1
|
Senanayake D, Yapa P, Dabare S, Munaweera I, Weerasekera MM, Etampawala TNB, Sethunga M, Attygalle D, Amarasinghe S. Combined antimicrobial and anti-inflammatory properties of electrospun PCL nanohybrids infused with metal-turmeric oleoresin and metalcurcuminoids. RSC Adv 2025; 15:20061-20083. [PMID: 40510043 PMCID: PMC12160006 DOI: 10.1039/d5ra01642h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 06/01/2025] [Indexed: 06/19/2025] Open
Abstract
The increasing risk of microbial infections and antimicrobial resistance requires the development of sustainable biomaterials with improved therapeutic properties for effective and environmentally friendly health and safety applications, leading to the exploration of advanced multifunctional nanomaterials. This study introduces a novel electrospun polymeric membrane that integrates a trimetallic nanohybrid composed of silver (Ag), copper (Cu), and nickel (Ni) with curcuminoids derived from turmeric oleoresin. This combination is incorporated into a biodegradable polycaprolactone (PCL) electrospun mat. The synthesis and characterization of the nanohybrids were performed using Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV diffuse reflectance spectrometry. The electrospun membranes incorporated with a trimetallic and curcuminoids nanohybrid demonstrated a synergistic antimicrobial effect, as evidenced by inhibition zones measuring between 29.67 ± 0.24 and 33.17 ± 0.24 mm against a wide range of bacterial and fungal strains. The primary antimicrobial mechanism is attributed to radical scavenging activity (RSA), which reached a maximum value of 76.14 ± 0.99% in the trimetallic and curcuminoids nanohybrid incorporated PCL mat. Furthermore, the curcuminoids displayed significant anti-inflammatory effects, achieving a maximum reduction of 72.81 ± 0.33% at a concentration of 5000 ppm. The electrospun membranes effectively reduce microbial growth, are biodegradable, non-toxic, pose minimal hazards, and are environmentally friendly, aligning with sustainable technologies for biomedical applications. These membranes function as physical and biological barriers, offering an eco-conscious, cost-effective alternative to conventional antimicrobial strategies. This research highlights the potential of trimetallic-curcuminoid nanohybrid electrospun membranes as sustainable biomaterials for advanced antimicrobial treatments, contributing to safer and more effective biomedical applications while ensuring biocompatibility and environmental safety. It exemplifies how innovative solutions can tackle health and sustainability challenges.
Collapse
Affiliation(s)
- Dinithi Senanayake
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| | - Piumika Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| | - Sanduni Dabare
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| | - Manjula M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka
| | - Thusitha N B Etampawala
- Department of Polymer Science, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka
- Center for Nanocomposite Research, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka
| | - Maheshika Sethunga
- Department of Food Science and Technology, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka
| | - Dinesh Attygalle
- Department of Material Science and Engineering, Faculty of Engineering, University of Moratuwa Sri Lanka
| | - Shantha Amarasinghe
- Department of Material Science and Engineering, Faculty of Engineering, University of Moratuwa Sri Lanka
| |
Collapse
|
2
|
Barragan-Zuñiga J, Herrera MD, Simental-Mendía LE, Zamilpa A, Morales-Ferra DL, Martínez-Aguilar G, Salas-Pacheco J, Gamboa-Gómez CI. A Combined Turmeric and Allspice Supplement Improves Metabolic Health in Obese Rats by Reducing Carbohydrate and Lipid Absorption. J Med Food 2025. [PMID: 40358049 DOI: 10.1089/jmf.2024.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
The objective of this study is to assess the impact of a combined turmeric (Curcuma longa L.) and allspice (Pimenta dioica L. Merril) supplement (TAS), on obesity, hypertriglyceridemia, hyperglycemia, and insulin resistance through inhibition of carbohydrate and lipid absorption. In vitro assessments demonstrated that TAS inhibits key enzymes implicated in the carbohydrate and lipid absorption. Oral starch and lipid tolerance tests showed that combined supplement reduced lipid (∼47% TAS) and carbohydrate absorption (∼33%) compared to the negative control. In a 36-week diet-induced obesity model, intervention with TAS was found that reduced body weight gain (∼18%), lower triglycerides (∼35%), and fasting glucose levels (∼14%) compared to obese control. Furthermore, TAS-treated rats showed reduced oral glucose tolerance test values (∼25%), insulin levels (∼14%), and insulin resistance (∼14%). Our results suggest that TAS enhances carbohydrate and lipid absorption while effectively improving hypertriglyceridemia, hyperglycemia, and insulin resistance in obese rats.
Collapse
Affiliation(s)
| | - Mayra Denise Herrera
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Campo Experimental Zacatecas, Zacatecas-Fresnillo, Mexico
| | - Luis E Simental-Mendía
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social, Durango, México
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Morelos, México
| | | | | | - José Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Claudia I Gamboa-Gómez
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social, Durango, México
| |
Collapse
|
3
|
Higashihara M, Shimizu D, Kishi C, Sumi T, Kakihara S, Yoshioka Y, Matsumura S, Moriyama T, Zaima N. Inhaled turmerone can attenuate nicotine-induced degeneration of the aorta. Fitoterapia 2025; 182:106465. [PMID: 40058658 DOI: 10.1016/j.fitote.2025.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Nicotine in secondhand smoke can increase the risk of development of cardiovascular disease in passive smokers through degeneration of the aorta which is one of main pathologies of cardiovascular disease. We speculated that the adverse effect of nicotine can be attenuated by volatile active molecules. As the potential molecule having vasoprotective effect, we focused on turmerone which is major volatile compound in turmeric (Curcuma longa). Oral administration of turmerone reportedly shows biological activities such as anti-inflammation, anti-oxidation, and anti-depression effects. We previously reported that turmerone was detected in the blood and organs of mice that inhaled turmeric essential oil. In addition, high fat-induced weight gain was suppressed in the group of mice that inhaled turmeric essential oil, suggesting the existence of biological activity of inhaled turmerone. However, the effects of inhaled turmerone on the aorta remain unclear. The aim of this study is to investigate the effects of inhaled turmerone on nicotine-induced aortic degeneration. Nicotine-induced degradation of elastic fiber and increased matrix metalloproteinase (MMP)-2 was attenuated by inhalation of the turmeric essential oil. In the serum of mice that inhaled the turmeric essential oil, all turmerone species, α-turmerone, β-turmerone, and ar-turmerone, were detected. In ex vivo cultured aorta, ar-turmerone showed the strongest protective effects on nicotine-induced degeneration of the aorta compared to α-turmerone and β-turmerone. These data indicate that inhaled turmerone attenuate nicotine-induced aortic degeneration after incorporated into the body.
Collapse
Affiliation(s)
- Mayo Higashihara
- Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara 631-8505, Japan
| | - Daisuke Shimizu
- Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara 631-8505, Japan
| | - Chihiro Kishi
- Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara 631-8505, Japan
| | - Tomoko Sumi
- Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara 631-8505, Japan
| | - Shuto Kakihara
- Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara 631-8505, Japan
| | - Yuri Yoshioka
- INABATA KORYO, Co., Ltd., 3-5-20 Tagawa, Yodogawa, Osaka 532-0027, Japan
| | - Shinichi Matsumura
- INABATA KORYO, Co., Ltd., 3-5-20 Tagawa, Yodogawa, Osaka 532-0027, Japan
| | - Tatsuya Moriyama
- Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| | - Nobuhiro Zaima
- Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan.
| |
Collapse
|
4
|
Liu Q, Komatsu K, Toume K, Zhu S, Tanaka K, Hayashi S, Anjiki N, Kawahara N, Takano A, Miyake K, Nakamura N, Sukrong S, Agil M, Balachandra I. Essential oil composition of Curcuma species and drugs from Asia analyzed by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. J Nat Med 2023; 77:152-172. [PMID: 36443621 DOI: 10.1007/s11418-022-01658-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
Essential oils (EOs) comprised of various bioactive compounds have been widely detected in the Curcuma species. Due to the widespread distribution and misidentification of Curcuma species and differences in processing methods, inconsistent reports on major compounds in rhizomes of the same species from different geographical regions are not uncommon. This inconsistency leads to confusion and inaccuracy in compound detection of each species and also hinders comparative study based on EO compositions. The present study aimed to characterize EO compositions of 12 Curcuma species, as well as to detect the compositional variation among different species, and between the plant specimens and their related genetically validated crude drug samples using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The plant specimens of the same species showed similar EO patterns, regardless of introducing from different geographical sources. Based on the similarity of EO compositions, all the specimens and samples were separated into eight main groups: C. longa; C. phaeocaulis, C. aeruginosa and C. zedoaria; C. zanthorrhiza; C. aromatica and C. wenyujin; C. kwangsiensis; C. amada and C. mangga; C. petiolata; C. comosa. From EOs of all the specimens and samples, 54 major compounds were identified, and the eight groups were chemically characterized. Most of the major compounds detected in plant specimens were also observed in crude drug samples, although a few compounds converted or degraded due to processing procedures or over time. Orthogonal partial least squares-discriminant analysis allowed the marker compounds to discriminate each group or each species to be identified.
Collapse
Affiliation(s)
- Qundong Liu
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Katsuko Komatsu
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Kazufumi Toume
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shu Zhu
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Shigeki Hayashi
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 17007-2 Nakatane-cho, Kumage-Gun, Kagoshima, 891-3604, Japan
| | - Naoko Anjiki
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 17007-2 Nakatane-cho, Kumage-Gun, Kagoshima, 891-3604, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 17007-2 Nakatane-cho, Kumage-Gun, Kagoshima, 891-3604, Japan
| | - Akihito Takano
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machidashi, Tokyo, 194-8543, Japan
| | - Katsunori Miyake
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Norio Nakamura
- Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe City, Kyoto, 610-0395, Japan
| | - Suchada Sukrong
- Chulalongkorn University, 254 Phayathai Rd, Wang Mai, Pathum Wan District, Bangkok, 10330, Thailand
| | - Mangestuti Agil
- Airlangga University, Jl. Airlangga No.4 - 6, Airlangga, Kec. Gubeng, Kota SBY, Jawa Timur, 60115, Indonesia
| | - Indira Balachandra
- Center for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram District, Kerala, 676503, India
| |
Collapse
|
5
|
Wijewardhana U, Jayasinghe M, Wijesekara I, Ranaweera KKDS. Zingiber officinale, Phyllanthus emblica, Cinnamomum verum, and Curcuma longa to Prevent Type 2 Diabetes: An Integrative Review. Curr Diabetes Rev 2023; 19:e241122211183. [PMID: 36424773 DOI: 10.2174/1573399819666221124104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
Diabetes mellitus has become a global pandemic progressively rising and affecting almost every household in all world regions. Diet is a significant root cause of type II diabetes; thus, the significance of dietary interventions in preventing and managing the disease cannot be neglected. Lowering the glycemic impact of diet is an alternative way of managing type II diabetes while improving insulin sensitivity. Medicinal plants are rich in therapeutic phytochemicals which possess hypoglycemic properties. Therefore, it could be speculated that the glycemic impact of diet can be reduced by adding hypoglycemic plant ingredients without altering the sensory properties of food. The main aim of this review is to discuss dietary interventions to manage diabetes and summarize available information on the hypoglycemic properties of four prime herbs of Asian origin. This article collected, tabulated, and summarized groundbreaking reveals from promising studies. This integrative review provides information on the hypoglycemic properties of ginger, Indian gooseberry, cinnamon, and turmeric and discusses the possibility of those herbs reducing the glycemic impact of a diet once incorporated. Further research should be done regarding the incorporation of these herbs successfully into a regular diet.
Collapse
Affiliation(s)
- Uththara Wijewardhana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Madhura Jayasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Isuru Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - K K D S Ranaweera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
6
|
Ogino M, Yamada K, Sato H, Onoue S. Enhanced nutraceutical functions of herbal oily extract employing formulation technology: The present and future. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Vafaeipour Z, Razavi BM, Hosseinzadeh H. Effects of turmeric (Curcuma longa) and its constituent (curcumin) on the metabolic syndrome: An updated review. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:193-203. [PMID: 35292209 DOI: 10.1016/j.joim.2022.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome (MS) involves people with the following risk factors: obesity, hypertension, high glucose level and hyperlipidemia. It can increase the risk of heart disease, stroke and type 2 diabetes mellitus. The prevalence of MS in the world's adult population is about 20%-25%. Today, there is much care to use medicinal plants. Turmeric (Curcuma longa) as well as curcumin which is derived from the rhizome of the plant, has been shown beneficial effects on different components of MS. Thus, the purpose of this manuscript was to introduce different in vitro, in vivo and human studies regarding the effect of turmeric and its constituent on MS. Moreover, different mechanisms of action by which this plant overcomes MS have been introduced. Based on studies, turmeric and its bioactive component, curcumin, due to their anti-inflammatory and antioxidant properties, have antidiabetic effects through increasing insulin release, antihyperlipidemic effects by increasing fatty acid uptake, anti-obesity effects by decreasing lipogenesis, and antihypertensive effects by increasing nitric oxide. According to several in vivo, in vitro and human studies, it can be concluded that turmeric or curcumin has important values as a complementary therapy in MS. However, more clinical trials should be done to confirm these effects.
Collapse
Affiliation(s)
- Zeinab Vafaeipour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran.
| |
Collapse
|
8
|
Gururani S, Gairola K, Kumar R, Prakash O, Dubey SK. Altitudinal and geographical variations in phytochemical composition and biological activities of
Curcuma longa
accession from Uttarakhand, the Himalayan region. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shriya Gururani
- Department of Biochemistry, C.B.S.H. G. B. Pant University of Agriculture and Technology Pantnagar India
| | - Kanchan Gairola
- Department of Biochemistry, C.B.S.H. G. B. Pant University of Agriculture and Technology Pantnagar India
| | - Ravendra Kumar
- Department of Chemistry, C.B.S.H. G. B. Pant University of Agriculture and Technology Pantnagar India
| | - Om Prakash
- Department of Chemistry, C.B.S.H. G. B. Pant University of Agriculture and Technology Pantnagar India
| | - Shiv Kumar Dubey
- Department of Biochemistry, C.B.S.H. G. B. Pant University of Agriculture and Technology Pantnagar India
| |
Collapse
|
9
|
Qiang Y, Si R, Tan S, Wei H, Huang B, Wu M, Shi M, Fang L, Fu J, Zeng S. Spatial variation of volatile organic compounds and antioxidant activity of turmeric ( Curcuma longa L.) essential oils harvested from four provinces of China. Curr Res Food Sci 2021; 4:882-890. [PMID: 34917948 PMCID: PMC8646137 DOI: 10.1016/j.crfs.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to investigate the spatial variation of volatile organic compounds and antioxidant activity of turmeric essential oils (TEOs) harvested from four provinces of China. The major chemical components of these TEOs were analyzed using headspace solid-phase micro-extraction gas chromatography-mass spectrometry. More than forty volatile organic compounds in TEOs were identified, which accounted for 82.09–93.64% of the oil components. The relative abundances of the main volatile organic compounds in TEOs at the genus level were visualized by a heat map. The antioxidant activity of the TEOs of five different origins was characterized by the DPPH free radical scavenging activity, in which the antioxidant activity of the TEOs from Guangxi was superior to those of other sources. Furthermore, the IC50 values of the antioxidants TEOs collected from Guangxi, Sichuan, Yunnan, Changting, and Liancheng were 33.30, 42.5, 35.22, 63.27, and 39.96 mg/mL, respectively, which indicated the excellent free radical scavenging activity of those TEOs. Therefore, the TEOs might be considered as a natural antioxidant with potential applications in food and pharmaceutical industries.
Turmeric essential oils stemmed from four provinces of China were investigated. Multivariate analysis of volatile organic compounds in TEOs was performed. The major components of volatile organic compounds exhibited a spatial variation. Antioxidant activity of turmeric essential oils demonstrated a spatial variation. TEOs of Guangxi had a superior antioxidant activity to those of other origins.
Collapse
Affiliation(s)
- Yueyue Qiang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruiru Si
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Suo Tan
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hang Wei
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Biao Huang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Miaohong Wu
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.,Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, Zhangzhou, 363005, China
| | - Mengzhu Shi
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Ling Fang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Jianwei Fu
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
10
|
Kwon PK, Kim SW, De R, Jeong SW, Kim KT. Isoprocurcumenol Supports Keratinocyte Growth and Survival through Epidermal Growth Factor Receptor Activation. Int J Mol Sci 2021; 22:ijms222212579. [PMID: 34830467 PMCID: PMC8625800 DOI: 10.3390/ijms222212579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 02/04/2023] Open
Abstract
Although proliferation of keratinocytes, a major type of skin cells, is a key factor in maintaining the function of skin, their ability to proliferate tends to diminish with age. To solve such a problem, researchers in medical and skin cosmetic fields have tried to utilize epidermal growth factor (EGF), but achieved limited success. Therefore, a small natural compound that can mimic the activity of EGF is highly desired in both medical and cosmetic fields. Here, using the modified biosensor system, we observed that natural small-compound isoprocurcumenol, which is a terpenoid molecule derived from turmeric, can activate EGFR signaling. It increased the phosphorylation of ERK and AKT, and upregulated the expression of genes related to cell growth and proliferation, such as c-myc, c-jun, c-fos, and egr-1. In addition, isoprocurcumenol induced the proliferation of keratinocytes in both physical and UVB-induced cellular damage, indicative of its function in skin regeneration. These findings reveal that EGF-like isoprocurcumenol promotes the proliferation of keratinocytes and further suggest its potential as an ingredient for medical and cosmetics use.
Collapse
Affiliation(s)
- Paul Kwangho Kwon
- Research Institute of Industrial Science and Technology, Pohang 37673, Gyeongbuk, Korea; (P.K.K.); (S.W.J.)
| | - Sung Wook Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea; (S.W.K.); (R.D.)
| | - Ranjit De
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea; (S.W.K.); (R.D.)
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea
| | - Sung Woo Jeong
- Research Institute of Industrial Science and Technology, Pohang 37673, Gyeongbuk, Korea; (P.K.K.); (S.W.J.)
| | - Kyong-Tai Kim
- Research Institute of Industrial Science and Technology, Pohang 37673, Gyeongbuk, Korea; (P.K.K.); (S.W.J.)
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea; (S.W.K.); (R.D.)
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea
- Correspondence:
| |
Collapse
|
11
|
Sayeli VK, Shenoy AK. Antidiabetic effect of bio-enhanced preparation of turmeric in streptozotocin-nicotinamide induced type 2 diabetic Wistar rats. J Ayurveda Integr Med 2021; 12:474-479. [PMID: 34353691 PMCID: PMC8377175 DOI: 10.1016/j.jaim.2021.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 11/08/2022] Open
Abstract
Background Poor oral bioavailability of curcumin, the active ingredient in turmeric, has limited its therapeutic use in various diseases including diabetes mellitus (DM). Objective(s) The present study was aimed at evaluating and comparing the antidiabetic activity as well as pharmacokinetic profile of two turmeric extracts. Materials and methods Rats were divided into seven groups (n = 6) including Normal control (NC), Diabetic control (DC), two standard control groups- Glibenclamide (GLIB) 5 mg/kg and Metformin (MET) 500 mg/kg, two bio-enhanced turmeric extract (BTE) treated groups (BTE-30 (30 mg/kg), BTE-60 (60 mg/kg)) and one regular turmeric extract treated (RTE) group RTE-30 (30 mg/kg). Treatment was given orally for 30 days. Streptozotocin (60 mg/kg) and Nicotinamide (110 mg/kg) were administered intraperitoneally to induce diabetes. Fasting blood glucose (FBG), oral glucose tolerance test at 60 min and 120 min (OG1 and OG2) were analysed at baseline and at the end of study on Day 29. FBG, fasting serum insulin, and concentration of curcumin and its derivatives present in pancreas were analysed at the end of study on Day 30. Results Turmeric extract treated groups showed significant (p < 0.05) blood glucose lowering effect, when compared with DC group. FBG, OG1 and OG2 readings were found significantly (p < 0.05) higher in RTE-30 treated group when compared with BTE-30 treated groups. Turmeric extracts showed improved beta-cell function, insulin sensitivity and decreased insulin resistance. BTE-30 had more pancreatic bioavailability of curcumin than RTE-30. Conclusion Turmeric extracts demonstrated an antidiabetic effect in streptozotocin-nicotinamide induced type 2 diabetic Wistar rats. BTE extract was found to be an effective agent as compared to RTE in controlling hyperglycemia.
Collapse
Affiliation(s)
- Vinay Kumar Sayeli
- Department of Pharmacology, Apollo Medical College, Chittoor, Andhra Pradesh, 517127, India
| | - Ashok K Shenoy
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, 575001, India.
| |
Collapse
|
12
|
Razavi BM, Ghasemzadeh Rahbardar M, Hosseinzadeh H. A review of therapeutic potentials of turmeric (Curcuma longa) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents. Phytother Res 2021; 35:6489-6513. [PMID: 34312922 DOI: 10.1002/ptr.7224] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Turmeric (Curcuma longa) and its constituent, curcumin, have been used for their therapeutic properties for a long time. Most of the medicinal impacts of turmeric and curcumin might be attributed to their anti-inflammatory, antinociceptive, and antioxidant effects. In the present review, the preventive and therapeutic potentials of turmeric and its active constituent, curcumin, on inflammatory disorders and pain as well as patents related to their analgesic and anti-inflammatory effects, have been summarized to highlight their value on human health. A literature review was accomplished in Google Scholar, PubMed, Scopus, Google Patent, Patentscope, and US Patent. Several documents and patents disclosed the significance of turmeric and curcumin to apply in several therapeutic, medicinal, and pharmaceutical fields. These phytocompounds could be applied as a supplementary therapy in phytotherapy, inflammatory disorders such as arthritis, inflammatory bowel diseases, osteoarthritis, psoriasis, dermatitis, and different types of pain including neuropathic pain. However, because of inadequate clinical trials, further high-quality studies are needed to firmly establish the clinical efficacy of the plant. Consistent with the human tendency to the usage of phytocompounds rather than synthetic drugs, particular consideration must be dedicated to bond the worth of turmeric and curcumin from basic sciences to clinical applications.
Collapse
Affiliation(s)
- Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Abe K, Okada S, Ishijima T. The activities of the ILSI Japan endowed chair, at the University of Tokyo, regarding functional food genomics. Nutr Rev 2020; 78:35-39. [PMID: 33259622 DOI: 10.1093/nutrit/nuaa090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Keiko Abe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoko Ishijima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Polysaccharide-based delivery systems for curcumin and turmeric powder encapsulation using a spray-drying process. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Dosoky NS, Setzer WN. Chemical Composition and Biological Activities of Essential Oils of Curcuma Species. Nutrients 2018; 10:E1196. [PMID: 30200410 PMCID: PMC6164907 DOI: 10.3390/nu10091196] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Members of the genus Curcuma L. have been used in traditional medicine for centuries for treating gastrointestinal disorders, pain, inflammatory conditions, wounds, and for cancer prevention and antiaging, among others. Many of the biological activities of Curcuma species can be attributed to nonvolatile curcuminoids, but these plants also produce volatile chemicals. Essential oils, in general, have shown numerous beneficial effects for health maintenance and treatment of diseases. Essential oils from Curcuma spp., particularly C. longa, have demonstrated various health-related biological activities and several essential oil companies have recently marketed Curcuma oils. This review summarizes the volatile components of various Curcuma species, the biological activities of Curcuma essential oils, and potential safety concerns of Curcuma essential oils and their components.
Collapse
Affiliation(s)
- Noura S Dosoky
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
16
|
Mohammed A, Islam MS. Spice-Derived Bioactive Ingredients: Potential Agents or Food Adjuvant in the Management of Diabetes Mellitus. Front Pharmacol 2018; 9:893. [PMID: 30186162 PMCID: PMC6113848 DOI: 10.3389/fphar.2018.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/23/2018] [Indexed: 01/31/2023] Open
Abstract
Spices possess tremendous therapeutic potential including hypoglycemic action, attributed to their bioactive ingredients. However, there is no study that critically reviewed the hypoglycemic potency, safety and the bioavailability of the spice-derived bioactive ingredients (SDBI). Therefore, the aim of the study was to comprehensively review all published studies regarding the hypoglycemic action of SDBI with the purpose to assess whether the ingredients are potential hypoglycemic agents or adjuvant. Factors considered were concentration/dosages used, the extent of blood glucose reduction, the IC50 values, and the safety concern of the SDBI. From the results, cinnamaldehyde, curcumin, diosgenin, thymoquinone (TQ), and trigonelline were showed the most promising effects and hold future potential as hypoglycemic agents. Conclusively, future studies should focus on improving the tissue and cellular bioavailability of the promising SDBI to achieve greater potency. Additionally, clinical trials and toxicity studies are with these SDBI are warranted.
Collapse
Affiliation(s)
- Aminu Mohammed
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
El-Hawaz RF, Grace MH, Janbey A, Lila MA, Adelberg JW. In vitro mineral nutrition of Curcuma longa L. affects production of volatile compounds in rhizomes after transfer to the greenhouse. BMC PLANT BIOLOGY 2018; 18:122. [PMID: 29914391 PMCID: PMC6006571 DOI: 10.1186/s12870-018-1345-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Turmeric is a rich source of bioactive compounds useful in both medicine and cuisine. Mineral concentrations effects (PO43-, Ca2+, Mg2+, and KNO3) were tested during in vitro rhizome development on the ex vitro content of volatile constituents in rhizomes after 6 months in the greenhouse. A response surface method (D-optimal criteria) was repeated in both high and low-input fertilizer treatments. Control plants were grown on Murashige and Skoog (MS) medium, acclimatized in the greenhouse and grown in the field. The volatile constituents were investigated by GC-MS. RESULTS The total content of volatiles was affected by fertilizer treatments, and in vitro treatment with Ca2+ and KNO3; but PO43- and Mg2+ had no significant effect. The content was higher in the high-input fertilizer treatments (49.7 ± 9 mg/g DM) with 4 mM Ca2+, 60 mM KNO3 and 5 mM NH4+, than the low-input fertilizer (26.6 ± 9 mg/g DM), and the MS control (15.28 ± 2.7 mg/g DM; 3 mM Ca2+, 20 mM K+, 39 mM NO3-, 20 mM NH4+, 1.25 mM PO43-, and 1.5 mM Mg2+). The interaction of Ca2+ with KNO3 affected curcumenol isomer I and II, germacrone, isocurcumenol, and β-elemenone content. Increasing in vitro phosphate concentration to 6.25 mM increased ex vitro neocurdione and methenolone contents. CONCLUSION These results show that minerals in the in vitro bioreactor medium during rhizome development affected biosynthesis of turmeric volatile components after transfer to the greenhouse six months later. The multi-factor design identified 1) nutrient regulation of specific components within unique phytochemical profile for Curcuma longa L. clone 35-1 and 2) the varied phytochemical profiles were maintained with integrity during the greenhouse growth in high fertility conditions.
Collapse
Affiliation(s)
- Rabia F. El-Hawaz
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634 USA
| | - Mary H. Grace
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081 USA
| | - Alan Janbey
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081 USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081 USA
| | - Jeffrey W. Adelberg
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
18
|
Hang TTT, Molee W, Khempaka S, Paraksa N. Supplementation with curcuminoids and tuna oil influenced skin yellowness, carcass composition, oxidation status, and meat fatty acids of slow-growing chickens. Poult Sci 2018; 97:901-909. [DOI: 10.3382/ps/pex385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022] Open
|
19
|
Hosseini A, Hosseinzadeh H. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review. Biomed Pharmacother 2018; 99:411-421. [DOI: 10.1016/j.biopha.2018.01.072] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/19/2022] Open
|
20
|
Akolade JO, Na’Allah A, Sulyman AO, Abdulazeez AT, Atoti AO, Isiaku MB. Antidiabetic Screening of Phenolic-rich Extracts of Selected Medicinal Spices. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2018. [DOI: 10.1007/s40995-017-0410-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Patil L, Gogate PR. Ultrasound assisted synthesis of stable oil in milk emulsion: Study of operating parameters and scale-up aspects. ULTRASONICS SONOCHEMISTRY 2018; 40:135-146. [PMID: 28946407 DOI: 10.1016/j.ultsonch.2017.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
In the present work, application of ultrasound and stirring individually or in combination for improved emulsification of turmeric oil in skimmed milk has been investigated. The effect of different operating parameters/strategies such as addition of surfactant, sodium dodecyl sulfate (SDS), at different concentrations, quantity of oil phase, applied power, sonication time and duty cycle on the droplet size have been investigated. The stability of emulsion was analyzed in terms of the fraction of the emulsion that remains stable for a period of 28days. Optimized set of major emulsification process variables has been used at higher emulsion volumes. The effectiveness of treatment approach was analyzed based on oil droplet size, energy density and the time required for the formation of stable emulsion. It was observed that the stable emulsion at 50mL capacity with mean droplet diameter of about 235.4nm was obtained with the surfactant concentration of 5mg/mL, 11% of rated power (power density: 0.31W/mL) and irradiation time of 5min. The emulsion stability was higher in the case of ultrasound assisted approach as compared to the stirring. For the preparation of stable emulsion at 300mL capacity, it was observed that the sequential approach, i.e., stirring followed by ultrasound, gave lower mean droplet diameter (232.6nm) than the simultaneous approach, i.e., ultrasound and stirring together (257.9nm). However, the study also revealed that the simultaneous approach required very less time (15min) to synthesize stable emulsion as compared to the sequential approach (30min stirring and 60min ultrasound). It was successfully demonstrated that the ultrasound-assisted emulsification in the presence of SDS could be used for the preparation of stable turmeric oil-dairy emulsions, also providing insights into the role of SDS in increasing the stability of emulsions and of ultrasound in giving lower droplet sizes.
Collapse
Affiliation(s)
- Leena Patil
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Parag R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.
| |
Collapse
|
22
|
A.T. B, C.L. CH. Lipase inhibitory activity of Carica papaya, Chrysophyllum cainito, Corcorus olitorius, Cympogon citrates and Syzygium cumini extracts. FOOD RESEARCH 2017. [DOI: 10.26656/fr.2017.2(1).118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Sun W, Wang S, Zhao W, Wu C, Guo S, Gao H, Tao H, Lu J, Wang Y, Chen X. Chemical constituents and biological research on plants in the genus Curcuma. Crit Rev Food Sci Nutr 2017; 57:1451-1523. [PMID: 27229295 DOI: 10.1080/10408398.2016.1176554] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcuma, a valuable genus in the family Zingiberaceae, includes approximately 110 species. These plants are native to Southeast Asia and are extensively cultivated in India, China, Sri Lanka, Indonesia, Peru, Australia, and the West Indies. The plants have long been used in folk medicine to treat stomach ailments, stimulate digestion, and protect the digestive organs, including the intestines, stomach, and liver. In recent years, substantial progress has been achieved in investigations regarding the chemical and pharmacological properties, as well as in clinical trials of certain Curcuma species. This review comprehensively summarizes the current knowledge on the chemistry and briefly discusses the biological activities of Curcuma species. A total of 720 compounds, including 102 diphenylalkanoids, 19 phenylpropene derivatives, 529 terpenoids, 15 flavonoids, 7 steroids, 3 alkaloids, and 44 compounds of other types isolated or identified from 32 species, have been phytochemically investigated. The biological activities of plant extracts and pure compounds are classified into 15 groups in detail, with emphasis on anti-inflammatory and antitumor activities.
Collapse
Affiliation(s)
- Wen Sun
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Sheng Wang
- b State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| | - Wenwen Zhao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Chuanhong Wu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Shuhui Guo
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Hongwei Gao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Hongxun Tao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Jinjian Lu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Xiuping Chen
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
24
|
DNA Microarray-Based Screening and Characterization of Traditional Chinese Medicine. MICROARRAYS 2017; 6:microarrays6010004. [PMID: 28146102 PMCID: PMC5374364 DOI: 10.3390/microarrays6010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
The application of DNA microarray assay (DMA) has entered a new era owing to recent innovations in omics technologies. This review summarizes recent applications of DMA-based gene expression profiling by focusing on the screening and characterizationof traditional Chinese medicine. First, herbs, mushrooms, and dietary plants analyzed by DMA along with their effective components and their biological/physiological effects are summarized and discussed by examining their comprehensive list and a list of representative effective chemicals. Second, the mechanisms of action of traditional Chinese medicine are summarized by examining the genes and pathways responsible for the action, the cell functions involved in the action, and the activities found by DMA (silent estrogens). Third, applications of DMA for traditional Chinese medicine are discussed by examining reported examples and new protocols for its use in quality control. Further innovations in the signaling pathway based evaluation of beneficial effects and the assessment of potential risks of traditional Chinese medicine are expected, just as are observed in other closely related fields, such as the therapeutic, environmental, nutritional, and pharmacological fields.
Collapse
|
25
|
Sun X, Yamasaki M, Katsube T, Shiwaku K. Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice. Nutr Res Pract 2014; 9:137-43. [PMID: 25861419 PMCID: PMC4388944 DOI: 10.4162/nrp.2015.9.2.137] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/10/2014] [Accepted: 08/13/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/OBJECTIVES Mulberry leaves contain quercetin derivatives, which have the effects of reducing obesity and improving lipid and glucose metabolism in mice with obesity. It is not clear whether or not mulberry leaves can directly affect metabolic disorders, in the presence of obesity, because of the interaction between obesity and metabolic disorders. The aim of the current study was to assess the direct action of quercetin derivatives on metabolic disorders in non-obese conditions in short-term high-fat diet fed mice. MATERIALS/METHODS C57BL/6N mice were fed a high-fat diet, supplemented with either 0% (control), 1%, or 3% mulberry leaf powder (Mul) or 1% catechin powder for five days. Anthropometric parameters and blood biochemistry were determined, and hepatic gene expression associated with lipid and glucose metabolism was analyzed. RESULTS Body and white fat weights did not differ among the four groups. Plasma triglycerides, total cholesterol, and free fatty acids in the 1%, 3% Mul and catechin groups did not differ significantly from those of the controls, however, plasma glucose and 8-isoprostane levels were significantly reduced. Liver gene expression of gp91phox, a main component of NADPH oxidase, was significantly down-regulated, and PPAR-α, related to β-oxidation, was significantly up-regulated. FAS and GPAT, involved in lipid metabolism, were significantly down-regulated, and Ehhadh was significantly up-regulated. Glucose-metabolism related genes, L-PK and G6Pase, were significantly down-regulated, while GK was significantly up-regulated in the two Mul groups compared to the control group. CONCLUSIONS Our results suggest that the Mul quercetin derivatives can directly improve lipid and glucose metabolism by reducing oxidative stress and enhancing β-oxidation. The 1% Mul and 1% catechin groups had similar levels of polyphenol compound intake (0.4 × 10-5vs 0.4 × 10-5 mole/5 days) and exhibited similar effects, but neither showed dose-dependent effects on lipid and glucose metabolism or oxidative stress.
Collapse
Affiliation(s)
- Xufeng Sun
- Department of Environmental and Preventive Medicine, Shimane University School of Medicine, 89-1 Enya-cho, Izumo City, Shimane 693-8501, Japan
| | - Masayuki Yamasaki
- Department of Environmental and Preventive Medicine, Shimane University School of Medicine, 89-1 Enya-cho, Izumo City, Shimane 693-8501, Japan
| | - Takuya Katsube
- Shimane Institute for Industrial Technology, Matsue City, Shimane 690-0816, Japan
| | - Kuninori Shiwaku
- Department of Environmental and Preventive Medicine, Shimane University School of Medicine, 89-1 Enya-cho, Izumo City, Shimane 693-8501, Japan
| |
Collapse
|
26
|
Mirmiran P, Bahadoran Z, Azizi F. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review. World J Diabetes 2014; 5:267-281. [PMID: 24936248 PMCID: PMC4058731 DOI: 10.4239/wjd.v5.i3.267] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/11/2014] [Accepted: 04/11/2014] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes is a complicated metabolic disorder with both short- and long-term undesirable complications. In recent years, there has been growing evidence that functional foods and their bioactive compounds, due to their biological properties, may be used as complementary treatment for type 2 diabetes mellitus. In this review, we have highlighted various functional foods as missing part of medical nutrition therapy in diabetic patients. Several in vitro, animal models and some human studies, have demonstrated that functional foods and nutraceuticals may improve postprandial hyperglycemia and adipose tissue metabolism modulate carbohydrate and lipid metabolism. Functional foods may also improve dyslipidemia and insulin resistance, and attenuate oxidative stress and inflammatory processes and subsequently could prevent the development of long-term diabetes complications including cardiovascular disease, neuropathy, nephropathy and retinopathy. In conclusion available data indicate that a functional foods-based diet may be a novel and comprehensive dietary approach for management of type 2 diabetes.
Collapse
|
27
|
Osada J. The use of transcriptomics to unveil the role of nutrients in Mammalian liver. ISRN NUTRITION 2013; 2013:403792. [PMID: 24967258 PMCID: PMC4045299 DOI: 10.5402/2013/403792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 08/04/2013] [Indexed: 01/03/2023]
Abstract
Liver is the organ primarily responding to diet, and it is crucial in determining plasma carbohydrate, protein, and lipid levels. In addition, it is mainly responsible for transformation of xenobiotics. For these reasons, it has been a target of transcriptomic analyses. In this review, we have covered the works dealing with the response of mammalian liver to different nutritional stimuli such as fasting/feeding, caloric restriction, dietary carbohydrate, cholesterol, fat, protein, bile acid, salt, vitamin, and oligoelement contents. Quality of fats or proteins has been equally addressed, and has the influence of minor dietary components. Other compounds, not purely nutritional as those represented by alcohol and food additives, have been included due to their relevance in processed food. The influence has been studied not only on mRNA but also on miRNA. The wide scope of the technology clearly reflects that any simple intervention has profound changes in many metabolic parameters and that there is a synergy in response when more compounds are included in the intervention. Standardized arrays to systematically test the same genes in all studies and analyzing data to establish patterns of response are required, particularly for RNA sequencing. Moreover, RNA is a valuable, easy-screening ally but always requires further confirmation.
Collapse
Affiliation(s)
- Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain ; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
28
|
De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids. PLoS One 2013; 8:e56217. [PMID: 23468859 PMCID: PMC3585318 DOI: 10.1371/journal.pone.0056217] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 01/08/2013] [Indexed: 11/19/2022] Open
Abstract
Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.
Collapse
|
29
|
Izuchi R, Nakai Y, Takahashi H, Ushiama S, Okada S, Misaka T, Abe K. Hepatic gene expression of the insulin signaling pathway is altered by administration of persimmon peel extract: a DNA microarray study using type 2 diabetic Goto-Kakizaki rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:3320-3329. [PMID: 21370910 DOI: 10.1021/jf102422z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Persimmon (Diospyros kaki) is a very popular fruit in East Asian countries, but its peels are not consumed despite the fact that they contain many antioxidants such as carotenoids and polyphenols. We prepared a fat-soluble extract from persimmon peel (PP) and fed type 2 diabetic Goto-Kakizaki (GK) rats an AIN-93G rodent diet supplemented with persimmon peel extract (PP diet) for 12 weeks. Compared with the control AIN-93G diet, the PP diet significantly reduced plasma glutamic-pyruvate transaminase activity, with accumulation of β-cryptoxanthin in the liver. DNA microarray analysis revealed that the PP diet altered hepatic gene expression profiles. In particular, expression of insulin signaling pathway-related genes was significantly enriched in differentially expressed gene sets. Moreover, Western blotting analysis showed an increase in insulin receptor beta tyrosine phosphorylation in rats fed the PP diet. These data suggest that the PP diet improves insulin resistance in GK rats.
Collapse
Affiliation(s)
- Ryoichi Izuchi
- Toyo Institute of Food Technology, Kawanishi-shi, Hyogo, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Antiobesity effect of polyphenolic compounds from molokheiya (Corchorus olitorius L.) leaves in LDL receptor-deficient mice. Eur J Nutr 2010; 50:127-33. [PMID: 20617439 DOI: 10.1007/s00394-010-0122-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Dietary supplementation with polyphenolic compounds is associated with reduced diet-induced obesity and metabolic disorders in humans. The antioxidative properties of polyphenolic compounds contribute to their antiobesity effect in animal experiments and human studies. AIM The aim of the study was to investigate the antiobesity effect of polyphenolic compounds from molokheiya leaves in LDLR-/- mice fed high-fat diet and to elucidate the mechanism of this effect. METHODS Three groups of LDLR-/- mice were fed with a high-fat diet, supplemented with 0% (control), 1 or 3% molokheiya leaf powder (MLP). Gene expression in the liver associated with lipid and glucose metabolism was analyzed, and physical parameters and blood biochemistry were determined. RESULTS Compared to controls, mice body weight gain (P = 0.003), liver weight (P = 0.001) and liver triglyceride levels (P = 0.005) were significantly lower in the two MLP groups. Epididymal adipose tissue weight (P = 0.003) was reduced in the 3% MLP group. Liver tissue gene expression of gp91phox (NOX2), involved in oxidative stress, was significantly down-regulated (P = 0.005), and PPARα and CPT1A, related to the activation of β-oxidation, were significantly up-regulated (P = 0.025 and 0.006, respectively) in the 3% MLP group compared to the control group. CONCLUSIONS Our results demonstrate an antiobesity effect of polyphenolic compounds from molokheiya leaves and that this effect is associated with reduction in oxidative stress and enhancement of β-oxidation in the liver. Consumption of molokheiya leaves may be beneficial for preventing diet-induced obesity.
Collapse
|
32
|
Arai S, Yasuoka A, Abe K. Functional food science and food for specified health use policy in Japan: state of the art. Curr Opin Lipidol 2008; 19:69-73. [PMID: 18196990 DOI: 10.1097/mol.0b013e3282f3f505] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The science and policy of functional foods are a matter of global concern and this review provides up-to-date information about the Japanese 'food for specified health use' policy based on functional food science. RECENT FINDINGS A great many studies on nonnutritive but physiologically functional food components have provided more precise evidence regarding the structure-function relationships that underlie the approval of food for specified health use products. SUMMARY Functional foods, defined as those that have the potential to reduce the risk of lifestyle-related diseases and associated abnormal modalities, have garnered global interest since the 1980s when the systematic research had humble beginnings as a national project in Japan. In 1991, the project led to the launch of the national food for specified health use policy; 703 food for specified health use products with 11 categories of health claims have been approved up to the present (31 August 2007). The development of this policy has been supported basically by nutritional epidemiology, food chemistry and biochemistry, physiology and clinical medicine, and even the genomics on food and nutrition. This review also highlights the current academia-industry collaboration in Japan.
Collapse
Affiliation(s)
- Soichi Arai
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan.
| | | | | |
Collapse
|
33
|
Shimokawa K, Yamada K, Kita M, Uemura D. Convergent synthesis and in vivo inhibitory effect on fat accumulation of (-)-ternatin, a highly N-methylated cyclic peptide. Bioorg Med Chem Lett 2007; 17:4447-9. [PMID: 17590333 DOI: 10.1016/j.bmcl.2007.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 06/02/2007] [Indexed: 11/30/2022]
Abstract
(-)-Ternatin (1), a highly N-methylated cyclic heptapeptide, is a potent inhibitor of fat accumulation against 3T3-L1 murine adipocytes (EC50 = 0.14 microg/mL) [Shimokawa, K.; Mashima, I.; Asai, A.; Yamada, K.; Kita, M.; Uemura, D. Tetrahedron Lett. 2006, 47, 4445]. Compound 1 was synthesized from Boc-protected amino acids in solution. Upon treatment with 1 at 5 mg/kg/day, increases in body weight and fat accumulation in high-fat-fed mice were both significantly suppressed.
Collapse
Affiliation(s)
- Kenichiro Shimokawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|