1
|
Zhang Z, Xie Y, Bu Z, Xiang Y, Sheng W, Cao Y, Lian L, Zhang L, Qian W, Ji G. Genetically proxied glucokinase activation and risk of diabetic complications: Insights from phenome-wide and multi-omics mendelian randomization. Diabetes Res Clin Pract 2025; 225:112246. [PMID: 40374125 DOI: 10.1016/j.diabres.2025.112246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/31/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
AIMS This study aims to assess the benefits and adverse effects of long-term glucokinase (GK) activation from a genetic perspective. METHODS We identified genetic variants in the GCK gene associated with glycated hemoglobin (HbA1c) levels from a genome-wide association study (GWAS) involving 146,806 individuals, which served as proxies for glucokinase activation. To assess the effects and potential pathways of GK activation on a range of diabetic complications and safety outcomes, we integrated drug-target Mendelian randomization (MR), lipidome-wide and proteome-wide MR, phenome-wide MR, and colocalization analyses. RESULTS Genetically proxied GK activation was associated with reduced risks of several predefined diabetic complications, including cardiovascular diseases, stroke and diabetic retinopathy. No kidney-related benefits were observed. Safety analysis revealed a relationship between GK activation and elevated AST levels, while impaired interaction between GK and glucokinase regulatory protein (GKRP) was associated with dyslipidemia, increased liver fat content, AST, systolic blood pressure, and uric acid. Phenome-wide MR suggested that GK activation may have potential benefits for lung function and fluid intelligence score. CONCLUSIONS Our genetic evidence supports GK as a promising target for reducing the risk of specific diabetic complications. These findings require further validation through cohort studies and randomized controlled trials in patients with diabetes.
Collapse
Affiliation(s)
- Ziqi Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanxiao Xie
- Department of Respiratory Medicine, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, China; The Ninth Clinical Medical College, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Zhenlin Bu
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China; The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yingying Xiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Sheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Cao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - LeShen Lian
- Department of Respiratory Medicine, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, China; The Ninth Clinical Medical College, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, Shanghai, China
| | - Wei Qian
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Chen F, An B, An WC, Fu G, Huang W, Yan HX. Application of Dorzagliatin in peritoneal dialysis patients with type 2 diabetes mellitus: A case report. World J Diabetes 2025; 16:99135. [PMID: 39817211 PMCID: PMC11718458 DOI: 10.4239/wjd.v16.i1.99135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Treating diabetes in dialysis patients remains a challenge, with many hypoglycemic drugs requiring dose adjustments or avoidance in these patients. CASE SUMMARY This report describes an 83-year-old female patient with a 30-year history of type 2 diabetes (T2DM) who had struggled to control her blood sugar for more than a year. She had a history of high blood pressure for 30 years, had undergone continuous ambulatory peritoneal dialysis for more than two years, was 163 cm tall, weighed 77 kg, and had a body mass index of 28.98 kg/m2. Despite intensive insulin therapy at a daily dose of 150 units, adding Dorzagliatin at a dosage of 75 mg orally twice daily led to immediate blood sugar improvement and a gradual reduction in insulin dosage. After one month of follow-up, the fasting plasma glucose was 6-8 mmol/L, and the 2-hour postprandial glucose was 8-12 mmol/L. CONCLUSION To our knowledge, this report is the first to use Dorzagliatin to treat type 2 diabetes peritoneal dialysis patients with challenging glucose control. Dorzagliatin, a novel glucokinase activator primarily metabolized by the liver, exhibits no pharmacokinetic differences among patients with varying degrees of chronic kidney disease. It has a high plasma protein binding rate and may not be cleared by peritoneal dialysis, potentially offering a new glycemic control option for Type 2 diabetic patients on peritoneal dialysis.
Collapse
Affiliation(s)
- Fang Chen
- Department of Endocrinology, Beijing Haidian Hospital, Beijing 100080, China
| | - Bo An
- Department of Endocrinology, Beijing Haidian Hospital, Beijing 100080, China
| | - Wen-Cheng An
- Department of Endocrinology, Beijing Haidian Hospital, Beijing 100080, China
| | - Gang Fu
- Department of Nephrology, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing 100080, China
| | - Wei Huang
- Department of Endocrinology, Beijing Haidian Hospital, Beijing 100080, China
| | - Hui-Xian Yan
- Department of Endocrinology, Beijing Haidian Hospital, Beijing 100080, China
| |
Collapse
|
3
|
Shigesawa I, Nakamura A, Yamauchi Y, Kawata S, Miyazaki A, Nomoto H, Kameda H, Terauchi Y, Atsumi T. Effects of glucokinase haploinsufficiency on the pancreatic β-cell mass and function of long-term high-fat, high-sucrose diet-fed mice. J Diabetes Investig 2024; 15:1732-1742. [PMID: 39305123 PMCID: PMC11615693 DOI: 10.1111/jdi.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 12/06/2024] Open
Abstract
AIMS/INTRODUCTION We previously showed that glucokinase haploinsufficiency improves the glucose tolerance of db/db mice by preserving pancreatic β-cell mass and function. In the present study, we aimed to determine the effects of glucokinase haploinsufficiency on the β-cell mass and function of long-term high-fat, high-sucrose (HFHS) diet-fed mice. MATERIALS AND METHODS Four-week-old male glucokinase haploinsufficient (Gck+/-) mice and 4-week-old male wild-type (Gck+/+) mice (controls) were each divided into two groups: an HFHS diet-fed group and a normal chow-fed group, and the four groups were followed until 16, 40 or 60 weeks-of-age. Their glucose tolerance, glucose-stimulated insulin secretion and β-cell mass were evaluated. In addition, islets were isolated from 40-week-old mice, and the expression of key genes was compared. RESULTS Gck+/-HFHS mice had smaller compensatory increases in β-cell mass and glucose-stimulated insulin secretion than Gck+/+HFHS mice, and their glucose tolerance deteriorated from 16 to 40 weeks-of-age. However, their β-cell mass and glucose-stimulated insulin secretion did not decrease between 40 and 60 weeks-of-age, but rather, tended to increase, and there was no progressive deterioration in glucose tolerance. The expression of Aldh1a3 in pancreatic islets, which is high in several models of diabetes and is associated with an impairment in β-cell function, was high in Gck+/+HFHS mice, but not in Gck+/-HFHS mice. CONCLUSIONS Glucokinase haploinsufficiency prevents the progressive deterioration of pancreatic β-cell mass/function and glucose tolerance in long-term HFHS diet-fed mice.
Collapse
Affiliation(s)
- Ikumi Shigesawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Yuki Yamauchi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Shinichiro Kawata
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Asuka Miyazaki
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Hiroshi Nomoto
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Hiraku Kameda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of MedicineYokohama City UniversityYokohamaJapan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
4
|
Liang TT, Cao MJ, Wang Q, Zou JS, Yang XM, Gu LF, Shi FH. Evaluating the Overall Safety of Glucokinase Activators in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:4539-4552. [PMID: 39629068 PMCID: PMC11612564 DOI: 10.2147/dmso.s474280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
Purpose This study aimed to assess the overall clinical adverse events (AEs) associated with glucokinase activators (GKAs) in patients with type 2 diabetes mellitus (T2DM). Methods We searched MEDLINE, EMBASE, Cochrane Library, and ClinicalTrials.gov databases from their dates of inception to June 6, 2023, for randomized controlled trials (RCTs) that reported safety data for GKAs in patients with T2DM. A random-effects model was used to obtain a summary odds ratio (OR) with associated 95% Confidence Intervals (CIs). Pre-specified subgroup analyses were conducted according to individual GKAs (dorzagliatin and all other GKAs), various controls, follow-up duration, mean duration of diabetes, and the location of clinical research. Results 17 RCTs enrolling 4,918 patients (3,196 patients received GKAs and 1,722 patients received placebo or other hypoglycemic drugs) were identified. Among the 17 RCTs, dorzagliatin, AZD1656 and MK-0941 in three trials (1,541 patients), five trials (885 patients), and three trials (798 patients), respectively. GKA treatment was associated with a higher risk of any AEs (OR 1.220, 95% CI 1.072-1.389), mild AEs (OR 1.373, 95% CI 1.085-1.738), hyperlipidemia (OR 1.532, 95% CI 1.071-2.189), and hyperuricemia (OR 2.768, 95% CI 1.562-4.903) compared to patients in the control groups. The higher risks of any AEs were mainly attributed to dorzagliatin and MK-0941 and mild AEs mainly attributed to dorzagliatin. Notably, dorzagliatin had significant effects on the occurrence of hyperlipidemia (OR 1.476, 95% CI 1.025-2.126) and hyperuricemia (OR 2.727, 95% CI 1.523-4.883) in the subgroup analyses. No significant effects were detected from other GKAs when regarding hyperlipidemia and hyperuricemia. Conclusion The results of our meta-analysis indicated that GKAs were associated with a higher risk of any AEs, mild AEs, hyperlipidemia, and hyperuricemia. Further subgroup analyses revealed that the increased occurrence of hyperlipidemia, and hyperuricemia mainly originated from dorzagliatin treatment.
Collapse
Affiliation(s)
- Ting-Ting Liang
- Department of Pharmacy, Changshu Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - Min-Jia Cao
- Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Qian Wang
- Department of Pharmacy, Changshu Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - Jia-Shuang Zou
- Department of Pharmacy, Changshu Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - Xiao-Ming Yang
- Department of Pharmacy, Changshu Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - Li-Fang Gu
- Department of Pharmacy, Changshu Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - Fang-Hong Shi
- Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
6
|
Raju R, Prabath I, Chandrasekaran I, Varadarajan S. Dorzagliatin: A Breakthrough Glucokinase Activator Coming on Board to Treat Diabetes Mellitus. Cureus 2024; 16:e65708. [PMID: 39211666 PMCID: PMC11361462 DOI: 10.7759/cureus.65708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Dorzagliatin, an innovative dual-acting allosteric oral glucokinase activator that targets glucose homeostasis and insulin resistance, has gained approval for treating type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). The effectiveness of existing antidiabetic treatments in enhancing beta cell (β-cell) activity is restricted. Currently, there are no satisfactory medications available to address the fundamental deficiency in glucose sensing for glucokinase-maturity-onset diabetes of the young (GCK-MODY), which is caused by mutations in the glucokinase gene; researchers have embarked on glucokinase activators. Dorzagliatin enhances the affinity of glucokinase for glucose and glucose-sensing capacity, improves β-cell function, and reduces insulin resistance. Two phase 3 studies, an adjunct trial of dorzagliatin with metformin for T2DM patients and a monotherapy trial for drug-naïve T2DM patients, are key clinical trials that have shown a favorable safety and tolerability profile. They also demonstrated a rapid, sustained reduction in glycated hemoglobin (HbA1c) and a significant decrease in postprandial blood glucose. This review will summarize the substantial clinical evidence supporting the safety and efficacy of dorzagliatin in treating diabetes mellitus (DM) and clarify the molecular mechanisms underlying its action.
Collapse
Affiliation(s)
- Ramya Raju
- Department of Pharmacology, Sri Ramaswamy Memorial (SRM) Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Indumathi Prabath
- Department of Pharmacology, Sri Ramaswamy Memorial (SRM) Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Indumathi Chandrasekaran
- Department of Pharmacology, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry, IND
| | - Sathyanarayanan Varadarajan
- Department of Pharmacology, Sri Ramaswamy Memorial (SRM) Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Chengalpattu, IND
| |
Collapse
|
7
|
Wang K, Shi M, Luk AOY, Kong APS, Ma RCW, Li C, Chen L, Chow E, Chan JCN. Impaired GK-GKRP interaction rather than direct GK activation worsens lipid profiles and contributes to long-term complications: a Mendelian randomization study. Cardiovasc Diabetol 2024; 23:228. [PMID: 38951793 PMCID: PMC11218184 DOI: 10.1186/s12933-024-02321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Glucokinase (GK) plays a key role in glucose metabolism. In the liver, GK is regulated by GK regulatory protein (GKRP) with nuclear sequestration at low plasma glucose level. Some GK activators (GKAs) disrupt GK-GKRP interaction which increases hepatic cytoplasmic GK level. Excess hepatic GK activity may exceed the capacity of glycogen synthesis with excess triglyceride formation. It remains uncertain whether hypertriglyceridemia associated with some GKAs in previous clinical trials was due to direct GK activation or impaired GK-GKRP interaction. METHODS Using publicly available genome-wide association study summary statistics, we selected independent genetic variants of GCKR and GCK associated with fasting plasma glucose (FPG) as instrumental variables, to mimic the effects of impaired GK-GKRP interaction and direct GK activation, respectively. We applied two-sample Mendelian Randomization (MR) framework to assess their causal associations with lipid-related traits, risks of metabolic dysfunction-associated steatotic liver disease (MASLD) and cardiovascular diseases. We verified these findings in one-sample MR analysis using individual-level statistics from the Hong Kong Diabetes Register (HKDR). RESULTS Genetically-proxied impaired GK-GKRP interaction increased plasma triglycerides, low-density lipoprotein cholesterol and apolipoprotein B levels with increased odds ratio (OR) of 14.6 (95% CI 4.57-46.4) per 1 mmol/L lower FPG for MASLD and OR of 2.92 (95% CI 1.78-4.81) for coronary artery disease (CAD). Genetically-proxied GK activation was associated with decreased risk of CAD (OR 0.69, 95% CI 0.54-0.88) and not with dyslipidemia. One-sample MR validation in HKDR showed consistent results. CONCLUSIONS Impaired GK-GKRP interaction, rather than direct GK activation, may worsen lipid profiles and increase risks of MASLD and CAD. Development of future GKAs should avoid interfering with GK-GKRP interaction.
Collapse
Affiliation(s)
- Ke Wang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Hua Medicine (Shanghai) Co., Ltd., Shanghai, China
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
| | - Andrea O Y Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
| | - Alice P S Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
| | - Changhong Li
- Hua Medicine (Shanghai) Co., Ltd., Shanghai, China
| | - Li Chen
- Hua Medicine (Shanghai) Co., Ltd., Shanghai, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
8
|
Chee YJ, Dalan R. Novel Therapeutics for Type 2 Diabetes Mellitus-A Look at the Past Decade and a Glimpse into the Future. Biomedicines 2024; 12:1386. [PMID: 39061960 PMCID: PMC11274090 DOI: 10.3390/biomedicines12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular disease (CVD) and kidney disease are the main causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Globally, the incidence of T2DM continues to rise. A substantial increase in the burden of CVD and renal disease, alongside the socioeconomic implications, would be anticipated. Adopting a purely glucose-centric approach focusing only on glycemic targets is no longer adequate to mitigate the cardiovascular risks in T2DM. In the past decade, significant advancement has been achieved in expanding the pharmaceutical options for T2DM, with novel agents such as the sodium-glucose cotransporter type 2 (SGLT2) inhibitors and glucagon-like peptide receptor agonists (GLP-1 RAs) demonstrating robust evidence in cardiorenal protection. Combinatorial approaches comprising multiple pharmacotherapies combined in a single agent are an emerging and promising way to not only enhance patient adherence and improve glycemic control but also to achieve the potential synergistic effects for greater cardiorenal protection. In this review, we provide an update on the novel antidiabetic agents in the past decade, with an appraisal of the mechanisms contributing to cardiorenal protection. Additionally, we offer a glimpse into the landscape of T2DM management in the near future by providing a comprehensive summary of upcoming agents in early-phase trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
9
|
Li P, Zhu D. Clinical investigation of glucokinase activators for the restoration of glucose homeostasis in diabetes. J Diabetes 2024; 16:e13544. [PMID: 38664885 PMCID: PMC11045918 DOI: 10.1111/1753-0407.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 04/29/2024] Open
Abstract
As a sensor, glucokinase (GK) controls glucose homeostasis, which progressively declines in patients with diabetes. GK maintains the equilibrium of glucose levels and regulates the homeostatic system set points. Endocrine and hepatic cells can both respond to glucose cooperatively when GK is activated. GK has been under study as a therapeutic target for decades due to the possibility that cellular GK expression and function can be recovered, hence restoring glucose homeostasis in patients with type 2 diabetes. Five therapeutic compounds targeting GK are being investigated globally at the moment. They all have distinctive molecular structures and have been clinically shown to have strong antihyperglycemia effects. The mechanics, classification, and clinical development of GK activators are illustrated in this review. With the recent approval and marketing of the first GK activator (GKA), dorzagliatin, GKA's critical role in treating glucose homeostasis disorder and its long-term benefits in diabetes will eventually become clear.
Collapse
Affiliation(s)
- Ping Li
- Department of EndocrinologyDrum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| | - Dalong Zhu
- Department of EndocrinologyDrum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
10
|
Kaur U, Pathak BK, Meerashahib TJ, Krishna DVV, Chakrabarti SS. Should Glucokinase be Given a Chance in Diabetes Therapeutics? A Clinical-Pharmacological Review of Dorzagliatin and Lessons Learned So Far. Clin Drug Investig 2024; 44:223-250. [PMID: 38460077 DOI: 10.1007/s40261-024-01351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Despite advances in the management of type 2 diabetes mellitus (T2DM), one-third of patients with diabetes do not achieve the desired glycemic goal. Considering this inadequacy, many agents that activate glucokinase have been investigated over the last two decades but were withdrawn before submission for marketing permission. Dorzagliatin is the first glucokinase activator that has been granted approval for T2DM, only in China. As overstimulation of glucokinase is linked with pathophysiological disturbances such as fatty liver and cardiovascular issues and a loss of therapeutic efficacy with time. This review aims to highlight the benefits of glucokinase activators vis-à-vis the risks associated with chronic enzymatic activation. We discuss the multisystem disturbances expected with chronic activation of the enzyme, the lessons learned with glucokinase activators of the past, the major efficacy and safety findings with dorzagliatin and its pharmacological properties, and the status of other glucokinase activators in the pipeline. The approval of dorzagliatin in China was based on the SEED and the DAWN trials, the major pivotal phase III trials that enrolled patients with T2DM with a mean glycosylated hemoglobin of 8.3-8.4%, and a mean age of 53-54.5 years from multiple sites in China. Patients with uncontrolled diabetes, cardiac diseases, organ dysfunction, and a history of severe hypoglycemia were excluded. Both trials had a randomized double-blind placebo-controlled phase of 24 weeks followed by an open-label phase of 28 weeks with dorzagliatin. Drug-naïve patients with T2DM with a disease duration of 11.7 months were enrolled in the SEED trial while the DAWN trial involved patients with T2DM with a mean duration of 71.5 months and receiving background metformin therapy. Compared with placebo, the decline in glycosylated hemoglobin at 24 weeks was more with dorzagliatin with an estimated treatment difference of - 0.57% in the SEED trial and - 0.66% in the DAWN trial. The desired glycosylated hemoglobin (< 7%) was also attained at more than two times higher rates with dorzagliatin. The glycemic improvement was sustained in the SEED trial but decreased over 52 weeks in the DAWN trial. Hyperlipidemia was observed in 12-14% of patients taking dorzagliatin versus 9-11% of patients receiving a placebo. Additional adverse effects noticed over 52 weeks with dorzagliatin included an elevation in liver enzymes, hyperuricemia, hyperlacticacidemia, renal dysfunction, and cardiovascular disturbances. Considering the statistically significant improvement in glycosylated hemoglobin with dorzagliatin in patients with T2DM, the drug may be given a chance in treatment-naïve patients with a shorter disease history. However, with the waning therapeutic efficacy witnessed in patients with long-standing diabetes, which was also one of the potential concerns with previously tested molecules, extended studies involving patients with chronic and uncontrolled diabetes are needed to comment upon the long-term therapeutic performance of dorzagliatin. Likewise, evidence needs to be generated from other countries, patients with organ dysfunction, a history of severe hypoglycemia, cardiac diseases, and elderly patients before extending the use of dorzagliatin. Apart from monitoring lipid profiles, long-term safety studies of dorzagliatin should involve the assessment of serum uric acid, lactate, renal function, liver function, and cardiovascular parameters.
Collapse
Affiliation(s)
- Upinder Kaur
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Bhairav Kumar Pathak
- Department of Pharmacology and Therapeutics, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Tharik Jalal Meerashahib
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Sankha Shubhra Chakrabarti
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
11
|
Sharma C, Hamza A, Boyle E, Donu D, Cen Y. Post-Translational Modifications and Diabetes. Biomolecules 2024; 14:310. [PMID: 38540730 PMCID: PMC10968569 DOI: 10.3390/biom14030310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetes and its associated complications have increasingly become major challenges for global healthcare. The current therapeutic strategies involve insulin replacement therapy for type 1 diabetes (T1D) and small-molecule drugs for type 2 diabetes (T2D). Despite these advances, the complex nature of diabetes necessitates innovative clinical interventions for effective treatment and complication prevention. Accumulative evidence suggests that protein post-translational modifications (PTMs), including glycosylation, phosphorylation, acetylation, and SUMOylation, play important roles in diabetes and its pathological consequences. Therefore, the investigation of these PTMs not only sheds important light on the mechanistic regulation of diabetes but also opens new avenues for targeted therapies. Here, we offer a comprehensive overview of the role of several PTMs in diabetes, focusing on the most recent advances in understanding their functions and regulatory mechanisms. Additionally, we summarize the pharmacological interventions targeting PTMs that have advanced into clinical trials for the treatment of diabetes. Current challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Abu Hamza
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Emily Boyle
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
12
|
Ahmed R, de Souza RJ, Li V, Banfield L, Anand SS. Twenty years of participation of racialised groups in type 2 diabetes randomised clinical trials: a meta-epidemiological review. Diabetologia 2024; 67:443-458. [PMID: 38177564 PMCID: PMC10844363 DOI: 10.1007/s00125-023-06052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/16/2023] [Indexed: 01/06/2024]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes mellitus prevalence is increasing globally and the greatest burden is borne by racialised people. However, there are concerns that the enrolment of racialised people into RCTs is limited, resulting in a lack of ethnic and racial diversity. This may differ depending whether an RCT is government funded or industry funded. The aim of this study was to review the proportions of racialised and white participants included in large RCTs of type 2 diabetes pharmacotherapies relative to the disease burden of type 2 diabetes in these groups. METHODS The Ovid MEDLINE database was searched from 1 January 2000 to 31 December 2020. English language reports of RCTs of type 2 diabetes pharmacotherapies published in select medical journals were included. Studies were included in this review if they had a sample size of at least 100 participants and all participants were adults with type 2 diabetes. Industry-funded trials must have recruited participants from at least two countries. Government-funded trials were not held to the same standard because they are typically conducted in a single country. Data including the numbers and proportions of participants by ethnicity and race were extracted from trial reports. The participation-to-prevalence ratio (PPR) was calculated for each trial by dividing the percentage of white and racialised participants in each trial by the percentage of white and racialised participants with type 2 diabetes, respectively, for the regions of recruitment. A random-effects meta-analysis was used to generate the pooled PPRs and 95% CIs across study types. A PPR <0.80 indicates under-representation and a PPR >1.20 indicates over-representation. Risk of bias assessments were not conducted for this study as the objective was to examine recruitment of racialised and white participants rather than evaluate the trustworthiness of clinical trial outcomes. RESULTS A total of 83 trials were included, involving 283,122 participants, of which 15 were government-funded and 68 were industry-funded trials. In government-funded trials, the PPR for white participants was 1.11 (95% CI 0.99, 1.24) and the PPR for racialised participants was 0.72 (95% CI 0.60, 0.86). In industry-funded trials, the PPR for white participants was 1.95 (95% CI 1.74, 2.18) and the PPR for racialised participants was 0.36 (95% CI 0.32, 0.42). The limitations of this study include the reliance on investigator-reported ethnicity and race to classify participants as 'white' or 'racialised', the use of estimates for type 2 diabetes prevalence and demographic data, and the high levels of heterogeneity of pooled estimates. However, despite these limitations, the results were consistent with respect to direction. CONCLUSIONS/INTERPRETATION Racialised participants are under-represented in government- and industry-funded type 2 diabetes trials. Strategies to improve recruitment and enrolment of racialised participants into RCTs should be developed. REGISTRATION Open Science Framework registration no. f59mk ( https://osf.io/f59mk ) FUNDING: The authors received no financial support for this research or authorship of the article.
Collapse
Affiliation(s)
- Rabeeyah Ahmed
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Chanchlani Research Centre, McMaster University, Hamilton, ON, Canada
| | - Russell J de Souza
- Chanchlani Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Vincent Li
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Laura Banfield
- Health Sciences Library, McMaster University, Hamilton, ON, Canada
| | - Sonia S Anand
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- Chanchlani Research Centre, McMaster University, Hamilton, ON, Canada.
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
13
|
Xu M, Wang Y, Wang X, Pu Z, Liu Y, Jiang C, Shen X, Sun H, Xie H. Unveiling the Influence of a High-Fat Meal on the Pharmacokinetics of Oral Globalagliatin, A Glucokinase Activator, in Healthy Chinese Volunteers. Drugs R D 2024; 24:41-50. [PMID: 37985605 PMCID: PMC11035525 DOI: 10.1007/s40268-023-00448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
INTRODUCTION Glucokinase (GK) plays a pivotal role in maintaining glucose homeostasis; globalagliatin, a newly developed drug, is a GK activator (GKA). This study constitutes a randomized, open-label, two-cycle, two-crossover, single-dose, phase I clinical trial conducted at a single center with healthy Chinese volunteers, aiming to examine the influence of a high-fat meal on the pharmacokinetics (PK) of orally administered globalagliatin. METHODS Twenty-four healthy volunteers were randomly divided into two groups, with a washout period of 16 days between the two cycles. The first cycle involved Group 1 volunteers who were orally administered globalagliatin 80 mg with 240 mL of water while fasting on Day 1. In contrast, Group 2 volunteers began oral administration of globalagliatin 80 mg with 240 mL of water, 30 min after consuming a high-fat meal (where high-fat content contributed to 54% of the total calories; the high-calorie meal amounted to 988.4 kcal). After the washout period, both groups of volunteers entered the second cycle of drug administration, with meals and medication being swapped on Day 17. Each volunteer collected blood samples at the following time points: 0 h (within 1 h before administration), and 0.5, 1, 2, 3, 4, 5, 6, 8, 12, 24, 48, 72, 96, 120, and 168 h after administration on both trial Day 1 and Day 17. The primary and secondary PK parameters were collected. The validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used to determine the concentration of globalagliatin in collected plasma samples, and the results were analyzed using Phoenix WinNonlin software. Safety evaluation was conducted by detecting or observing various adverse events (AEs) and serious AEs (SAEs). RESULTS All 24 healthy Chinese volunteers enrolled completed the study and underwent PK analysis. The maximum concentration (Cmax; ng/mL), area under the plasma concentration-time curve (AUC) from time zero to time of the last quantifiable concentration (AUCt; h·ng/mL), and AUC from time zero extrapolated to infinity (AUC∞; h·ng/mL) of fasting administration were 22.35 ± 7.02, 725.74 ± 303.04, and 774.07 ± 343.89, respectively, while the Cmax, AUCt, and AUC∞ administered after a high-fat meal were 28.95 ± 12.60, 964.84 ± 333.99, and 1031.28 ± 392.80, respectively. The geometric mean ratios of Cmax, AUCt, and AUC∞ for high-fat meal/fasting administration of globalagliatin were 124.81%, 135.24%, and 135.42%, respectively, with 90% confidence intervals of 109.97-141.65, 124.24-147.20, and 124.42-147.39, respectively. Compared with the fasting state, healthy volunteers who consumed a high-fat meal showed a 24.8% increase in Cmax, a 35.2% increase in AUCt, and a 35.4% increase in AUC∞. The geometric mean of Tmax was 4.69 h under fasting conditions and 5.93 h in a high-fat state, with a median of 4.98 h. Among the 24 enrolled volunteers, 9 cases (37.5%) had 11 AEs, and 6 cases (25.0%) had 7 adverse drug reactions (ADRs) after medication, all of which were cured or improved without taking any treatment measures. There were no SAEs in this study, no volunteers withdrew from the study due to AEs or ADRs, and no hypoglycemic events occurred during the trial. CONCLUSION A high-fat meal increased the Cmax, AUCt, and AUC∞ of globalagliatin compared with fasting conditions in healthy Chinese adult volunteers. Meanwhile, globalagliatin showed favorable safety and tolerability under fasting or high-fat meal conditions.
Collapse
Affiliation(s)
- Maodi Xu
- The Drug Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yaqin Wang
- The Drug Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xiaohu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Zhichen Pu
- The Drug Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Ya Liu
- The Drug Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Cuilian Jiang
- Suzhou Yabao Pharmaceutical R&D Co., Ltd, Suzhou, China
| | - Xiaokun Shen
- Suzhou Yabao Pharmaceutical R&D Co., Ltd, Suzhou, China
| | - Hua Sun
- The Drug Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China.
| | - Haitang Xie
- The Drug Evaluation Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
14
|
Wu Y, Wang K, Su J, Liu X. Efficacy and safety of dorzagliatin, a novel glucokinase activators, in the treatment of T2DM: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2024; 103:e36916. [PMID: 38394489 PMCID: PMC11309680 DOI: 10.1097/md.0000000000036916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024] Open
Abstract
OBJECT To evaluate the efficacy and safety of dorzagliatin for the treatment of type 2 diabetes (T2DM). METHODS Seven databases were systematically searched, spanning the interval from 2016 to August 2023. Randomized controlled trials (RCTS) comparing dorzagliatin with placebo for the treatment of T2DM were applicable for containing this study. The relevant data were extracted, and a meta-analysis was implemented using RevMan 5.4 software. RESULTS A total of 3 studies involving 1332 patients were included. We use glycated hemoglobin (HbA1c) levels as the major indicator of efficacy, FBG, 2h postprandial blood glucose, Homa-β and Homa-IR to be Secondary outcome measures. Compared with placebo group, dorzagliatin significantly reduced blood glucose levels as well as enhanced insulin resistance. In terms of safety, no serious adverse events occurred. However, lipid-related indicators, especially triglycerides levels, and the incidence of hypoglycemia were higher in patients in the dorzagliatin group compared with those in the control group, but the increase from baseline was mild. CONCLUSIONS Dorzagliatin exerted favorable effects in hypoglycemic control, effectively reduced the HbA1c, FBG, and 2h postprandial blood glucose levels in T2DM patients, stimulated the secretion of insulin during the initial phase, and exerted a consistent hypoglycemic effect. However, the incidence of adverse events such as elevated blood lipids and cardiovascular risk warrants further investigations through long-term clinical trials.
Collapse
Affiliation(s)
- Yuqian Wu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kai Wang
- Hangzhou Children’s Hospital, Zhejiang, China
| | - Jingyang Su
- Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xin Liu
- Ningbo Hospital of Traditional Chinese Medicine,the Affiliated Ningbo Hospital of Zhejiang Chinese Medical University,Zhejiang, China
| |
Collapse
|
15
|
Feng L, Chen C, Guo Q, Chen L, Yang W. Improvement of early-phase insulin secretion is an independent factor for achieving glycaemic control: A pooled analysis of SEED and DAWN study. Diabetes Obes Metab 2024; 26:745-753. [PMID: 37985364 DOI: 10.1111/dom.15370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
AIM To investigate the effect of improving early phase insulin secretion function for glycaemic control in patients with type 2 diabetes mellitus treated with a new class of antidiabetic drug dorzagliatin. MATERIALS AND METHODS Early insulin secretion function was studied in 726 participants of which 414 were treated with dorzagliatin in the SEED and DAWN study. The early insulinogenic index (IGI30min ) and disposition index (DI) were used to assess early-phase insulin secretion function in this study. Logistic regression analysis was performed to verify the importance of IGI30min and DI indices for achieving effective glycaemic control. RESULTS The reduction in HbA1c has a significant correlation with the improvement of IGI30min for patients that received 24 weeks of dorzagliatin treatment (p < .001), and this correlation was not observed in the placebo group (p = .364). In the dorzagliatin treatment group, the responders showed significant improvements in homeostasis model assessment 2-β, IGI30min and DI compared with the non-responders. Logistic regression analysis revealed that the odds ratio (OR) for achieving glycaemic control was 1.28 (95% CI 1.14-1.43) for baseline IGI30min , and 1.24 (95% CI 1.14-1.35) for the 24-week incremental IGI30min from baseline. The OR for baseline DI and 24-week changes in DI from baseline were 1.39 (95% CI 1.2-1.6) and 1.30 (95% CI 1.19-1.43) respectively. The timing of insulin secretion analysis showed the significant contribution of early-phase insulin secretion, rather than late-phase insulin secretion, to postprandial glucose control with the OR for the incremental IGI30min and IGI2h to postprandial glucose control were 1.3 (95% CI 1.19-1.42) and 1 (95% CI 1-1.01) respectively. CONCLUSIONS Restoring the impaired early-phase insulin secretion function in patients with type 2 diabetes mellitus is a critical factor for improving the glycaemic control by dorzagliatin treatment.
Collapse
Affiliation(s)
| | | | | | - Li Chen
- Hua Medicine, Shanghai, China
| | - Wenying Yang
- Japan-China Friendship Hospital, Beijing, China
- Taikang Yanyuan Rehabilitation Hospital, Beijing, China
| |
Collapse
|
16
|
Haddad D, Dsouza VS, Al-Mulla F, Al Madhoun A. New-Generation Glucokinase Activators: Potential Game-Changers in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:571. [PMID: 38203742 PMCID: PMC10779250 DOI: 10.3390/ijms25010571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Achieving glycemic control and sustaining functional pancreatic β-cell activity remains an unmet medical need in the treatment of type 2 diabetes mellitus (T2DM). Glucokinase activators (GKAs) constitute a class of anti-diabetic drugs designed to regulate blood sugar levels and enhance β-cell function in patients with diabetes. A significant progression in GKA development is underway to address the limitations of earlier generations. Dorzagliatin, a dual-acting GKA, targets both the liver and pancreas and has successfully completed two phase III trials, demonstrating favorable results in diabetes treatment. The hepato-selective GKA, TTP399, emerges as a strong contender, displaying clinically noteworthy outcomes with minimal adverse effects. This paper seeks to review the current literature, delve into the mechanisms of action of these new-generation GKAs, and assess their efficacy and safety in treating T2DM based on published preclinical studies and recent clinical trials.
Collapse
Affiliation(s)
- Dania Haddad
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (V.S.D.); (F.A.-M.)
| | - Vanessa Sybil Dsouza
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (V.S.D.); (F.A.-M.)
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (V.S.D.); (F.A.-M.)
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (V.S.D.); (F.A.-M.)
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| |
Collapse
|
17
|
Paliwal A, Paliwal V, Jain S, Paliwal S, Sharma S. Current Insight on the Role of Glucokinase and Glucokinase Regulatory Protein in Diabetes. Mini Rev Med Chem 2024; 24:674-688. [PMID: 37612862 DOI: 10.2174/1389557523666230823151927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 07/13/2023] [Indexed: 08/25/2023]
Abstract
The glucokinase regulator (GCKR) gene encodes an inhibitor of the glucokinase enzyme (GCK), found only in hepatocytes and responsible for glucose metabolism. A common GCKR coding variation has been linked to various metabolic traits in genome-wide association studies. Rare GCKR polymorphisms influence GKRP activity, expression, and localization. Despite not being the cause, these variations are linked to hypertriglyceridemia. Because of their crystal structures, we now better understand the molecular interactions between GKRP and the GCK. Finally, small molecules that specifically bind to GKRP and decrease blood sugar levels in diabetic models have been identified. GCKR allelic spectrum changes affect lipid and glucose homeostasis. GKRP dysfunction has been linked to a variety of molecular causes, according to functional analysis. Numerous studies have shown that GKRP dysfunction is not the only cause of hypertriglyceridemia, implying that type 2 diabetes could be treated by activating liver-specific GCK via small molecule GKRP inhibition. The review emphasizes current discoveries concerning the characteristic roles of glucokinase and GKRP in hepatic glucose metabolism and diabetes. This information has influenced the growth of directed molecular therapies for diabetes, which has improved our understanding of lipid and glucose physiology.
Collapse
Affiliation(s)
- Ajita Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Vartika Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
18
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
19
|
Wang Y, Su X, Zhang W, Zhou Y, Zhou X, Yang W, Li H, Ma J. Effects of a Novel Glucokinase Activator, Dorzagliatin, on Glycemic Control and Glucose Fluctuation in Drug-Naïve Patients with Type 2 Diabetes Mellitus. Int J Endocrinol 2023; 2023:4996057. [PMID: 38179187 PMCID: PMC10764651 DOI: 10.1155/2023/4996057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
AIM The prevalence rate of type 2 diabetes mellitus (T2DM) has been increasing and a large proportion of patients still do not achieve adequate or sustainable glycemic control on the basis of previous hypoglycemic treatment. In this present study, we explored whether dorzagliatin, a novel glucokinase activator (GKA), could improve glycemic control and lessen glucose fluctuation in drug-naïve patients with T2DM. METHODS A self-comparative observational study of 25 drug-naïve patients with T2DM (aged 18-75 years and HbA1c of 7.5%-11.0%) treated with dorzagliatin 75 mg twice daily for 52 weeks. Before and after dorzagliatin intervention, the serum levels of hemoglobin A1c (HbA1c), insulin, and C-peptide were measured repeatedly during fasting and after a mixed meal. The continuous glucose monitoring (CGM) device was also used to obtain 24-hour glucose profiles and assess the changes in glycemic variability parameters. RESULTS After 52 weeks of treatment with dorzagliatin, a numerally greater reduction in HbA1c of 1.03% from the baseline was observed in patients with T2DM, accompanied by significant improvement in insulin resistance and insulin secretion. Moreover, the standard deviation of blood glucose (SDBG) and the mean amplitude of glycemic excursion (MAGE) derived from CGM data were significantly decreased after dorzagliatin therapy. The 24-h glucose variation profile showed that study patients had obviously lower mean glucose levels during the postprandial period from the baseline to week 52, an effect also demonstrated by the significant decrease in the incremental area under glucose concentration versus time curve for 2 h (iAUC0-2 h) after meals. CONCLUSIONS This study suggests that dorzagliatin therapy could effectively improve glycemic control and glucose fluctuation in drug-naïve patients with T2DM.
Collapse
Affiliation(s)
- Yuming Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Xiaofei Su
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Wenli Zhang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yunting Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Xiao Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Wei Yang
- Department of Pharmacy, Lai'an County People's Hospital, Chuzhou, Anhui 239200, China
| | - Huiqin Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| |
Collapse
|
20
|
Lin F, He R, Ling B, Wang L, Jiang T, Yu B. Dorzagliatin for Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis of Randomized Phase II/III Trials. Clin Ther 2023; 45:1277-1283. [PMID: 37777375 DOI: 10.1016/j.clinthera.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
PURPOSE Dorzagliatin is a glucokinase agonist with effects on type 2 diabetes mellitus (T2DM). This study included a meta-analysis on the efficacy and safety of dorzagliatin in the treatment of T2DM. METHODS The Cochrane Central Registry of Controlled Trials, PubMed, and Embase were searched from inception to July 25, 2022. A total of 3 studies including 1333 patients were identified in this meta-analysis. FINDINGS Overall, the meta-analysis showed that dorzagliatin remarkably reduced glycated hemoglobin levels versus placebo by 0.66%. The results of the meta-analysis showed a significant reduction in fasting plasma glucose of 6.77 mg/dL between dorzagliatin and placebo. In addition, dorzagliatin reduced 2-hour postprandial glucose (2h-PPG) by 43.87 mg/dL compared with placebo. Furthermore, the meta-analysis of available data revealed a significant reduction in the Homeostasis Model Assessment of Insulin Resistance of 0.07 between dorzagliatin and placebo. The risk of adverse events was slightly higher with dorzagliatin than with placebo. IMPLICATIONS Dorzagliatin significantly reduced glycated hemoglobin levels, fasting plasma glucose levels, 2h-PPG, and homeostasis model assessment 2 of insulin resistance in patients with T2DM. It was well tolerated and had good liver and kidney safety profiles.
Collapse
Affiliation(s)
- Fei Lin
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China; Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Rong He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China; Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Baodong Ling
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Lin Wang
- Department of Pharmacy, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan, China
| | - Ting Jiang
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China; Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Bin Yu
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China; School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China.
| |
Collapse
|
21
|
Wang K, Feng L, Zhang J, Zou Q, Xu F, Sun Z, Tang F, Chen L. Population Pharmacokinetic Analysis of Dorzagliatin in Healthy Subjects and Patients with Type 2 Diabetes Mellitus. Clin Pharmacokinet 2023; 62:1413-1425. [PMID: 37537410 PMCID: PMC10520121 DOI: 10.1007/s40262-023-01286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Dorzagliatin is a first-in-class small molecule glucokinase activator (GKA) that improves pancreatic insulin secretion behavior and regulates hepatic glucose conversion in a glucose concentration-dependent manner. The primary objective of this study was to develop a population pharmacokinetic model of dorzagliatin to evaluate the influence of covariates, such as demographic characteristics and liver and kidney function, on the pharmacokinetics of dorzagliatin and provide a basis for medication guidance. METHOD The pharmacokinetic data of dorzagliatin in this study came from six clinical trials. Based on the combined data, a population pharmacokinetic model of dorzagliatin was established using NONMEM software (ICON, MD, USA, version 7.4.3). The algorithm used was first-order conditional estimation with interaction (FOCEI). The dorzagliatin population pharmacokinetic modeling analysis included 1062 subjects and 7686 observable concentrations. Covariates, including age (AGE), sex (GEND), body weight (TBW), body mass index (BMI), body surface area (BSA), albumin (ALB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), serum creatinine (CR), creatinine clearance (CRCL), and total bilirubin (TBIL), were screened using the forward-backward method. Model evaluation was performed using goodness-of-fit plots, prediction corrected visual prediction check (pcVPC), and bootstrap. RESULTS Concentration data of dorzagliatin in the dose range were best characterized by a two-compartment model with sequential zero-order then first-order absorption and first-order elimination. The final model estimated dorzagliatin data for typical male subjects (69 kg body weight, 18 U/L AST and 55 years old); the apparent total clearance (CL/F) was 10.4 L/h, apparent volume of central compartment distribution (Vc/F) was 80.6 L, inter-compartmental clearance (Q/F) was 3.02 L/h, apparent volume of peripheral compartment distribution (Vp/F) was 26.5 L, absorption rate constant (Ka) was 3.29 h-1, and duration of zero-order absorption (D1) was 0.418 h. The inter-individual variation of CL/F, Vc/F, Vp/F, and D1 was 22.5%, 14.9%, 48.8%, and 82.8%, respectively. CONCLUSION The two-compartment linear pharmacokinetic model with zero- and first-order sequential absorption adequately described the pharmacokinetic characteristics of dorzagliatin. Body weight, aspartate aminotransferase, and age had a statistically significant effect on the CL/F of dorzagliatin. Body weight and sex had a statistically significant effect on Vc/F. However, considering the clinically insignificant changes in the magnitude of steady-state exposure caused by these covariates, as well as the minimal changes in the steady-state exposure for individuals with mild and moderate impaired hepatic function and all stages of renal impairment, dose adjustments based on the tested covariates or for specific populations are deemed unnecessary.
Collapse
Affiliation(s)
- Kun Wang
- Shanghai Qiangshi Information Technology Co., Ltd., Shanghai, 200120 China
| | - Lingge Feng
- Hua Medicine (Shanghai) Limited, Shanghai, 201203 China
| | - Jiayi Zhang
- Hua Medicine (Shanghai) Limited, Shanghai, 201203 China
| | - Quanfei Zou
- Hua Medicine (Shanghai) Limited, Shanghai, 201203 China
| | - Fengyan Xu
- Shanghai Qiangshi Information Technology Co., Ltd., Shanghai, 200120 China
| | - Zhongyi Sun
- Shanghai Qiangshi Information Technology Co., Ltd., Shanghai, 200120 China
| | - Fuxing Tang
- Hua Medicine (Shanghai) Limited, Shanghai, 201203 China
| | - Li Chen
- Hua Medicine (Shanghai) Limited, Shanghai, 201203 China
| |
Collapse
|
22
|
Cai N, Chen X, Liu J, Wen Z, Wen S, Zeng W, Lin S, Chen Y, Shi G, Zeng L. Glucokinase activator improves glucose tolerance and induces hepatic lipid accumulation in mice with diet-induced obesity. LIVER RESEARCH 2023; 7:124-135. [PMID: 39958949 PMCID: PMC11791924 DOI: 10.1016/j.livres.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 02/18/2025]
Abstract
Background and aims Type 2 diabetes mellitus remains a substantial medical problem with increasing global prevalence. Pharmacological research is becoming increasingly focused on personalized treatment strategies. Drug development based on glucokinase (GK) activation is an important strategy for lowering blood glucose. This study aimed to investigate the effect of GK activation on glucose and lipid metabolism in diet-induced obese mice. Materials and methods Mice were fed with a high-fat diet (HFD) for 16 weeks to induce obesity, followed by a GK activator (GKA, AZD1656) or vehicle treatment by gavage for 4 weeks. The effect of GKA treatment on glucose metabolism was evaluated using glucose and insulin tolerance tests. Hepatic lipid accumulation was assessed by hematoxylin and eosin staining, Oil Red O staining, and transmission electron microscopy. The underlying mechanism of GK activation in glucose and lipid metabolism in the liver was studied using transcriptomic analysis, with a mechanistic study in mouse livers in vivo and AML12 cells in vitro. Results GK activation by GKA treatment improved glucose tolerance in HFD-fed mice while increasing hepatic lipid accumulation. Transcriptomic analysis of liver tissues indicated the lipogenesis and protein kinase RNA-like endoplasmic reticulum kinase (PERK)-unfolded protein response (UPR) pathway activations in GKA-treated HFD-fed mice. Inhibition of the ACC activity, which is an important protein in lipogenesis, attenuated GKA treatment-induced lipid accumulation and PERK-UPR activation in vitro. Conclusions GK activation improved glucose tolerance and insulin sensitivity while inducing hepatic lipid accumulation by increasing the lipogenic gene expression, which subsequently activated the hepatic PERK-UPR signaling pathway.
Collapse
Affiliation(s)
- Nan Cai
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuanrong Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Liu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zheyao Wen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siyin Wen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuo Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanming Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Guangzhou, Guangdong, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Guangzhou, Guangdong, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Longyi Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Guangzhou, Guangdong, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
24
|
Gersing S, Cagiada M, Gebbia M, Gjesing AP, Coté AG, Seesankar G, Li R, Tabet D, Weile J, Stein A, Gloyn AL, Hansen T, Roth FP, Lindorff-Larsen K, Hartmann-Petersen R. A comprehensive map of human glucokinase variant activity. Genome Biol 2023; 24:97. [PMID: 37101203 PMCID: PMC10131484 DOI: 10.1186/s13059-023-02935-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Glucokinase (GCK) regulates insulin secretion to maintain appropriate blood glucose levels. Sequence variants can alter GCK activity to cause hyperinsulinemic hypoglycemia or hyperglycemia associated with GCK-maturity-onset diabetes of the young (GCK-MODY), collectively affecting up to 10 million people worldwide. Patients with GCK-MODY are frequently misdiagnosed and treated unnecessarily. Genetic testing can prevent this but is hampered by the challenge of interpreting novel missense variants. RESULT Here, we exploit a multiplexed yeast complementation assay to measure both hyper- and hypoactive GCK variation, capturing 97% of all possible missense and nonsense variants. Activity scores correlate with in vitro catalytic efficiency, fasting glucose levels in carriers of GCK variants and with evolutionary conservation. Hypoactive variants are concentrated at buried positions, near the active site, and at a region of known importance for GCK conformational dynamics. Some hyperactive variants shift the conformational equilibrium towards the active state through a relative destabilization of the inactive conformation. CONCLUSION Our comprehensive assessment of GCK variant activity promises to facilitate variant interpretation and diagnosis, expand our mechanistic understanding of hyperactive variants, and inform development of therapeutics targeting GCK.
Collapse
Affiliation(s)
- Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Matteo Cagiada
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Marinella Gebbia
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atina G Coté
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Gireesh Seesankar
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Roujia Li
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Daniel Tabet
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Jochen Weile
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Anna L Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada.
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
25
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
26
|
Chen L, Zhang J, Sun Y, Zhao Y, Liu X, Fang Z, Feng L, He B, Zou Q, Tracey GJ. A phase I open-label clinical trial to study drug-drug interactions of Dorzagliatin and Sitagliptin in patients with type 2 diabetes and obesity. Nat Commun 2023; 14:1405. [PMID: 36918550 PMCID: PMC10014962 DOI: 10.1038/s41467-023-36946-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
This is a phase 1, open-label, single-sequence, multiple-dose, single-center trial conducted in the US (NCT03790839), to evaluate the clinical pharmacokinetics, safety and pharmacodynamics of dorzagliatin co-administered with sitagliptin in patients with T2D and obesity. The trial has completed. 15 patients with T2D and obesity were recruited and treated with sitagliptin 100 mg QD on Day 1-5, followed by a combination of sitagliptin 100 mg QD with dorzagliatin 75 mg BID at second stage on Day 6-10 and the third stage of dorzagliatin 75 mg BID alone on Day 11-15. Primary outcomes include pharmacokinetic geometric mean ratio (GMR), safety and tolerability. Secondary outcomes include the incremental area under the curve for 4 hours post oral glucose tolerance test (iAUC) of pharmacodynamic biomarkers and glucose sensitivity. GMR for AUC0-24h and Cmax were 92.63 (90% CI, 85.61, 100.22) and 98.14 (90% CI, 83.73, 115.03) in combination/sitagliptin, and 100.34 (90% CI, 96.08, 104.79) and 102.34 (90% CI, 86.92, 120.50) in combination/dorzagliatin, respectively. Combination treatment did not increase the adverse events and well-tolerated in T2D patients. Lack of clinically meaningful pharmacokinetic interactions between dorzagliatin and sitagliptin, and an improvement of glycemic control under combination potentially support their co-administration for diabetes management.
Collapse
Affiliation(s)
- Li Chen
- Hua Medicine (Shanghai) Limited, Shanghai, China.
| | - Jiayi Zhang
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yu Sun
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yu Zhao
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Xiang Liu
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Zhiyin Fang
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Lingge Feng
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Bin He
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Quanfei Zou
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | | |
Collapse
|
27
|
Zhu J, Han J, Liu L, Liu Y, Xu W, Li X, Yang L, Gu Y, Tang W, Shi Y, Ye S, Hua F, Xiang G, Liu M, Sun Z, Su Q, Li X, Li Y, Li Y, Li H, Li Y, Yang T, Yang J, Shi L, Yu X, Chen L, Shao J, Liang J, Han X, Xue Y, Ma J, Zhu D, Mu Y. Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus. Diabetes Res Clin Pract 2023; 197:110568. [PMID: 36738836 DOI: 10.1016/j.diabres.2023.110568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Islet β-cell dysfunction is a basic pathophysiological characteristic of type 2 diabetes mellitus (T2DM). Appropriate assessment of islet β-cell function is beneficial to better management of T2DM. Protecting islet β-cell function is vital to delay the progress of type 2 diabetes mellitus. Therefore, the Pancreatic Islet β-cell Expert Panel of the Chinese Diabetes Society and Endocrinology Society of Jiangsu Medical Association organized experts to draft the "Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus." This consensus suggests that β-cell function can be clinically assessed using blood glucose-based methods or methods that combine blood glucose and endogenous insulin or C-peptide levels. Some measures, including weight loss and early and sustained euglycemia control, could effectively protect islet β-cell function, and some newly developed drugs, such as Sodium-glucose cotransporter-2 inhibitor and Glucagon-like peptide-1 receptor agonists, could improve islet β-cell function, independent of glycemic control.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Liehua Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Liu
- Endocrinology Department, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomu Li
- Department of Endocrine and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Gu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yongquan Shi
- Department of Endocrinology, Changzheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Shandong Ye
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, China
| | - Fei Hua
- Department of Endocrinology, The First People's Hospital of Changzhou, Changzhou, China
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command of Chinese People' s Liberation Army, Wuhan, China
| | - Ming Liu
- Department of Endocrinology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoying Li
- Department of Endocrine and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxiu Li
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Li
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lixin Shi
- Department of Endocrinology, Guiqian International General Hospital, Guiyang 550018, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaqing Shao
- Department of Endocrinology, the Affiliated Jinling Hospital of Nanjing Medical University, General Hospital of Eastern Theater Command, Nanjing, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yaomin Xue
- The First Clinical Medical Institute, Southern Medical University, Guangzhou, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China.
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
28
|
Dutta D, Khandelwal D, Kumar M, Sharma M. Efficacy and safety of novel dual glucokinase activator dorzagliatin in type-2 diabetes A meta-analysis. Diabetes Metab Syndr 2023; 17:102695. [PMID: 36566614 DOI: 10.1016/j.dsx.2022.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Glucokinase has a critical role in regulating glucose homeostasis in humans, and has been a target for diabetes drug development since 1990s. Dorzagliatin is a novel allosteric dual glucokinase activator targeting both pancreatic and hepatic glucokinase. No meta-analysis has analysed the efficacy and safety of dorzagliatin in type-2 diabetes (T2DM). We undertook this meta-analysis to address this knowledge-gap. METHODS Electronic databases were searched for RCTs involving T2DM patients receiving dorzagliatin in intervention arm, and placebo/active comparator in control arm. Primary outcome was to evaluate changes in HbA1c. Secondary outcomes were to evaluate alterations in blood glucose parameters, lipids, insulin-resistance and adverse events. RESULTS From initially screened 17 articles, data from 3 RCTs (1333 patients) was analysed. Over 12-24 weeks use, dorzagliatin had significantly higher lowering of HbA1c [MD -0.66% (95%CI: -0.74 to -0.59); P < 0.01; I2 = 99%], fasting glucose [MD -32.03 mg/dl (95%CI: 45.12 to -18.94); P < 0.01; I2 = 100%], 2-h post-prandial glucose [MD -43.49 mg/dl (95%CI: -46.26 to -40.72); P < 0.01; I2 = 90%] along with greater number of patients achieving HbA1c<7% [OR 6.01 (95% CI: 2.50-14.46); P < 0.01; I2 = 83%], as compared to placebo. Dorzagliatin was associated with significant elevation of triglycerides [MD 0.43 mmol/L (95%CI:0.30-0.56); P < 0.01; I2 = 0%], greater occurrence of hyperlipidaemia [RR 1.52 (95% CI:1.05-2.18); P = 0.03; I2 = 0%], and increase in body-weight [MD 0.40 kg (95%CI:0.06-0.75); P = 0.03; I2 = 0%], compared to placebo. The occurrence of total-adverse-events [RR 1.43 (95%CI:1.11-1.83); P < 0.01; I2 = 0%] but not severe adverse-events [RR 0.92 (95%CI:0.54-1.57); P = 0.76; I2 = 0%] was significantly higher with dorzagliatin. CONCLUSION Dorzagliatin has good glycaemic efficacy and well tolerated over 6-months use. Mild increase in body-weight, serum triglycerides and overall adverse events remain issues of concern warranting further evaluation in longer clinical trials with active controls.
Collapse
Affiliation(s)
- Deep Dutta
- Department of Endocrinology, Center for Endocrinology Diabetes Arthritis & Rheumatism (CEDAR) Super-speciality Healthcare, Dwarka, New Delhi, India.
| | - Deepak Khandelwal
- Department of Endocrinology, Khandelwal Diabetes, Thyroid & Endocrinology Clinic, Paschim Vihar, New Delhi, India
| | - Manoj Kumar
- Department of Endocrinology, CEDAR Super-speciality Healthcare, Panchkula, Haryana, India
| | - Meha Sharma
- Department of Rheumatology, CEDAR Super-speciality Healthcare, Dwarka, New Delhi, India
| |
Collapse
|
29
|
Kim YK, Munir KM, Davis SN. Type 1 diabetes: key drug targets and how they could influence future therapeutics. Expert Opin Ther Targets 2023; 27:31-40. [PMID: 36744390 DOI: 10.1080/14728222.2023.2177150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Despite significant strides made in the management of T1DM, standard management is still insulin analog therapy. Some non-insulin therapies traditionally reserved for the treatment of T2DM have been explored in caring for patients with T1DM, and pancreas transplant is an option for few. However, T1DM remains a challenging disease to manage, encouraging development of novel pharmacologic agents. AREAS COVERED We retrieved PubMed, Cochrane Library, Scopus, Google Scholar, and ClinicalTrials.gov records to identify studies and articles focused on new pharmacologic advances to treat T1DM. EXPERT OPINION Recent research has focused on new targets of pharmacologic treatment of T1DM. Beta-cell preservation through immunomodulation or inhibiting inflammation hopes to delay or halt the progression of the disease. Beta cell regeneration through islet cell transplant or modification in transcription pathways aim to reverse the disease effects. Multiple other new targets such as glucagon antagonism and glucokinase activation are also in development as a potential adjunctive therapy. These new therapeutic targets offer the hope of reducing the daily burden of diabetes management with eventual insulin discontinuation for many individuals with T1DM.
Collapse
Affiliation(s)
- Yoon Kook Kim
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, 800 Linden Ave, 8th Floor, 21201, Baltimore, MD, USA
| | - Kashif M Munir
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, 800 Linden Ave, 8th Floor, 21201, Baltimore, MD, USA
| | - Stephen N Davis
- Department of Medicine, University of Maryland School of Medicine, 22 South Greene Street, 21201, Baltimore, MD, USA
| |
Collapse
|
30
|
Abstract
Dorzagliatin (HuaTangNing) is an oral glucokinase activator that is being developed by Hua Medicine for the treatment of type 2 diabetes mellitus (T2DM), type 1 diabetes mellitus (T1DM) and diabetic kidney disease (DKD). Dorzagliatin improves glycaemic control by activating pancreatic and hepatic glucokinase in a glucose-dependent manner. In September 2022, dorzagliatin (with diet control and exercise) as monotherapy and as an add-on to metformin (when glycaemic control is inadequate with metformin alone) was approved in China for improving glycaemic control in adult patients with T2DM. This article summarizes the milestones in the development of dorzagliatin leading to this first approval.
Collapse
|
31
|
Simons PIHG, Valkenburg O, Stehouwer CDA, Brouwers MCGJ. Association between de novo lipogenesis susceptibility genes and coronary artery disease. Nutr Metab Cardiovasc Dis 2022; 32:2883-2889. [PMID: 36182335 DOI: 10.1016/j.numecd.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/18/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Coronary artery disease (CAD) is the principal cause of death in individuals with non-alcoholic fatty liver disease (NAFLD). The aim of this study was to use genetic epidemiology to study the association between de novo lipogenesis (DNL), one of the major pathways leading to NAFLD, and CAD risk. METHODS AND RESULTS DNL susceptibility genes were used as instruments and selected using three approaches: 1) genes that are associated with both high serum triglycerides and low sex hormone-binding globulin, both downstream consequences of DNL (unbiased approach), 2) genes that have a known role in DNL (biased approach), and 3) genes that have been associated with serum fatty acids, used as a proxy of DNL. Gene-CAD effect estimates were retrieved from the meta-analysis of CARDIoGRAM and the UK Biobank (∼76014 cases and ∼264785 controls). Effect estimates were clustered using a fixed-effects meta-analysis. Twenty-two DNL susceptibility genes were identified by the unbiased approach, nine genes by the biased approach and seven genes were associated with plasma fatty acids. Clustering of genes selected in the unbiased and biased approach showed a statistically significant association with CAD (OR:1.016, 95%CI:1.012; 1.020 and OR:1.013, 95%CI:1.007; 1.020, respectively), while clustering of fatty acid genes did not (OR:1.004, 95%CI:0.996-1.011). Subsequent exclusion of potential influential outliers did reveal a statistically significant association (OR:1.009, 95%CI:1.000; 1.018). CONCLUSIONS DNL susceptibility genes are associated with an increased risk of CAD. These findings suggest that DNL may be involved in the pathogenesis of CAD and favor further development of strategies that target NAFLD through DNL.
Collapse
Affiliation(s)
- Pomme I H G Simons
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Center, Maastricht, the Netherlands; Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Olivier Valkenburg
- Department of Reproductive Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Center, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
32
|
Yu Y, Yang X, Tong K, Yin S, Hu G, Zhang F, Jiang P, Zhou M, Jian W. Efficacy and safety of dorzagliatin for type 2 diabetes mellitus: A meta-analysis and trial sequential analysis. Front Cardiovasc Med 2022; 9:1041044. [PMID: 36505359 PMCID: PMC9727304 DOI: 10.3389/fcvm.2022.1041044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To evaluate the efficacy and safety of dorzagliatin in the treatment of type 2 diabetes mellitus (T2DM) by using meta-analysis and trial sequential analysis (TSA). Method Search for clinical trials of dorzagliatin for T2DM in eight databases, with a time limit of build to July 2022. The included studies that met the requirements were carried out for meta-analysis and TSA. Results In terms of efficacy endpoints, meta-analysis showed that dorzagliatin decreased glycated hemoglobin A1c(HbA1c) [mean difference (MD) -0.65%, 95% confidence interval (CI) -0.76 ~ -0.54, P < 0.00001], fasting plasma glucose (FPG) (MD -9.22 mg/dL, 95% CI -9.99 ~ -8.44, P < 0.00001), 2 h postprandial glucose (2h-PPG) (MD -48.70 mg/dL, 95% CI -55.45 ~ -41.96, P < 0.00001), homeostasis model assessment 2 of insulin resistance (HOMA2-IR) (MD -0.07, 95% CI -0.14 ~ -0.01, P = 0.03) and increased homeostasis model assessment 2 of ß-cells function (HOMA2-β) (MD 2.69, 95% CI 1.06 ~ 4.31, P = 0.001) compared with placebo. And TSA revealed that the benefits observed for the current information set were conclusive, except for HOMA2-IR. In comparison with placebo, dorzagliatin increased triglyceride(TG) (MD 0.43 mmol/L, 95% CI 0.30 ~ 0.56, P < 0.00001), total cholesterol (TC) (MD 0.13 mmol/L, 95% CI 0.05 ~ 0.21, P = 0.001), body weight (MD 0.38 kg, 95% CI 0.12-0.63, P = 0.004) and body mass index (BMI) (MD 0.14 kg/m2, 95% CI 0.05-0.24, P = 0.003), while low density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP) and diastolic blood pressure (DBP) were comparable. And TSA demonstrated that TG, TC, body weight, and BMI were conclusive. In terms of safety endpoints, dorzagliatin increased total adverse events (AEs) [risk ratio (RR) 1.56, 95% CI 1.06 ~ 2.30, P = 0.03], while serious AEs, hyperlipidemia, and hypoglycaemia were all comparable. And TSA indicated that the results need to be confirmed by additional studies. Harbord regression showed no publication bias. Conclusion Dorzagliatin was effective in lowering glycemia, reducing insulin resistance and improving islet ß-cells function without affecting blood pressure, LDL-C, and HDL-C. Although dorzagliatin caused a mild increase in TG and TC, it did not increase the incidence of hyperlipidemia, and the small increases in body weight and BMI were not clinically significant enough. In terms of safety, the total AEs caused by dorzagliatin may be a cumulative effect of single AEs, with no drug-related adverse event being reported at a higher incidence than placebo alone. Dorzagliatin's serious AEs, hyperlipidemia, and hypoglycemia are comparable to that of placebo, and dorzagliatin has a good safety profile. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=371802 identifier: CRD42022371802.
Collapse
Affiliation(s)
- Yunfeng Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China,The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xingyu Yang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Keke Tong
- The Hospital of Hunan University of Traditional Chinese Medicine, Changde, China
| | - Shuang Yin
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Gang Hu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Fei Zhang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Pengfei Jiang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Manli Zhou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Weixiong Jian
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China,*Correspondence: Weixiong Jian
| |
Collapse
|
33
|
Chen KH, Doliba N, May CL, Roman J, Ustione A, Tembo T, Negron A, Radovick S, Piston DW, Glaser B, Kaestner KH, Matschinsky FM. Genetic activation of glucokinase in a minority of pancreatic beta cells causes hypoglycemia in mice. Life Sci 2022; 309:120952. [PMID: 36100080 PMCID: PMC10312065 DOI: 10.1016/j.lfs.2022.120952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/05/2023]
Abstract
AIMS Glucokinase (GK) is expressed in the glucose-sensing cells of the islets of Langerhans and plays a critical role in glucose homeostasis. Here, we tested the hypothesis that genetic activation of GK in a small subset of β-cells is sufficient to change the glucose set-point of the whole islet. MATERIAL AND METHODS Mouse models of cell-type specific GK deficiency (GKKO) and genetic enzyme activation (GKKI) in a subset of β-cells were obtained by crossing the αGSU (gonadotropin alpha subunit)-Cre transgene with the appropriate GK mutant alleles. Metabolic analyses consisted of glucose tolerance tests, perifusion of isolated islets and intracellular calcium measurements. KEY FINDINGS The αGSU-Cre transgene produced genetically mosaic islets, as Cre was active in 15 ± 1.2 % of β-cells. While mice deficient for GK in a subset of islet cells were normal, unexpectedly, GKKI mice were chronically hypoglycemic, glucose intolerant, and had a lower threshold for glucose stimulated insulin secretion. GKKI mice exhibited an average fasting blood glucose level of 3.5 mM. GKKI islets responded with intracellular calcium signals that spread through the whole islets at 1 mM and secreted insulin at 3 mM glucose. SIGNIFICANCE Genetic activation of GK in a minority of β-cells is sufficient to change the glucose threshold for insulin secretion in the entire islet and thereby glucose homeostasis in the whole animal. These data support the model in which β-cells with higher GK activity function as 'hub' or 'trigger' cells and thus control insulin secretion by the β-cell collective within the islet.
Collapse
Affiliation(s)
- Kevin H Chen
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Nicolai Doliba
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Catherine L May
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Jeffrey Roman
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Teguru Tembo
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Ariel Negron
- Department of Medicine and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Sally Radovick
- Department of Medicine and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Benjamin Glaser
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA.
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA.
| |
Collapse
|
34
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
35
|
Blonde L, Umpierrez GE, Reddy SS, McGill JB, Berga SL, Bush M, Chandrasekaran S, DeFronzo RA, Einhorn D, Galindo RJ, Gardner TW, Garg R, Garvey WT, Hirsch IB, Hurley DL, Izuora K, Kosiborod M, Olson D, Patel SB, Pop-Busui R, Sadhu AR, Samson SL, Stec C, Tamborlane WV, Tuttle KR, Twining C, Vella A, Vellanki P, Weber SL. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr Pract 2022; 28:923-1049. [PMID: 35963508 PMCID: PMC10200071 DOI: 10.1016/j.eprac.2022.08.002] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The objective of this clinical practice guideline is to provide updated and new evidence-based recommendations for the comprehensive care of persons with diabetes mellitus to clinicians, diabetes-care teams, other health care professionals and stakeholders, and individuals with diabetes and their caregivers. METHODS The American Association of Clinical Endocrinology selected a task force of medical experts and staff who updated and assessed clinical questions and recommendations from the prior 2015 version of this guideline and conducted literature searches for relevant scientific papers published from January 1, 2015, through May 15, 2022. Selected studies from results of literature searches composed the evidence base to update 2015 recommendations as well as to develop new recommendations based on review of clinical evidence, current practice, expertise, and consensus, according to established American Association of Clinical Endocrinology protocol for guideline development. RESULTS This guideline includes 170 updated and new evidence-based clinical practice recommendations for the comprehensive care of persons with diabetes. Recommendations are divided into four sections: (1) screening, diagnosis, glycemic targets, and glycemic monitoring; (2) comorbidities and complications, including obesity and management with lifestyle, nutrition, and bariatric surgery, hypertension, dyslipidemia, retinopathy, neuropathy, diabetic kidney disease, and cardiovascular disease; (3) management of prediabetes, type 2 diabetes with antihyperglycemic pharmacotherapy and glycemic targets, type 1 diabetes with insulin therapy, hypoglycemia, hospitalized persons, and women with diabetes in pregnancy; (4) education and new topics regarding diabetes and infertility, nutritional supplements, secondary diabetes, social determinants of health, and virtual care, as well as updated recommendations on cancer risk, nonpharmacologic components of pediatric care plans, depression, education and team approach, occupational risk, role of sleep medicine, and vaccinations in persons with diabetes. CONCLUSIONS This updated clinical practice guideline provides evidence-based recommendations to assist with person-centered, team-based clinical decision-making to improve the care of persons with diabetes mellitus.
Collapse
Affiliation(s)
| | | | - S Sethu Reddy
- Central Michigan University, Mount Pleasant, Michigan
| | | | | | | | | | | | - Daniel Einhorn
- Scripps Whittier Diabetes Institute, La Jolla, California
| | | | | | - Rajesh Garg
- Lundquist Institute/Harbor-UCLA Medical Center, Torrance, California
| | | | | | | | | | | | - Darin Olson
- Colorado Mountain Medical, LLC, Avon, Colorado
| | | | | | - Archana R Sadhu
- Houston Methodist; Weill Cornell Medicine; Texas A&M College of Medicine; Houston, Texas
| | | | - Carla Stec
- American Association of Clinical Endocrinology, Jacksonville, Florida
| | | | - Katherine R Tuttle
- University of Washington and Providence Health Care, Seattle and Spokane, Washington
| | | | | | | | - Sandra L Weber
- University of South Carolina School of Medicine-Greenville, Prisma Health System, Greenville, South Carolina
| |
Collapse
|
36
|
Yu Y, Hu G, Yin S, Yang X, Zhou M, Jian W. Optimal dose of tirzepatide for type 2 diabetes mellitus: A meta-analysis and trial sequential analysis. Front Cardiovasc Med 2022; 9:990182. [PMID: 36119737 PMCID: PMC9472131 DOI: 10.3389/fcvm.2022.990182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe purpose of this study is to evaluate the optimal dose of tirzepatide (TZP) for the treatment of type 2 diabetes mellitus (T2DM) by meta-analysis and trial sequential analysis (TSA).MethodsClinical trials of TZP for T2DM were obtained by searching 8 databases with a time limit from database creation to May 2022. Mean differences (MD) and 95% confidence intervals (95%CI) were used for continuous variables, and relative risk (RR) and 95%CI were used for dichotomous variables.ResultsCompared with TZP 5 mg, meta-analysis showed that TZP 10 mg significantly reduced glycosylated hemoglobin type A1c (HbA1c) (MD −0.24, 95%CI −0.31~-0.17, P < 0.00001), fasting serum glucose (FSG) (MD −5.82, 95%CI −8.35~-3.28, P < 0.00001) and weight (MD −2.47, 95%CI −2.95~-1.98, P < 0.00001), and TZP 15 mg significantly reduced HbA1c (MD −0.37, 95%CI −0.44~-0.29, P < 0.00001), FSG (MD −8.52, 95%CI −11.07~-5.98, P < 0.00001) and weight (MD −4.63, 95%CI −5.45~-3.81, P < 0.00001). Compared with TZP 10 mg, TZP 15 mg dramatically reduced HbA1c (MD −0.12, 95%CI −0.19~-0.05, P = 0.001), FSG (MD −2.73, 95%CI −5.29~-0.17, P = 0.04) and weight (MD −2.18, 95%CI −2.67~-1.70, P < 0.00001). The TSA indicated that the benefits observed in the current information set were conclusive, except for the FSG of “TZP 15 mg vs. TZP 10 mg”. In terms of safety endpoints, meta-analysis revealed that there was no significant difference in the serious adverse events (AEs), major adverse cardiovascular events-4 (MACE-4), cardiovascular death, hypertension, cancer and hypoglycemic of the three dose groups of TZP. Compared with TZP 5 mg, TZP 10 mg increased total adverse events (RR 1.06, 95%CI 1.01~1.11, P = 0.03) and gastrointestinal (GI) AEs (RR 1.17, 95%CI 1.03~1.33, P = 0.02), and TZP 15 mg increased total AEs (RR 1.10, 95%CI 1.05~1.15, P = 0.0001). There were no significant differences in total AEs and GI AEs for TZP 15 mg compared to TZP 10 mg. The TSA demonstrated that the total AEs of “TZP 15 mg vs. TZP 5 mg” were conclusive.ConclusionsTZP 15 mg >TZP 10 mg > TZP 5 mg in terms of lowering glycemia and reducing weight. TZP 5 mg > TZP 10 mg = TZP 15 mg in terms of safety. On this basis, we recommend TZP 5 mg as the first-choice dose for patients with T2DM to minimize AEs while reducing glycemia and weight. If patients cannot effectively control their glycemia after taking TZP 5 mg, it is recommended to take TZP 15 mg directly to achieve the best effect of glycemic reduction. However, most of the included studies have the background of basic medication, the independent efficacy and safety of different doses of TZP still need to be tested.Systematic review registrationUnique Identifier: CRD42022341966.
Collapse
Affiliation(s)
- Yunfeng Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Gang Hu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shuang Yin
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinyu Yang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Manli Zhou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Weixiong Jian
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Weixiong Jian
| |
Collapse
|
37
|
Chew NW, Chong B, Ng CH, Kong G, Chin YH, Xiao W, Lee M, Dan YY, Muthiah MD, Foo R. The genetic interactions between non-alcoholic fatty liver disease and cardiovascular diseases. Front Genet 2022; 13:971484. [PMID: 36035124 PMCID: PMC9399730 DOI: 10.3389/fgene.2022.971484] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The ongoing debate on whether non-alcoholic fatty liver disease (NAFLD) is an active contributor or an innocent bystander in the development of cardiovascular disease (CVD) has sparked interests in understanding the common mediators between the two biologically distinct entities. This comprehensive review identifies and curates genetic studies of NAFLD overlapping with CVD, and describes the colinear as well as opposing correlations between genetic associations for the two diseases. Here, CVD described in relation to NAFLD are coronary artery disease, cardiomyopathy and atrial fibrillation. Unique findings of this review included certain NAFLD susceptibility genes that possessed cardioprotective properties. Moreover, the complex interactions of genetic and environmental risk factors shed light on the disparity in genetic influence on NAFLD and its incident CVD. This serves to unravel NAFLD-mediated pathways in order to reduce CVD events, and helps identify targeted treatment strategies, develop polygenic risk scores to improve risk prediction and personalise disease prevention.
Collapse
Affiliation(s)
- Nicholas W.S. Chew
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
- *Correspondence: Nicholas W.S. Chew, ; Roger Foo,
| | - Bryan Chong
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Gwyneth Kong
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Wang Xiao
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore, Singapore
- Genome Institute of Singapore, Agency of Science Technology and Research, Bipolis way, Singapore
| | - Mick Lee
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore, Singapore
- Genome Institute of Singapore, Agency of Science Technology and Research, Bipolis way, Singapore
| | - Yock Young Dan
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Mark D. Muthiah
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Roger Foo
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore, Singapore
- Genome Institute of Singapore, Agency of Science Technology and Research, Bipolis way, Singapore
- *Correspondence: Nicholas W.S. Chew, ; Roger Foo,
| |
Collapse
|
38
|
Klein KR, Buse JB. A new class of drug in the diabetes toolbox. Nat Med 2022; 28:901-902. [PMID: 35551293 DOI: 10.1038/s41591-022-01783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Klara R Klein
- Division of Endocrinology and Metabolism, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - John B Buse
- Division of Endocrinology and Metabolism, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
39
|
Zhu D, Li X, Ma J, Zeng J, Gan S, Dong X, Yang J, Lin X, Cai H, Song W, Li X, Zhang K, Zhang Q, Lu Y, Bu R, Shao H, Wang G, Yuan G, Ran X, Liao L, Zhao W, Li P, Sun L, Shi L, Jiang Z, Xue Y, Jiang H, Li Q, Li Z, Fu M, Liang Z, Guo L, Liu M, Xu C, Li W, Yu X, Qin G, Yang Z, Su B, Zeng L, Geng H, Shi Y, Zhao Y, Zhang Y, Yang W, Chen L. Dorzagliatin in drug-naïve patients with type 2 diabetes: a randomized, double-blind, placebo-controlled phase 3 trial. Nat Med 2022; 28:965-973. [PMID: 35551294 DOI: 10.1038/s41591-022-01802-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
Abstract
Improving glucose sensitivity remains an unmet medical need in treating type 2 diabetes (T2D). Dorzagliatin is a dual-acting, orally bioavailable glucokinase activator that enhances glucokinase activity in a glucose-dependent manner, improves glucose-stimulated insulin secretion and demonstrates effects on glycemic control in patients with T2D. We report the findings of a randomized, double-blind, placebo-controlled phase 3 clinical trial to evaluate the efficacy and safety of dorzagliatin in patients with T2D. Eligible drug-naïve patients with T2D (n = 463) were randomly assigned to the dorzagliatin or placebo group at a ratio of 2:1 for 24 weeks of double-blind treatment, followed by 28 weeks of open-label treatment with dorzagliatin for all patients. The primary efficacy endpoint was the change in glycated hemoglobin from baseline to week 24. Safety was assessed throughout the trial. At week 24, the least-squares mean change in glycated hemoglobin from baseline (95% confidence interval) was -1.07% (-1.19%, -0.95%) in the dorzagliatin group and -0.50% (-0.68%, -0.32%) in the placebo group (estimated treatment difference, -0.57%; 95% confidence interval: -0.79%, -0.36%; P < 0.001). The incidence of adverse events was similar between the two groups. There were no severe hypoglycemia events or drug-related serious adverse events in the dorzagliatin group. In summary, dorzagliatin improved glycemic control in drug-naïve patients with T2D and showed a good tolerability and safety profile.
Collapse
Affiliation(s)
- Dalong Zhu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xiaoying Li
- Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Jiao'e Zeng
- Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Shenglian Gan
- The First People's Hospital of Changde City, Changde, China
| | - Xiaolin Dong
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Yang
- The First Hospital of Shanxi Medical University, Taiyuan, China
| | | | - Hanqing Cai
- The Second Hospital of Jilin University, Changchun, China
| | - Weihong Song
- Chenzhou First People's Hospital, Chenzhou, China
| | - Xuefeng Li
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Keqin Zhang
- Tongji Hospital of Tongji University, Shanghai, China
| | - Qiu Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yibing Lu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Huige Shao
- Changsha Central Hospital, Changsha, China
| | - Guixia Wang
- The First Hospital of Jilin University, Changchun, China
| | - Guoyue Yuan
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xingwu Ran
- West China Hospital, Sichuan University, Chengdu, China
| | - Lin Liao
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wenjuan Zhao
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ping Li
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Sun
- Siping Hospital of China Medical University, Siping, China
| | - Lixin Shi
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhaoshun Jiang
- The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Yaoming Xue
- Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Hongwei Jiang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Quanmin Li
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | | | - Maoxiong Fu
- The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | | | - Lian Guo
- Chongqing University Three Gorges Central Hospital, Chongqing, China
| | - Ming Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Chun Xu
- The Third Medical Center of PLA General Hospital, Beijing, China
| | - Wenhui Li
- Peking Union Medical College Hospital, Beijing, China
| | - Xuefeng Yu
- Tongji Hospital, Tongji Medical College of HUST, Wuhan, China
| | - Guijun Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhou Yang
- Jiangxi Pingxiang People's Hospital, Pingxiang, China
| | - Benli Su
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Longyi Zeng
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | - Yu Zhao
- Hua Medicine, Shanghai, China
| | | | - Wenying Yang
- China-Japan Friendship Hospital, Beijing, China.
| | - Li Chen
- Hua Medicine, Shanghai, China.
| |
Collapse
|
40
|
Yang W, Zhu D, Gan S, Dong X, Su J, Li W, Jiang H, Zhao W, Yao M, Song W, Lu Y, Zhang X, Li H, Wang G, Qiu W, Yuan G, Ma J, Li W, Li Z, Wang X, Zeng J, Yang Z, Liu J, Liang Y, Lu S, Zhang H, Liu H, Liu P, Fan K, Jiang X, Li Y, Su Q, Ning T, Tan H, An Z, Jiang Z, Liu L, Zhou Z, Zhang Q, Li X, Shan Z, Xue Y, Mao H, Shi L, Ye S, Zhang X, Sun J, Li P, Yang T, Li F, Lin J, Zhang Z, Zhao Y, Li R, Guo X, Yao Q, Lu W, Qu S, Li H, Tan L, Wang W, Yao Y, Chen D, Li Y, Gao J, Hu W, Fei X, Wu T, Dong S, Jin W, Li C, Zhao D, Feng B, Zhao Y, Zhang Y, Li X, Chen L. Dorzagliatin add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled phase 3 trial. Nat Med 2022; 28:974-981. [PMID: 35551292 PMCID: PMC9117147 DOI: 10.1038/s41591-022-01803-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
Abstract
Metformin, the first-line therapy for type 2 diabetes (T2D), decreases hepatic glucose production and reduces fasting plasma glucose levels. Dorzagliatin, a dual-acting orally bioavailable glucokinase activator targeting both the pancreas and liver glucokinase, decreases postprandial glucose in patients with T2D. In this randomized, double-blind, placebo-controlled phase 3 trial, the efficacy and safety of dorzagliatin as an add-on therapy to metformin were assessed in patients with T2D who had inadequate glycemic control using metformin alone. Eligible patients with T2D (n = 767) were randomly assigned to receive dorzagliatin or placebo (1:1 ratio) as an add-on to metformin (1,500 mg per day) for 24 weeks of double-blind treatment, followed by 28 weeks of open-label treatment with dorzagliatin for all patients. The primary efficacy endpoint was the change in glycated hemoglobin (HbA1c) levels from baseline to week 24, and safety was assessed throughout the trial. At week 24, the least-squares mean change from baseline in HbA1c (95% confidence interval (CI)) was -1.02% (-1.11, -0.93) in the dorzagliatin group and -0.36% (-0.45, -0.26) in the placebo group (estimated treatment difference, -0.66%; 95% CI: -0.79, -0.53; P < 0.0001). The incidence of adverse events was similar between groups. There were no severe hypoglycemia events or drug-related serious adverse events in the dorzagliatin and metformin combined therapy group. In patients with T2D who experienced inadequate glycemic control with metformin alone, dorzagliatin resulted in effective glycemic control with good tolerability and safety profile ( NCT03141073 ).
Collapse
Grants
- The study sponsor was Hua Medicine. Hua Medicine participated in the design, conduct, and data analysis and interpretation of the clinical study, the preparation of the manuscript, and involved in making decision to publish. This study was also partially funded by grants from the National Major Scientific and Technological Special Project for Significant New Drugs Development (2014ZX09101002004 and 2018ZX09711002-012-001), Shanghai Science and Technology Innovation Action Project (14431908300, 15XD1520500, 17DZ1910200, and 19431905200), Shanghai Pudong District Science and Technology Innovation Action Project (PKJ2014-S06), and Shanghai Municipal Commission of Economy and Informatization Innovation Action Project (XC-ZXSJ-01-2015-02 and 18XI-18).
Collapse
Affiliation(s)
| | - Dalong Zhu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Shenglian Gan
- The First People's Hospital of Changde City, Changde, China
| | - Xiaolin Dong
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junping Su
- Cangzhou People's Hospital, Cangzhou, China
| | - Wenhui Li
- Peking Union Medical College Hospital, Beijing, China
| | - Hongwei Jiang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Wenjuan Zhao
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Minxiu Yao
- Qingdao Central Hospital, Qingdao, China
| | - Weihong Song
- Chenzhou First People's Hospital, Chenzhou, China
| | - Yibing Lu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuzhen Zhang
- Tongji Hospital of Tongji University, Shanghai, China
| | - Huifang Li
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guixia Wang
- The First Bethune Hospital of Jilin University, Changchun, China
| | - Wei Qiu
- Huzhou Central Hospital, Huzhou, China
| | - Guoyue Yuan
- The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | | | - Wei Li
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ziling Li
- Inner Mongolia Baogang Hospital, Baotou, China
| | - Xiaoyue Wang
- The First People's Hospital of Yue Yang, Yueyang, China
| | - Jiao'e Zeng
- Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Zhou Yang
- Jiangxi Pingxiang People's Hospital, Pingxiang, China
| | - Jingdong Liu
- Jiangxi Provincial People's Hospital, Nanchang, China
| | | | - Song Lu
- Chongqing General Hospital, Chongqing, China
| | - Huili Zhang
- Qinghai University Affiliated Hospital, Xining, China
| | - Hui Liu
- Luoyang Central Hospital, Luoyang, China
| | - Ping Liu
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Kuanlu Fan
- The General Hospital of Xuzhou City Mining Group, Xuzhou, China
| | - Xiaozhen Jiang
- Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yufeng Li
- Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China
| | - Qing Su
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Ning
- Baotou Central Hospital, Baotou, China
| | - Huiwen Tan
- West China Hospital of Sichuan University, Chengdu, China
| | - Zhenmei An
- West China Hospital of Sichuan University, Chengdu, China
| | - Zhaoshun Jiang
- The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Lijun Liu
- Yiyang Central Hospital, Yiyang, China
| | - Zunhai Zhou
- Yangpu Hospital, Tongji University, Shanghai, China
| | - Qiu Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuefeng Li
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhongyan Shan
- The First Hospital of China Medical University, Shenyang, China
| | - Yaoming Xue
- Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Hong Mao
- The Central Hospital of Wuhan, Wuhan, China
| | - Lixin Shi
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | - Xiaomei Zhang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jiao Sun
- Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Ping Li
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tao Yang
- Jiangsu Province Hospital, Nanjing, China
| | - Feng Li
- Jining No. 1 People's Hospital, Jining, China
| | - Jingna Lin
- Tianjin People's Hospital, Tianjin, China
| | | | - Ying Zhao
- Jilin Central General Hospital, Jilin, China
| | - Ruonan Li
- Third People's Hospital of Yunnan Province, Kunming, China
| | - Xiaohui Guo
- Peking University First Hospital, Beijing, China
| | - Qi Yao
- Ningbo First Hospital, Ningbo, China
| | - Weiping Lu
- The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Shen Qu
- Shanghai Tenth People's Hospital, Shanghai, China
| | - Hongmei Li
- Emergency General Hospital, Beijing, China
| | - Liling Tan
- The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenbo Wang
- Peking University Shougang Hospital, Beijing, China
| | - Yongli Yao
- Qinghai Provincial People's Hospital, Xining, China
| | | | - Yulan Li
- Liuzhou People's Hospital, Liuzhou, China
| | - Jialin Gao
- Yijishan Hospital, The First Affiliated Hospital of Wannan Medical University, Wuhu, China
| | - Wen Hu
- The Second People's Hospital of Huai'an, Huai'an, China
| | | | | | - Song Dong
- Aerospace Center Hospital, Beijing, China
| | | | - Chenzhong Li
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Zhao
- Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Bo Feng
- Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yu Zhao
- Hua Medicine (Shanghai) Ltd., Shanghai, China
| | - Yi Zhang
- Hua Medicine (Shanghai) Ltd., Shanghai, China
| | - Xiaoying Li
- Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Li Chen
- Hua Medicine (Shanghai) Ltd., Shanghai, China.
| |
Collapse
|
41
|
Yang ML, Horstman S, Gee R, Guyer P, Lam TT, Kanyo J, Perdigoto AL, Speake C, Greenbaum CJ, Callebaut A, Overbergh L, Kibbey RG, Herold KC, James EA, Mamula MJ. Citrullination of glucokinase is linked to autoimmune diabetes. Nat Commun 2022; 13:1870. [PMID: 35388005 PMCID: PMC8986778 DOI: 10.1038/s41467-022-29512-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation, including reactive oxygen species and inflammatory cytokines in tissues amplify various post-translational modifications of self-proteins. A number of post-translational modifications have been identified as autoimmune biomarkers in the initiation and progression of Type 1 diabetes. Here we show the citrullination of pancreatic glucokinase as a result of inflammation, triggering autoimmunity and affecting glucokinase biological functions. Glucokinase is expressed in hepatocytes to regulate glycogen synthesis, and in pancreatic beta cells as a glucose sensor to initiate glycolysis and insulin signaling. We identify autoantibodies and autoreactive CD4+ T cells to glucokinase epitopes in the circulation of Type 1 diabetes patients and NOD mice. Finally, citrullination alters glucokinase biologic activity and suppresses glucose-stimulated insulin secretion. Our study define glucokinase as a Type 1 diabetes biomarker, providing new insights of how inflammation drives post-translational modifications to create both neoautoantigens and affect beta cell metabolism.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Sheryl Horstman
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Renelle Gee
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Ana L Perdigoto
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Aïsha Callebaut
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Richard G Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Kevan C Herold
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Mark J Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
42
|
Kawata S, Nakamura A, Miyoshi H, Yang K, Shigesawa I, Yamauchi Y, Tsuchida K, Omori K, Takahashi K, Nomoto H, Kameda H, Cho KY, Terauchi Y, Atsumi T. Glucokinase activation leads to an unsustained hypoglycaemic effect with hepatic triglyceride accumulation in db/db mice. Diabetes Obes Metab 2022; 24:391-401. [PMID: 34704329 DOI: 10.1111/dom.14586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/12/2021] [Accepted: 10/24/2021] [Indexed: 12/18/2022]
Abstract
AIM To investigate how subchronic administration of a glucokinase activator (GKA) results in attenuation of the hypoglycaemic effect in the diabetic condition. MATERIALS AND METHODS Six-week-old db/db mice were fed standard chow containing a GKA or the sodium-glucose cotransporter 2 inhibitor ipragliflozin for 1, 6, 14 or 28 days. We performed histological evaluation and gene expression analysis of the pancreatic islets and liver after each treatment and compared the results to those in untreated mice. RESULTS The unsustained hypoglycaemic effect of GKAs was reproduced in db/db mice in conjunction with significant hepatic fat accumulation. The initial reactions to treatment with the GKA in the liver were upregulation of the gene expression of carbohydrate response element-binding protein beta (Chrebp-b) and downregulation of phosphoenolpyruvate carboxykinase (Pepck) on day 1. Subsequently, the initial changes in Chrebp-b and Pepck disappeared and increases in the expression of genes involved in lipogenesis, including acetyl-CoA carboxylase and fatty acid synthase, were observed. There were no significant changes in the pancreatic β cells nor in hepatic insulin signalling. CONCLUSIONS The GKA showed an unsustained hypoglycaemic effect and promoted hepatic fat accumulation in db/db mice. Dynamic changes in the expression of hepatic genes involved in lipogenesis and gluconeogenesis could affect the unsustained hypoglycaemic effect of the GKA despite no changes in pancreatic β-cell function and mass.
Collapse
Affiliation(s)
- Shinichiro Kawata
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideaki Miyoshi
- Division of Diabetes and Obesity, Faculty of Medicine and Graduate School of Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kelaier Yang
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ikumi Shigesawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Yamauchi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhisa Tsuchida
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuno Omori
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kiyohiko Takahashi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Nomoto
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiraku Kameda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kyu Yong Cho
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Clinical Research and Medical Innovation Centre, Hokkaido University Hospital, Sapporo, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
43
|
Ren Y, Li L, Wan L, Huang Y, Cao S. Glucokinase as an emerging anti-diabetes target and recent progress in the development of its agonists. J Enzyme Inhib Med Chem 2022; 37:606-615. [PMID: 35067153 PMCID: PMC8788356 DOI: 10.1080/14756366.2021.2025362] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus is a metabolic disorder with complicated pathogenesis, and mono-target therapy often fails to effectively manage the levels of blood glucose. In recent years, the anti-diabetes target glucokinase (GK) has attracted the attention of researchers. It acts as a glucose sensor, triggering counter regulatory responses following a change in glucose levels to aid restoration of normoglycemia. Activation of GK induces glucose metabolism and reduces glucose levels for the treatment of type 2 diabetes. GK agonists (GKA) are a new class of antidiabetic drugs. Among these agents, dorzagliatin is currently being investigated in phase III clinical trials, while PB-201 and AZD-1656 have reached phase II clinical trials. This article describes the mechanism of action of GK in diabetes and of action of GKA at the protein level, and provides a review of the research, trends, and prospects regarding the use of GKA in this setting.
Collapse
Affiliation(s)
- Yixin Ren
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Li Li
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Li Wan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Yan Huang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Shuang Cao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| |
Collapse
|
44
|
Zhao Y, Xie L, Zhang H, Zhou S, Liu Y, Chen J, Wang L, Wang L, Zhuo L, Wang Y, Ou N, Shao F. Tolerability, Safety, Pharmacokinetics, and Pharmacodynamics of SY-004, a Glucokinase Activator, in Healthy Chinese Adults: A Randomized, Phase Ia, Single-Ascending Dose Study. Clin Ther 2022; 44:269-281. [DOI: 10.1016/j.clinthera.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
|
45
|
Liu D, Du Y, Yao X, Wei Y, Zhu J, Cui C, Zhou H, Xu M, Li H, Ji L. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the glucokinase activator PB-201 and its effects on the glucose excursion profile in drug-naïve Chinese patients with type 2 diabetes: a randomised controlled, crossover, single-centre phase 1 trial. EClinicalMedicine 2021; 42:101185. [PMID: 34805810 PMCID: PMC8585621 DOI: 10.1016/j.eclinm.2021.101185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND PB-201, a partial, pancreas/liver-dual glucokinase activator, showed good tolerance and glycaemic effects in multinational studies. This study determined its optimal dose, safety, pharmacokinetics, and pharmacodynamics in Chinese patients with type 2 diabetes. METHODS In this double-blind, randomised, four-period, crossover, phase 1 trial in China, conducted at the Peking University Third Hospital, adult patients with drug-naive type 2 diabetes were randomised (1:1:1:1) to four sequence groups using a computer-generated randomisation table. In each period, they received oral placebo or PB-201 (50+50, 100+50, or 100+100 mg split doses) for 7 days. Investigators and patients were masked to treatment assignment. The primary endpoints were safety and pharmacokinetics. Continuous glucose monitoring was used to delineate the glucose excursion profile. Trial registration number: NCT03973515. FINDINGS Between August 27, 2019 and December 19, 2019, 16 patients were randomised. PB-201 showed a dose-proportional pharmacokinetic profile without apparent accumulation in the body and induced dose-dependent lowering of blood glucose. PB-201 at 50+50, 100+50, and 100+100 mg increased mean time in range (49·210% [standard deviation 27], 56·130% [25], and 63·330% [20] with three doses, respectively) versus placebo (49·380% [27]) and reduced estimated glycated haemoglobin from baseline (-0·5445% [1·654], -1·063% [1·236], and -1·888% [1·381] vs -0·581% [1·200]). Fifteen patients (93·8%) had treatment-emergent adverse events, which were mild. No patients had hypoglycaemia with venous/capillary glucose <3·9 mmol/L or nocturnal hypoglycaemia. INTERPRETATION PB-201 100 mg twice daily is identified as the optimal dose, which shows promising glucose-lowering effects and low risks of hypoglycaemia and other side effects. Further investigation of PB-201 100 mg twice daily in confirmatory trials is warranted. FUNDING PegBio.
Collapse
Affiliation(s)
- Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Ying Du
- PegBio Co., Ltd, Suzhou, China
| | - Xueting Yao
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Yudong Wei
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Jixiang Zhu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Cheng Cui
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | | | - Min Xu
- PegBio Co., Ltd, Suzhou, China
| | - Haiyan Li
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Prof Haiyan Li, Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrinology, Peking University People's Hospital, Beijing, China
- Correspondence to: Prof Linong Ji, Department of Endocrinology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
46
|
Miao J, Fu P, Ren S, Hu C, Wang Y, Jiao C, Li P, Zhao Y, Tang C, Qian Y, Yang R, Dong Y, Rong J, Wang Y, Jin X, Sun Y, Chen L. Effect of renal impairment on the pharmacokinetics and safety of dorzagliatin, a novel dual-acting glucokinase activator. Clin Transl Sci 2021; 15:548-557. [PMID: 34706161 PMCID: PMC8841463 DOI: 10.1111/cts.13174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 02/05/2023] Open
Abstract
Dorzagliatin is a novel allosteric glucokinase activator targeting both pancreatic and hepatic glucokinase currently under clinical investigation for treatment of type 2 diabetes (T2D). This study aimed to investigate the effect of renal impairment (RI) on dorzagliatin’s pharmacokinetics (PKs) and safety, and to guide appropriate clinical dosing in patients with diabetic kidney disease, including end‐stage renal disease (ESRD). Based on the results from physiologically‐based pharmacokinetic modeling, the predicted outcome of RI on dorzagliatin PK property would be minimum that the plasma exposure area under concentration (AUC) of dorzagliatin in patients with ESRD would increase at about 30% with minimal change in peak concentration (Cmax) comparing to those in healthy volunteers (HVs). To definitively confirm the prediction, a two‐part RI study was designed and conducted based on regulatory guidance starting with the patients with ESRD matched with HVs. Results of the RI study showed minimum difference between patients with ESRD and HVs with respect to dorzagliatin exposure with geometric mean ratio of ESRD to HV at 0.81 for Cmax and 1.11 for AUC. The elimination half‐life, volume of distribution, and systemic clearance for dorzagliatin were similar between the two groups. Dorzagliatin was well‐tolerated in patients with ESRD during the study. Therefore, RI showed no significant impact on dorzagliatin PK, suggesting that dorzagliatin can be readily used in patients with T2D at all stages of RI without need for dose adjustment.
Collapse
Affiliation(s)
- Jia Miao
- Clinical Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Clinical Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shuang Ren
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Chao Hu
- Clinical Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying Wang
- Clinical Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | | | - Ping Li
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yu Zhao
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Cui Tang
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yuli Qian
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Rong Yang
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yanli Dong
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Jing Rong
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yaohui Wang
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Xiaowei Jin
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yu Sun
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Li Chen
- Hua Medicine (Shanghai) Limited, Shanghai, China
| |
Collapse
|
47
|
Gao Q, Zhang W, Li T, Yang G, Zhu W, Chen N, Jin H. The efficacy and safety of glucokinase activators for the treatment of type-2 diabetes mellitus: A meta-analysis. Medicine (Baltimore) 2021; 100:e27476. [PMID: 34622877 PMCID: PMC8500571 DOI: 10.1097/md.0000000000027476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Glucokinase activators (GKAs) are a novel family of glucose-lowering agents used for the treatment of type-2 diabetes mellitus. Treatment with different GKAs has been shown to reduce blood glucose levels in these patients. We compared the efficacy/safety of GKAs in patients with type-2 diabetes mellitus through a meta-analysis. METHODS We searched the PubMed, Excerpt Medica Database, and Cochrane Central Register of Controlled Trials databases for articles published before December 30, 2020. We computed the weighted mean difference (WMD) and 95% confidence interval (CI) for the change from baseline to the study endpoint for GKA versus placebo treatments. RESULTS A total of 4 articles (5 studies) were included in the meta-analysis. GKAs were associated with reductions in glycated hemoglobin levels from baseline (WMD, -0.3%; 95% CI, -0.466% to -0.134%). No significant difference between GKA and placebo treatment was observed in the results of fasting plasma glucose levels from baseline (WMD 0.013 mmol/L; 95% CI, -0.304-0.33 mmol/L). A significantly higher change in 2-hour postprandial plasma glucose (2-h PPG) levels (WMD -2.434 mmol/L; 95% CI, -3.304 to -1.564 mmol/L) was observed following GKA than placebo treatment. GKAs were associated with a higher prevalence of causing hypoglycemic events than placebo treatment (risk difference [RD], 0.06; 95% CI 0.013-0.106). GKAs had no association with the risk of developing adverse effects (RD, 0.038; 95% CI, -0.03-0.106) and serious adverse events (RD, 0.01; 95% CI, -0.004-0.023). CONCLUSIONS GKAs were more effective for postprandial blood glucose control. However, these agents showed a significantly high risk of causing hypoglycemia. PROSPERO REGISTRATION NUMBER CRD42021220364.
Collapse
|
48
|
Nakamura A, Omori K, Terauchi Y. Glucokinase activation or inactivation: Which will lead to the treatment of type 2 diabetes? Diabetes Obes Metab 2021; 23:2199-2206. [PMID: 34105236 DOI: 10.1111/dom.14459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Glucokinase, which phosphorylates glucose to form glucose-6-phosphate, plays a critical role in regulating blood glucose levels. On the basis of data of glucokinase-knockout and transgenic mice and humans with glucokinase mutations, glucokinase was targeted for drug development aiming to augment its activity, and thereby reduce hyperglycaemia in patients with diabetes. In fact, various small molecule compounds have been developed and clinically tested as glucokinase activators. However, some have been discontinued because of efficacy and safety issues. One of these issues is loss of the drug's efficacy over time. This unsustained glycaemic efficacy may be associated with the excess glycolysis by glucokinase activation in pancreatic beta cells, resulting in beta-cell failure. Recently, we have shown that glucokinase haploinsufficiency ameliorated glucose intolerance by increasing beta-cell function and mass in a mouse model of diabetes. Given that a similar phenotype has been observed in glucokinase-activated beta cells and diabetic beta cells, glucokinase inactivation may be a new therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuno Omori
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
49
|
Rendell MS. Current and emerging gluconeogenesis inhibitors for the treatment of Type 2 diabetes. Expert Opin Pharmacother 2021; 22:2167-2179. [PMID: 34348528 DOI: 10.1080/14656566.2021.1958779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In the last several decades, fueled by gene knockout and knockdown techniques, there has been substantial progress in detailing the pathways of gluconeogenesis. A host of molecules have been identified as potential targets for therapeutic intervention. A number of hormones, enzymes and transcription factors participate in gluconeogenesis. Many new agents have come into use to treat diabetes and several of these are in development to suppress gluconeogenesis. AREAS COVERED Herein, the author reviews agents that have been discovered and/or are in development, which control excess gluconeogenesis. The author has used multiple sources including PubMed, the preprint servers MedRxIv, BioRxIv, Research Gate, as well as Google Search and the database of the U.S. Patent and Trademarks Office to find appropriate literature. EXPERT OPINION It is now clear that lipid metabolism and hepatic lipogenesis play a major role in gluconeogenesis and resistance to insulin. Future efforts will focus on the duality of gluconeogenesis and adipose tissue metabolism. The exploration of therapeutic RNA agents will accelerate. The balance of clinical benefit and adverse effects will determine the future of new gluconeogenesis inhibitors.
Collapse
Affiliation(s)
- Marc S Rendell
- The Association of Diabetes Investigators, Newport Coast, California, United States.,The Rose Salter Medical Research Foundation, Newport Coast, California, United States
| |
Collapse
|
50
|
Perreault L, Skyler JS, Rosenstock J. Novel therapies with precision mechanisms for type 2 diabetes mellitus. Nat Rev Endocrinol 2021; 17:364-377. [PMID: 33948015 DOI: 10.1038/s41574-021-00489-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the greatest health crises of our time and its prevalence is projected to increase by >50% globally by 2045. Currently, 10 classes of drugs are approved by the US Food and Drug Administration for the treatment of T2DM. Drugs in development for T2DM must show meaningful reductions in glycaemic parameters as well as cardiovascular safety. Results from an increasing number of cardiovascular outcome trials using modern T2DM therapeutics have shown a reduced risk of atherosclerotic cardiovascular disease, congestive heart failure and chronic kidney disease. Hence, guidelines have become increasingly evidence based and more patient centred, focusing on reaching individualized glycaemic goals while optimizing safety, non-glycaemic benefits and the prevention of complications. The bar has been raised for novel therapies under development for T2DM as they are now expected to achieve these aims and possibly even treat concurrent comorbidities. Indeed, the pharmaceutical pipeline for T2DM is fertile. Drugs that augment insulin sensitivity, stimulate insulin secretion or the incretin axis, or suppress hepatic glucose production are active in more than 7,000 global trials using new mechanisms of action. Our collective goal of being able to truly personalize medicine for T2DM has never been closer at hand.
Collapse
Affiliation(s)
- Leigh Perreault
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Julio Rosenstock
- Dallas Diabetes Research Center at Medical City, Dallas, TX, USA
| |
Collapse
|