our results conclude that modulating key factors involved in depression, such as inflammation, oxidative stress, and NLRP3 inflammasome pathway, accounts for the anti-depressant effect of EMPA.
Collapse
Affiliation(s)
- Marwa A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Marianne G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
2
|
Azami M, Afraie M, Mohammadzadeh P, Moradkhani A, Shanazari M, Soltanian D, Moradi Y. Association between metabolic syndrome and cognitive impairment: a meta-analysis of analytical observational studies. Cogn Neuropsychiatry 2025:1-21. [PMID: 40392146 DOI: 10.1080/13546805.2025.2503445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 05/01/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND The potential link between metabolic syndrome (MetS) and the risk of dementia or cognitive impairment remains uncertain. This study aimed to assess the association between MetS and cognitive decline through a comprehensive review and meta-analysis of the existing literature. METHODS A systematic search was conducted in Medline (PubMed), Web of Science, Scopus and Embase up to January 2023. Eligible studies included cohort and case-control designs. Statistical analyses were performed using STATA version 17. RESULTS A total of 20 studies comprising 5,727,594 participants were included. The pooled relative risk (RR) of cognitive impairment among individuals with MetS was 1.34 (95% CI: 1.25-1.43), indicating a significant association. Subgroup analyses revealed that the NCEP-ATP III criteria more effectively identified this relationship compared to other diagnostic methods. The association appeared strongest in Asian populations, followed by European and American groups. CONCLUSION This meta-analysis supports a significant association between MetS and cognitive impairment. Geographic variation in the strength of this relationship may be influenced by differences in diagnostic criteria and lifestyle factors. The findings underscore the importance of early screening and the development of region-specific public health interventions to mitigate cognitive decline in individuals with MetS.
Collapse
Affiliation(s)
- Mobin Azami
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Afraie
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Pardis Mohammadzadeh
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | | | | | - Yousef Moradi
- Social Determinants of the Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
3
|
Alzarea EA, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Beshay ON, Batiha GES. The Conceivable Role of Metabolic Syndrome in the Pathogenesis of Alzheimer's Disease: Cellular and Subcellular Alterations in Underpinning a Tale of Two. Neuromolecular Med 2025; 27:35. [PMID: 40379890 DOI: 10.1007/s12017-025-08832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/09/2025] [Indexed: 05/19/2025]
Abstract
Alzheimer's disease (AD)is an age-related neurodegenerative disease characterized by memory decline and cognitive impairment .AD is common in people aged > 65 years, though most of AD cases are sporadic, which accounts for 95%, and 1-5% of AD is caused by familial causes . The causes of AD are aging, environmental toxins, and cardiometabolic factors that induce the degeneration of cholinergic neurons. It has been shown that the metabolic syndrome which is a clustering of dissimilar constituents including insulin resistance (IR), glucose intolerance, visceral obesity, hypertension, and dyslipidemia is implicated in the pathogenesis of AD. Metabolic syndrome disapprovingly affects cognitive function and the development in AD by inducing the development of oxidative stress, neuroinflammation, and brain IR. These changes, together with brain IR, impair cerebrovascular reactivity causing cognitive impairment and dementia. Nevertheless, the fundamental mechanism by which metabolic syndrome persuades AD risk is not entirely explicated. Accordingly, this review aims to discuss the connotation between metabolic syndrome and AD. In conclusion, metabolic syndrome is regarded as a possible risk factor for the initiation of AD neuropathology by diverse signaling pathways such as brain IR, activation of inflammatory signaling pathways, neuroinflammation, defective proteostasis, and dysregulation of lipid mediators.
Collapse
Affiliation(s)
- Ekremah A Alzarea
- Hematopathology, Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO.Box13, Kufa, Iraq
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, Australia
- Department of Research & Development, Funogen, Athens, Greece
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Olivia N Beshay
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
4
|
Liu YN, Wang QW, Lu SY, Shen W, Guo C, Xing Z, Li C, Sun S, Sui SF, Mi S, Gage FH, Yao J. Synaptotagmin-7 deficit causes insulin hypoactivity and contributes to behavioral alterations in mice. iScience 2025; 28:112354. [PMID: 40330888 PMCID: PMC12053657 DOI: 10.1016/j.isci.2025.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/20/2024] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Synaptotagmin-7 (Syt7) KO mice show diurnal fluctuations of mania- and depression-like behavioral abnormalities. Although GluN2B-NMDAR hypoactivity has been shown to be involved in the induction of mania-like behaviors of the Syt7 KO mice in the dark phase, the reasons for the depression-like behaviors in the light phase and behavioral fluctuation remain unknown. Here, we show that bipolar I disorder (BDI)-patient-induced pluripotent stem cell (iPSC)-derived islet-like organoids exhibited Syt7-dependent insulin secretion defects; moreover, Syt7-deficiency-induced insulin hyposecretion generated depression-like behaviors in Syt7 KO mice in the light phase. Furthermore, pancreatic insulin secretion and neuronal activity showed opposite diurnal patterns, in which the Syt7-deficiency-induced disequilibrium induced periodic antagonistic shifts in the mania- and depression-like behaviors. Finally, using RNA sequencing (RNA-seq) analysis, we explored downstream pathways that might underlie the diurnal fluctuation of behaviors. Therefore, Syt7-deficiency-induced insulin hypoactivity contributed to light-phase depression-like behaviors and diurnal behavioral fluctuations in the mice.
Collapse
Affiliation(s)
- Yao-Nan Liu
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiu-Wen Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Si-Yao Lu
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China
- Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Wei Shen
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chongye Guo
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhikai Xing
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuangli Mi
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jun Yao
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y, Cao P. Diabetic neuropathy: cutting-edge research and future directions. Signal Transduct Target Ther 2025; 10:132. [PMID: 40274830 PMCID: PMC12022100 DOI: 10.1038/s41392-025-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/26/2025] Open
Abstract
Diabetic neuropathy (DN) is a prevalent and debilitating complication of diabetes mellitus, significantly impacting patient quality of life and contributing to morbidity and mortality. Affecting approximately 50% of patients with diabetes, DN is predominantly characterized by distal symmetric polyneuropathy, leading to sensory loss, pain, and motor dysfunction, often resulting in diabetic foot ulcers and lower-limb amputations. The pathogenesis of DN is multifaceted, involving hyperglycemia, dyslipidemia, oxidative stress, mitochondrial dysfunction, and inflammation, which collectively damage peripheral nerves. Despite extensive research, disease-modifying treatments remain elusive, with current management primarily focusing on symptom control. This review explores the complex mechanisms underlying DN and highlights recent advances in diagnostic and therapeutic strategies. Emerging insights into the molecular and cellular pathways have unveiled potential targets for intervention, including neuroprotective agents, gene and stem cell therapies, and innovative pharmacological approaches. Additionally, novel diagnostic tools, such as corneal confocal microscopy and biomarker-based tests, have improved early detection and intervention. Lifestyle modifications and multidisciplinary care strategies can enhance patient outcomes. While significant progress has been made, further research is required to develop therapies that can effectively halt or reverse disease progression, ultimately improving the lives of individuals with DN. This review provides a comprehensive overview of current understanding and future directions in DN research and management.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanzhe Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Hu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
6
|
Wang J, Huang Z, Li Y, Li Q, Li X, Chen L. Electroacupuncture improves cognitive function in high-fat diet/streptozocin-induced type 2 diabetic mice by inhibiting autophagy-related ferroptosis. Exp Anim 2025; 74:197-208. [PMID: 39647901 PMCID: PMC12044350 DOI: 10.1538/expanim.24-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024] Open
Abstract
At present, there lacks a definitive pharmaceutical intervention or therapeutic approach for diabetes-associated cognitive impairment. Herein, we delved into the impact of electroacupuncture on cognitive function in high-fat diet/streptozocin (HFD/STZ)-induced type 2 diabetes mellitus (T2DM) mice and underlying mechanisms. Hippocampal insulin resistance was determined by western blot analysis. Cognitive function was evaluated by Morris water maze test. The morphology of the hippocampal neurons was observed through hematoxylin & eosin staining and Nissl staining. Synaptic plasticity was assessed by western blot analysis. Immunofluorescence, immunohistochemistry, western blot and real-time PCR were employed to detect the levels of ferroptosis markers, autophagy markers, and netrin-1. Electroacupuncture treatment exhibited ameliorative outcomes on hippocampal insulin resistance, spatial learning, memory function, neuronal damage, and synaptic plasticity in T2DM mice. Furthermore, it effectively suppressed neuronal ferroptosis in the hippocampus by upregulating GPX4 and SLC7A11 expression, and reducing 4-HNE expression. Meanwhile, electroacupuncture intervention increased the levels of Beclin1 and LC3II/LC3I, as well as decreased the levels of p62 and phosphorylated-mTOR in the hippocampus of T2DM mice, suggesting that electroacupuncture facilitated autophagy activation by inhibiting mTOR activity. 3-MA-mediated autophagy inhibition undermined the beneficial effects of electroacupuncture on neuronal ferroptosis and cognitive deficits in T2DM mice. Additionally, the beneficial effects of electroacupuncture on autophagy and ferroptosis was achieved by upregulation of netrin-1 in the hippocampus. Our study revealed that electroacupuncture therapy inhibited neuronal ferroptosis via the activation of autophagy, thereby ameliorating cognitive deficits in T2DM mice.
Collapse
Affiliation(s)
- Jingzhi Wang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, No. 16 Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), No. 4, Huayuanshan, Wuhan, Hubei 430060, P.R. China
| | - Zhongyu Huang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, No. 16 Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), No. 4, Huayuanshan, Wuhan, Hubei 430060, P.R. China
| | - Yiwen Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, No. 16 Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), No. 4, Huayuanshan, Wuhan, Hubei 430060, P.R. China
| | - Qian Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, No. 16 Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), No. 4, Huayuanshan, Wuhan, Hubei 430060, P.R. China
| | - Xi Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, No. 16 Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), No. 4, Huayuanshan, Wuhan, Hubei 430060, P.R. China
| | - Li Chen
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, No. 16 Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, Hubei 430065, P.R. China
- Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), No. 4, Huayuanshan, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
7
|
Handajani YS, Turana Y, Kristian K, Widjaja NT, Lysandra A, Schröder-Butterfill E, Hengky A. Education level and health profile related to global cognitive impairment in an urban community in West Jakarta, Indonesia. Neurol Res 2025; 47:223-231. [PMID: 39987498 DOI: 10.1080/01616412.2025.2470709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
OBJECTIVES This study aims to investigate the association of global cognitive with chronic conditions, physical impairment, olfactory function, socio-demographics and other factors among older adults in the urban community, West Jakarta. MATERIALS AND METHODS The cross-sectional study involved 334 older adults aged 60 years and older who resided in urban community Jakarta, Indonesia. Trained interviewers visited and evaluated the respondents in the sub-district office. Cognitive function is examined using Montreal Cognitive Assessment-Indonesian Version (MoCA-INA). Respondents were clinically examined using a standardized protocol, which included medical history, general physical examination, cognitive assessment, and blood test for diabetes. RESULTS Global cognitive impairment was significantly associated with being female (adjusted odd ratio [AOR]: 1.99, 95% CI: 1.14-3.50) and low education (AOR: 4.79, 95% CI: 2.80-8.18). Moreover diabetes, impaired balance, and olfactory dysfunction have AOR:3.23 (95% CI: 1.39-7.51), 2.55% (95% CI: 1.07-6.07), and 2.26 (95% CI: 1.32-3.85) respectively. CONCLUSION This paper highlights that cognitively impaired and diabetic as well as low education subject in urban community, West Jakarta, Indonesia. Global cognitive impairment was associated with being female, having obtained low levels of education, having diabetes, impaired balance and olfactory dysfunction.
Collapse
Affiliation(s)
- Yvonne Suzy Handajani
- School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Yuda Turana
- School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Kevin Kristian
- School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Nelly Tina Widjaja
- School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Aylenia Lysandra
- Center of Health Research, School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | | | - Antoninus Hengky
- Center of Health Research, School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
8
|
Sonnino R, Ciccarelli G, Moffa S, Soldovieri L, Di Giuseppe G, Brunetti M, Cinti F, Di Piazza E, Gasbarrini A, Nista EC, Pontecorvi A, Giaccari A, Mezza T. Exploring nutraceutical approaches linking metabolic syndrome and cognitive impairment. iScience 2025; 28:111848. [PMID: 40008362 PMCID: PMC11850164 DOI: 10.1016/j.isci.2025.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Metabolic syndrome (MetS) and mild cognitive impairment (MCI) are interconnected conditions sharing common pathological pathways, such as inflammation and oxidative stress, leading to the concept of "metabolic-cognitive syndrome." This highlights their mutual influence and potential overlapping therapeutic strategies. Although lifestyle modifications remain essential, nutraceutical supplementation has emerged as a promising adjunct for the prevention and management of these preclinical conditions. This review examines clinical and translational evidence on commonly used nutraceuticals targeting shared pathophysiological mechanisms of MetS and MCI. By addressing inflammation, oxidative stress, and metabolic dysfunction, these supplements may offer a valuable approach to mitigating the progression and consequences of both conditions. Understanding their efficacy could provide practical tools to complement lifestyle changes, offering a more comprehensive strategy for managing metabolic-cognitive syndrome.
Collapse
Affiliation(s)
- Rebecca Sonnino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gea Ciccarelli
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simona Moffa
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura Soldovieri
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianfranco Di Giuseppe
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michela Brunetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesca Cinti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eleonora Di Piazza
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Enrico C. Nista
- Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Teresa Mezza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
9
|
Baldensperger T, Preissler M, Becker CFW. Non-enzymatic posttranslational protein modifications in protein aggregation and neurodegenerative diseases. RSC Chem Biol 2025; 6:129-149. [PMID: 39722676 PMCID: PMC11667106 DOI: 10.1039/d4cb00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Highly reactive metabolic intermediates and other small molecules frequently react with amino acid side chains, leading to non-enzymatic posttranslational modifications (nPTMs) of proteins. The abundance of these modifications increases under high metabolic activity or stress conditions and can dramatically impact protein structure and function. Although protein quality control mechanisms typically mitigate the effects of these impaired proteins, in long-lived and degradation-resistant proteins, nPTMs accumulate. In some cases, such as cataract development and diabetes, clear links between nPTMs, aging, and disease progression have been established. In neurodegenerative diseases such as Alzheimer's and Parkinson's disease, a key question is whether accumulation of nPTMs is a cause or consequence of protein aggregation. This review focuses on major nPTMs found on proteins with central roles in neurodegenerative diseases such as α-synuclein, β-amyloid, and tau. We summarize current knowledge on the formation of these modifications and discuss their potential impact on disease onset and progression. Additionally, we examine what is known to date about how nPTMs impair cellular detoxification, repair, and degradation systems. Finally, we critically discuss the available methodologies to systematically investigate nPTMs at the molecular level and outline suitable approaches to study their effects on protein aggregation. We aim to foster more research into the role of nPTMs in neurodegeneration by adapting methodologies that have proven successful in studying enzymatic posttranslational modifications. Specifically, we advocate for site-specific incorporation of these modifications into target proteins using advanced chemical and molecular biology techniques.
Collapse
Affiliation(s)
- Tim Baldensperger
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| | - Miriam Preissler
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Währinger Str. 42 1090 Vienna Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
10
|
Khan H, Farhana F, Mostafa F, Rafiq A, Nizia EW, Zabin Z, Atique R, Dauenhauer M, Omotara O, Mujtaba A, Palle K, Reddy PH. Gender differences in cognitive impairment among the elderly in rural West Texas counties. J Alzheimers Dis 2025; 103:687-705. [PMID: 39865007 DOI: 10.1177/13872877241305772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The prevalence of Alzheimer's disease or dementia in the elderly population has been increasing both nationally and globally. Males and females are impacted differently when it comes to cognitive health, and this can be influenced by various risk factors. OBJECTIVE This study highlights the sociodemographic, chronic disease, and genetic biomarker risk factors associated with gender differences and cognitive impairments in the elderly population living in Cochran, Parmer, and Bailey counties of rural West Texas. METHODS Cross tabulation, Pearson's chi-squared, two sample proportions, binary logistic regression, and multinomial logistic regression were utilized to analyze data. SPSS software was used to detect significant risk factors. RESULTS Using a bivariate logistic regression, the age group 70 and above of males and females for the Cochran and Parmer counties was found significantly associated with cognitive impairment. Anxiety, depression, diabetes, and cardiovascular disease were found to be significantly associated with an increased risk of cognitive impairment in females in Parmer County. Gender differences were observed in Cochran County for smoking but females in Bailey County were found to be more tobacco-dependent compared to other counties. However, in Cochran County the prevalence of cognitive impairment with rates of 66% for males and 70% for females was observed to be significantly lower in hypertensive group who consumed modified diet. CONCLUSIONS Gender-based disparities in cognitive impairment are essential for gaining more insights into Alzheimer's disease or dementia prevention and advancement of healthcare and medical approaches in the underserved rural communities of West Texas.
Collapse
Affiliation(s)
- Hafiz Khan
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fardous Farhana
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA
| | - Fahad Mostafa
- Biostatistics and Analytics Core, School of Medicine, University of Colorado Anschutz Med Campus, Aurora, CO, USA
| | - Aamrin Rafiq
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Effat W Nizia
- Monroe University, King Graduate School, New Rochelle, NY, USA
| | - Zawah Zabin
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rumana Atique
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Megan Dauenhauer
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Opemipo Omotara
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Atqa Mujtaba
- Department of Public Health, Julia Jones Matthews School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Komaraiah Palle
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
11
|
Pourmotabbed A, Talebi S, Mehrabani S, Babaei A, Khosroshahi RA, Bagheri R, Wong A, Ghoreishy SM, Amirian P, Zarpoosh M, Hojjati Kermani MA, Moradi S. The association of ultra-processed food intake with neurodegenerative disorders: a systematic review and dose-response meta-analysis of large-scale cohorts. Nutr Neurosci 2025; 28:73-86. [PMID: 38753992 DOI: 10.1080/1028415x.2024.2351320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
OBJECTIVES Our systematic review and meta-analysis aimed to uncover the relationship between UPFs intake and neurodegenerative disorders, including multiple sclerosis (MS), Parkinson's disease (PD), Alzheimer's disease (AD), cognitive impairment, and dementia. SETTING A systematic search was conducted using the Scopus, PubMed/MEDLINE, and ISI Web of Science databases without any limitation until June 24, 2023. Relative risk (RR) and 95% confidence interval (CI) were pooled by using a random-effects model, while validated methods examined quality and publication bias via Newcastle-Ottawa Scale, Egger's regression asymmetry, and Begg's rank correlation tests, respectively. RESULTS Analysis from 28 studies indicated that a higher UPFs intake was significantly related to an enhanced risk of MS (RR = 1.15; 95% CI: 1.00, 1.33; I2 = 37.5%; p = 0.050; n = 14), PD (RR = 1.56; 95% CI: 1.21, 2.02; I2 = 64.1%; p = 0.001; n = 15), and cognitive impairment (RR = 1.17; 95% CI: 1.06, 1.30; I2 = 74.1%; p = 0.003; n = 17), although not AD or dementia. We observed that a 25 g increment in UPFs intake was related to a 4% higher risk of MS (RR = 1.04; 95% CI: 1.01, 1.06; I2 = 0.0%; p = 0.013; n = 7), but not PD. The non-linear dose-response relationship indicated a positive non-linear association between UPF intake and the risk of MS (Pnonlinearity = 0.031, Pdose-response = 0.002). This association was not observed for the risk of PD (Pnonlinearity = 0.431, Pdose-response = 0.231). CONCLUSION These findings indicate that persistent overconsumption of UPFs may have an adverse impact on neurodegenerative conditions, potentially leading to a decline in quality of life and reduced independence as individuals age.
Collapse
Affiliation(s)
- Ali Pourmotabbed
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepide Talebi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Mehrabani
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Ira
| | - Atefeh Babaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Amiri Khosroshahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Seyed Mojtaba Ghoreishy
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student research committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Parsa Amirian
- General Practitioner, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Mahsa Zarpoosh
- General Practitioner, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Moradi
- Department of Nutrition and Food Sciences, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
12
|
Rarinca V, Hritcu LD, Burducea M, Plavan G, Lefter R, Burlui V, Romila L, Ciobică A, Todirascu-Ciornea E, Barbacariu CA. Assessing the Influence of Low Doses of Sucrose on Memory Deficits in Fish Exposed to Common Insecticide Based on Fipronil and Pyriproxyfen. Curr Issues Mol Biol 2024; 46:14168-14189. [PMID: 39727976 DOI: 10.3390/cimb46120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Although pesticides have been a constant concern for decades, in the last ten years, public discussions and scientific research have emphasized their impact on human health and the environment, drawing increased attention to the problems associated with their use. The association of environmental stressors such as pesticides with a sugar-rich diet can contribute to the growing global metabolic disease epidemic through overlapping mechanisms of insulin resistance, inflammation, and metabolic dysregulation. The main aim of this study was to evaluate the behavioral effects of the exposure of Silver crucian carp (Carassius auratus gibelio) to a commercial insecticide formulation containing fipronil, pyriproxyfen, and other additives, as well as sucrose and their mixtures. The behavioral responses in the T-test showed significant abnormalities in the exploratory activity evocative of memory deficits and an increased degree of anxiety in the groups of fish treated with the insecticide formulation and the mixture of the insecticide with sucrose. Aggression, quantified in the mirror-biting test, as biting and the frequency of approaches to the mirror contact zone, was significantly decreased only in the insecticide and sucrose group. All three groups showed behavioral changes reflective of toxicity, but only the combination of the two stress factors, environmental (insecticide) and metabolic (sucrose intake), resulted in pronounced memory alterations.
Collapse
Affiliation(s)
- Viorica Rarinca
- Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, 20A, 700505 Iasi, Romania
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Luminita Diana Hritcu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania
| | - Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
| | - Vasile Burlui
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Laura Romila
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Alin Ciobică
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No. 54, Independence Street, Sector 5, 050094 Bucharest, Romania
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Cristian-Alin Barbacariu
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| |
Collapse
|
13
|
Liu X, Zhao X, Qiu M, Yang J. Cell surface receptor-mediated signaling in CNS regeneration. Neuroscience 2024; 562:198-208. [PMID: 39486572 DOI: 10.1016/j.neuroscience.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Degenerative diseases and injuries of central nervous system (CNS) often cause nerve cell apoptosis and neural dysfunction. Protection of surviving cells or inducing the differentiation of stem cells into functional cells is considered to be an important way of neurorepair. In addition, transdifferentiation technology emerged recently is expected to provide new solutions for nerve regeneration. Cell surface receptors are transmembrane proteins embedded in cytoplasmic membrane, and play crucial roles in maintaining communication between extracellular signals and intracellular signaling processes. The extracellular microenvironment changed dramatically upon neural lesion, exploring the biological function of signals mediated by cell surface receptors will help to develop molecular strategies for nerve regeneration. An increasing number of studies have reported that cell surface receptor-mediated signaling affects the survival, differentiation, and functioning of neural cells, and even regulate their trans-lineage reprogramming. Here, we provide a review on the roles of cell surface receptors in CNS regeneration, thus providing new cues for better treatment of neurodegenerative diseases or nerve injury.
Collapse
Affiliation(s)
- Xinyu Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Department of Immunology and International Cancer Center, Shenzhen University Medical School, Shenzhen 518000, China
| | - Xiaofeng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou 311121, China
| | - Mengsheng Qiu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou 311121, China.
| | - Junlin Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou 311121, China.
| |
Collapse
|
14
|
Aladdin N, Ghareib SA. Vitamin D3 Exerts a Neuroprotective Effect in Metabolic Syndrome Rats: Role of BDNF/TRKB/Akt/GS3Kβ Pathway. J Biochem Mol Toxicol 2024; 38:e70082. [PMID: 39651608 DOI: 10.1002/jbt.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Metabolic syndrome (MetS) is usually associated with cognitive impairment, neuropathic pain, and reduced brain-derived neurotrophic factor (BDNF) levels. BDNF via tropomyosin receptor kinase B (TrkB) exerts neuroprotection by activating protein kinase B (Akt) to inhibit glycogen synthase kinase-3β (GSK3β). Although Vitamin D3 (VitD3) has demonstrated favorable metabolic and neuronal outcomes in MetS, the precise molecular mechanisms underlying its neuroprotective effects remain poorly elucidated. We aimed to test the hypothesis that VitD3 mitigates MetS-induced cognition deficits and neuropathic pain via modulating the BDNF/TRKB/Akt/GS3Kβ signaling pathway. MetS was induced in male rats by 10% fructose-supplemented water and 3% salt-enriched diet. After 6 weeks, normal and MetS rats received either vehicle or VitD3 (10 µg/kg/day) for an additional 6 weeks. Glycemic status, lipid profile, and behavioral changes were assessed. The advanced glycation end products (AGEs), and markers of inflammation (TNF-α and NF-κB), oxidative stress (malondialdehyde), and apoptosis (caspase3), as well as BDNF, TrkB, PI3K, Akt, GSK3β, phosphorylated tau, and amyloid beta (Aβ) were assessed in the cerebral cortex. MetS rats had deteriorated glycemic and lipid profiles, higher AGEs, reduced levels of BDNF, TrkB, PI3K, and active Akt, along with increased GSK3β levels, inflammation, oxidative stress, and apoptosis. These changes were associated with higher levels of cognitive impairment markers phosphorylated tau and Aβ, as well as behavioral changes indicative of cognitive impairment and neuropathic pain. VitD3 improved the cognitive and behavioral alterations, while mitigating the associated molecular derangements. Our results indicate that VitD3 may exert neuroprotective effects by modulating the BDNF/TrkB/PI3K/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Noha Aladdin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Deng Z, Lee A, Lin T, Taneja S, Kowdley D, Leung JH, Hill M, Tao T, Fitzgerald J, Yu L, Blakeslee JJ, Townsend K, Weil ZM, Parquette JR, Ziouzenkova O. Amino Acid Compound 2 (AAC2) Treatment Counteracts Insulin-Induced Synaptic Gene Expression and Seizure-Related Mortality in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:11689. [PMID: 39519239 PMCID: PMC11546384 DOI: 10.3390/ijms252111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes is a major risk factor for Alzheimer's disease (AD). Amino acid compound 2 (AAC2) improves glycemic and cognitive functions in diabetic mouse models through mechanisms distinct from insulin. Our goal was to compare the effects of AAC2, insulin, and their nanofiber-forming combination on early asymptomatic AD pathogenesis in APP/PS1 mice. Insulin, but not AAC2 or the combination treatment (administered intraperitoneally every 48 h for 120 days), increased seizure-related mortality, altered the brain fat-to-lean mass ratio, and improved specific cognitive functions in APP/PS1 mice. NanoString and pathway analysis of cerebral gene expression revealed dysregulated synaptic mechanisms, with upregulation of Bdnf and downregulation of Slc1a6 in insulin-treated mice, correlating with insulin-induced seizures. In contrast, AAC2 promoted the expression of Syn2 and Syp synaptic genes, preserved brain composition, and improved survival. The combination of AAC2 and insulin counteracted free insulin's effects. None of the treatments influenced canonical amyloidogenic pathways. This study highlights AAC2's potential in regulating synaptic gene expression in AD and insulin-induced contexts related to seizure activity.
Collapse
Affiliation(s)
- Zhijie Deng
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| | - Aejin Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
- Department of Food and Nutrition, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| | - Tao Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (T.L.); (S.T.); (J.R.P.)
| | - Sagarika Taneja
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (T.L.); (S.T.); (J.R.P.)
| | - Devan Kowdley
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| | - Jacob H. Leung
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| | - Marykate Hill
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| | - Tianyi Tao
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.T.); (K.T.)
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (Z.M.W.)
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Joshua J. Blakeslee
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Columbus, OH 43210, USA;
| | - Kristy Townsend
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.T.); (K.T.)
| | - Zachary M. Weil
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (Z.M.W.)
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, Biomedical Research Center (BMRC), Morgantown, WV 26506, USA
| | - Jon R. Parquette
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (T.L.); (S.T.); (J.R.P.)
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| |
Collapse
|
16
|
Di Majo D, Ricciardi N, Moncada A, Allegra M, Frinchi M, Di Liberto V, Pitonzo R, Rappa F, Saiano F, Vetrano F, Miceli A, Giglia G, Ferraro G, Sardo P, Gambino G. Golden Tomato Juice Enhances Hepatic PPAR-α Expression, Mitigates Metabolic Dysfunctions and Influences Redox Balance in a High-Fat-Diet Rat Model. Antioxidants (Basel) 2024; 13:1324. [PMID: 39594468 PMCID: PMC11591511 DOI: 10.3390/antiox13111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Golden tomato (GT), harvested at the veraison stage, has gained attention due to its rich content of bioactive compounds and potential health benefits. Previous studies have highlighted GT's antioxidant properties and its positive effects on metabolic syndrome (MetS), a condition characterized by obesity, dyslipidemia, and oxidative stress. This study investigates for the first time a derivative from GT, i.e., the juice (GTJ), which could be a potential candidate for development as a functional food. We first characterized GT juice, identifying 9-oxo-10(E),12(E)-octadecadienoic (9-oxo-10(E),12(E)-ODA) fatty acid, a known peroxisome proliferator-activated receptor alpha (PPAR-α) agonist, using High-Performance Liquid Chromatography (HPLC)-mass spectrometry. Then, using a high-fat-diet (HFD) rat model, we assessed the impact of daily GT juice supplementation in addressing MetS. We outlined that GTJ improved body weight and leptin-mediated food intake. Moreover, it ameliorated glucose tolerance, lipid profile, systemic redox homeostasis, hepatic oxidative stress, and steatosis in HFD rats. Furthermore, GT juice enhances the hepatic transcription of PPAR-α, thus putatively promoting fatty acid oxidation and lipid metabolism. These findings suggest that GT juice mitigates lipidic accumulation and putatively halters oxidative species at the hepatic level through PPAR-α activation. Our study underscores the protective effects of GT juice against MetS, highlighting its future potential as a nutraceutical for improving dysmetabolism and associated alterations.
Collapse
Affiliation(s)
- Danila Di Majo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
| | - Nicolò Ricciardi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
| | - Alessandra Moncada
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.M.); (F.S.); (F.V.); (A.M.)
| | - Mario Allegra
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
| | - Rosa Pitonzo
- ATeN (Advanced Technologies Network) Center, 90128 Palermo, Italy;
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
| | - Filippo Saiano
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.M.); (F.S.); (F.V.); (A.M.)
| | - Filippo Vetrano
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.M.); (F.S.); (F.V.); (A.M.)
| | - Alessandro Miceli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.M.); (F.S.); (F.V.); (A.M.)
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
- Euro Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
| | - Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
| |
Collapse
|
17
|
Mishra SK, Mishra V. Saroglitazar Enhances Memory Functions and Adult Neurogenesis via Up-Regulation of Wnt/β Catenin Signaling in the Rat Model of Dementia. ACS Chem Neurosci 2024; 15:3449-3458. [PMID: 39265183 DOI: 10.1021/acschemneuro.4c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have emerged as a promising target for the treatment of various neurodegenerative disorders. Studies have shown that both PPAR α & γ individually modulate various pathophysiological events like neuroinflammation and insulin resistance, which are known to variedly affect neurogenesis. Our study aimed to evaluate the effect of saroglitazar (SGZR), a dual PPAR agonist, on adult neurogenesis and spatial learning and memory, in intracerebroventricular streptozotocin (ICV STZ)-induced dementia in rats. We have found that SGZR at the dose of 4 mg/kg per oral showed significant improvement in learning and memory compared to ICV STZ-treated rats. A substantial increase in neurogenesis was observed in the subventricular zone (SVZ) and the dentate gyrus (DG), as indicated by an increase in the number of 5-bromo-2'-deoxyuridine (BrdU)+ cells, BrdU+ nestin+ cells, and doublecortin (DCX)+cells. Treatment with SGZR also decreased the active form of glycogen synthase kinase 3β (GSK3β) and hence enhanced the nuclear translocation of the β-catenin. Enhanced expression of Wnt transcription factors and target genes indicates that the up-regulation of Wnt signaling might be involved in the observed increase in neurogenesis. Hence, it can be concluded that the SGZR enhances memory functions and adult neurogenesis via the upregulation of Wnt β-catenin signaling in ICV STZ-treated rats.
Collapse
Affiliation(s)
- Sandeep Kumar Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Faculty of Pharmacy, Kalinga University, Raipur, Chhattisgarh 492101, India
| | - Vaibhav Mishra
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
18
|
Abdel-Kareem NM, Elshazly SM, Abd El Fattah MA, Aldahish AA, Zaitone SA, Ali SK, Abd El-Haleim EA. Nifedipine Improves the Ketogenic Diet Effect on Insulin-Resistance-Induced Cognitive Dysfunction in Rats. Pharmaceuticals (Basel) 2024; 17:1054. [PMID: 39204160 PMCID: PMC11359371 DOI: 10.3390/ph17081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Insulin resistance, induced by high fructose consumption, affects cognitive function negatively. Nifedipine may be suggested for neurological disorders. This study aimed to assess the effect of nifedipine with either a normal diet (ND) or a ketogenic diet (KD) in cognitive dysfunction. Male Wistar rats received 10% fructose in drinking water for 8 weeks to induce insulin resistance. Rats received nifedipine (5.2 mg/kg/day; p.o.) later with ND or KD for an additional five weeks. One and two-way ANOVAs were used in analyzing the data. Reversion to the ND improved insulin resistance and lipid profile, besides brain-derived neurotrophic factor (BDNF), glycogen synthase kinase-3 beta (GSK3β), and insulin-degrading enzyme (IDE) levels. Rats fed KD alone and those that received nifedipine with KD did not show similar improvement in the previously mentioned parameters as the ND group. However, nifedipine-ND rats showed improvement in cognitive behavior and insulin resistance. Treatment with nifedipine-KD ameliorated GSK3β, amyloid β (Aβ), and tau protein levels. As the nifedipine-KD combination succeeded in diminishing the accumulated Aβ and tau protein, KD may be used for a while due to its side effects, then nifedipine treatment could be continued with an ND. This conclusion is based on the finding that this combination mitigated insulin resistance with the associated improved behavior.
Collapse
Affiliation(s)
- Nancy M. Abdel-Kareem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University—Arish Branch, Arish 45511, Egypt
| | - Shimaa M. Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - May A. Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt (E.A.A.E.-H.)
| | - Afaf A. Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Sahar K. Ali
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Enas A. Abd El-Haleim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt (E.A.A.E.-H.)
| |
Collapse
|
19
|
Di Majo D, Ricciardi N, Di Liberto V, Allegra M, Frinchi M, Urone G, Scordino M, Massaro A, Mudò G, Ferraro G, Sardo P, Giglia G, Gambino G. The remarkable impact of Opuntia Ficus Indica fruit administration on metabolic syndrome: Correlations between cognitive functions, oxidative stress and lipid dysmetabolism in the high-fat, diet-fed rat model. Biomed Pharmacother 2024; 177:117028. [PMID: 38959603 DOI: 10.1016/j.biopha.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND A wealth of evidence underscores the bioactive properties of nutraceuticals and functional foods in addressing oxyinflammatory-based diseases with implications at both peripheral and central levels. Opuntia ficus-indica (OFI) is well-documented for its health-promoting attributes, though its fruit (OFIF) remains relatively understudied. Not only poses Metabolic Syndrome (MetS) cardiometabolic risks but also contributes significantly to cognitive impairment, especially in crucial brain areas such as hippocampus and hypothalamus. METHODS Following 8 weeks of HFD to induce MetS, rats received OFIF oral supplementation for 4 weeks to evaluate cognitive and affective modifications using behavioural paradigms, i.e. open field, burrowing, white-dark box, novelty-suppressed feeding, and object recognition tests. Our investigation extended to biochemical evaluations of lipid homeostasis, central and peripheral oxidative stress and neurotrophic pathways, correlating these measures together with circulating leptin levels. RESULTS Our data revealed that OFIF modulation of leptin positively correlates with systemic and brain oxidative stress, with markers of increased anxiety-like behaviour and impaired lipid homeostasis. On the other hand, leptin levels reduced by OFIF are associated with improved antioxidant barriers, declarative memory and neurotrophic signalling. DISCUSSION This study underscores OFIF neuroactive potential in the context of MetS-associated cognitive impairment, offering insights into its mechanisms and implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Danila Di Majo
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Nicolò Ricciardi
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Valentina Di Liberto
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Mario Allegra
- Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Monica Frinchi
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Giulia Urone
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Miriana Scordino
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Alessandro Massaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Giuseppa Mudò
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Pierangelo Sardo
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Giuseppe Giglia
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy.
| | - Giuditta Gambino
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| |
Collapse
|
20
|
Zhang T, Wang P, Li R, Wang Y, Yan S. Correlation between obesity and Alzheimer 's disease and the mechanisms. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1052-1061. [PMID: 39788493 PMCID: PMC11495975 DOI: 10.11817/j.issn.1672-7347.2024.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) is a progressive central neurodegenerative disorder with an insidious onset. With global aging, the incidence and mortality of AD have been steadily increasing, yet effective treatments remain elusive. Obesity, characterized by excessive or abnormal fat accumulation, is a complex metabolic disorder and a confirmed risk factor for numerous diseases. Both obesity and AD have become major public health concerns, posing significant threats to human health and economic development. Studies have revealed a strong correlation between obesity and AD, with multiple contributing factors, including metabolic abnormalities of endocrine factors, inflammatory responses, and genetic interactions. Exploring the correlation and mechanisms between obesity and AD provides important insights and new strategies for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Tenglin Zhang
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000.
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000.
| | - Ping Wang
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000
| | - Ruonan Li
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000
| | - Ying Wang
- Department of Geriatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Shuxun Yan
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000.
| |
Collapse
|
21
|
Soldevila-Domenech N, Fagundo B, Cuenca-Royo A, Forcano L, Gomis-González M, Boronat A, Pastor A, Castañer O, Zomeño MD, Goday A, Dierssen M, Baghizadeh Hosseini K, Ros E, Corella D, Martínez-González MÁ, Salas-Salvadó J, Fernández-Aranda F, Fitó M, de la Torre R. Relationship between sex, APOE genotype, endocannabinoids and cognitive change in older adults with metabolic syndrome during a 3-year Mediterranean diet intervention. Nutr J 2024; 23:61. [PMID: 38862960 PMCID: PMC11167771 DOI: 10.1186/s12937-024-00966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The Mediterranean diet (MedDiet) has demonstrated efficacy in preventing age-related cognitive decline and modulating plasma concentrations of endocannabinoids (eCBs) and N-acylethanolamines (NAEs, or eCB-like compounds), which are lipid mediators involved in multiple neurological disorders and metabolic processes. Hypothesizing that eCBs and NAEs will be biomarkers of a MedDiet intervention and will be related to the cognitive response, we investigated this relationship according to sex and apolipoprotein E (APOE) genotype, which may affect eCBs and cognitive performance. METHODS This was a prospective cohort study of 102 participants (53.9% women, 18.8% APOE-ɛ4 carriers, aged 65.6 ± 4.5 years) from the PREDIMED-Plus-Cognition substudy, who were recruited at the Hospital del Mar Research Institute (Barcelona). All of them presented metabolic syndrome plus overweight/obesity (inclusion criteria of the PREDIMED-Plus) and normal cognitive performance at baseline (inclusion criteria of this substudy). A comprehensive battery of neuropsychological tests was administered at baseline and after 1 and 3 years. Plasma concentrations of eCBs and NAEs, including 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and N-docosahexaenoylethanolamine (DHEA), were also monitored. Baseline cognition, cognitive changes, and the association between eCBs/NAEs and cognition were evaluated according to gender (crude models), sex (adjusted models), and APOE genotype. RESULTS At baseline, men had better executive function and global cognition than women (the effect size of gender differences was - 0.49, p = 0.015; and - 0.42, p = 0.036); however, these differences became nonsignificant in models of sex differences. After 3 years of MedDiet intervention, participants exhibited modest improvements in memory and global cognition. However, greater memory changes were observed in men than in women (Cohen's d of 0.40 vs. 0.25; p = 0.017). In men and APOE-ε4 carriers, 2-AG concentrations were inversely associated with baseline cognition and cognitive changes, while in women, cognitive changes were positively linked to changes in DHEA and the DHEA/AEA ratio. In men, changes in the OEA/AEA and OEA/PEA ratios were positively associated with cognitive changes. CONCLUSIONS The MedDiet improved participants' cognitive performance but the effect size was small and negatively influenced by female sex. Changes in 2-AG, DHEA, the OEA/AEA, the OEA/PEA and the DHEA/AEA ratios were associated with cognitive changes in a sex- and APOE-dependent fashion. These results support the modulation of the endocannabinoid system as a potential therapeutic approach to prevent cognitive decline in at-risk populations. TRIAL REGISTRATION ISRCTN89898870.
Collapse
Grants
- FI_B2021/00104 Agència de Gestió d'Ajuts Universitaris i de Recerca
- PROMETEO/2017/017; Grant FEA/SEA 2017 for Primary Care Research Generalitat Valenciana
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- Advanced Research Grant 2014-2019; agreement #340918 HORIZON EUROPE European Research Council
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- 2013ACUP00194 'la Caixa' Foundation
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- 2017 SGR 138 Generalitat de Catalunya
- ‘la Caixa’ Foundation
Collapse
Affiliation(s)
- Natalia Soldevila-Domenech
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Beatriz Fagundo
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Department of Physiotherapy, Fundació Universitària del Bages (FUB), Manresa, 08042, Spain
| | - Aida Cuenca-Royo
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Laura Forcano
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Maria Gomis-González
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Antoni Pastor
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Olga Castañer
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Endocrinology Service, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Maria Dolores Zomeño
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- School of Health Sciences, Blanquerna-Ramon Llull University, Barcelona, 08022, Spain
| | - Albert Goday
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Endocrinology Service, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Mara Dierssen
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Khashayar Baghizadeh Hosseini
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- Cardiovascular risk, Nutrition and Aging, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, 08036, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, 46010, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Navarra's Health Research Institute (IdiSNA), Pamplona, Spain
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, Reus, Spain
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Fernando Fernández-Aranda
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Clinical Psychology Unit, University Hospital of Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Rafael de la Torre
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Dr Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
22
|
Zhang Y, Zhang P, Yin D. Association between a body shape index and cognitive impairment among us older adults from a cross-sectional survey of the NHANES 2011-2014. Lipids Health Dis 2024; 23:169. [PMID: 38840158 PMCID: PMC11151546 DOI: 10.1186/s12944-024-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE This study aimed to assess the relationship between A Body Shape Index (ABSI) and cognitive impairment among older adults in the United States. METHODS This cross-sectional study analyzed cognitive function in 2,752 individuals aged 60 and older using data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). Cognitive assessments were conducted using the Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). A Body Shape Index (ABSI) was calculated from waist circumference (WC), weight, and height. The relationship between ABSI and cognitive outcomes was examined through multifactorial linear regression, smooth curve fitting, and subgroup and interaction analyses. RESULTS With complete data, 2752 persons 60 and older participated in the study. After adjusting for covariables, these results showed statistically significant negative relationships between ABSI, IRT, and DSST scores. The negative correlation between DSST and ABSI is more substantial in males than females. There is less of a negative link between ABSI, AFT, and DSST among drinkers who consume 12 or more drinks annually compared to those who consume less. Furthermore, compared to individuals without high blood pressure(HBP), those who suffered HBP showed a more significant negative connection between ABSI and AFT. CONCLUSION Lower cognitive function was linked to higher ABSI.
Collapse
Affiliation(s)
- Yanwei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dekun Yin
- Department of Anesthesiology, Funing People's Hospital of Jiangsu, Yancheng, Jiangsu province, China.
| |
Collapse
|
23
|
Ye M, Liu Y, Wang F, Yang X, Yang X, Gao X, Liu W, Yu J. Polysaccharide extracted from Sarcandra glabra residue attenuate cognitive impairment by regulating gut microbiota in diabetic mice. Int J Biol Macromol 2024; 270:132121. [PMID: 38719002 DOI: 10.1016/j.ijbiomac.2024.132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Diabetic encephalopathy (DE), characterized by cognitive impairment, currently lacks targeted treatment. Previous studies have shown that Sarcandra glabra extracted residue polysaccharide (SERP) exhibited hypoglycemic effects either in vitro or in streptozotocin-induced diabetes mice. However, the therapeutic effect of SERP on DE was not elucidated. This study investigated the therapeutic effect of SERP on DE and its underlying mechanism. Our results revealed that SERP regulates glucose and lipid metabolism, improves cognitive function, and exhibits diminished activity post-antibiotic intervention. Importantly, we discovered a novel mechanism by which SERP modulates the gut microbiota, specifically enriching Bacteroidales S24-7, resulting in elevated levels of butyric acid in the intestine. This regulation modulates the intestinal endocrine cell lipid metabolism level, restores damaged intestinal barriers and neural epithelial circuits, thus exhibiting cure effects. Our findings suggest that SERP could become a candidate for treating DE, potentially involving the regulation mechanism of the "microbiota-gut-brain axis". This study underscores the unique therapeutic efficacy of SERP in managing DE, offering fresh drug candidates and innovative treatment strategies for this challenging condition.
Collapse
Affiliation(s)
- Meng Ye
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yameng Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Feng Wang
- Simcere Pharmaceutical Group Limited, Nanjing 210042, PR China
| | - Xiyuchen Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaobing Yang
- Biology and Medicine Department, Jiangsu Industrial Technology Research Institute, Nanjing 210031, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Juping Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
24
|
Fu Y, Yuan P, Zeng M, Zhang Q, Hou Y, Gao L, Wei Y, Zheng Y, Feng W, Zheng X. Dihydroquercetin regulates HIF-1α/AKT/NR2B signalling to improve impaired brain function in rats with metabolic syndrome. Heliyon 2024; 10:e29807. [PMID: 38737244 PMCID: PMC11088260 DOI: 10.1016/j.heliyon.2024.e29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Dihydroquercetin (DHQ) is commonly used as a dietary additive, but its activity in improving brain injury with metabolic syndrome (MS) remains known. In present study, the MS rat model was induced using 10 % fructose water. The apoptosis rate of primary brain cells was detected. The HIF-1α/AKT/NR2B signalling pathway, levels of KEAP1/NRF2, HO-1 and NQO-1 were detected. In vitro experiments were performed using H2O2-stimulated PC-12 cells. The effect of DHQ on rates of cell survival and apoptosis were detected. After silencing HIF-1α, we further elucidate the mechanism of action of DHQ. The results indicated that DHQ reduced the hyperactivity and inhibited oxidative stress via increasing the levels of HIF-1α/AKT/NR2B signalling pathway, whereas regulated KEAP1/NRF2 pathway. In vitro experiments showed that the HIF-1α plays an important role in this process. Overall, DHQ may improve impaired brain function in rats with metabolic syndrome by regulating the HIF-1α/AKT/NR2B signalling pathway.
Collapse
Affiliation(s)
- Yang Fu
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - PeiPei Yuan
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Mengnan Zeng
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Qi Zhang
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ying Hou
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liyuan Gao
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yaxin Wei
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yajuan Zheng
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Xiaoke Zheng
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| |
Collapse
|
25
|
Guo X, Lei M, Ma G, Ouyang C, Yang X, Liu C, Chen Q, Liu X. Schisandrin A Alleviates Spatial Learning and Memory Impairment in Diabetic Rats by Inhibiting Inflammatory Response and Through Modulation of the PI3K/AKT Pathway. Mol Neurobiol 2024; 61:2514-2529. [PMID: 37910285 DOI: 10.1007/s12035-023-03725-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Clinical and epidemiological research shows that people with diabetes mellitus frequently experience diabetic cognitive impairment. Schisandrin A (SchA), one of the lignans found in the dried fruit of Schisandra chinensis, has a variety of pharmacological effects on immune system control, apoptosis suppression, anti-oxidation and anti-inflammation. The goal of the current investigation was to clarify the probable neuro-protective effects of SchA against streptozotocin-induced diabetes deficiencies of the spatial learning and memory in rats. The outcomes show that SchA therapy effectively improved impaired glucose tolerance, fasting blood glucose level and serum insulin level in diabetic rats. Additionally, in the Morris water maze test, diabetic rats showed deficits in spatial learning and memory that were ameliorated by SchA treatment. Moreover, giving diabetic rats SchA reduced damage to the hippocampus structure and increased the production of synaptic proteins. Further research revealed that SchA therapy reduced diabetic-induced hippocampus neuron damage and the generation of Aβ, as demonstrated by the upregulated phosphorylation levels of insulin signaling pathway connected proteins and by the decreased expression levels of inflammatory-related factors. Collectively, these results suggested that SchA could improve diabetes-related impairments in spatial learning and memory, presumably by reducing inflammatory responses and regulating the insulin signaling system.
Collapse
Affiliation(s)
- Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Guandi Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Changhan Ouyang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Chao Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| |
Collapse
|
26
|
Ansari MA, Tripathi T, Venkidasamy B, Monziani A, Rajakumar G, Alomary MN, Alyahya SA, Onimus O, D'souza N, Barkat MA, Al-Suhaimi EA, Samynathan R, Thiruvengadam M. Multifunctional Nanocarriers for Alzheimer's Disease: Befriending the Barriers. Mol Neurobiol 2024; 61:3042-3089. [PMID: 37966683 DOI: 10.1007/s12035-023-03730-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Govindasamy Rajakumar
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Oriane Onimus
- Faculty of Basic and Biomedical Sciences, University of Paris, Paris, France
| | - Naomi D'souza
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Research Consultation Department, Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
27
|
Chun MY, Chae W, Seo SW, Jang H, Yun J, Na DL, Kang D, Lee J, Hammers DB, Apostolova LG, Jang SI, Kim HJ. Effects of risk factors on the development and mortality of early- and late-onset dementia: an 11-year longitudinal nationwide population-based cohort study in South Korea. Alzheimers Res Ther 2024; 16:92. [PMID: 38664771 PMCID: PMC11044300 DOI: 10.1186/s13195-024-01436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Early-onset dementia (EOD, onset age < 65) and late-onset dementia (LOD, onset age ≥ 65) exhibit distinct features. Understanding the risk factors for dementia development and mortality in EOD and LOD respectively is crucial for personalized care. While risk factors are known for LOD development and mortality, their impact on EOD remains unclear. We aimed to investigate how hypertension, diabetes mellitus, hyperlipidemia, atrial fibrillation, and osteoporosis influence the development and mortality of EOD and LOD, respectively. METHODS Using the Korean National Health Insurance Service (NHIS) database, we collected 546,709 dementia-free individuals and followed up for 11 years. In the two study groups, the Younger group (< 65 years old) and the Older group (≥ 65 years old), we applied Cox proportional hazard models to assess risk factors for development of EOD and LOD, respectively. Then, we assessed risk factors for mortality among EOD and LOD. RESULTS Diabetes mellitus and osteoporosis increased the risk of EOD and LOD development. Hypertension increased the risk of EOD, while atrial fibrillation increased the risk of LOD. Conversely, hyperlipidemia exhibited a protective effect against LOD development. Additionally, diabetes mellitus increased mortality in EOD and LOD. Hypertension and atrial fibrillation increased mortality in LOD, while hyperlipidemia decreased mortality in EOD and LOD. CONCLUSIONS Risk factors influencing dementia development and mortality differed in EOD and LOD. Targeted public health interventions addressing age-related risk factors may reduce dementia incidence and mortality.
Collapse
Affiliation(s)
- Min Young Chun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Department of Neurology, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, 363 Dongbaekjukjeon-daero, Giheung-gu, , Yongin-si, Gyeonggi-do, 16995, South Korea
| | - Wonjeong Chae
- Office of Strategic Planning, Healthcare Policy and Strategy Task Force, Yonsei University Health System, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, South Korea
| | - Jihwan Yun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Department of Neurology, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-Gu, Bucheon-si, Gyeonggi-do, 14574, South Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Dongwoo Kang
- Department of Data Science, Hanmi Pharm. Co., Ltd, 14, Wiryeseong-daero, Songpa-gu, Seoul, South Korea
| | - Jungkuk Lee
- Department of Data Science, Hanmi Pharm. Co., Ltd, 14, Wiryeseong-daero, Songpa-gu, Seoul, South Korea
| | - Dustin B Hammers
- Department of Neurology, Indiana University School of Medicine, 355 W 16th St, Indianapolis, IN, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, 355 W 16th St, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine Indianapolis, 355W 16th St, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 355W 16th St, Indianapolis, IN, USA
| | - Sung-In Jang
- Department of Preventive Medicine, College of Medicine, Yonsei University, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Department of Digital Health, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Department of Neurology, Indiana University School of Medicine, 355 W 16th St, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Mi Y, Wen O, Lei Z, Ge L, Xing L, Xi H. Insulin resistance and osteocalcin associate with the incidence and severity of postoperative delirium in elderly patients undergoing joint replacement. Geriatr Gerontol Int 2024; 24:421-429. [PMID: 38438300 DOI: 10.1111/ggi.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
AIM While insulin sensitivity plays an important role in maintaining glucose metabolic homeostasis and cognitive function, its impact on postoperative delirium (POD) remains unclear. This study aimed to investigate the association between POD and indicators of insulin sensitivity, including insulin resistance and osteocalcin. METHODS A total of 120 elderly patients undergoing joint replacement were recruited and divided into delirium and non-delirium groups. Plasma and cerebrospinal fluid (CSF) samples were collected for the analysis of biomarkers, including insulin, uncarboxylated osteocalcin (ucOC), total osteocalcin (tOC), and glucose. Insulin resistance was assessed through the homeostatic model assessment of insulin resistance (HOMA-IR). MAIN RESULTS Out of the total, 28 patients (23.3%) experienced POD within 5 days after surgery. Patients with delirium exhibited higher levels of preoperative HOMA-IR and ucOC in CSF and plasma, and of tOC in CSF (P = 0.028, P < 0.001, P = 0.005, P = 0.019). After adjusting for variables, including age, Mini-Mental State Examination score, surgical site and preoperative fracture, only preoperative ucOC in CSF and HOMA-IR were significantly linked to the incidence of delirium (OR = 5.940, P = 0.008; OR = 1.208, P = 0.046, respectively), both of which also correlated with the severity of delirium (P = 0.007, P < 0.001). Receiver operating curve analysis indicated that preoperative HOMA-IR and ucOC in CSF might partly predict POD (area under the curve [AUC] = 0.697, 95% confidence interval [CI] = 0.501-0.775, AUC = 0.745, 95% CI = 0.659-0.860). CONCLUSIONS We observed that preoperative elevated HOMA-IR and ucOC in CSF were associated with the incidence and severity of POD. While these preliminary results need confirmation, they suggest a potential involvement of insulin resistance and osteocalcin in the pathological mechanism of POD. Geriatr Gerontol Int 2024; 24: 421-429.
Collapse
Affiliation(s)
- Yang Mi
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ouyang Wen
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhou Lei
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Long Ge
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liu Xing
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - He Xi
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
29
|
Pinheiro FI, Araújo-Filho I, do Rego ACM, de Azevedo EP, Cobucci RN, Guzen FP. Hepatopancreatic metabolic disorders and their implications in the development of Alzheimer's disease and vascular dementia. Ageing Res Rev 2024; 96:102250. [PMID: 38417711 DOI: 10.1016/j.arr.2024.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Dementia has been faced with significant public health challenges and economic burdens that urges the need to develop safe and effective interventions. In recent years, an increasing number of studies have focused on the relationship between dementia and liver and pancreatic metabolic disorders that result in diseases such as diabetes, obesity, hypertension and dyslipidemia. Previous reports have shown that there is a plausible correlation between pathologies caused by hepatopancreatic dysfunctions and dementia. Glucose, insulin and IGF-1 metabolized in the liver and pancreas probably have an important influence on the pathophysiology of the most common dementias: Alzheimer's and vascular dementia. This current review highlights recent studies aimed at identifying convergent mechanisms, such as insulin resistance and other diseases, linked to altered hepatic and pancreatic metabolism, which are capable of causing brain changes that ultimately lead to dementia.
Collapse
Affiliation(s)
- Francisco I Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Irami Araújo-Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Amália C M do Rego
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Eduardo P de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil
| | - Ricardo N Cobucci
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Postgraduate Program in Science Applied to Women`s Health, Medical School, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Fausto P Guzen
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil; Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil.
| |
Collapse
|
30
|
Wang H, Jayasankar N, Thamaraikani T, Viktor P, Mohany M, Al-Rejaie SS, Alammar HK, Anad E, Alhili F, Hussein SF, Amin AH, Lakshmaiya N, Ahsan M, Bahrami A, Akhavan-Sigari R. Quercetin modulates expression of serum exosomal long noncoding RNA NEAT1 to regulate the miR-129-5p/BDNF axis and attenuate cognitive impairment in diabetic mice. Life Sci 2024; 340:122449. [PMID: 38253310 DOI: 10.1016/j.lfs.2024.122449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
AIMS Cognitive impairment poses a considerable health challenge in the context of type 2 diabetes mellitus (T2DM), emphasizing the need for effective interventions. This study delves into the therapeutic efficacy of quercetin, a natural flavonoid, in mitigating cognitive impairment induced by T2DM in murine models. MATERIALS AND METHODS Serum exosome samples were obtained from both T2DM-related and healthy mice for transcriptome sequencing, enabling the identification of differentially expressed mRNAs and long noncoding RNAs (lncRNAs). Subsequent experiments were conducted to ascertain the binding affinity between mmu-miR-129-5p, NEAT1 and BDNF. The structural characteristics and dimensions of isolated exosomes were scrutinized, and the expression levels of exosome-associated proteins were quantified. Primary mouse hippocampal neurons were cultured for in vitro validation, assessing the expression of pertinent genes as well as neuronal vitality, proliferation, and apoptosis capabilities. For in vivo validation, a T2DM mouse model was established, and quercetin treatment was administered. Changes in various parameters, cognitive ability, and the expression of insulin-related proteins, along with pivotal signaling pathways, were monitored. KEY FINDINGS Analysis of serum exosomes from T2DM mice revealed dysregulation of NEAT1, mmu-miR-129-5p, and BDNF. In vitro investigations demonstrated that NEAT1 upregulated BDNF expression by inhibiting mmu-miR-129-5p. Overexpression of mmu-miR-129-5p or silencing NEAT1 resulted in the downregulation of insulin-related protein expression, enhanced apoptosis, and suppressed neuronal proliferation. In vivo studies validated that quercetin treatment significantly ameliorated T2DM-related cognitive impairment in mice. SIGNIFICANCE These findings suggest that quercetin holds promise in inhibiting hippocampal neuron apoptosis and improving T2DM-related cognitive impairment by modulating the NEAT1/miR-129-5p/BDNF pathway within serum exosomes.
Collapse
Affiliation(s)
- Hui Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu 322000, China
| | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathur 603203, Tamil Nadu, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathur 603203, Tamil Nadu, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező, H-1084 Budapest, Hungary
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Enaam Anad
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Farah Alhili
- Medical Technical College, Al-Farahidi University, Iraq
| | - Sinan F Hussein
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Muhammad Ahsan
- Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, Poland.
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Reza Akhavan-Sigari
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Poland; Department of Neurosurgery, University Medical Center Tuebingen, Germany
| |
Collapse
|
31
|
Chen X, Hou Y, Liao A, Pan L, Yang S, Liu Y, Wang J, Xue Y, Zhang M, Zhu Z, Huang J. Integrated Analysis of Gut Microbiome and Adipose Transcriptome Reveals Beneficial Effects of Resistant Dextrin from Wheat Starch on Insulin Resistance in Kunming Mice. Biomolecules 2024; 14:186. [PMID: 38397423 PMCID: PMC10886926 DOI: 10.3390/biom14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic chronic inflammation is recognized as a significant contributor to the development of obesity-related insulin resistance. Previous studies have revealed the physiological benefits of resistant dextrin (RD), including obesity reduction, lower fasting glucose levels, and anti-inflammation. The present study investigated the effects of RD intervention on insulin resistance (IR) in Kunming mice, expounding the mechanisms through the gut microbiome and transcriptome of white adipose. In this eight-week study, we investigated changes in tissue weight, glucose-lipid metabolism levels, serum inflammation levels, and lesions of epididymal white adipose tissue (eWAT) evaluated via Hematoxylin and Eosin (H&E) staining. Moreover, we analyzed the gut microbiota composition and transcriptome of eWAT to assess the potential protective effects of RD intervention. Compared with a high-fat, high-sugar diet (HFHSD) group, the RD intervention significantly enhanced glucose homeostasis (e.g., AUC-OGTT, HOMA-IR, p < 0.001), and reduced lipid metabolism (e.g., TG, LDL-C, p < 0.001) and serum inflammation levels (e.g., IL-1β, IL-6, p < 0.001). The RD intervention also led to changes in the gut microbiota composition, with an increase in the abundance of probiotics (e.g., Parabacteroides, Faecalibaculum, and Muribaculum, p < 0.05) and a decrease in harmful bacteria (Colidextribacter, p < 0.05). Moreover, the RD intervention had a noticeable effect on the gene transcription profile of eWAT, and KEGG enrichment analysis revealed that differential genes were enriched in PI3K/AKT, AMPK, in glucose-lipid metabolism, and in the regulation of lipolysis in adipocytes signaling pathways. The findings demonstrated that RD not only ameliorated IR, but also remodeled the gut microbiota and modified the transcriptome profile of eWAT.
Collapse
Affiliation(s)
- Xinyang Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yinchen Hou
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Aimei Liao
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Long Pan
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shengru Yang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Yingying Liu
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jingjing Wang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingchun Xue
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mingyi Zhang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitong Zhu
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jihong Huang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (X.C.); (Y.H.); (A.L.); (L.P.); (Y.L.); (J.W.); (Y.X.); (M.Z.); (Z.Z.)
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
- School of Food and Pharmacy, Xuchang University, Xuchang 461000, China
| |
Collapse
|
32
|
Amidfar M, Askari G, Kim YK. Association of metabolic dysfunction with cognitive decline and Alzheimer's disease: A review of metabolomic evidence. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110848. [PMID: 37634657 DOI: 10.1016/j.pnpbp.2023.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
The discovery of new biomarkers that can distinguish Alzheimer's disease (AD) from mild cognitive impairment (MCI) in the early stages will help to provide new diagnostic and therapeutic strategies and slow the transition from MCI to AD. Patients with AD may present with a concomitant metabolic disorder, such as diabetes, obesity, and dyslipidemia, as a risk factor for AD that may be involved in the onset of both AD pathology and cognitive impairment. Therefore, metabolite profiling, or metabolomics, can be very useful in diagnosing AD, developing new therapeutic targets, and evaluating both the course of treatment and the clinical course of the disease. In addition, studying the relationship between nutritional behavior and AD requires investigation of the role of conditions such as obesity, hypertension, dyslipidemia, and elevated glucose level. Based on this literature review, nutritional recommendations, including weight loss by reducing calorie and cholesterol intake and omega-3 fatty acid supplementation can prevent cognitive decline and dementia in the elderly. The underlying metabolic causes of the pathology and cognitive decline caused by AD and MCI are not well understood. In this review article, metabolomics biomarkers for diagnosis of AD and MCI and metabolic risk factors for cognitive decline in AD were evaluated.
Collapse
Affiliation(s)
- Meysam Amidfar
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
33
|
Sood A, Fernandes V, Preeti K, Rajan S, Khatri DK, Singh SB. S1PR2 inhibition mitigates cognitive deficit in diabetic mice by modulating microglial activation via Akt-p53-TIGAR pathway. Int Immunopharmacol 2024; 126:111278. [PMID: 38011768 DOI: 10.1016/j.intimp.2023.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cognitive deficit is one of the challenging complications of type 2 diabetes. Sphingosine 1- phosphate receptors (S1PRs) have been implicated in various neurodegenerative and metabolic disorders. The association of S1PRs and cognition in type 2 diabetes remains elusive. Microglia-mediated neuronal damage could be the thread propagating cognitive deficit. The effects of S1PR2 inhibition on cognition in high-fat diet and streptozotocin-induced diabetic mice were examined in this work. We further assessed microglial activation and putative microglial polarisation routes. Cognitive function loss was observed after four months of diabetes induction in Type 2 diabetes animal model. JTE013, an S1PR2 inhibitor, was used to assess neuroprotection against cognitive decline and neuroinflammation in vitro and in vivo diabetes model. JTE013 (10 mg/kg) improved synaptic plasticity by upregulating psd95 and synaptophysin while reducing cognitive decline and neuroinflammation. It further enhanced anti-inflammatory microglia in the hippocampus and prefrontal cortex (PFC), as evidenced by increased Arg-1, CD206, and YM-1 levels and decreased iNOS, CD16, and MHCII levels. TIGAR, TP53-induced glycolysis and apoptosis regulator, might facilitate the anti-inflammatory microglial phenotype by promoting oxidative phosphorylation and decreasing apoptosis. However, since p53 is a TIGAR suppressor, inhibiting p53 could be beneficial. S1PR2 inhibition increased p-Akt and TIGAR levels and reduced the levels of p53 in the PFC and hippocampus of type 2 diabetic mice, thereby decreasing apoptosis. In vitro, palmitate was used to imitate sphingolipid dysregulation in BV2 cells, followed by conditioned media exposure to Neuro2A cells. JTE013 rescued the palmitate-induced neuronal apoptosis by promoting the anti-inflammatory microglia. In the present study, we demonstrate that the inhibition of S1PR2 improves cognitive function and skews microglia toward anti-inflammatory phenotype in type 2 diabetic mice, thereby promising to be a potential therapy for neuroinflammation.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Shruti Rajan
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India.
| |
Collapse
|
34
|
Huang J, Kee MZL, Law EC, Sum KK, Silveira PP, Godfrey KM, Daniel LM, Tan KH, Chong YS, Chan SY, Eriksson JG, Meaney MJ, Huang JY. Parental and child genetic burden of glycaemic dysregulation and early-life cognitive development: an Asian and European prospective cohort study. Transl Psychiatry 2024; 14:2. [PMID: 38177108 PMCID: PMC10766615 DOI: 10.1038/s41398-023-02694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Insulin resistance and glucose metabolism have been associated with neurodevelopmental disorders. However, in the metabolically more susceptible Asian populations, it is not clear whether the genetic burden of glycaemic dysregulation influences early-life neurodevelopment. In a multi-ethnic Asian prospective cohort study in Singapore (Growing Up in Singapore Towards healthy Outcomes (GUSTO)), we constructed child and parental polygenic risk scores (PRS) for glycaemic dysregulation based on the largest genome-wide association studies of type 2 diabetes and fasting glucose among Asians. We found that child PRS for HOMA-IR was associated with a lower perceptual reasoning score at ~7 years (β = -0. 141, p-value = 0.024, 95% CI -0. 264 to -0. 018) and a lower WIAT-III mean score at ~9 years (β = -0.222, p-value = 0.001, 95% CI -0.357 to -0.087). This association were consistent in direction among boys and girls. These inverse associations were not influenced by parental PRS and were likely mediated via insulin resistance rather than mediators such as birth weight and childhood body mass index. Higher paternal PRS for HOMA-IR was suggestively associated with lower child perceptual reasoning at ~7 years (β = -0.172, p-value = 0.002, 95% CI -0.280 to -0.064). Replication analysis in a European cohort, the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort, showed that higher child PRS for fasting glucose was associated with lower verbal IQ score while higher maternal PRS for insulin resistance was associated with lower performance IQ score in their children at ~8.5 years. In summary, our findings suggest that higher child PRS for HOMA-IR was associated with lower cognitive scores in both Asian and European replication cohorts. Differential findings between cohorts may be attributed to genetic and environmental factors. Further investigation of the functions of the genetic structure and ancestry-specific PRS and a more comprehensive investigation of behavioural mediators may help to understand these findings better.
Collapse
Affiliation(s)
- Jian Huang
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, UK.
| | - Michelle Z L Kee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Evelyn C Law
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Ka Kei Sum
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Patricia Pelufo Silveira
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychiatry, Faculty of Medicine and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Lourdes Mary Daniel
- Department of Child Development, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Obstetrics & Gynaecology, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, Human Potential Translational Research Programme, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Yong Loo Lin School of Medicine, Human Potential Translational Research Programme, National University of Singapore, Singapore, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Yong Loo Lin School of Medicine, Human Potential Translational Research Programme, National University of Singapore, Singapore, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of general practice and primary health care, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychiatry, Faculty of Medicine and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, Quebec, Canada
- Brain-Body Initiative, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jonathan Yinhao Huang
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
- Thompson School of Social Work & Public Health, Office of Public Health Studies, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
35
|
Yaribeygi H, Maleki M, Sathyapalan T, Rizzo M, Sahebkar A. Cognitive Benefits of Sodium-Glucose Co-Transporters-2 Inhibitors in the Diabetic Milieu. Curr Med Chem 2024; 31:138-151. [PMID: 36733247 DOI: 10.2174/0929867330666230202163513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 02/04/2023]
Abstract
Patients with diabetes are at higher risk of cognitive impairment and memory loss than the normal population. Thus, using hypoglycemic agents to improve brain function is important for diabetic patients. Sodium-glucose cotransporters-2 inhibitors (SGLT2i) are a class of therapeutic agents used in the management of diabetes that has some pharmacologic effects enabling them to fight against the onset and progress of memory deficits. Although the exact mediating pathways are not well understood, emerging evidence suggests that SGLT2 inhibition is associated with improved brain function. This study reviewed the possible mechanisms and provided evidence suggesting SGLT2 inhibitors could ameliorate cognitive deficits.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Javadi B, Sobhani Z. Role of apigenin in targeting metabolic syndrome: A systematic review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:524-534. [PMID: 38629096 PMCID: PMC11017844 DOI: 10.22038/ijbms.2024.71539.15558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/03/2023] [Indexed: 04/19/2024]
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities that has a high prevalence worldwide. Apigenin is a flavonoid present in several vegetables and fruits and has anti-inflammatory, anti-oxidant, and anti-MetS properties. This study aims to systematically review the effects of apigenin against MetS and the relevant molecular and cellular mechanisms of action, pharmacokinetics features, and potential structure-activity relationship. Electronic databases including Scopus, PubMed, Science Direct and Cochrane Library were searched for in vivo, and in vitro, and human studies with the following keywords: "apigenin" and "metabolic syndrome or insulin resistance syndrome", "fatty liver", "hypertension or blood pressure", "diabetes or blood glucose", "dyslipidemia", "heart or cardiovascular " and "obesity" in title/abstract. Data were collected from 2000 until 2021 (up to April). Only papers published in the English language were included. Forty-six full-text articles out of 1016 retrieved papers were reviewed and underwent quality assessment by investigators. Anti-obesity activity of apigenin is mainly through attenuating adipocyte differentiation by suppressing the mitotic clonal expansion and the adipogenesis-related factors. Its anti-diabetic effects can be exerted through inhibition of protein tyrosine phosphatase1B expression, maintaining the activity of anti-oxidant enzymes, reducing intracellular ROS production, cellular DNA damage, protein carbonylation, and attenuating β-cell apoptosis. Moreover, apigenin could attenuate dyslipidemia and subsequent atherosclerotic conditions through down-regulating sterol regulatory element-binding proteins (SREBP)-1c, SREBP-2, stearyl-CoA desaturase-1, and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Apigenin as a dietary bioactive compound would be a promising candidate for improving MetS and its components.
Collapse
Affiliation(s)
- Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sobhani
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Medina Dos Santos N, Batista ÂG, Padilha Mendonça MC, Figueiredo Angolini CF, Grimaldi R, Pastore GM, Sartori CR, Alice da Cruz-Höfling M, Maróstica Júnior MR. Açai pulp improves cognition and insulin sensitivity in obese mice. Nutr Neurosci 2024; 27:55-65. [PMID: 36625400 DOI: 10.1080/1028415x.2022.2158931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SCOPE Obesity and insulin resistance constitute risk factors for the development of tauopathies and other neurodegenerative diseases. (Poly)phenol compounds are under study for its role in protecting effects against neural injuries and degeneration. Here, we investigated the effect of Amazonian açai pulp (AP) intake in the prevention of memory and cognitive impairment resulting from a high-fat diet intake in mice. METHODS AND RESULTS Obesity and insulin resistance was induced with a high-fat diet and supplemented with 2% AP to investigate peripheral insulin resistance, recognition memory and tau protein stability via AKT/GSK3-β signaling pathway. The consumption of AP for 70 days improved peripheral insulin sensitivity and phosphorylation of AKT/GSK3-β in mice hippocampi. The animals fed high-fat diets supplemented with AP showed better performance in the novel object recognition test (NOR) in comparison to the H group. Catalase activity and reduced glutathione (GSH) values were improved in the treated mice. CONCLUSIONS These results suggest that the supplementation of AP can attenuate the effects of high-fat diet consumption in peripheral insulin resistance and improve cognitive behavior.
Collapse
Affiliation(s)
| | - Ângela Giovana Batista
- Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | | | | | - Renato Grimaldi
- Department of Food Technology, Faculty of Food Engineering, University of Campinas, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Brazil
| | - César Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
38
|
Na D, Lim DH, Hong JS, Lee HM, Cho D, Yu MS, Shaker B, Ren J, Lee B, Song JG, Oh Y, Lee K, Oh KS, Lee MY, Choi MS, Choi HS, Kim YH, Bui JM, Lee K, Kim HW, Lee YS, Gsponer J. A multi-layered network model identifies Akt1 as a common modulator of neurodegeneration. Mol Syst Biol 2023; 19:e11801. [PMID: 37984409 DOI: 10.15252/msb.202311801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The accumulation of misfolded and aggregated proteins is a hallmark of neurodegenerative proteinopathies. Although multiple genetic loci have been associated with specific neurodegenerative diseases (NDs), molecular mechanisms that may have a broader relevance for most or all proteinopathies remain poorly resolved. In this study, we developed a multi-layered network expansion (MLnet) model to predict protein modifiers that are common to a group of diseases and, therefore, may have broader pathophysiological relevance for that group. When applied to the four NDs Alzheimer's disease (AD), Huntington's disease, and spinocerebellar ataxia types 1 and 3, we predicted multiple members of the insulin pathway, including PDK1, Akt1, InR, and sgg (GSK-3β), as common modifiers. We validated these modifiers with the help of four Drosophila ND models. Further evaluation of Akt1 in human cell-based ND models revealed that activation of Akt1 signaling by the small molecule SC79 increased cell viability in all models. Moreover, treatment of AD model mice with SC79 enhanced their long-term memory and ameliorated dysregulated anxiety levels, which are commonly affected in AD patients. These findings validate MLnet as a valuable tool to uncover molecular pathways and proteins involved in the pathophysiology of entire disease groups and identify potential therapeutic targets that have relevance across disease boundaries. MLnet can be used for any group of diseases and is available as a web tool at http://ssbio.cau.ac.kr/software/mlnet.
Collapse
Affiliation(s)
- Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Do-Hwan Lim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae-Sang Hong
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Daeahn Cho
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bomi Lee
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Jae Gwang Song
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Yuna Oh
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kyungeun Lee
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kwang-Seok Oh
- Information-based Drug Research Center, Korea Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Mi Young Lee
- Information-based Drug Research Center, Korea Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Min-Seok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Han Saem Choi
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Yang-Hee Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Jennifer M Bui
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Tsai TH, Lu TH, Tseng HH, Chang WH, Wang TY, Yang YK, Chang HH, Chen PS. The relationship between peripheral insulin resistance and social cognitive deficits among euthymic patients with bipolar disorder. J Affect Disord 2023; 342:121-126. [PMID: 37683941 DOI: 10.1016/j.jad.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Despite extensive literature documenting emotion-related social-cognitive deficits in euthymic patients with bipolar disorder (BD), the factors contributing to these deficits have not been definitively established. To address this gap, the present study aimed to examine the association between peripheral insulin resistance (IR) and emotion-related social-cognitive abilities in BD patients and controls. METHOD Sixty-five BD patients and 38 non-psychiatric controls were recruited, and their social cognitive ability and IR were measured using the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) and the homeostasis model assessment of insulin resistance (HOMA-IR), respectively. RESULTS The study found that the BD patients scored significantly lower than the non-psychiatric controls in the task of emotional management. The BD patients had a higher mean HOMA-IR value as compared with the controls but this result was not statistically significant (p = 0.051). The interaction between BD diagnosis and HOMA-IR value was significant on the MSCEIT Facilitating emotions branch and Facilitation subscale (p = 0.024, p = 0.010), and post-hoc analyses revealed that the BD patients in the higher HOMA-IR group had significantly lower scores than BD patients in the lower HOMA-IR group and the non-psychiatric controls in the higher HOMA-IR group on both the MSCEIT Facilitating emotion branch and Facilitation subscale. LIMITATIONS Due to the cross-sectional nature of the study, causality could not be inferred. The study did not examine potential mediators or moderators between IR and social cognition. CONCLUSIONS The results suggested that BD patients with IR experience additional impairment in specific domains of social cognition.
Collapse
Affiliation(s)
- Tsung-Han Tsai
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hua Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei Hung Chang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
40
|
Al-Kuraishy HM, Jabir MS, Albuhadily AK, Al-Gareeb AI, Rafeeq MF. The link between metabolic syndrome and Alzheimer disease: A mutual relationship and long rigorous investigation. Ageing Res Rev 2023; 91:102084. [PMID: 37802319 DOI: 10.1016/j.arr.2023.102084] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
It has been illustrated that metabolic syndrome (MetS) is associated with Alzheimer disease (AD) neuropathology. Components of MetS including central obesity, hypertension, insulin resistance (IR), and dyslipidemia adversely affect the pathogenesis of AD by different mechanisms including activation of renin-angiotensin system (RAS), inflammatory signaling pathways, neuroinflammation, brain IR, mitochondrial dysfunction, and oxidative stress. MetS exacerbates AD neuropathology, and targeting of molecular pathways in MetS by pharmacological approach could a novel therapeutic strategy in the management of AD in high risk group. However, the underlying mechanisms of these pathways in AD neuropathology are not completely clarified. Therefore, this review aims to elucidate the association between MetS and AD regarding the oxidative and inflammatory mechanistic pathways.
Collapse
Affiliation(s)
- Haydar M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied science, University of technology, Iraq.
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | |
Collapse
|
41
|
Kim B, Kang Y, Mendelson FE, Hayes JM, Savelieff MG, Nagrath S, Feldman EL. Palmitate and glucose increase amyloid precursor protein in extracellular vesicles: Missing link between metabolic syndrome and Alzheimer's disease. J Extracell Vesicles 2023; 12:e12340. [PMID: 37898562 PMCID: PMC10613125 DOI: 10.1002/jev2.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 10/30/2023] Open
Abstract
The metabolic syndrome (MetS) and Alzheimer's disease share several pathological features, including insulin resistance, abnormal protein processing, mitochondrial dysfunction and elevated inflammation and oxidative stress. The MetS constitutes elevated fasting glucose, obesity, dyslipidaemia and hypertension and increases the risk of developing Alzheimer's disease, but the precise mechanism remains elusive. Insulin resistance, which develops from a diet rich in sugars and saturated fatty acids, such as palmitate, is shared by the MetS and Alzheimer's disease. Extracellular vesicles (EVs) are also a point of convergence, with altered dynamics in both the MetS and Alzheimer's disease. However, the role of palmitate- and glucose-induced insulin resistance in the brain and its potential link through EVs to Alzheimer's disease is unknown. We demonstrate that palmitate and high glucose induce insulin resistance and amyloid precursor protein phosphorylation in primary rat embryonic cortical neurons and human cortical stem cells. Palmitate also triggers insulin resistance in oligodendrocytes, the supportive glia of the brain. Palmitate and glucose enhance amyloid precursor protein secretion from cortical neurons via EVs, which induce tau phosphorylation when added to naïve neurons. Additionally, EVs from palmitate-treated oligodendrocytes enhance insulin resistance in recipient neurons. Overall, our findings suggest a novel theory underlying the increased risk of Alzheimer's disease in MetS mediated by EVs, which spread Alzheimer's pathology and insulin resistance.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Yoon‐Tae Kang
- Department of Chemical Engineering and Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Faye E. Mendelson
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - John M. Hayes
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Sunitha Nagrath
- Department of Chemical Engineering and Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
42
|
Medina-Vera D, Zambrana-Infantes EN, López-Gambero AJ, Verheul-Campos J, Santín LJ, Baixeras E, Suarez J, Pavon FJ, Rosell-Valle C, de Fonseca FR. Transcending the amyloid-beta dominance paradigm in Alzheimer's disease: An exploration of behavioural, metabolic, and gut microbiota phenotypes in 5xFAD mice. Neurobiol Dis 2023; 187:106295. [PMID: 37717663 DOI: 10.1016/j.nbd.2023.106295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
The amyloid cascade hypothesis is widely accepted as an explanation for the neuropathological changes in Alzheimer's disease (AD). However, the role of amyloid-beta (Aβ) as the sole cause of these changes is being questioned. Using the 5xFAD mouse model of AD, we investigated various factors contributing to neuropathology, including genetic load (heterozygous (HTZ) versus homozygous (HZ) condition), behavioural phenotype, neuropathology markers, metabolic physiology, and gut microbiota composition at early (5 months of age) and late (12 months of age) stages of disease onset, and considering both sexes. At 5 months of age, both HTZ and HZ mice exhibited hippocampal alterations associated with Aβ accumulation, leading to increased neuroinflammation and disrupted PI3K-Akt pathway. However, only HZ mice showed cognitive impairment in the Y-maze and Morris water maze tests, worsening with age. Dysregulation of both insulin and insulin secretion-regulating GIP peptide were observed at 5 months of age, disappearing later. Circulating levels of metabolic-regulating hormones, such as Ghrelin and resisting helped to differentiates HTZ mice from HZ mice. Differences between HTZ and HZ mice were also observed in gut microbiota composition, disrupted intestinal barrier proteins, and increased proinflammatory products in the intestine. These findings suggest that cognitive impairment in 5xFAD mice may not solely result from Aβ aggregation. Other factors, including altered PI3K-Akt signalling, disrupted insulin-linked metabolic pathways, and changes in gut microbiota, contribute to disease progression. Targeting Aβ deposition alone may not suffice. Understanding AD pathogenesis and its multiple contributing factors is vital for effective therapies.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29010 Málaga, Spain; Facultad de Medicina, Campus de Teatinos s/n, Universidad de Málaga, 29010 Málaga, Spain; Unidad de Gestión Clínica del Corazón-CIBERCV (Enfermedades Cardiovasculares), Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Emma N Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Antonio J López-Gambero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France
| | - Julia Verheul-Campos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Juan Suarez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Francisco J Pavon
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; Unidad de Gestión Clínica del Corazón-CIBERCV (Enfermedades Cardiovasculares), Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| |
Collapse
|
43
|
Huang F, Marungruang N, Martinsson I, Camprubí Ferrer L, Nguyen TD, Gondo TF, Karlsson EN, Deierborg T, Öste R, Heyman-Lindén L. A mixture of Nordic berries improves cognitive function, metabolic function and alters the gut microbiota in C57Bl/6J male mice. Front Nutr 2023; 10:1257472. [PMID: 37854349 PMCID: PMC10580983 DOI: 10.3389/fnut.2023.1257472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Our diets greatly influence our health. Multiple lines of research highlight the beneficial properties of eating berries and fruits. In this study, a berry mixture of Nordic berries previously identified as having the potential to improve memory was supplemented to young C57Bl/6J male mice to investigate effects on cognition function, metabolic health, markers of neuroinflammation, and gut microbiota composition. C57Bl/6J male mice at the age of 8 weeks were given standard chow, a high-fat diet (HF, 60%E fat), or a high-fat diet supplemented with freeze-dried powder (20% dwb) of a mixture of Nordic berries and red grape juice (HF + Berry) for 18 weeks (n = 12 animals/diet group). The results show that supplementation with the berry mixture may have beneficial effects on spatial memory, as seen by enhanced performance in the T-maze and Barnes maze compared to the mice receiving the high-fat diet without berries. Additionally, berry intake may aid in counteracting high-fat diet induced weight gain and could influence neuroinflammatory status as suggested by the increased levels of the inflammation modifying IL-10 cytokine in hippocampal extracts from berry supplemented mice. Furthermore, the 4.5-month feeding with diet containing berries resulted in significant changes in cecal microbiota composition. Analysis of cecal bacterial 16S rRNA revealed that the chow group had significantly higher microbial diversity, as measured by the Shannon diversity index and total operational taxonomic unit richness, than the HF group. The HF diet supplemented with berries resulted in a strong trend of higher total OTU richness and significantly increased the relative abundance of Akkermansia muciniphila, which has been linked to protective effects on cognitive decline. In conclusion, the results of this study suggest that intake of a Nordic berry mixture is a valuable strategy for maintaining and improving cognitive function, to be further evaluated in clinical trials.
Collapse
Affiliation(s)
- Fang Huang
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
- Aventure AB, Lund, Sweden
| | | | - Isak Martinsson
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lluís Camprubí Ferrer
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Thao Duy Nguyen
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Thamani Freedom Gondo
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | | | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Lovisa Heyman-Lindén
- Berry Lab AB, Lund, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Xiu M, Fan Y, Liu Q, Chen S, Wu F, Zhang X. Glucose metabolism, hippocampal subfields and cognition in first-episode and never-treated schizophrenia. Int J Clin Health Psychol 2023; 23:100402. [PMID: 37663043 PMCID: PMC10469074 DOI: 10.1016/j.ijchp.2023.100402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Background Previous studies have indicated that glucose metabolism and altered hippocampal structure and function play a pivotal role in cognitive deficits in schizophrenia (SZ). This study was designed to explore the inter-relationship between glucose metabolism, hippocampal subfield volume, and cognitive function in the antipsychotics-naive first episode (ANFE) SZ patients. Methods We chose the fasting insulin, glucose, and insulin resistance (HOMA-IR) index as biomarkers of glucose metabolism. Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB). The hippocampal subfield volume, glucose metabolism biomarkers, and cognitive function were evaluated in 43 ANFE SZ and 29 healthy controls (HCs). Results Compared with HCs, SZ patients had higher fasting blood glucose and insulin levels and HOMA-IR (all p < 0.05). Correlation analysis revealed that category fluency performance was positively associated with fasting glucose level. Fasting insulin or HOMA-IR was positively associated with the hippocampal subfield volume in patients (all p<0.05). Moreover, the spatial span index score was associated with the volume of the right presubiculum, subiculum, and right hippocampal tail. In addition, multiple regression analysis found that the interaction effects of insulin × right fimbria or insulin × left fimbria were independent predictors of the MCCB total score. Conclusions Our findings suggest that abnormal glucose metabolism and cognitive decline occur in the early stage of SZ. The interaction between abnormal glucose metabolism and hippocampal subfields was associated with cognitive functions in SZ.
Collapse
Affiliation(s)
- Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Yong Fan
- Qingdao Mental Health Center, Qingdao, China
| | - Qinqin Liu
- Qingdao Mental Health Center, Qingdao, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Huerta-Canseco C, Caba M, Camacho-Morales A. Obesity-mediated Lipoinflammation Modulates Food Reward Responses. Neuroscience 2023; 529:37-53. [PMID: 37591331 DOI: 10.1016/j.neuroscience.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Accumulation of white adipose tissue (WAT) during obesity is associated with the development of chronic low-grade inflammation, a biological process known as lipoinflammation. Systemic and central lipoinflammation accumulates pro-inflammatory cytokines including IL-6, IL-1β and TNF-α in plasma and also in brain, disrupting neurometabolism and cognitive behavior. Obesity-mediated lipoinflammation has been reported in brain regions of the mesocorticolimbic reward circuit leading to alterations in the perception and consumption of ultra-processed foods. While still under investigation, lipoinflammation targets two major outcomes of the mesocorticolimbic circuit during food reward: perception and motivation ("Wanting") and the pleasurable feeling of feeding ("Liking"). This review will provide experimental and clinical evidence supporting the contribution of obesity- or overnutrition-related lipoinflammation affecting the mesocorticolimbic reward circuit and enhancing food reward responses. We will also address neuroanatomical targets of inflammatory profiles that modulate food reward responses during obesity and describe potential cellular and molecular mechanisms of overnutrition linked to addiction-like behavior favored by brain lipoinflammation.
Collapse
Affiliation(s)
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico; Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
| |
Collapse
|
46
|
Naz MSG, Rahnemaei FA, Tehrani FR, Sayehmiri F, Ghasemi V, Banaei M, Ozgoli G. Possible cognition changes in women with polycystic ovary syndrome: a narrative review. Obstet Gynecol Sci 2023; 66:347-363. [PMID: 37376796 PMCID: PMC10514592 DOI: 10.5468/ogs.22165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/15/2022] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Nowadays, polycystic ovary syndrome (PCOS) and cognitive dysfunction are major health problems among female. This narrative review aimed to investigate cognitive dysfunction in female with PCOS. English and Persian articles published in PubMed, Scopus, Web of Science, Google Scholar, PsycINFO, Scientific Information Database, and Cochrane Database of Systematic Reviews until May 2022 were searched. Sixteen studies involving 850 female with PCOS and 974 controls were assessed. In these studies, the association between biochemical factors and symptoms of PCOS and memory, attention, executive functioning, information processing speed, and visuospatial skills was evaluated. The literature review revealed the possible cognitive changes in female with PCOS. This study summarized the different aspects of cognitive function in female with PCOS due to medication, psychological problems (mood disorders caused by disease symptoms and complications), and biochemical markers, such as metabolic and sex hormone abnormalities. Considering the existing scientific gap regarding the possibility of cognitive complications in female with PCOS, further biological studies should be conducted to evaluate the potential mechanisms involved.
Collapse
Affiliation(s)
- Marzieh Saei Ghare Naz
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| | - Fatemeh Alsadat Rahnemaei
- Reproductive Health Research Center, Department of Obstetrics & Gynecology, Al-zahra Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht,
Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| | - Vida Ghasemi
- Department of Nursing, Asadabad School of Medical Sciences, Asadabad,
Iran
| | - Mojdeh Banaei
- Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas,
Iran
| | - Giti Ozgoli
- Midwifery and Reproductive Health Research Center, Department of Midwifery and Reproductive Health, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| |
Collapse
|
47
|
Guo X, Lei M, Zhao J, Wu M, Ren Z, Yang X, Ouyang C, Liu X, Liu C, Chen Q. Tirzepatide ameliorates spatial learning and memory impairment through modulation of aberrant insulin resistance and inflammation response in diabetic rats. Front Pharmacol 2023; 14:1146960. [PMID: 37701028 PMCID: PMC10493299 DOI: 10.3389/fphar.2023.1146960] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background: One of the typical symptoms of diabetes mellitus patients was memory impairment, which was followed by gradual cognitive deterioration and for which there is no efficient treatment. The anti-diabetic incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) were demonstrated to have highly neuroprotective benefits in animal models of AD. We wanted to find out how the GLP-1/GIP dual agonist tirzepatide affected diabetes's impairment of spatial learning memory. Methods: High fat diet and streptozotocin injection-induced diabetic rats were injected intraperitoneally with Tirzepatide (1.35 mg/kg) once a week. The protective effects were assessed using the Morris water maze test, immunofluorescence, and Western blot analysis. Golgi staining was adopted for quantified dendritic spines. Results: Tirzepatide significantly improved impaired glucose tolerance, fasting blood glucose level, and insulin level in diabetic rats. Then, tirzepatide dramatically alleviated spatial learning and memory impairment, inhibited Aβ accumulation, prevented structural damage, boosted the synthesis of synaptic proteins and increased dendritic spines formation in diabetic hippocampus. Furthermore, some aberrant changes in signal molecules concerning inflammation signaling pathways were normalized after tirzepatide treatment in diabetic rats. Finally, PI3K/Akt/GSK3β signaling pathway was restored by tirzepatide. Conclusion: Tirzepatide obviously exerts a protective effect against spatial learning and memory impairment, potentially through regulating abnormal insulin resistance and inflammatory responses.
Collapse
Affiliation(s)
- Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Jiangyan Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Min Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Changhan Ouyang
- Pharmacy College, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
48
|
de la Monte SM, Tong M, Hapel AJ. Concordant and Discordant Cerebrospinal Fluid and Plasma Cytokine and Chemokine Responses in Mild Cognitive Impairment and Early-Stage Alzheimer's Disease. Biomedicines 2023; 11:2394. [PMID: 37760836 PMCID: PMC10525668 DOI: 10.3390/biomedicines11092394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroinflammation may be a pathogenic mediator and biomarker of neurodegeneration at the boundary between mild cognitive impairment (MCI) and early-stage Alzheimer's disease (AD). Whether neuroinflammatory processes are endogenous to the central nervous system (CNS) or originate from systemic (peripheral blood) sources could impact strategies for therapeutic intervention. To address this issue, we measured cytokine and chemokine immunoreactivities in simultaneously obtained lumbar puncture cerebrospinal fluid (CSF) and serum samples from 39 patients including 18 with MCI or early AD and 21 normal controls using a 27-plex XMAP bead-based enzyme-linked immunosorbent assay (ELISA). The MCI/AD combined group had significant (p < 0.05 or better) or statistically trend-wise (0.05 ≤ p ≤ 0.10) concordant increases in CSF and serum IL-4, IL-5, IL-9, IL-13, and TNF-α and reductions in GM-CSF, b-FGF, IL-6, IP-10, and MCP-1; CSF-only increases in IFN-y and IL-7 and reductions in VEGF and IL-12p70; serum-only increases in IL-1β, MIP-1α, and eotaxin and reductions in G-CSF, IL-2, IL-8 and IL-15; and discordant CSF-serum responses with reduced CSF and increased serum PDGF-bb, IL-17a, and RANTES. The results demonstrate simultaneously parallel mixed but modestly greater pro-inflammatory compared to anti-inflammatory or neuroprotective responses in CSF and serum. In addition, the findings show evidence that several cytokines and chemokines are selectively altered in MCI/AD CSF, likely corresponding to distinct neuroinflammatory responses unrelated to systemic pathologies. The aggregate results suggest that early management of MCI/AD neuroinflammation should include both anti-inflammatory and pro-neuroprotective strategies to help prevent disease progression.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology (Neuropathology), Neurology, and Neurosurgery, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Andrew J. Hapel
- Department of Genome Biology, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
49
|
Lee JH, Kwon YJ, Kim SJ, Joung B. Metabolic syndrome as an independent risk factor for glaucoma: a nationally representative study. Diabetol Metab Syndr 2023; 15:177. [PMID: 37620923 PMCID: PMC10464157 DOI: 10.1186/s13098-023-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Central insulin resistance contributes to glaucoma development. Given the close association between metabolic syndrome MetS and insulin resistance, this study aimed to determine whether MetS is associated with glaucoma risk. METHODS We analyzed data from 11,499 adults aged ≥ 19 years in the 2019-2021 Korean National Health and Nutrition Examination Survey and applied sampling weights to represent the general Korean population. Participants were classified into groups with or without MetS. Ocular hypertension (HTN) was defined as intraocular pressure > 21 mmHg. Primary open-angle glaucoma (POAG) was diagnosed based on the results of a visual field test and optical coherence tomography using the criteria published by the International Society for Geographic and Epidemiological Ophthalmology. We further divided POAG into normal tension (NTG) and POAG with ocular HTN. A spline curve was drawn to determine the dose-response relationship between the number of MetS components and risk of POAG. Odds ratios (ORs) with 95% confidence interval (CI) for POAG according to MetS status were estimated using weighted logistic regression analyses. RESULTS The prevalence of POAG was 5.7% and 3.5%, respectively, in groups with and without MetS. We identified a dose-response relationship between the number of MetS components and risk of POAG. Unadjusted ORs (95% CI) for POAG in the group with MetS was 1.85 (1.52-2.25), compared with those without MetS. The trends persisted in adjusted models. The fully-adjusted OR (95% CI) for POAG was 1.47 (1.04-2.09) in the group with MetS. Subgroup analysis revealed that a significant relationship remained only in the NTG group (fully adjusted OR, 1.50; 95% CI 1.05-2.15). CONCLUSIONS A comprehensive ophthalmological assessment should be considered for persons with MetS who are at increased risk of POAG, particularly NTG.
Collapse
Affiliation(s)
- Jun-Hyuk Lee
- Department of Family Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, 01830 Republic of Korea
- Department of Medicine, Graduate School of Hanyang University, Seoul, 04763 Republic of Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, 16995 Republic of Korea
| | - Sung Jin Kim
- Department of Ophthalmology, Nowon Eulji Medical Center, Eulji University School of Medicine, 68 Hangeulbiseok-ro, Nowon-gu, Seoul, 01830 Republic of Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
50
|
Otero-Losada M, Marseglia A, Blanco Calvo E, Capani F. Editorial: Neurological comorbidity in metabolic syndrome. Front Neurosci 2023; 17:1263570. [PMID: 37655009 PMCID: PMC10466043 DOI: 10.3389/fnins.2023.1263570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires, Argentina
| | - Anna Marseglia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo Blanco Calvo
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago de Chile, Chile
| |
Collapse
|