1
|
Sung EA, Dozmorov MG, Song S, Aung T, Park MH, Sime PJ, Chae WJ. Ablation of LRP6 in alpha-smooth muscle actin-expressing cells abrogates lung inflammation and fibrosis upon bleomycin-induced lung injury. FEBS Lett 2025; 599:1468-1480. [PMID: 39873304 DOI: 10.1002/1873-3468.15106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
Tissue fibrosis is a progressive pathological process with excessive deposition of extracellular matrix proteins (ECM). Myofibroblasts, identified by alpha-smooth muscle actin (αSMA) expression, play an important role in tissue fibrosis by producing ECM. Here, we found that the Wnt antagonist Dickkopf1 (DKK1) induced gene expressions associated with inflammation and fibrosis in lung fibroblasts. We demonstrated that genetic deletion of LRP6, a receptor for Wnt ligands and DKK1, in αSMA-expressing cells using Acta2-cre Lrp6fl/fl (Lrp6AKO) mice abrogated the bleomycin (BLM)-induced lung inflammation and fibrosis phenotype, suggesting an important role for LRP6 in modulating inflammation and fibrotic processes in the lung. Our results highlight the crucial role of LRP6 in fibroblasts in regulating inflammation and fibrosis upon BLM-induced lung injury.
Collapse
Affiliation(s)
- Eun-Ah Sung
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - SuJeong Song
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Theingi Aung
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Min Hee Park
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricia J Sime
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Wook-Jin Chae
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Phillips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University School of Dentistry, Richmond, VA, USA
| |
Collapse
|
2
|
He T, Qin L, Chen S, Huo S, Li J, Zhang F, Yi W, Mei Y, Xiao G. Bone-derived factors mediate crosstalk between skeletal and extra-skeletal organs. Bone Res 2025; 13:49. [PMID: 40307216 PMCID: PMC12044029 DOI: 10.1038/s41413-025-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Bone has long been acknowledged as a fundamental structural entity that provides support and protection to the body's organs. However, emerging research indicates that bone plays a crucial role in the regulation of systemic metabolism. This is achieved through the secretion of a variety of hormones, cytokines, metal ions, extracellular vesicles, and other proteins/peptides, collectively referred to as bone-derived factors (BDFs). BDFs act as a medium through which bones can exert targeted regulatory functions upon various organs, thereby underscoring the profound and concrete implications of bone in human physiology. Nevertheless, there remains a pressing need for further investigations to elucidate the underlying mechanisms that inform the effects of bone on other body systems. This review aims to summarize the current findings related to the roles of these significant modulators across different organs and metabolic contexts by regulating critical genes and signaling pathways in vivo. It also addresses their involvement in the pathogenesis of various diseases affecting the musculoskeletal system, circulatory system, glucose and lipid metabolism, central nervous system, urinary system, and reproductive system. The insights gained from this review may contribute to the development of innovative therapeutic strategies through a focused approach to bone secretomes. Continued research into BDFs is expected to enhance our understanding of bone as a multifunctional organ with diverse regulatory roles in human health.
Collapse
Affiliation(s)
- Tailin He
- Department of Rheumatology and Immunology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), 100101, Beijing, China
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Qin
- Department of Orthopedics, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China, Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen, 518000, China
| | - Jie Li
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), 100101, Beijing, China
| | - Weihong Yi
- Department of Orthopedics, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yifang Mei
- Department of Rheumatology and Immunology, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Guozhi Xiao
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Nikolova MT, He Z, Seimiya M, Jonsson G, Cao W, Okuda R, Wimmer RA, Okamoto R, Penninger JM, Camp JG, Treutlein B. Fate and state transitions during human blood vessel organoid development. Cell 2025:S0092-8674(25)00387-3. [PMID: 40250419 DOI: 10.1016/j.cell.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2024] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Human blood vessel organoids (hBVOs) have emerged as a system to model human vascular development and disease. Here, we use single-cell multi-omics together with genetic and signaling pathway perturbations to reconstruct hBVO development. Mesodermal progenitors bifurcate into endothelial and mural fates in vitro, and xenografted BVOs acquire definitive arteriovenous endothelial cell specification. We infer a gene regulatory network and use single-cell genetic perturbations to identify transcription factors (TFs) and receptors involved in cell fate specification, including a role for MECOM in endothelial and mural specification. We assess the potential of BVOs to generate organotypic states, identify TFs lacking expression in hBVOs, and find that induced LEF1 overexpression increases brain vasculature specificity. Finally, we map vascular disease-associated genes to hBVO cell states and analyze an hBVO model of diabetes. Altogether, we provide a comprehensive cell state atlas of hBVO development and illuminate the power and limitation of hBVOs for translational research.
Collapse
Affiliation(s)
- Marina T Nikolova
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Wuji Cao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ryo Okuda
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Reiner A Wimmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ryoko Okamoto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - J Gray Camp
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; Biozentrum, University of Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
4
|
Li W, Ji T, Ye J, Xiong S, Si Y, Sun X, Li F, Dai Z. Ferroptosis enhances the therapeutic potential of oncolytic adenoviruses KD01 against cancer. Cancer Gene Ther 2025; 32:403-417. [PMID: 40033102 PMCID: PMC11976264 DOI: 10.1038/s41417-025-00882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Oncolytic virotherapy has emerged as a promising strategy for cancer treatment by selectively targeting and lysing tumor cells. However, its efficacy is often limited in certain tumor types due to multiple factors. This study explores the combination of oncolytic adenoviruses with Erastin, a potent ferroptosis inducer, to enhance antitumor efficacy in oncolytic virus-insensitive cancer cell lines. In vitro experiments demonstrated that Erastin significantly increased the cytotoxicity of oncolytic virotherapy, leading to greater inhibition of cell proliferation and elevated rates of cell death compared to monotherapies. The combination treatment further promoted ferroptosis, as evidenced by increased reactive oxygen species (ROS) levels, enhanced lipid peroxidation, and disrupted redox homeostasis. RNA sequencing identified the downregulation of Dickkopf-1 (DKK1) as a key mediator of the enhanced ferroptotic effect. Restoring the expression of DKK1 partially mitigated the cytotoxic effects of the combination therapy, highlighting its crucial role in mediating the enhanced ferroptosis-induced oncolytic virotherapy efficacy. In vivo studies further validated these findings, demonstrating that the combined treatment significantly reduced tumor growth without inducing notable toxicity. This novel therapeutic approach has great potential to enhance the efficacy of oncolytic virotherapy in cancers resistant to oncolytic viruses by inducing ferroptosis. Further investigation in clinically relevant models is warranted to fully elucidate the underlying mechanisms and to optimize this combination strategy for potential clinical applications.
Collapse
Affiliation(s)
- Wenhuan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Teng Ji
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Jiaqi Ye
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Shengfeng Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Yao Si
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiaohui Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Fei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Zhoutong Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| |
Collapse
|
5
|
Narayanaswamy S, Technau U. Self-organization of an organizer: Whole-body regeneration from reaggregated cells in cnidarians. Cells Dev 2025:204024. [PMID: 40180217 DOI: 10.1016/j.cdev.2025.204024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Cnidarians like the freshwater polyp Hydra and the sea anemone Nematostella, are famous for their enormous capacity to regenerate missing head or feet upon bisection. Classical transplantation experiments have demonstrated that the hypostome, the oral tip of the freshwater polyp Hydra, acts as an axial organizer. Likewise, transplantation of the blastopore lip of an early Nematostella gastrula stage embryo to an aboral position leads to ectopic head formation. Following molecular analyses have shown that Wnt signaling is the key component of this organizer activity. Moreover, when dissociated and reaggregated head (and foot) organizer centres are re-established by self-organization. Similarly, "gastruloids", i.e. aggregates of dissociated early gastrula stage embryos, are able to self-organize. Here, we review the past and recent molecular and theoretical work in the field to explain this phenomenon. While Turing-type reaction-diffusion models involving morphogens like Wnt dominated the field for many years, recent work emphasized the importance of biophysical cues in symmetry breaking and establishment of the organizers in aggregates. The comparison with Nematostella aggregates suggests that the principles of self-organization in cnidarians is not universal.
Collapse
Affiliation(s)
- Sanjay Narayanaswamy
- Dept. of Neurosciences and Developmental Biology, Research Platform "Single cell regulation of stem cells", Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ulrich Technau
- Dept. of Neurosciences and Developmental Biology, Research Platform "Single cell regulation of stem cells", Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
6
|
Chen J, Meng A. Maternal control of embryonic dorsal organizer in vertebrates. Cells Dev 2025:204020. [PMID: 40058595 DOI: 10.1016/j.cdev.2025.204020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
The establishment of the body axis and developmental blueprint in embryos has remained to be a central question in developmental biology, captivating scientists for centuries. A milestone in this field was achieved in 1924 when Hans Spemann and Hilde Mangold discovered the dorsal organizer for embryonic body axis formation in amphibians. Since then, extensive studies have demonstrated that the dorsal organizer is evolutionarily conserved in vertebrates. This organizer functions as a signaling center, directing adjacent cells toward specific fates and orchestrating pattern formation to establish the embryonic axis. After 70 years since the discovery of the organizer, studies in different model animal species had revealed that locally activated β-catenin signaling during blastulation plays an indispensable role in organizer induction. Then, efforts have been made to identify initiators of β-catenin activation in blastulas. Now, it appears that maternal Huluwa, a transmembrane protein, is a bona fide organizer inducer at least in teleost fish and frog, which can activate downstream signaling pathways, including but probably not limited to β-catenin pathway. More studies are needed to decode the complete molecular network controlling organizer induction.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Yasmin IA, Dharmarajan A, Warrier S. A novel function of the Wnt antagonist secreted frizzled-related protein 4 as a transcriptional regulator of Dickkopf-1, another Wnt antagonist, in glioblastoma cell line U87MG. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119918. [PMID: 39938692 DOI: 10.1016/j.bbamcr.2025.119918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/03/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Wnt/β-catenin pathway dysregulation is associated with glioblastoma multiforme (GBM) pathogenesis and Wnt antagonists are downregulated in GBM. Wnt antagonist secreted frizzled-related protein 4 (sFRP4) has a tissue-specific, anti-metastatic and anti-stemness property. Our lab previously reported that gene silencing of sFRP4 in GBM cell line U87MG increases expression of another Wnt antagonist, Dickkopf-1 (Dkk1) and sFRP4 has a DNA binding ability. These findings in accordance with the nuclear localization of sFRP4 led to our present hypothesis that sFRP4 presumably negatively regulates Dkk1 and it probably interacts with the promoter region of Dkk1. Methylation-specific PCR (MSP), chromatin accessibility real-time PCR (ChART-PCR) assay, chromatin immunoprecipitation (ChIP), and quantitative DNA-protein interaction enzyme-linked immunosorbent assay (qDPI-ELISA) were carried out to test our hypothesis. We demonstrated that sFRP4 overexpression does not alter the methylation status of the Dkk1 promoter region. sFRP4 overexpression inhibits DNA-transcription factor interaction and enables chromatin accessibility to DNase I. Pertinently, sFRP4 has strong putative binding sites in the Dkk1 promoter region and its overexpression disrupts its interaction with the Dkk1 promoter. Interestingly, sFRP4 has the strongest affinity towards the -282 to +118 bp region. Downregulation of Dkk1 by overexpressed sFRP4 occurs by inhibition of the direct interaction of sFRP4 with the promoter region of Dkk1 as observed with low concentrations of sFRP4. We report for the first time a novel function of the Wnt antagonist sFRP4 acting as a transcription factor for another Wnt antagonist Dkk1, throwing open a new vista in the complex interplay between different antagonists of the Wnt pathway.
Collapse
Affiliation(s)
- Ishmat Ara Yasmin
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India.
| |
Collapse
|
8
|
Azbazdar Y, De Robertis EM. Double assurance in the induction of axial development by egg dorsal determinants in Xenopus embryos. Proc Natl Acad Sci U S A 2025; 122:e2421772122. [PMID: 39928870 PMCID: PMC11848351 DOI: 10.1073/pnas.2421772122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/04/2025] [Indexed: 02/12/2025] Open
Abstract
We recently reported that microinjection of Xenopus nodal-related (xnr) mRNAs into β-catenin-depleted Xenopus embryos rescued a complete dorsal axis. Xnrs mediate the signal of the Nieuwkoop center that induces the Spemann-Mangold organizer in the overlying mesoderm, a process inhibited by the Nodal antagonist Cerberus-short (CerS). However, β-catenin also induces a second signaling center in the dorsal prospective ectoderm, designated the Blastula Chordin and Noggin Expression (BCNE) center, in which the homeobox gene siamois (sia) plays a major role. In this study, we asked whether the Xnrs and Sia depend on each other or function on parallel pathways. Expression of both genes induced β-catenin-depleted embryos to form complete axes with heads and eyes via the activation of similar sets of downstream organizer-specific genes. Xnrs did not activate siamois, and, conversely, Sia did not activate xnrs, although both were induced by β-catenin stabilization. Depletion with morpholinos revealed a robust role for the downstream target Chordin. Remarkably, Chordin depletion prevented all ectopic effects resulting from microinjection of the mRNA encoding the maternal cytoplasmic determinant Huluwa, including the radial expansion of brain tissue and the ectopic expression of the ventral gene sizzled. The main conclusion was that the BCNE and Nieuwkoop centers provide a double assurance mechanism for axial formation by independently activating similar downstream transcriptional target gene repertoires. We suggest that Siamois likely evolved from an ancestral Mix-type homeodomain protein called Sebox as a Xenopus-specific adaptation for the rapid differentiation of the anterior neural plate in the ectoderm.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| |
Collapse
|
9
|
Gupta A, Sharma A, Kumar V, Kaushal L, Vinay K, Kumaran MS, Bishnoi A, Parsad D. Dickkopf 1 and Neuregulin 1 as cutaneous biomarkers for dermal pigmentation activity in acquired dermal macular hyperpigmentation (ADMH): a case control study. Arch Dermatol Res 2025; 317:378. [PMID: 39921734 DOI: 10.1007/s00403-025-03906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Lichen planus pigmentosus (LPP), ashy dermatosis, and Riehl's melanosis are all referred to by the general term acquired dermal macular hyperpigmentation (ADMH). These conditions are distinguished clinically by hyperpigmented macules and patches of unknown cause. Melanogenesisis regulated by multiple dermal factors secreted by fibroblasts and among them are neuregulin1 (NRG1) and dickkopf1 (DKK1). This study was designed to study NRG1 and DKK1 as cutaneous biomarkers for activity of dermal pigmentation in ADMH and to correlate their activity with acquired dermal macular hyperpigmentation area and severity index (DPASI) score. A total of 35 clinically diagnosed ADMH patients and 10 healthy controls along with 4 positive controls of melasma patients were included in the study and DPASI score was calculated using Dermlite (DL4) dermatoscope to assess the disease severity. Skin biopsy samples were taken and immunofluorescence and qPCR were performed to measure the expression of NRG1 and DKK1. A correlation of NRG1 expression, DKK1 expression with DPASI score was assessed. NRG1 expression had a linear positive correlation with DPASI score with a correlation coefficient (r = 0.97) (p < 0.001), while DKK1 showed an inverse correlation with a correlation coefficient (r=-0.69) (p < 0.001). NRG1 and DKK1 expression regulates pigmentation in ADMH and they can be used as an objective tool to assess the disease activity and probably guide therapy.
Collapse
Affiliation(s)
- Abhay Gupta
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Apoorva Sharma
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Laveena Kaushal
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Keshavamurthy Vinay
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Muthu Sendhil Kumaran
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Davinder Parsad
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India.
| |
Collapse
|
10
|
Tam PPL, Masamsetti P. Functional attributes of the anterior mesendoderm in patterning the anterior neural structures during head formation in the mouse. Cells Dev 2025:203999. [PMID: 39880304 DOI: 10.1016/j.cdev.2025.203999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Induction of the neural ectoderm and the patterning of embryonic brain are the requisite organizing activity for head formation. Studies of loss-of-function mouse mutants that displayed a head truncation phenotype pointed to a key functional role of the anterior mesendoderm in anterior neural patterning. In this overview, we highlight the learning of the molecular attributes underpinning the formation of the anterior mesendoderm, the acquisition of ectoderm competence in the epiblast and the patterning of the embryonic brain during gastrulation and neurulation.
Collapse
Affiliation(s)
- Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| | - Pragathi Masamsetti
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| |
Collapse
|
11
|
Sebo DJ, Ali I, Fetsko AR, Trimbach AA, Taylor MR. Activation of Wnt/β-catenin in neural progenitor cells regulates blood-brain barrier development and promotes neuroinflammation. Sci Rep 2025; 15:3496. [PMID: 39875426 PMCID: PMC11775206 DOI: 10.1038/s41598-025-85784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature. Using transgenic reporters of Wnt/β-catenin transcriptional activity, we found an inverse correlation between activated Wnt/β-catenin signaling in endothelial cells (ECs) versus non-ECs within these distinct microenvironments. Our results indicated that the level of Wnt/β-catenin signaling in non-ECs may regulate Wnt/β-catenin activity in adjacent ECs. To further test this concept, we generated a transgenic Tet-On inducible system to drive constitutively active β-catenin expression in neural progenitor cells (NPCs). We found that dose-dependent activation of Wnt/β-catenin in NPCs caused severe deficiency in CNS angiogenesis and BBB development. Additionally, we discovered a significant increase in the proliferation of microglia and infiltration of peripheral neutrophils indicative of a stereotypical neuroinflammatory response. In conclusion, our results demonstrate the importance of proper Wnt/β-catenin signaling within specific CNS microenvironments and highlights the potentially deleterious consequences of aberrant Wnt activation.
Collapse
Affiliation(s)
- Dylan J Sebo
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Irshad Ali
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey R Fetsko
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aubrey A Trimbach
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael R Taylor
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Asashima M, Satou-Kobayashi Y, Haramoto Y, Ariizumi T. Self-organization from organs to embryoids by activin in early amphibian development. Cells Dev 2025:203996. [PMID: 39862904 DOI: 10.1016/j.cdev.2025.203996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Embryonic development is a complex self-organizing process orchestrated by a series of regulatory events at the molecular and cellular levels, resulting in the formation of a fully functional organism. This review focuses on activin protein as a mesoderm-inducing factor and the self-organizing properties it confers. Activin has been detected in both unfertilized eggs and embryos, suggesting its involvement in early developmental processes. To explore its effects, animal cap cells-pluripotent cells from the animal pole of amphibian blastula-stage embryos-were treated with varying concentrations of activin. The results showed that activin induced mesodermal tissues, including blood, muscle, and notochord, in a dose-dependent manner. Co-treatment with activin and retinoic acid further promoted the development of kidney and pancreatic tissues, while activin alone stimulated the formation of beating cardiac tissue. In subsequent experiments, high concentrations of activin conferred an organizer-like activity on animal cap cells. The pretreatment duration affected outcomes: longer exposure induced anterior structures, such as eyes, while shorter exposure resulted in posterior structures, like tails. These findings reflect moderate self-assembly, where cells become increasingly organized. In another experiment, activin was used to create an artificial gradient. Explants cultured on this gradient developed into embryoids with well-defined anteroposterior, dorsoventral, and left-right axes, exemplifying higher-order self-organization. These results demonstrate that controlled activin gradients can drive the formation of nearly complete tadpole-like larvae, effectively recapitulating the processes of early embryogenesis. This system offers valuable insights into the mechanisms underlying axis formation and organogenesis, providing a promising platform for future research in developmental biology.
Collapse
Affiliation(s)
- Makoto Asashima
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan.
| | | | - Yoshikazu Haramoto
- Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, Tokyo, Japan
| | - Takashi Ariizumi
- Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, Tokyo, Japan
| |
Collapse
|
13
|
Shi T, Wei J. Targeting DKK1 to Remodel the Tumor Microenvironment and Enhance Immune Checkpoint Blockade Therapy. J Clin Oncol 2025; 43:350-353. [PMID: 39467221 DOI: 10.1200/jco-24-01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Affiliation(s)
- Tao Shi
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jia Wei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Zhang ZS, Gao ZX, He JJ, Ma C, Tao HT, Zhu FY, Cheng YN, Xie CQ, Li JQ, Liu ZZ, Hou LL, Sun H, Xie SQ, Fang D. Andrographolide sensitizes glioma to temozolomide by inhibiting DKK1 expression. Br J Cancer 2024; 131:1387-1398. [PMID: 39266624 PMCID: PMC11473956 DOI: 10.1038/s41416-024-02842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Temozolomide (TMZ) is the first-line chemotherapeutic drug for gliomas treatment. However, the clinical efficacy of TMZ in glioma patients was very limited. Therefore, it is urgently needed to discover a novel approach to increase the sensitivity of glioma cells to TMZ. METHODS Western blot, immunohistochemical staining, and qRT-PCR assays were used to explore the mechanisms underlying TMZ promoting DKK1 expression and andrographolide (AND) inhibiting DKK1 expression. HPLC was used to detect the ability of andrographolide (AND) to penetrate the blood-brain barrier. MTT assay, bioluminescence images, magnetic resonance imaging (MRI) and H&E staining were employed to measure the proliferative activity of glioma cells and the growth of intracranial tumors. RESULTS TMZ can promote DKK1 expression in glioma cells and brain tumors of an orthotopic model of glioma. DKK1 could promote glioma cell proliferation and tumor growth in an orthotopic model of glioma. Mechanistically, TMZ increased EGFR expression and subsequently induced the activation of its downstream MEK-ERK and PI3K-Akt pathways, thereby promoting DKK1 expression in glioma cells. Andrographolide inhibited TMZ-induced DKK1 expression through inactivating MEK-ERK and PI3K-Akt pathways. Andrographolide can cross the blood-brain barrier, the combination of TMZ and andrographolide not only improved the anti-tumor effects of TMZ but also showed a survival benefit in an orthotopic model of glioma. CONCLUSION Andrographolide can enhance anti-tumor activity of TMZ against glioma by inhibiting DKK1 expression.
Collapse
Affiliation(s)
- Zhan-Sheng Zhang
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zi-Xuan Gao
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Jin-Jin He
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Can Ma
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hang-Tian Tao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Feng-Yi Zhu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yu-Na Cheng
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Cui-Qing Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Ji-Qin Li
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zhuang-Zhuang Liu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Li-Li Hou
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hua Sun
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
| | - Song-Qiang Xie
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, 475004, China.
| | - Dong Fang
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, 475004, China.
| |
Collapse
|
15
|
Zong Y, Liu X, Zhang Y, Zhao J, Shi X, Zhao Z, Sun Y. Recent Progress in Generation of Inner Ear Organoid. Adv Biol (Weinh) 2024; 8:e2400223. [PMID: 39051423 DOI: 10.1002/adbi.202400223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/06/2024] [Indexed: 07/27/2024]
Abstract
Inner ear organoids play a crucial role in hearing research. In comparison to other animal models and 2D cell culture systems, inner ear organoids offer significant advantages for studying the mechanisms of inner ear development and exploring novel approaches to disease treatment. Inner ear organoids derived from human cells are more closely resemble normal human organs in development and function. The 3D culture system of the inner ear organoid enhances cell-cell interactions and mimics the internal environment. In this review, the progress and limitations of organoid culture methods derived from tissue-specific progenitors and pluripotent stem cells (PSCs) are summarized, which may offer new insights into generating organoids that closely resemble the inner ear in terms of morphology and function.
Collapse
Affiliation(s)
- Yanjun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yaqi Zhang
- Santa Clara University, Santa Clara, 95053, USA
| | - Jiahui Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
16
|
Varshini MS, Reddy RA, Krishnamurthy PT, Wadhwani A. Harmony of Wnt pathway in Alzheimer's: Navigating the multidimensional progression from preclinical to clinical stages. Neurosci Biobehav Rev 2024; 165:105863. [PMID: 39179059 DOI: 10.1016/j.neubiorev.2024.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
The Wnt pathway stands out as a pivotal signal transduction pathway, operating through two distinct modes of signaling: the canonical/β-catenin pathway and the non-canonical pathway. Among these, the canonical pathway assumes a paramount role in various physiological and pathological processes within the human body. Particularly in the brain, Wnt exhibits involvement in fundamental physiological events including neuronal differentiation/survival, axonogenesis, neural stem cell regulation, synaptic plasticity, and cell cycle modulation. Notably, scientific evidence underscores the critical role of the Wnt pathway in the pathogenesis of Alzheimer's disease (AD), correlating with its involvement in key pathological features such as tau tangles, Amyloid-β plaques, synaptic dysfunction, oxidative stress, mitochondrial dysfunction, cognitive impairments, and disruption of the blood-brain barrier integrity. This review aims to comprehensively explore the involvement and significance of Wnt signaling in Alzheimer's. Furthermore, it delves into recent advancements in research on Wnt signaling, spanning from preclinical investigations to clinical trials.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, TN 643001, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, TN 643001, India
| | | | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, TN 643001, India; Faculty of Health Sciences, School of Pharmacy, JSS Academy of Higher Education and Research, Mauritius, Vacoas 73304, Mauritius
| |
Collapse
|
17
|
Hsieh CC, Li TW, Li CC, Chen SH, Wei YL, Chiang NJ, Shen CH. DKK1 as a chemoresistant protein modulates oxaliplatin responses in colorectal cancer. Oncogenesis 2024; 13:34. [PMID: 39333078 PMCID: PMC11436992 DOI: 10.1038/s41389-024-00537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Oxaliplatin is effective against colorectal cancer (CRC), but resistance hampers treatment. We found upregulated Dickkopf-1 (DKK1, a secreted protein) in oxaliplatin-resistant (OR) CRC cell lines and DKK1 levels increased by more than 2-fold in approximately 50% of oxaliplatin-resistant CRC tumors. DKK1 activates AKT via cytoskeleton-associated protein 4 (CKAP4, a DKK1 receptor), modulating oxaliplatin responses in vitro and in vivo. The leucine zipper (LZ) domain of CKAP4 and cysteine-rich domain 1 (CRD1) of secreted DKK1 are crucial for their interaction and AKT signaling. By utilizing the LZ protein, we disrupted DKK1 signaling, enhancing oxaliplatin sensitivity in OR CRC cells and xenograft tumors. This suggests that DKK1 as a chemoresistant factor in CRC via AKT activation. Targeting DKK1 with the LZ protein offers a promising therapeutic strategy for oxaliplatin-resistant CRC with high DKK1 levels. This study sheds light on oxaliplatin resistance mechanisms and proposes an innovative intervention for managing this challenge.
Collapse
Affiliation(s)
- Chi-Che Hsieh
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Ting-Wei Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 704, Taiwan
| | - Chun-Chun Li
- Department of Life Sciences, National Cheng Kung University, Tainan, 704, Taiwan
| | - Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - You-Lin Wei
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Nai-Jung Chiang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
- Doctoral Program in Tissue Engineering and Regenerative Medicine, Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
18
|
Sung EA, Dozmorov MG, Song S, Aung T, Park MH, Sime PJ, Chae WJ. Ablation of LRP6 in alpha-smooth muscle actin-expressing cells abrogates lung inflammation and fibrosis upon bleomycin-induced lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611327. [PMID: 39314349 PMCID: PMC11418957 DOI: 10.1101/2024.09.05.611327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor for Wnt ligands. Tissue fibrosis is a progressive pathological process with excessive extracellular matrix proteins (ECM) deposition. Myofibroblasts, identified by alpha-smooth muscle actin (αSMA) expression, play an important role in tissue fibrosis by producing ECM production. Here we found that Wnt antagonist Dickkopf1 (DKK1) induced gene expressions associated with inflammation and fibrosis in lung fibroblasts. We demonstrated that genetic deletion of LRP6 in αSMA-expressing cells using Acta2 -cre Lrp6 fl/fl ( Lrp6 AKO ) mice abrogated bleomycin (BLM)-induced lung inflammation and fibrosis phenotype, suggesting an important role of LRP6 in modulating inflammation and fibrotic processes in the lung. Our results highlight the crucial role of LRP6 in fibroblasts in regulating inflammation and fibrosis upon BLM-induced lung injury.
Collapse
|
19
|
Niehrs C, Zapparoli E, Lee H. 'Three signals - three body axes' as patterning principle in bilaterians. Cells Dev 2024:203944. [PMID: 39121910 DOI: 10.1016/j.cdev.2024.203944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In vertebrates, the three orthogonal body axes, anteroposterior (AP), dorsoventral (DV) and left-right (LR) are determined at gastrula and neurula stages by the Spemann-Mangold organizer and its equivalents. A common feature of AP and DV axis formation is that an evolutionary conserved interplay between growth factors (Wnt, BMP) and their extracellular antagonists (e.g. Dkk1, Chordin) creates signaling gradients for axial patterning. Recent work showed that LR patterning in Xenopus follows the same principle, with R-spondin 2 (Rspo2) as an extracellular FGF antagonist, which creates a signaling gradient that determines the LR vector. That a triad of anti-FGF, anti-BMP, and anti-Wnt governs LR, DV, and AP axis formation reveals a unifying principle in animal development. We discuss how cross-talk between these three signals confers integrated AP-DV-LR body axis patterning underlying developmental robustness, size scaling, and harmonious regulation. We propose that Urbilateria featured three orthogonal body axes that were governed by a Cartesian coordinate system of orthogonal Wnt/AP, BMP/DV, and FGF/LR signaling gradients.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | | | - Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Shi DL. Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes. J Dev Biol 2024; 12:20. [PMID: 39189260 PMCID: PMC11348223 DOI: 10.3390/jdb12030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The formation of embryonic axes is a critical step during animal development, which contributes to establishing the basic body plan in each particular organism. Wnt signaling pathways play pivotal roles in this fundamental process. Canonical Wnt signaling that is dependent on β-catenin regulates the patterning of dorsoventral, anteroposterior, and left-right axes. Non-canonical Wnt signaling that is independent of β-catenin modulates cytoskeletal organization to coordinate cell polarity changes and asymmetric cell movements. It is now well documented that components of these Wnt pathways biochemically and functionally interact to mediate cell-cell communications and instruct cellular polarization in breaking the embryonic symmetry. The dysfunction of Wnt signaling disrupts embryonic axis specification and proper tissue morphogenesis, and mutations of Wnt pathway genes are associated with birth defects in humans. This review discusses the regulatory roles of Wnt pathway components in embryonic axis formation by focusing on vertebrate models. It highlights current progress in decoding conserved mechanisms underlying the establishment of asymmetry along the three primary body axes. By providing an in-depth analysis of canonical and non-canonical pathways in regulating cell fates and cellular behaviors, this work offers insights into the intricate processes that contribute to setting up the basic body plan in vertebrate embryos.
Collapse
Affiliation(s)
- De-Li Shi
- Department of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France
| |
Collapse
|
21
|
Mohd Rosdi SN, Omar S, Mohamad Ghazali M, Ghani ARI, Mohamed Yusoff AA. Exploring pathogenesis, prevalence, and genetic associations in Chiari malformation type 1: a contemporary perspective. ASIAN BIOMED 2024; 18:148-156. [PMID: 39309470 PMCID: PMC11414777 DOI: 10.2478/abm-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chiari malformation type 1 (CM 1) entails a structural defect in the cerebellum, involving the herniation of cerebellar tonsils toward the foramen magnum. The symptomatic or asymptomatic nature of CM 1 is contingent upon the condition of malformation in the spinal cord. This review presents an updated perspective on the prevalence of CM 1, its pathogenesis, genetic associations, and treatment. CM 1 exhibits a higher prevalence in adult females than males. Despite the incomplete understanding of the exact cause of CM 1, recent research suggests the involvement of both genetic and environmental factors in its development. One of the reasons for the occurrence of CM 1 in individuals is the smaller posterior cranial fossa, which manifests as typical morphological features. Additionally, environmental factors can potentially interact with genetic factors, modifying the observable characteristics of the disease and affecting the symptoms, severity, and development of the condition. Notably, headaches, neck pain, dizziness, and neurological deficits may be exhibited by individuals with CM 1, highlighting the importance of early diagnosis. Magnetic resonance imaging (MRI) serves as an alternative diagnostic technique for monitoring the symptoms of CM 1. Multiple genetic factors are likely to contribute to a cascade of abnormalities in CM 1. Early studies provided evidence, including clustering within families, bone development, and co-segregation with known genetic syndromes, establishing CM 1's association with a genetic basis. Furthermore, surgery is the only available treatment option to alleviate symptoms or hinder the progression of damage to the central nervous system (CNS) in CM 1 cases.
Collapse
Affiliation(s)
- Siti Nornazihah Mohd Rosdi
- Department of Neurosciences, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian16150, Kelantan, Malaysia
| | - Suzuanhafizan Omar
- Department of Neurosciences, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian16150, Kelantan, Malaysia
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian16150, Kelantan, Malaysia
| | - Ab Rahman Izaini Ghani
- Department of Neurosciences, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian16150, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian16150, Kelantan, Malaysia
| |
Collapse
|
22
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
23
|
Azbazdar Y, De Robertis EM. Molecular analysis of a self-organizing signaling pathway for Xenopus axial patterning from egg to tailbud. Proc Natl Acad Sci U S A 2024; 121:e2408346121. [PMID: 38968117 PMCID: PMC11252917 DOI: 10.1073/pnas.2408346121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024] Open
Abstract
Xenopus embryos provide a favorable material to dissect the sequential steps that lead to dorsal-ventral (D-V) and anterior-posterior (A-P) cell differentiation. Here, we analyze the signaling pathways involved in this process using loss-of-function and gain-of-function approaches. The initial step was provided by Hwa, a transmembrane protein that robustly activates early β-catenin signaling when microinjected into the ventral side of the embryo leading to complete twinned axes. The following step was the activation of Xenopus Nodal-related growth factors, which could rescue the depletion of β-catenin and were themselves blocked by the extracellular Nodal antagonists Cerberus-Short and Lefty. During gastrulation, the Spemann-Mangold organizer secretes a cocktail of growth factor antagonists, of which the BMP antagonists Chordin and Noggin could rescue simultaneously D-V and A-P tissues in β-catenin-depleted embryos. Surprisingly, this rescue occurred in the absence of any β-catenin transcriptional activity as measured by β-catenin activated Luciferase reporters. The Wnt antagonist Dickkopf (Dkk1) strongly synergized with the early Hwa signal by inhibiting late Wnt signals. Depletion of Sizzled (Szl), an antagonist of the Tolloid chordinase, was epistatic over the Hwa and Dkk1 synergy. BMP4 mRNA injection blocked Hwa-induced ectopic axes, and Dkk1 inhibited BMP signaling late, but not early, during gastrulation. Several unexpected findings were made, e.g., well-patterned complete embryonic axes are induced by Chordin or Nodal in β-catenin knockdown embryos, dorsalization by Lithium chloride (LiCl) is mediated by Nodals, Dkk1 exerts its anteriorizing and dorsalizing effects by regulating late BMP signaling, and the Dkk1 phenotype requires Szl.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| |
Collapse
|
24
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
25
|
Benard EL, Küçükaylak I, Hatzold J, Berendes KU, Carney TJ, Beleggia F, Hammerschmidt M. wnt10a is required for zebrafish median fin fold maintenance and adult unpaired fin metamorphosis. Dev Dyn 2024; 253:566-592. [PMID: 37870737 PMCID: PMC11035493 DOI: 10.1002/dvdy.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Mutations of human WNT10A are associated with odonto-ectodermal dysplasia syndromes. Here, we present analyses of wnt10a loss-of-function mutants in the zebrafish. RESULTS wnt10a mutant zebrafish embryos display impaired tooth development and a collapsing median fin fold (MFF). Rescue experiments show that wnt10a is essential for MFF maintenance both during embryogenesis and later metamorphosis. The MFF collapse could not be attributed to increased cell death or altered proliferation rates of MFF cell types. Rather, wnt10a mutants show reduced expression levels of dlx2a in distal-most MFF cells, followed by compromised expression of col1a1a and other extracellular matrix proteins encoding genes. Transmission electron microscopy analysis shows that although dermal MFF compartments of wnt10a mutants initially are of normal morphology, with regular collagenous actinotrichia, positioning of actinotrichia within the cleft of distal MFF cells becomes compromised, coinciding with actinotrichia shrinkage and MFF collapse. CONCLUSIONS MFF collapse of wnt10a mutant zebrafish is likely caused by the loss of distal properties in the developing MFF, strikingly similar to the proposed molecular pathomechanisms underlying the teeth defects caused by the loss of Wnt10 in fish and mammals. In addition, it points to thus fur unknown mechanisms controlling the linear growth and stability of actinotrichia and their collagen fibrils.
Collapse
Affiliation(s)
- Erica L. Benard
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Ismail Küçükaylak
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Kilian U.W. Berendes
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Thomas J. Carney
- Discovery Research Division, Institute of Molecular and
Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research),
Singapore, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological
University, Singapore, Republic of Singapore
| | - Filippo Beleggia
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital Cologne, University of Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine
and University Hospital Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne
Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital Cologne,
University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of
Cologne, Cologne, Germany
| |
Collapse
|
26
|
Asashima M, Satou-Kobayashi Y. Spemann-Mangold organizer and mesoderm induction. Cells Dev 2024; 178:203903. [PMID: 38295873 DOI: 10.1016/j.cdev.2024.203903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The discovery of the Spemann-Mangold organizer strongly influenced subsequent research on embryonic induction, with research aiming to elucidate the molecular characteristics of organizer activity being currently underway. Herein, we review the history of research on embryonic induction, and describe how the mechanisms of induction phenomena and developmental processes have been investigated. Classical experiments investigating the differentiation capacity and inductive activity of various embryonic regions were conducted by many researchers, and important theories of region-specific induction and the concept for chain of induction were proposed. The transition from experimental embryology to developmental biology has enabled us to understand the mechanisms of embryonic induction at the molecular level. Consequently, many inducing substances and molecules such as transcriptional factors and peptide growth factors involved in the organizer formation were identified. One of peptide growth factors, activin, acts as a mesoderm- and endoderm-inducing substance. Activin induces several tissues and organs from the undifferentiated cell mass of amphibian embryos in a concentration-dependent manner. We review the extent to which we can control in vitro organogenesis from undifferentiated cells, and discuss the application to stem cell-based regenerative medicine based on insights gained from animal experiments, such as in amphibians.
Collapse
Affiliation(s)
- Makoto Asashima
- Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan.
| | - Yumeko Satou-Kobayashi
- Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan
| |
Collapse
|
27
|
Mii Y. Understanding and manipulating extracellular behaviors of Wnt ligands. In Vitro Cell Dev Biol Anim 2024; 60:441-448. [PMID: 38379096 DOI: 10.1007/s11626-024-00856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Wnt, a family of secreted signaling proteins, serves diverse functions in embryogenesis, organogenesis, cancer, and stem cell functions. In the context of development, Wnt has been considered a representative morphogen, forming concentration gradients to give positional information to cells or tissues. However, although gradients are often illustrated in schemata, the reality of concentration gradients, or in other words, actual spatial distribution of Wnt ligands, and their behaviors in the extracellular space still remain poorly known. To understand extracellular behavior of Wnt ligands, quantitative analyses such as fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) are highly informative because Wnt dispersal involves physical and biochemical processes, such as diffusion and binding to or dissociation from cell surface molecules, including heparan sulfate proteoglycans (HSPGs). Here, I briefly discuss representative methods to quantify morphogen dynamics. In addition, I discuss molecular manipulations of morphogens, mainly focusing on use of protein binders, and synthetic biology of morphogens as indicators of current and future directions in this field.
Collapse
Affiliation(s)
- Yusuke Mii
- National Institute for Basic Biology (NIBB) and Exploratory Research Center On Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
28
|
Tsukiyama T. New insights in ubiquitin-dependent Wnt receptor regulation in tumorigenesis. In Vitro Cell Dev Biol Anim 2024; 60:449-465. [PMID: 38383910 PMCID: PMC11126518 DOI: 10.1007/s11626-024-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Wnt signaling plays a crucial role in embryonic development and homeostasis maintenance. Delicate and sensitive fine-tuning of Wnt signaling based on the proper timings and positions is required to balance cell proliferation and differentiation and maintain individual health. Therefore, homeostasis is broken by tissue hypoplasia or tumor formation once Wnt signal dysregulation disturbs the balance of cell proliferation. The well-known regulatory mechanism of Wnt signaling is the molecular reaction associated with the cytoplasmic accumulation of effector β-catenin. In addition to β-catenin, most Wnt effector proteins are also regulated by ubiquitin-dependent modification, both qualitatively and quantitatively. This review will explain the regulation of the whole Wnt signal in four regulatory phases, as well as the different ubiquitin ligases and the function of deubiquitinating enzymes in each phase. Along with the recent results, the mechanism by which RNF43 negatively regulates the surface expression of Wnt receptors, which has recently been well understood, will be detailed. Many RNF43 mutations have been identified in pancreatic and gastrointestinal cancers and examined for their functional alteration in Wnt signaling. Several mutations facilitate or activate the Wnt signal, reversing the RNF43 tumor suppressor function into an oncogene. RNF43 may simultaneously play different roles in classical multistep tumorigenesis, as both wild-type and mutant RNF43 suppress the p53 pathway. We hope that the knowledge obtained from further research in RNF43 will be applied to cancer treatment in the future despite the fully unclear function of RNF43.
Collapse
Affiliation(s)
- Tadasuke Tsukiyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, 15NW7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
29
|
Abe M, Hasegawa T, Hongo H, Yamamoto T, Shi Y, Cui J, Liu X, Yao Q, Ishizu H, Maruoka H, Yoshino H, Haraguchi-Kitakamae M, Shimizu T, Amizuka N. Immunohistochemical and Morphometric Assessment on the Biological Function and Vascular Endothelial Cells in the Initial Process of Cortical Porosity in Mice With PTH Administration. J Histochem Cytochem 2024; 72:309-327. [PMID: 38725403 PMCID: PMC11107436 DOI: 10.1369/00221554241247883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
To clarify the cellular mechanism of cortical porosity induced by intermittent parathyroid hormone (PTH) administration, we examined the femoral cortical bone of mice that received 40 µg/kg/day (four times a day) human PTH (hPTH) (1-34). The PTH-driven cortical porosity initiated from the metaphyseal region and chronologically expanded toward the diaphysis. Alkaline phosphatase (ALP)-positive osteoblasts in the control mice covered the cortical surface, and endomucin-positive blood vessels were distant from these osteoblasts. In PTH-administered mice, endomucin-reactive blood vessels with TRAP-positive penetrated the ALP-positive osteoblast layer, invading the cortical bone. Statistically, the distance between endomucin-positive blood vessels and the cortical bone surface abated after PTH administration. Transmission electron microscopic observation demonstrated that vascular endothelial cells often pass through the flattened osteoblast layer and accompanied osteoclasts in the deep region of the cortical bone. The cell layers covering mature osteoblasts thickened with PTH administration and exhibited ALP, α-smooth muscle actin (αSMA), vascular cell adhesion molecule-1 (VCAM1), and receptor activator of NF-κB ligand (RANKL). Within these cell layers, osteoclasts were found near endomucin-reactive blood vessels. In PTH-administered femora, osteocytes secreted Dkk1, a Wnt inhibitor that affects angiogenesis, and blood vessels exhibited plasmalemma vesicle-associated protein, an angiogenic molecule. In summary, endomucin-positive blood vessels, when accompanied by osteoclasts in the ALP/αSMA/VCAM1/RANKL-reactive osteoblastic cell layers, invade the cortical bone, potentially due to the action of osteocyte-derived molecules such as DKK1.
Collapse
Affiliation(s)
- Miki Abe
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Tomoka Hasegawa
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Hiromi Hongo
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Tomomaya Yamamoto
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
- Hokkaido University, Sapporo, Japan, and Department of Dentistry, Japan Ground Self-Defense Force Camp Shinmachi, Takasaki, Japan
| | - Yan Shi
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Jiaxin Cui
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Xuanyu Liu
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Qi Yao
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Hotaka Ishizu
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine and Orthopedics, Graduate School of Medicine, Faculty of Medicine
| | - Haruhi Maruoka
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Hirona Yoshino
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | - Mai Haraguchi-Kitakamae
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| | | | - Norio Amizuka
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine
| |
Collapse
|
30
|
Sun Y, Xie L, Ren X, Ran L, He H, Kong F, Yang S, Zhang M. miR-148a-3p regulates proliferation and apoptosis of idiopathic gingival fibroma by targeting NPTX1. Oral Dis 2024; 30:2136-2149. [PMID: 37357360 DOI: 10.1111/odi.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/18/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Idiopathic gingival fibromatosis (IGF) is a rare heterogeneous disease that results in the progressive and diffuse hyperplasia of gingival tissues. MicroRNAs are implicated in the development and progression of various tumors. The present study aimed to explore the potential roles and mechanisms of miR-148a-3p in IGF. METHODS Gingival fibroblasts (GFs) were transfected with miR-148a-3p mimics, miR-148a-3p inhibitors, or siNPTX1, and then, the proliferation and apoptosis of GFs and the expression of related genes were evaluated using Cell Counting Kit-8 assays, 5-ethynyl-2'-deoxyuridine assays, flow cytometry, reverse transcription-quantitative polymerase chain reaction, and western blot analysis, respectively. RESULTS miR-148a-3p was highly expressed in GFs of IGF (IGF-GFs) as compared with normal GFs (N-GFs). Overexpression of miR-148a-3p promoted the proliferation and inhibited the apoptosis of N-GFs, whereas downregulation of miR-148a-3p had the opposite effect in IGF-GFs. Knockdown of NPTX1 reversed miR-148a-3p-mediated effects in IGF-GFs. Dual-luciferase reporter assay confirmed that NPTX1 is a direct target of miR-148a-3p. CONCLUSION These findings identify that miR-148a-3p could regulate cell proliferation and apoptosis by targeting NPTX1, providing new insights for the further study of the molecular mechanism and treatment of IGF.
Collapse
Affiliation(s)
- Yuyang Sun
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Stomatology, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Liangkun Xie
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
| | - Xiaobin Ren
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
| | - Liquan Ran
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
| | - Hongbing He
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
| | - Fanying Kong
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Shuran Yang
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Mingzhu Zhang
- Kunming Medical University Affiliated Stomatology Hospital, Kunming, China
| |
Collapse
|
31
|
Dhouailly D. The avian ectodermal default competence to make feathers. Dev Biol 2024; 508:64-76. [PMID: 38190932 DOI: 10.1016/j.ydbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/β-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, University Grenoble-Alpes, Institute for Advanced Biosciences, 38700, La Tronche, France.
| |
Collapse
|
32
|
Manning E, Placzek M. Organizing activities of axial mesoderm. Curr Top Dev Biol 2024; 157:83-123. [PMID: 38556460 DOI: 10.1016/bs.ctdb.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
For almost a century, developmental biologists have appreciated that the ability of the embryonic organizer to induce and pattern the body plan is intertwined with its differentiation into axial mesoderm. Despite this, we still have a relatively poor understanding of the contribution of axial mesoderm to induction and patterning of different body regions, and the manner in which axial mesoderm-derived information is interpreted in tissues of changing competence. Here, with a particular focus on the nervous system, we review the evidence that axial mesoderm notochord and prechordal mesoderm/mesendoderm act as organizers, discuss how their influence extends through the different axes of the developing organism, and describe how the ability of axial mesoderm to direct morphogenesis impacts on its role as a local organizer.
Collapse
Affiliation(s)
- Elizabeth Manning
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
33
|
Marr AR, Halpin M, Corbin DL, Asemelash Y, Sher S, Gordon BK, Whipp EC, Mitchell S, Harrington BK, Orwick S, Benrashid S, Goettl VM, Yildiz V, Mitchell AD, Cahn O, Mims AS, Larkin KTM, Long M, Blachly J, Woyach JA, Lapalombella R, Grieselhuber NR. The multi-CDK inhibitor dinaciclib reverses bromo- and extra-terminal domain (BET) inhibitor resistance in acute myeloid leukemia via inhibition of Wnt/β-catenin signaling. Exp Hematol Oncol 2024; 13:27. [PMID: 38438856 PMCID: PMC10913666 DOI: 10.1186/s40164-024-00483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic cancer with poor survival across a broad range of molecular subtypes. Development of efficacious and well-tolerable therapies encompassing the range of mutations that can arise in AML remains an unmet need. The bromo- and extra-terminal domain (BET) family of proteins represents an attractive therapeutic target in AML due to their crucial roles in many cellular functions, regardless of any specific mutation. Many BET inhibitors (BETi) are currently in pre-clinical and early clinical development, but acquisition of resistance continues to remain an obstacle for the drug class. Novel methods to circumvent this development of resistance could be instrumental for the future use of BET inhibitors in AML, both as monotherapy and in combination. To date, many investigations into possible drug combinations of BETi with CDK inhibitors have focused on CDK9, which has a known physical and functional interaction with the BET protein BRD4. Therefore, we wished to investigate possible synergy and additive effects between inhibitors of these targets in AML. Here, we describe combination therapy with the multi-CDK inhibitor dinaciclib and the BETi PLX51107 in pre-clinical models of AML. Dinaciclib and PLX51107 demonstrate additive effects in AML cell lines, primary AML samples, and in vivo. Further, we demonstrate novel activity of dinaciclib through inhibition of the canonical/β-catenin dependent Wnt signaling pathway, a known resistance mechanism to BETi in AML. We show dinaciclib inhibits Wnt signaling at multiple levels, including downregulation of β-catenin, the Wnt co-receptor LRP6, as well as many Wnt pathway components and targets. Moreover, dinaciclib sensitivity remains unaffected in a setting of BET resistance, demonstrating similar inhibitory effects on Wnt signaling when compared to BET-sensitive cells. Ultimately, our results demonstrate rationale for combination CDKi and BETi in AML. In addition, our novel finding of Wnt signaling inhibition could have potential implications in other cancers where Wnt signaling is dysregulated and demonstrates one possible approach to circumvent development of BET resistance in AML.
Collapse
Affiliation(s)
- Alexander R Marr
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Madeline Halpin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Dominique L Corbin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Yerdanos Asemelash
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Britten K Gordon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ethan C Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Samon Benrashid
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Virginia M Goettl
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Vedat Yildiz
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Andrew D Mitchell
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Olivia Cahn
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Karilyn T M Larkin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Meixao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - James Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
34
|
Chen K, Li J, Ouyang Y, Xie Y, Xu G, Xia T, You R, Liu G, He H, Huang R, Chen M. Prognostic significance of Dickkopf-1 in head and neck squamous cell carcinoma. Expert Rev Anticancer Ther 2024; 24:147-154. [PMID: 38044867 DOI: 10.1080/14737140.2023.2289597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Dickkopf-1 (DKK1) exhibits abnormal expression in various cancers and correlates with poor prognosis. This study investigates DKK1's prognostic relevance in head and neck squamous cell carcinoma (HNSC). METHODS We conducted a comprehensive search across literature and sequencing databases to gather eligible studies and HNSC datasets. We calculated pooled standardized mean differences (SMD) and 95% confidence intervals (CI) for clinical characteristics, as well as hazard ratios (HR) with 95% CIs for overall survival (OS) and progression-free/disease-free survival (PFS/DFS). Sensitivity analysis gauged result stability, and Egger's test assessed publication bias. RESULTS Pooled results indicated that HNSC patients with higher T-stage exhibited elevated DKK1 expression levels, and this elevated expression was associated with shorter OS and PFS/DFS. While sensitivity analysis identified some studies significantly affecting pooled results, most were unaffected, and no publication bias was detected. CONCLUSION DKK1 holds promise as a potential biomarker for predicting poor prognosis in HNSC patients, but further research is needed for confirmation.
Collapse
Affiliation(s)
- Kai Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jin Li
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yanfeng Ouyang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yulong Xie
- Department of Radiotherapy, Cancer Center, The People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Guiqiong Xu
- Department of Radiotherapy, Cancer Center, The People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Tianliang Xia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Rui You
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Guichao Liu
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Han He
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Rong Huang
- Department of Radiotherapy, Cancer Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Mingyuan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Ermakova GV, Kucheryavyy AV, Zaraisky AG, Bayramov AV. The Molecular Mechanism of Body Axis Induction in Lampreys May Differ from That in Amphibians. Int J Mol Sci 2024; 25:2412. [PMID: 38397089 PMCID: PMC10889193 DOI: 10.3390/ijms25042412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Lamprey homologues of the classic embryonic inducer Noggin are similar in expression pattern and functional properties to Noggin homologues of jawed vertebrates. All noggin genes of vertebrates apparently originated from a single ancestral gene as a result of genome duplications. nogginA, nogginB and nogginC of lampreys, like noggin1 and noggin2 of gnathostomes, demonstrate the ability to induce complete secondary axes with forebrain and eye structures when overexpressed in Xenopus laevis embryos. According to current views, this finding indicates the ability of lamprey Noggin proteins to suppress the activity of the BMP, Nodal/Activin and Wnt/beta-catenin signaling pathways, as shown for Noggin proteins of gnathostomes. In this work, by analogy with experiments in Xenopus embryos, we attempted to induce secondary axes in the European river lamprey Lampetra fluviatilis by injecting noggin mRNAs into lamprey eggs in vivo. Surprisingly, unlike what occurs in amphibians, secondary axis induction in the lampreys either by noggin mRNAs or by chordin and cerberus mRNAs, the inductive properties of which have been described, was not observed. Only wnt8a mRNA demonstrated the ability to induce secondary axes in the lampreys. Such results may indicate that the mechanism of axial specification in lampreys, which represent jawless vertebrates, may differ in detail from that in the jawed clade.
Collapse
Affiliation(s)
- Galina V. Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Aleksandr V. Kucheryavyy
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia;
| | - Andrey G. Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
- Department of Regenerative Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andrey V. Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| |
Collapse
|
36
|
Ermakova GV, Meyntser IV, Zaraisky AG, Bayramov AV. Loss of noggin1, a classic embryonic inducer gene, in elasmobranchs. Sci Rep 2024; 14:3805. [PMID: 38360907 PMCID: PMC10869764 DOI: 10.1038/s41598-024-54435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Secreted proteins of the Noggin family serve as pivotal regulators of early development and cell differentiation in all multicellular animals, including vertebrates. Noggin1 was identified first among all Noggins. Moreover, it was described as the first known embryonic inducer specifically secreted by the Spemann organizer and capable of inducing a secondary body axis when expressed ectopically. In the classical default model of neural induction, Noggin1 is presented as an antagonist of BMP signalling, playing a role as a neural inducer. Additionally, Noggin1 is involved in the dorsalization of embryonic mesoderm and later controls the differentiation of various tissues, including muscles, bones, and neural crest derivatives. Hitherto, noggin1 was found in all studied vertebrates. Here, we report the loss of noggin1 in elasmobranchs (sharks, rays and skates), which is a unique case among vertebrates. noggin2 and noggin4 retained in this group and studied in the embryos of the grey bamboo shark Chiloscyllium griseum revealed similarities in expression patterns and functional properties with their orthologues described in other vertebrates. The loss of noggin1 in elasmobranchs may be associated with histological features of the formation of their unique internal cartilaginous skeleton, although additional research is required to establish functional connections between these events.
Collapse
Affiliation(s)
- Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Irina V Meyntser
- Moskvarium Center for Oceanography and Marine Biology, Moscow, 129223, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| | - Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
37
|
Baeva ME, Tottenham I, Koch M, Camara-Lemarroy C. Biomarkers of disability worsening in inactive primary progressive multiple sclerosis. J Neuroimmunol 2024; 387:578268. [PMID: 38157653 DOI: 10.1016/j.jneuroim.2023.578268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To investigate serum biomarkers of progression in inactive primary progressive multiple sclerosis (PPMS). METHODS We measured protein biomarkers (growth differentiation factor-15 (GDF-15), dickkopf-1 (DKK-1), neuron specific enolase (NSE) and cathepsin-D) in serum samples from 39 patients with inactive PPMS included in a clinical trial enrolling people with PPMS (clinicaltrials.gov identifier NCT02913157) and investigated the association of these biomarker levels with clinical disability at baseline and during follow-up. We then performed a meta-analysis of publicly available transcriptomic datasets to investigate the gene expression of these biomarkers in the CNS in progressive MS. RESULTS When compared with healthy controls, people with PPMS had higher serum levels of GDF-15, DKK-1 and cathepsin-D at baseline. These findings match those in our meta-analysis which found increased expression of GDF-15 and cathepsin-D in the CNS in progressive MS. At baseline, elevated serum DKK-1 was associated with worse Expanded Disability Status Scale (EDSS) and nine-hole peg test (9HPT) scores. None of the other biomarkers levels significantly correlated with EDSS, Timed 25-Foot Walk Test (T25FWT), 9HPT, or cognitive measures. However, serum GDF-15 and cathepsin-D were higher at baseline in participants who developed worsening disability. Our receiver operating characteristic curve showed that higher serum GDF-15 and cathepsin-D at baseline significantly discriminated between participants who worsened in T25FWT and 9HPT and those who remained stable. CONCLUSIONS Patients with PPMS have altered levels of GDF-15, DKK-1 and cathepsin-D in serum, and GDF-15 and cathepsin-D may have predictive value in progression free of inflammatory activity in PPMS.
Collapse
Affiliation(s)
- Maria-Elizabeth Baeva
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Isabelle Tottenham
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Marcus Koch
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Carlos Camara-Lemarroy
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada.
| |
Collapse
|
38
|
Sung EA, Song S, Park MH, Kelly L, Harada H, Chae WJ. Low-density lipoprotein receptor-related protein 6 ablation in macrophages differentially inhibits lung injury-mediated inflammation and metastasis. Biochem Biophys Res Commun 2024; 695:149441. [PMID: 38176174 DOI: 10.1016/j.bbrc.2023.149441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor protein for Wnt ligands. Yet, their role in immune cell regulation remains elusive. Here we demonstrated that genetic deletion of LRP6 in macrophages using LysM-cre Lrp6fl/fl (Lrp6MKO) mice showed differential inhibition of inflammation in the bleomycin (BLM)-induced lung injury model and B16F10 melanoma lung metastasis model. Lrp6MKO mice showed normal immune cell populations in the lung and circulating blood in homeostatic conditions. In the BLM-induced lung injury model, Lrp6MKO mice showed a decreased number of monocyte-derived alveolar macrophages, reduced collagen deposition and alpha-smooth muscle actin (αSMA) protein levels in the lung. In B16F10 lung metastasis model, Lrp6MKO mice reduced lung tumor foci. Monocytic and granulocytic-derived myeloid-derived suppressor cells (M-MDSCs and G-MDSCs) were increased in the lung. In G-MDSCs, hypoxia-inducible factor 1α (HIF1α)+ PDL1+ population was markedly decreased but not in M-MDSCs. Taken together, our results show that the role of LRP6 in macrophages is differential depending on the inflammation microenvironment in the lung.
Collapse
Affiliation(s)
- Eun-Ah Sung
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - SuJeong Song
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Min Hee Park
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Lucianna Kelly
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Hisashi Harada
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Phillips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States
| | - Wook-Jin Chae
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Phillips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States.
| |
Collapse
|
39
|
van Essen MJ, Apsley EJ, Riepsaame J, Xu R, Northcott PA, Cowley SA, Jacob J, Becker EBE. PTCH1-mutant human cerebellar organoids exhibit altered neural development and recapitulate early medulloblastoma tumorigenesis. Dis Model Mech 2024; 17:dmm050323. [PMID: 38411252 PMCID: PMC10924233 DOI: 10.1242/dmm.050323] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Patched 1 (PTCH1) is the primary receptor for the sonic hedgehog (SHH) ligand and negatively regulates SHH signalling, an essential pathway in human embryogenesis. Loss-of-function mutations in PTCH1 are associated with altered neuronal development and the malignant brain tumour medulloblastoma. As a result of differences between murine and human development, molecular and cellular perturbations that arise from human PTCH1 mutations remain poorly understood. Here, we used cerebellar organoids differentiated from human induced pluripotent stem cells combined with CRISPR/Cas9 gene editing to investigate the earliest molecular and cellular consequences of PTCH1 mutations on human cerebellar development. Our findings demonstrate that developmental mechanisms in cerebellar organoids reflect in vivo processes of regionalisation and SHH signalling, and offer new insights into early pathophysiological events of medulloblastoma tumorigenesis without the use of animal models.
Collapse
Affiliation(s)
- Max J. van Essen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Elizabeth J. Apsley
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Joey Riepsaame
- Genome Engineering Oxford, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Ruijie Xu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Paul A. Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Sally A. Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Esther B. E. Becker
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
40
|
Qian J, Wang Q, Xiao L, Xiong W, Xian M, Su P, Yang M, Zhang C, Li Y, Zhong L, Ganguly S, Zu Y, Yi Q. Development of therapeutic monoclonal antibodies against DKK1 peptide-HLA-A2 complex to treat human cancers. J Immunother Cancer 2024; 12:e008145. [PMID: 38267222 PMCID: PMC10824003 DOI: 10.1136/jitc-2023-008145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Targeted immunotherapy with monoclonal antibodies (mAbs) is an effective and safe method for the treatment of malignancies. Development of mAbs with improved cytotoxicity, targeting new and known tumor-associated antigens, therefore continues to be an active research area. We reported that Dickkopf-1 (DKK1) is a good target for immunotherapy of human cancers based on its wide expression in different cancers but not in normal tissues. As DKK1 is a secreted protein, mAbs binding directly to DKK1 have limited effects on cancer cells in vivo. METHODS The specificity and antibody-binding capacity of DKK1-A2 mAbs were determined using indirect ELISA, confocal imaging, QIFIKIT antibody-binding capacity and cell surface binding assays. The affinity of mAbs was determined using a surface plasmon resonance biosensor. A flow cytometry-based cell death was performed to detect tumor cell apoptosis. Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays were used to evaluate the ability of DKK1-A2 mAbs to mediate ADCC and CDC activities against tumor cells in vitro. Flow cytometry data were collected with an FACSymphony A3 cell analyzer and analyzed with FlowJo V.10.1 software. Human cancer xenograft mouse models were used to determine the in vivo therapeutic efficacy and the potential safety and toxicity of DKK1-A2 mAbs. In situ TUNEL assay was performed to detect apoptosis in tumors and mouse organs. RESULTS We generated novel DKK1-A2 mAbs that recognize the DKK1 P20 peptide presented by human HLA-A*0201 (HLA-A2) molecules (DKK1-A2 complexes) that are naturally expressed by HLA-A2+DKK1+ cancer cells. These mAbs directly induced apoptosis in HLA-A2+DKK1+ hematologic and solid cancer cells by activating the caspase-9 cascade, effectively lysed the cancer cells in vitro by mediating CDC and ADCC and were therapeutic against established cancers in their xenograft mouse models. As DKK1 is not detected in most human tissues, DKK1-A2 mAbs neither bound to or killed HLA-A2+ blood cells in vitro nor caused tissue damage in tumor-free or tumor-bearing HLA-A2-transgenic mice. CONCLUSION Our study suggests that DKK1-A2 mAbs may be a promising therapeutic agent to treat human cancers.
Collapse
Affiliation(s)
- Jianfei Qian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Wei Xiong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Miao Xian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Pan Su
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Maojie Yang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Chuanchao Zhang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Yabo Li
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Ling Zhong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Siddhartha Ganguly
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Institute for Academic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
41
|
Inomata Y, Kuroha M, Shimoyama Y, Naito T, Moroi R, Shiga H, Kakuta Y, Karasawa H, Onuma S, Kinouchi Y, Masamune A. Dickkopf 1 is expressed in normal fibroblasts during early stages of colorectal tumorigenesis. Cancer Med 2024; 13:e6992. [PMID: 38334454 PMCID: PMC10854454 DOI: 10.1002/cam4.6992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Colorectal cancer progression from adenoma to cancer is a time-intensive process; however, the interaction between normal fibroblasts (NFs) with early colorectal tumors, such as adenomas, remains unclear. Here, we analyzed the response of the microenvironment during early tumorigenesis using co-cultures of organoids and NFs. MATERIALS AND METHODS Colon normal epithelium, adenoma, cancer organoid, and NFs were established and co-cultured using Transwell inserts. Microarray analysis of NFs was performed to identify factors expressed early in tumor growth. Immunostaining of clinical specimens was performed to localize the identified factor. Functional analysis was performed using HCT116 cells. Serum DKK1 levels were measured in patients with colorectal cancer and adenoma. RESULTS Colorectal organoid-NF co-culture resulted in increased organoid diameter and cell viability in normal epithelial and adenomatous organoids but not in cancer organoids. Microarray analysis of NFs revealed 18 genes with increased expression when co-cultured with adenoma and cancer organoids. Immunohistochemical staining revealed DKK1 expression in the tumor stroma from early tumor growth. DKK1 stimulation reduced HCT116 cell proliferation, while DKK1 silencing by siRNA transfection increased cell proliferation. Serum DKK1 level was significantly higher in patients with advanced cancer and adenoma than in controls. Serum DKK1 level revealed area-under-the-curve values of 0.78 and 0.64 for cancer and adenoma, respectively. CONCLUSION These findings contribute valuable insights into the early stages of colorectal tumorigenesis and suggest DKK1 as a tumor suppressor. Additionally, serum DKK1 levels could serve as a biomarker to identify both cancer and adenoma, offering diagnostic possibilities for early-stage colon tumors. The present study has a few limitations. We considered using DKK1 as a candidate gene for gene transfer to organoids and NFs; however, it was difficult due to technical problems and the slow growth rate of NFs. Therefore, we used cancer cell lines instead. In addition, immunostaining and ELISA were based on the short-term collection at a single institution, and further accumulation of such data is desirable. As described above, most previous reports were related to advanced cancers, but in this study, new findings were obtained by conducting experiments on endoscopically curable early-stage tumors, such as adenomas.
Collapse
Affiliation(s)
- Yushi Inomata
- Division of GastroenterologyTohoku University Graduate School of MedicineSendaiJapan
| | - Masatake Kuroha
- Division of GastroenterologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yusuke Shimoyama
- Division of GastroenterologyTohoku University Graduate School of MedicineSendaiJapan
| | - Takeo Naito
- Division of GastroenterologyTohoku University Graduate School of MedicineSendaiJapan
| | - Rintaro Moroi
- Division of GastroenterologyTohoku University Graduate School of MedicineSendaiJapan
| | - Hisashi Shiga
- Division of GastroenterologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yoichi Kakuta
- Division of GastroenterologyTohoku University Graduate School of MedicineSendaiJapan
| | - Hideaki Karasawa
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Shinobu Onuma
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshitaka Kinouchi
- Student Healthcare Center, Institute for Excellence in Higher EducationTohoku UniversitySendaiJapan
| | - Atsushi Masamune
- Division of GastroenterologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
42
|
Su X, Li S, Zhang Y, Tie X, Feng R, Guo X, Qiao X, Wang L. Overexpression of Corin Ameliorates Kidney Fibrosis through Inhibition of Wnt/β-Catenin Signaling in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:101-120. [PMID: 37827215 DOI: 10.1016/j.ajpath.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
The Wnt/β-catenin pathway represents a promising therapeutic target for mitigating kidney fibrosis. Corin possesses the homologous ligand binding site [Frizzled-cysteine-rich domain (Fz-CRD)] similar to Frizzled proteins, which act as receptors for Wnt. The Fz-CRD has been found in eight different proteins, all of which, except for corin, are known to bind Wnt and regulate its signal transmission. We hypothesized that corin may inhibit the Wnt/β-catenin signaling pathway and thereby reduce fibrogenesis. Reduced expression of corin along with the increased activity of Wnt/β-catenin signaling was found in unilateral ureteral obstruction (UUO) and ureteral ischemia/reperfusion injury (UIRI) models. In vitro, corin bound to the Wnt1 through its Fz-CRDs and inhibit the Wnt1 function responsible for activating β-catenin. Transforming growth factor-β1 inhibited corin expression, accompanied by activation of β-catenin; conversely, overexpression of corin attenuated the fibrotic effects of transforming growth factor-β1. In vivo, adenovirus-mediated overexpression of corin attenuated the progression of fibrosis, which was potentially associated with the inhibition of Wnt/β-catenin signaling and the down-regulation of its target genes after UUO and UIRI. These results suggest that corin acts as an antagonist that protects the kidney from pathogenic Wnt/β-catenin signaling and from fibrosis following UUO and UIRI.
Collapse
Affiliation(s)
- Xiaole Su
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China.
| | - Sijia Li
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Yanru Zhang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Xuan Tie
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Rongrong Feng
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Xiaojiao Guo
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
43
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
44
|
Cooper EJ, Scholpp S. Transport and gradient formation of Wnt and Fgf in the early zebrafish gastrula. Curr Top Dev Biol 2023; 157:125-153. [PMID: 38556457 DOI: 10.1016/bs.ctdb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Within embryonic development, the occurrence of gastrulation is critical in the formation of multiple germ layers with many differentiative abilities. These cells are instructed through exposure to signalling molecules called morphogens. The secretion of morphogens from a source tissue creates a concentration gradient that allows distinct pattern formation in the receiving tissue. This review focuses on the morphogens Wnt and Fgf in zebrafish development. Wnt has been shown to have critical roles throughout gastrulation, including in anteroposterior patterning and neural posterisation. Fgf is also a vital signal, contributing to involution and mesodermal specification. Both morphogens have also been found to work in finely balanced synergy for processes such as neural induction. Thus, the signalling range of Wnts and Fgfs must be strictly controlled to target the correct target cells. Fgf and Wnts signal to local cells as well as to cells in the distance in a highly regulated way, requiring specific dissemination mechanisms that allow efficient and precise signalling over short and long distances. Multiple transportation mechanisms have been discovered to aid in producing a stable morphogen gradient, including short-range diffusion, filopodia-like extensions called cytonemes and extracellular vesicles, mainly exosomes. These mechanisms are specific to the morphogen that they transport and the intended signalling range. This review article discusses how spreading mechanisms in these two morphogenetic systems differ and the consequences on paracrine signalling, hence tissue patterning.
Collapse
Affiliation(s)
- Emma J Cooper
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
45
|
Abstract
This article is about how the famous organizer experiment has been perceived since it was first published in 1924. The experiment involves the production of a secondary embryo under the influence of a graft of a dorsal lip from an amphibian gastrula to a host embryo. The early experiments of Spemann and his school gave rise to a view that the whole early amphibian embryo was "indifferent" in terms of determination, except for a special region called "the organizer". This was viewed mainly as an agent of neural induction, also having the ability to generate an anteroposterior body pattern. Early biochemical efforts to isolate a factor emitted by the organizer were not successful but culminated in the definition of "neuralizing (N)" and "mesodermalizing (M)" factors present in a wide variety of animal tissues. By the 1950s this view became crystallized as a "two gradient" model involving the N and M factors, which explained the anteroposterior patterning effect. In the 1970s, the phenomenon of mesoderm induction was characterized as a process occurring before the commencement of gastrulation. Reinvestigation of the organizer effect using lineage labels gave rise to a more precise definition of the sequence of events. Since the 1980s, modern research using the tools of molecular biology, combined with microsurgery, has explained most of the processes involved. The organizer graft should now be seen as an experiment which involves multiple interactions: dorsoventral polarization following fertilization, mesoderm induction, the dorsalizing signal responsible for neuralization and dorsoventral patterning of the mesoderm, and additional factors responsible for anteroposterior patterning.
Collapse
Affiliation(s)
- Jonathan Slack
- Department of Life Sciences, University of Bath, Bath, United Kingdom.
| |
Collapse
|
46
|
Shen Y, Xie Q, Wang Y, Liang J, Jiang C, Liu X, Wang Y, Hu C. Design, synthesis and anti-osteosarcoma activity study of novel pyrido[2,3-d]pyrimidine derivatives by inhibiting DKK1-Wnt/β-catenin pathway. Bioorg Chem 2023; 141:106848. [PMID: 37716273 DOI: 10.1016/j.bioorg.2023.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Osteosarcoma is a common primary malignant bone tumor in adolescents. Wnt/β-catenin has been proved to play a pro-oncogenic role and was overactivated in osteosarcoma. Therefore, this pathway has become an interesting therapeutic target for osteosarcoma. Herein we report the design, synthesis and biological activities of a series of novel pyrido[2,3-d]pyrimidine derivatives based on our previous work. Among these, the representative compound 2-{[1,3-dimethyl-7-(4-methylpiperazin-1-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidin-5-yl]amino}-N-[4-(trifluoromethoxy)phenyl]acetamide (7m) has exhibited good antiproliferative activity towards 143B and MG63 cells with good selectivity over non-cancerous HSF cells. In the assay of Ca2+ concentration, the compound 7m increased the intracellular Ca2+ concentration in 143B cells. In addition, the expression of DKK1 increased, and that of p-β-catenin decreased by 7m treatment. Finally, the Hoechst 33,342 staining, Annexin-FITC/PI staining and mitochondrial fluorescence staining have clearly demonstrated that compound 7m induced apoptosis in 143B cells.
Collapse
Affiliation(s)
- Yanni Shen
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Xie
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Orthopaedics, General Hospital, Shenzhen University, Shenzhen 518055, China
| | - Yiling Wang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China
| | - Jianhui Liang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuilu Jiang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China
| | - Xiaoping Liu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China.
| | - Yan Wang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China.
| |
Collapse
|
47
|
Biedroń G, Czepiel M, Siedlar M, Korkosz M. Serum concentration of dickkopf-related protein 1 (DKK1) in psoriatic arthritis in the context of bone remodelling. Rheumatol Int 2023; 43:2175-2183. [PMID: 37750896 PMCID: PMC10587027 DOI: 10.1007/s00296-023-05452-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease, characterised by the pathological occurrence of two opposite phenomena-osteoresorption and osteogenesis. Dickkopf-related protein 1 (DKK1) which inhibits the Wingless protein (Wnt) signalling pathway has been shown to be a master regulator of bone remodeling in inflammatory rheumatic diseases. However, the exact relationship between DKK1 serum level and bone remodelling is not clear. The goal of this study is to review state-of-the-art knowledge on the association of serum DKK1 with a bone remodelling in PsA. The MEDLINE-PubMed, EMBASE, Scopus, Web of Science and DOAJ databases were searched for appropriate papers. The English terms: 'DKK1', 'Dickkopf-1' 'Dickkopf related protein 1', 'psoriatic arthritis' and 'PsA' were used for search purposes. Eight original articles and two reviews were identified up to August 2023. In four out of 8 discussed studies DKK1 serum level was higher in PsA patients than in healthy controls [Dalbeth, p < 0.01; Diani, p < 0.001; Chung, p < 0.01; Abd el Hamid, p < 0.001)], it was comparable in another (Daousiss, p = 0.430) and was lower in two (Fassio2017, p < 0.05; Fassio2019, p < 0.05). In one study, the comparative groups included patients with axial spondyloarthritis, where DKK1 serum levels were lower in PsA groups [Jadon, peripheral PsA, p = 0.01]. The true relative serum concentration of DKK1 in PsA, as well as its influence on osteogenesis and osteoresorption, is still equivocal. Further studies on this matter with consistent and stringent methodology are warranted.
Collapse
Affiliation(s)
- Grzegorz Biedroń
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Jakubowskiego 2, Krakow, Poland
| | - Marcin Czepiel
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Mariusz Korkosz
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Jakubowskiego 2, Krakow, Poland
| |
Collapse
|
48
|
Seo SH, Cho KJ, Park HJ, Lee HW, Kim BK, Park JY, Kim DY, Ahn SH, Cheon JH, Yook JI, Kim MD, Joo DJ, Kim SU. Inhibition of Dickkopf-1 enhances the anti-tumor efficacy of sorafenib via inhibition of the PI3K/Akt and Wnt/β-catenin pathways in hepatocellular carcinoma. Cell Commun Signal 2023; 21:339. [PMID: 38012711 PMCID: PMC10680194 DOI: 10.1186/s12964-023-01355-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Sorafenib improves the overall survival in patients with advanced hepatocellular carcinoma (HCC). Dickkopf-1 (DKK1) is commonly overexpressed in HCC. In this study, we investigated whether the inhibition of DKK1 enhances the anti-tumor efficacy of sorafenib in HCC. METHODS HCC cells were treated with sorafenib and WAY-262611, which is an inhibitor of DKK1. Transgenic mouse models were also developed using hydrodynamic tail vein injection. Mice were orally administered with sorafenib (32 mg/kg), WAY-262611 (16 mg/kg), or sorafenib + WAY-262611 for 10 days. Mechanisms of sorafenib and WAY-262611 were explored via western blotting, immunostaining, and RNA sequencing. RESULTS DKK1 was significantly overexpressed in patients with HCC than in the healthy controls and patients with liver diseases except HCC (all P < 0.05). Compared with sorafenib alone, sorafenib + WAY-262611 significantly inhibited the cell viability, invasion, migration, and colony formation by promoting apoptosis and altering the cell cycles in HCC cells (all P < 0.05). Moreover, sorafenib + WAY-262611 decreased the p110α, phospho-Akt (all P < 0.05), active β-catenin (all P < 0.05) and phospho-GSK-3β (Ser9) expression levels, while increasing the phospho-GSK-3β (Tyr216) expression levels compared with those in the sorafenib alone in vitro and in vivo. In addition, sorafenib + WAY-262611 inhibited tumor progression by regulating cell proliferation and apoptosis, significantly better than sorafenib alone in mouse models. CONCLUSIONS Our results indicate that DKK1 inhibition significantly enhances the anti-tumor efficacy of sorafenib by inhibiting the PI3K/Akt and Wnt/β-catenin pathways via regulation of GSK3β activity, suggesting a novel therapeutic strategy for HCC. Video Abstract.
Collapse
Affiliation(s)
- Sang Hyun Seo
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Kyung Joo Cho
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Hye Jung Park
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Hye Won Lee
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Beom Kyung Kim
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jun Yong Park
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Do Young Kim
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Sang Hoon Ahn
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Korea
| | - Man-Deuk Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Jin Joo
- Department of Surgery, Yonsei University of College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Yonsei Liver Center, Severance Hospital, Seoul, Korea.
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| |
Collapse
|
49
|
Colozza G, Lee H, Merenda A, Wu SHS, Català-Bordes A, Radaszkiewicz TW, Jordens I, Lee JH, Bamford AD, Farnhammer F, Low TY, Maurice MM, Bryja V, Kim J, Koo BK. Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2. SCIENCE ADVANCES 2023; 9:eadh9673. [PMID: 38000028 PMCID: PMC10672176 DOI: 10.1126/sciadv.adh9673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
The mammalian intestine is one of the most rapidly self-renewing tissues, driven by stem cells residing at the crypt bottom. Paneth cells form a major element of the niche microenvironment providing various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. Different Wnt ligands can selectively activate β-catenin-dependent (canonical) or -independent (noncanonical) signaling. Here, we report that the Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and noncanonical Wnt (Wnt/PCP) signaling. Daam1/2 interacts with the Wnt inhibitor RNF43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing RNF43-dependent degradation of the Wnt receptor, Frizzled (Fzd). Single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion because of defective Wnt/PCP signaling. Together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and noncanonical Wnt, which is fundamental for specifying an adequate number of Paneth cells.
Collapse
Affiliation(s)
- Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Heetak Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
| | | | - Szu-Hsien Sam Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Andrea Català-Bordes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Tomasz W. Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ingrid Jordens
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ji-Hyun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
| | - Aileen-Diane Bamford
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Fiona Farnhammer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Division of Metabolism and Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), University Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Madelon M. Maurice
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jihoon Kim
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
50
|
Khan H, Ullah K, Jan A, Ali H, Ullah I, Ahmad W. A variant in the LDL receptor-related protein encoding gene LRP4 underlying polydactyly and phalangeal synostosis in a family of Pakistani origin. Congenit Anom (Kyoto) 2023; 63:190-194. [PMID: 37563890 DOI: 10.1111/cga.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/07/2023] [Accepted: 06/04/2023] [Indexed: 08/12/2023]
Abstract
A family of Pakistani origin, segregating polydactyly, and phalangeal synostosis in an autosomal dominant manner, has been investigated and presented in the present report. Whole-exome sequencing (WES), followed by segregation analysis using Sanger sequencing, revealed a heterozygous missense variant [c.G1696A, p.(Gly566Ser)] in the LRP4 gene located on human chromosome 11p11.2. Homology protein modeling revealed the mutant Ser566 generated new interactions with at least four other amino acids and disrupted protein folding and function. Our findings demonstrated the first direct evidence of involvement of LRP4 in causing polydactyly and phalangeal synostosis in the same family. This study highlighted the importance of inclusion of LRP4 gene in screening individuals presenting polydactyly in hands and feet, and phalangeal synostosis in the same family.
Collapse
Affiliation(s)
- Hammal Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kifayat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abid Jan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Pakistan
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Imran Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|