1
|
Mansouri M, Imenshahidi M, Rameshrad M, Hosseinzadeh H. Effects of Tinospora cordifolia (giloy) on metabolic syndrome components: a mechanistic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4979-5009. [PMID: 39731594 DOI: 10.1007/s00210-024-03642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/30/2024]
Abstract
Metabolic syndrome is a cluster of some conditions such as high blood sugar, high blood triglycerides, low HDL cholesterol, abdominal obesity, and high blood pressure. Introducing a drug or a food that manages the majority of these medical conditions is invaluable. Tinospora cordifolia, known as guduchi and giloy, is a medicinal herb in ayurvedic medicine that is used in the treatment of various diseased conditions and also as a food for the maintenance of health. Here, we reviewed the current evidence supporting the role of giloy in the development and treatment of metabolic syndrome components. Appropriate articles that have been published until May 2024 were carefully extracted from PubMed, Scopus, and WOS databases to write a narrative review systematically. Gathered data showed the beneficial effects of giloy on metabolic syndrome components: hyperlipidemia, obesity, atherosclerosis, hypertension, and especially diabetes mellitus. As diabetes and insulin resistance seem to be a central feature of metabolic syndrome and in turn, can cause dyslipidemia, obesity, and, atherosclerosis, these beneficial effects are predictable with the anti-diabetogenic property of giloy. In this review, the main mechanisms of action of giloy in metabolic syndrome components are discussed. Based on the results, although giloy has been less investigated, considerable studies provide evidence of its beneficial effects on different components of metabolic syndrome. Relevant clinical trials are necessary to validate the mentioned effects, safety, and optimum dose of this herbal medicine and its components in managing different components of metabolic syndrome and transition from bench to bedside.
Collapse
Affiliation(s)
- Mehran Mansouri
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Amrutha S, Abhinand CS, Upadhyay SS, Parvaje R, Prasad TSK, Modi PK. Network pharmacology and metabolomics analysis of Tinospora cordifolia reveals BACE1 and MAOB as potential therapeutic targets for neuroprotection in Alzheimer's disease. Sci Rep 2025; 15:8103. [PMID: 40057579 PMCID: PMC11890609 DOI: 10.1038/s41598-025-92756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/03/2025] [Indexed: 05/13/2025] Open
Abstract
Tinospora cordifolia has been used for thousands of years to treat various health conditions, including neurodegenerative diseases. The study aimed to elucidate the mechanism of action and protein targets of T. cordifolia in the context of Alzheimer's disease through untargeted metabolomics and network pharmacology. LC-MS/MS analysis resulted in 1186 metabolites, including known bioactive compounds such as liquiritin, Plastoquinone 3, and Shoyuflavone A, to name a few. The network pharmacology analysis highlighted the metabolite-protein interaction with the enrichment of 591 human proteins, including neurotransmitter receptors and other regulatory proteins. Pathway analysis highlighted the enrichment of cAMP, mTOR, MAPK, and PI3K-Akt signaling pathways along with cholinergic, dopaminergic, serotonergic, glutamatergic synapse, and apoptosis. The docking results suggest that T. cordifolia metabolites could interact with key Alzheimer's disease targets BACE1 and MAO-B, suggesting its role in neuroprotection. These findings provide insights into the biochemical pathways underlying T. cordifolia's therapeutic effects and provides a foundation for future exploration of T. cordifolia in the context of translational research.
Collapse
Affiliation(s)
- S Amrutha
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | | | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
3
|
Pramanik R, Dey A, Chakrabarty AK, Banerjee D, Narwaria A, Sharma S, Rai RK, Katiyar CK, Dubey SK. Diabetes mellitus and Alzheimer's disease: Understanding disease mechanisms, their correlation, and promising dual activity of selected herbs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118402. [PMID: 38821139 DOI: 10.1016/j.jep.2024.118402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This review explores the link between Type 2 Diabetes Mellitus (T2DM) and diabetes-induced Alzheimer's disease (AD). It emphasizes the shared pathophysiological links and mechanisms between the two conditions, focusing on reduced insulin levels and receptors, impaired glucose metabolism, insulin resistance, mitochondrial dysfunction, and oxidative damage in AD-affected brains-paralleling aspects of T2DM. The review suggests AD as a "diabetes of the brain," supported by cognitive enhancement through antidiabetic interventions. It focuses on the traditionally used Indian herbs as a means to manage both conditions while addressing developmental challenges. AIM OF THE STUDY This study explores the DM-AD connection, reviewing medicinal herbs with protective potential for both ailments, considering traditional uses and developmental challenges. MATERIALS AND METHODS Studied research, reviews, and ethnobotanical and scientific data from electronic databases and traditional books. RESULTS The study analyzes the pathophysiological links between DM and AD, emphasizing their interconnected factors. Eight Ayurvedic plants with dual protective effects against T2DM and AD are thoroughly reviewed with preclinical/clinical evidence. Historical context, phytoconstituents, and traditional applications are explored. Innovative formulations using these plants are examined. Challenges stemming from phytoconstituents' physicochemical properties are highlighted, prompting novel formulation development, including nanotechnology-based delivery systems. The study uncovers obstacles in formulating treatments for these diseases. CONCLUSION The review showcases the dual potential of chosen medicinal herbs against both diseases, along with their traditional applications, endorsing their use. It addresses formulation obstacles, proposing innovative delivery technologies for herbal therapies, while acknowledging their constraints. The review suggests the need for heightened investment and research in this area.
Collapse
Affiliation(s)
- Rima Pramanik
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Anuradha Dey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | | | - Dipankar Banerjee
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Avinash Narwaria
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Rajiva Kumar Rai
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Chandra Kant Katiyar
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India.
| |
Collapse
|
4
|
Simha N A, Patil SM, M K J, N C, Wong LS, Kijsomporn J, Raj R, Ramu R. From sugar binders to diabetes fighters: the lectin saga of antihyperglycemic activity through systematic review and meta-analysis. Front Pharmacol 2024; 15:1382876. [PMID: 39323638 PMCID: PMC11422237 DOI: 10.3389/fphar.2024.1382876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Lectins are carbohydrate-binding proteins that are extremely selective for sugar groups in the other molecules. As a result, they perform a variety of roles in biological processes involving cell, carbohydrate, and protein recognition at the cellular and molecular levels. Because lectins can bind to carbohydrates, they may play a role in determining the rate of carbohydrate digestion. They also bind to some proteins involved in diabetes mellitus (DM) pathophysiology. The present review aims to summarize the efficiency of lectins from different sources as potential antihyperglycemic agents. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were employed for the drafting. In this regard, published scientific articles on the effects of different lectins on blood glucose (BG), glucose tolerance, hormonal effects, carbohydrate-digesting enzymes, oxidative stress, and insulin production process were collected from reputed journals using electronic databases. Furthermore, the toxicity effects of lectins from different sources were collected. A specific keyword search was completed to collect numerous articles with unique experimental designs and significant results. This was followed by the selection of the requisite articles based on the criteria designed by the authors. Data extraction was based on the common research elements included in the articles. Results and Discussion Of 13 identified studies, 11 studies were considered after double screening based on the inclusion criteria. All 11 pharmacological investigations were considered for review. Subsequent studies reflected on the pharmacological properties of lectins on the levels of BG, oxidative stress, β-cell proliferation, insulin resistance, inhibition of carbohydrate digesting enzymes, body weight, food and water intake, lipid profile, and other parameters. This review highlights lectins as potential anti-diabetic agents. Conclusion However, due to limited research, systematic evaluation is recommended for their development and promotion as effective potential antihyperglycemic agents. The clinical efficacy and safety of lectins against diabetes mellitus must also be evaluated.
Collapse
Affiliation(s)
- Akshaya Simha N
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashank M Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Jayanthi M K
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chaitra N
- Division of Medical Statistics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | | | - Ranjith Raj
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
5
|
Dongre P, Majumdar A. Network pharmacology analysis of Chandraprabha Vati: A new hope for the treatment of Metabolic Syndrome. J Ayurveda Integr Med 2024; 15:100902. [PMID: 38821011 PMCID: PMC11177199 DOI: 10.1016/j.jaim.2024.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/25/2023] [Accepted: 02/01/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Drug research is increasingly using Network Pharmacology (NP) to tackle complex conditions like Metabolic Syndrome (MetS), which is characterized by obesity, hyperglycemia, and dyslipidemia. Single-action drugs are inadequate to treat MetS, which is marked by a range of complications including glucose intolerance, hyperlipidemia, mitochondrial dysfunction, and inflammation. OBJECTIVES To analyze Chandraprabha vati using Network Pharmacology to assess its potential in alleviating MetS-related complications. MATERIAL AND METHODS The genes related to MetS, inflammation, and the target genes of the CPV components were identified using network pharmacology tools like DisgNET and BindingDB. Followed by mapping of the CPV target genes with the genes implicated in MetS and inflammation to identify putative potential targets. Gene ontology, pathway enrichment analysis, and STRING database were employed for further exploration. Furthermore, drug-target-protein interactions network were visualized using Cytoscape 3.9.1. RESULTS The results showed that out of the 225 target genes of the CPV components, 33 overlapping and 19 non-overlapping genes could be potential targets for MetS. Similarly, 14 overlapping and 7 non-overlapping genes could be potential targets for inflammation. The CPV bioactives target genes were found to be involved in lipid and insulin homeostasis via several pathways revealed by the pathway analysis. The importance of CPV in treating MetS was supported by GO enrichment data; this could be due to its potential to influence pathways linked to metabolism, ER stress, mitochondrial dysfunction, oxidative stress, and inflammation. CONCLUSIONS These results offer a promising approach to developing treatment and repurposing CPV for complex conditions such as MetS.
Collapse
Affiliation(s)
- Prashant Dongre
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India
| | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
6
|
Gupta A, Gupta P, Bajpai G. Tinospora cordifolia (Giloy): An insight on the multifarious pharmacological paradigms of a most promising medicinal ayurvedic herb. Heliyon 2024; 10:e26125. [PMID: 38390130 PMCID: PMC10882059 DOI: 10.1016/j.heliyon.2024.e26125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Medicinal herbs are being widely accepted as alternative remedies for preventing various diseases especially in India and other Asian countries. However, most plant-based herbal medicines are not yet being scientifically accepted worldwide. "Tinospora cordifolia (Willd.) Miers ex Hook.F. & Thomson", one of the most promising plant species of Tinospora known as "Giloy" or Guduchi that is used in several traditional medicines in treating diseases e.g., metabolic and immune disorders, diabetes, heart diseases, cancer, and infectious diseases, has been widely investigated. Varieties of bioactive phytochemical constituents isolated from the stem, root and whole plant of T. cordifolia have been identified. In the last two decades, the diverse pharmacological activities of T. cordifolia have been continuously studied. Due to its therapeutic efficacy in immune modulation, it could be effective in viral and other diseases treatment as well. A medicinal plant could be well-suited not only for the treatment of target site but also for boosting the body's immune system. As an alternate source of medication, medicinal herbs are continuously showing better compatibility with the human body with minimal side effects than other therapies. Keeping this in mind, the present review highlights the pharmacological potential of T. cordifolia against various diseases.
Collapse
Affiliation(s)
- Abhishek Gupta
- Baj's Laboratories, Industrial Area, Rooma, Kanpur-208008, UP, India
- King George's Medical University, Lucknow-226003, UP, India
| | - Priyanka Gupta
- King George's Medical University, Lucknow-226003, UP, India
| | - Gunjan Bajpai
- Baj's Laboratories, Industrial Area, Rooma, Kanpur-208008, UP, India
| |
Collapse
|
7
|
Hussain S, Gul Jan F, Jan G, Irfan M, Musa M, Rahman S, Ali N, Hamayun M, Alrefai AF, Almutairi MH, Azmat R, Ali S. Evaluation of the Hypoglycemic and Hypolipidemic Potential of Extract Fraction of Quercus baloot Griff Seeds in Alloxan-induced Diabetic Mice. Curr Pharm Des 2024; 30:2978-2991. [PMID: 39219120 DOI: 10.2174/0113816128319184240827070016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The discovery and development of new phytomedicines can be greatly aided by plants because of their tremendous therapeutic benefits, efficiency, cost-effectiveness, lack of side effects, and cheaper therapies. In this regard, Quercus baloot, generally known as oak, is used in folkloric medicine for treating and preventing various human disorders, including diabetes. AIM For this purpose, the present study aimed to evaluate crude methanolic extract and various fractions of Quercus baloot for antihyperlipidemic and antihyperglycemic potential followed by the analysis of active compounds. METHODS The hypoglycemic and hypolipidemic activity was evaluated in Swiss male Albino mice by administering an oral dose of 150-300 mg/kg of Q. baloot extracts in alloxan induced diabetic mice for 14 days. RESULTS The results revealed that crude methanolic extract at a dose of 300 mg/kg exhibited a significant reduction in the blood glucose level (198.50 ± 1.99 mg/dl) at day 14 and the same treatment significantly increased the body weight (31.26 ± 0.27 g) at day 14 in comparison to the control group. Moreover, the biochemical parameters were investigated which presented an increase in high-density lipids (HDL) (30.33 ± 0.33 mg/dl), whereas low-density lipids (LDL) showed a significant decrease (105.66 ± 0.26 mg/dl). Additionally, triglyceride levels 104.83 ± 0.70 mg/dl, and total cholesterol 185.50 ± 0.76 mg/dl are significantly decreased. In serum biochemical analysis creatinine and hepatic enzyme markers, like serum glutamate pyruvate transaminase (32.00 ± 0.36 U/mg), serum glutamate oxaloacetate transaminase (34.33 ± 0.61 U/mg), and alkaline phosphatase (157.00 ± 0.73 U/mg), were significantly reduced by the crude methanolic extract at a dose of 300 mg/kg as compared to the control group. The antioxidant enzymes like Superoxide dismutase (4.57 ± 0.011), peroxidases dismutase (6.53 ± 0.014, and catalase (8.38 ± 0.014) at a dosage of 300 mg/kg of methanolic extract exhibited a significant increase. The histopathological study of the diabetic heart, liver, and pancreas showed substantial restoration of damaged tissues in the methanolic extract 150 and 300 mg/kg treated group, which supports the effectiveness of Q. baloot seeds. The gas chromatography-mass spectrometry analysis of methanolic extract identified 10 antidiabetic active compounds in the Q. baloot seeds, validating the antihyperglycemic activity. Thus, methanolic crude extract at the doses 150 and 300 mg/kg of Q. baloot showed significant antihyperlipidemic and antihyperglycemic activities, which validate the folkloric utilization of Q. baloot as a remedy in diabetes. CONCLUSION In conclusion, the 300 mg/kg methanolic extract of Q. baloot has notable hypoglycemic and hypolipidemic potential, supporting the plant's traditional medicinal usage in the treatment of diabetes and its complications. Further studies are needed for the purification, characterization, and structural clarification of bioactive compounds.
Collapse
Affiliation(s)
| | - Farzana Gul Jan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Gul Jan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Irfan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
- Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, Missouri 63110, USA
| | - Muhammad Musa
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Shahid Rahman
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Niaz Ali
- Department of Botany, University of Hazara, Mansehra, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafia Azmat
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
8
|
Brahma S, Goyal AK, Dhamodhar P, Kumari MR, Jayashree S, Usha T, Middha SK. Can Polyherbal Medicine be used for the Treatment of Diabetes? - A Review of Historical Classics, Research Evidence and Current Prevention Programs. Curr Diabetes Rev 2024; 20:e140323214600. [PMID: 36918778 DOI: 10.2174/1573399819666230314093721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 03/16/2023]
Abstract
Diabetes mellitus (DM), a chronic medical condition, has attained a global pandemic status over the last few decades affecting millions of people. Despite a variety of synthetic drugs available in the market, the use of herbal medicines for managing diabetes is gaining importance because of being comparatively safer. This article reviews the result of a substantial literature search on polyherbal formulations (PHFs) developed and evaluated with potential for DM. The accumulated data in the literature allowed us to enlist 76PHFs consisting of different parts of 147 plant species belonging to 58 botanical families. The documented plant species are laden with bioactive components with anti-diabetic properties and thus draw attention. The most favoured ingredient for PHFs was leaves of Gymnema sylvestre and seeds of Trigonella foenum-graecum used in 27 and 22 formulations, respectively. Apart from herbs, shilajit (exudates from high mountain rocks) formed an important component of 9 PHFs, whereas calcined Mytilus margaritiferus and goat pancreas were used in Dolabi, the most commonly used tablet form of PHF in Indian markets. The healing properties of PHFs against diabetes have been examined in both pre-clinical studies and clinical trials. However, the mechanism(s) of action of PHFs are still unclear and considered the pitfalls inherent in understanding the benefits of PHFs. From the information available based on experimental systems, it could be concluded that plant-derived medicines will have a considerable role to play in the control of diabetes provided the challenges related to their bioavailability, bioefficacy, optimal dose, lack of characterization, ambiguous mechanism of action, and clinical efficiency are addressed.
Collapse
Affiliation(s)
- Sudem Brahma
- Department of Biotechnology, Bodoland University, Kokrajhar-783370, BTR, Assam, India
| | - Arvind Kumar Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar-783370, BTR, Assam, India
| | - Prakash Dhamodhar
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangaluru-560054, Karnataka, India
| | - Mani Reema Kumari
- Department of Botany, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| | - S Jayashree
- School of Allied Health Sciences, REVA University, Bengaluru-560064, Karnataka, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| | - Sushil Kumar Middha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| |
Collapse
|
9
|
Anjum V, Bagale U, Kadi A, Potoroko I, Sonawane SH, Anjum A. Unveiling Various Facades of Tinospora cordifolia Stem in Food: Medicinal and Nutraceutical Aspects. Molecules 2023; 28:7073. [PMID: 37894552 PMCID: PMC10609069 DOI: 10.3390/molecules28207073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Natural products with curative properties are gaining immense popularity in scientific and food research, possessing no side effects in contrast to other drugs. Guduchi, or Tinospora cordifolia, belongs to the menispermaceae family of universal drugs used to treat various diseases in traditional Indian literature. It has received attention in recent decades because of its utilization in folklore medicine for treating several disorders. Lately, the findings of active phytoconstituents present in herbal plants and their pharmacological function in disease treatment and control have stimulated interest in plants around the world. Guduchi is ethnobotanically used for jaundice, diabetes, urinary problems, stomachaches, prolonged diarrhea, skin ailments, and dysentery. The treatment with Guduchi extracts was accredited to phytochemical constituents, which include glycosides, alkaloids, steroids, and diterpenoid lactones. This review places emphasis on providing in-depth information on the budding applications of herbal medicine in the advancement of functional foods and nutraceuticals to natural product researchers.
Collapse
Affiliation(s)
- Varisha Anjum
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia; (U.B.); (A.K.); (I.P.)
| | - Uday Bagale
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia; (U.B.); (A.K.); (I.P.)
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia; (U.B.); (A.K.); (I.P.)
| | - Irina Potoroko
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia; (U.B.); (A.K.); (I.P.)
| | - Shirish H. Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal 506004, India;
| | - Areefa Anjum
- Department of Ilmul Advia, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
10
|
Rasool S, Al Meslmani B, Alajlani M. Determination of Hypoglycemic, Hypolipidemic and Nephroprotective Effects of Berberis Calliobotrys in Alloxan-Induced Diabetic Rats. Molecules 2023; 28:3533. [PMID: 37110767 PMCID: PMC10146706 DOI: 10.3390/molecules28083533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Many plants of the Berberis genus have been reported pharmacologically to possess anti-diabetic potential, and Berberis calliobotrys has been found to be an inhibitor of α-glucosidase, α-amylase and tyrosinase. Thus, this study investigated the hypoglycemic effects of Berberis calliobotrys methanol extract/fractions using in vitro and In vivo methods. Bovine serum albumin (BSA), BSA-methylglyoxal and BSA-glucose methods were used to assess anti-glycation activity in vitro, while in vivo hypoglycemic effects were determined by oral glucose tolerance test (OGTT). Moreover, the hypolipidemic and nephroprotective effects were studied and phenolics were detected using high performance liquid chromatography (HPLC). In vitro anti-glycation showed a significant reduction in glycated end-products formation at 1, 0.25 and 0.5 mg/mL. In vivo hypoglycemic effects were tested at 200, 400 and 600 mg/kg by measuring blood glucose, insulin, hemoglobin (Hb) and HbA1c. The synergistic effect of extract/fractions (600 mg/kg) with insulin exhibited a pronounced glucose reduction in alloxan diabetic rats. The oral glucose tolerance test (OGTT) demonstrated a decline in glucose concentration. Moreover, extract/fractions (600 mg/kg) exhibited an improved lipid profile, increased Hb, HbA1c levels and body weight for 30 days. Furthermore, diabetic animals significantly exhibited an upsurge in total protein, albumin and globulin levels, along with a significant improvement in urea and creatinine after extract/fractions administration for 42 days. Phytochemistry revealed alkaloids, tannins, glycosides, flavonoids, phenols, terpenoids and saponins. HPLC showed the presence of phenolics in ethyl acetate fraction that could be accountable for pharmacological actions. Therefore, it can be concluded that Berberis calliobotrys possesses strong hypoglycemic, hypolipidemic and nephroprotective effects, and could be a potential therapeutic agent for diabetes treatment.
Collapse
Affiliation(s)
- Shahid Rasool
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Bassam Al Meslmani
- Institute of Pharmaceutical Technology and Biopharmacy, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauer Street 4., 91058 Erlangen, Germany
| | - Muaaz Alajlani
- Faculty of Pharmacy, Al-Sham Private University, Al-Tal 5910011, Syria
| |
Collapse
|
11
|
Itrat M, Akhlaq S. Prevalence, Pattern and Perceived benefits of Unani Medicines for diabetes: A Patient-based survey at a Primary Health Centre of Bengaluru, India. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Natural aldose reductase inhibitors for treatment and prevention of diabetic cataract: A review. HERBA POLONICA 2022. [DOI: 10.2478/hepo-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction: Aldose reductase (AR) is an enzyme that catalyzes the reduction of glucose to sorbitol responsible for the development of diabetic complications like cataracts. Medicinal plants contain several phytocompounds that can inhibit this enzyme.
Objective: The purpose of this review is to cite medicinal plants that have been tested for their ability to inhibit aldose reductase and consequently prevent cataracts and classify the major isolated compounds that have this activity.
Methods: We reviewed 154 articles published between 1954 and 2020 in English via three databases: ScienceDirect, Web of Science, and PubMed. We have classified the plants that showed a significant anti-cataract effect, in the form of a list including the scientific and family names of each plant. Also, we have cited the IC50 values and the active constituents of each plant that showed inhibitory activity towards AR.
Results: We have described 38 herbs belonging to 29 families. Besides, 47 isolated compounds obtained from the cited herbs have shown an AR inhibitory effect: luteolin, luteolin-7-O-β-D-glucopyranoside, apigenin, 3,5-di-O-caffeoyl-epi-quinic acid, delphinidin 3-O-β-galactopyranoside-3’-O-β-glucopyranoside, 3,5-di-O-caffeoylquinic acid methyl ester, andrographolide, 1,2,3,6-tetra-O-galloyl-β-D-glucose, 1,2,4,6-tetra-O-galloyl-β-D-glucose, 7-(3-hydroxypropyl)-3-methyl-8-β-O-D-glucoside-2H-chromen-2-one, E-4-(60-hydroxyhex-30-en-1-yl)phenyl propionate, delphinidin 3-O-β-galactopyranoside-3’,5’-di-O-β-glucopyranoside, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,4,6-penta-O-galloyl-β-D-glucose, 1,2,6-tri-O-galloyl-β-D-glucose, 2-(4-hydroxy-3-methoxyphenyl)ethanol, (4-hydroxy-3-methoxyphenyl)methanol, trans-anethole, gallic acid 4-O-β-D-(6’-O-galloyl)-glucoside, β-glucogallin, puerariafuran, quercetin, gallic acid 4-O-β-D-glucoside, 2,5-dihydroxybenzoic acid, 4-(4-hydroxy-3-methoxyphenyl)-2-butanone, protocatechuic acid, trans-cinnamic acid, gallic acid, p-coumaric acid and syringic acid.
Conclusion: natural therapy becomes an interesting alternative in the treatment and prevention of cataract by using medicinal plants rich in active compounds considered as AR inhibitors.
Collapse
|
13
|
Arunachalam K, Yang X, San TT. Tinospora cordifolia (Willd.) Miers: Protection mechanisms and strategies against oxidative stress-related diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114540. [PMID: 34509604 DOI: 10.1016/j.jep.2021.114540] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora cordifolia (Willd.) Miers (Menispermaceae) is a Mediterranean herb, used in Ayurvedic, Siddha, Unani, and folk medicines. The herb is also used in conventional medicine to treat oxidative stress-related diseases and conditions, including inflammation, pain, diarrhea, asthma, respiratory infections, cancer, diabetes, and gastrointestinal disorders. AIM OF THE REVIEW The taxonomy, botanical classification, geographical distribution, and ethnobotanical uses of T. cordifolia, as well as the phytochemical compounds found in the herb, the toxicology of and pharmacological and clinical studies on the effects of T. cordifolia are all covered in this study. MATERIALS AND METHODS To gather information on T. cordifolia, we used a variety of scientific databases, including Scopus, Google Scholar, PubMed, and Science Direct. The information discussed focuses on biologically active compounds found in T. cordifolia, and common applications and pharmacological activity of the herb, as well as toxicological and clinical studies on its properties. RESULTS The findings of this study reveal a connection between the use of T. cordifolia in conventional medicine and its antioxidant, anti-inflammatory, antihypertensive, antidiabetic, anticancer, immunomodulatory, and other biological effects. The entire plant, stem, leaves, root, and extracts of T. cordifolia have been shown to have a variety of biological activities, including antioxidant, antimicrobial, antiviral, antiparasitic, antidiabetic, anticancer, anti-inflammatory, analgesic and antipyretic, hepatoprotective, and cardioprotective impact. Toxicological testing demonstrated that this plant may have medicinal applications. T. cordifolia contains a variety of biologically active compounds from various chemical classes, including alkaloids, terpenoids, sitosterols, flavonoids, and phenolic acids. Based on the reports researched for this review, we believe that chemicals in T. cordifolia may activate Nrf2, which leads to the overexpression of antioxidant enzymes such as CAT, GPx, GST, and GR, and thereby induces the adaptive response to oxidative stress. T. cordifolia is also able to reduce NF-κB signalling by inhibiting PI3K/Akt, activating AMPK and sirtuins, and downregulating PI3K/Akt. CONCLUSIONS Our findings indicate that the pharmacological properties displayed by T. cordifolia back up its conventional uses. Antimicrobial, antiviral, antioxidant, anticancer, anti-inflammatory, antimutagenic, antidiabetic, nephroprotective, gastroprotective, hepatoprotective, and cardioprotective activities were all demonstrated in T. cordifolia stem extracts. To validate pharmacodynamic targets, further research is needed to evaluate the molecular mechanisms of the known compounds against gastrointestinal diseases, inflammatory processes, and microbial infections, as immunostimulants, and in chemotherapy. The T. cordifolia safety profile was confirmed in a toxicological analysis, which prompted pharmacokinetic assessment testing to confirm its bioavailability.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| | - Thae Thae San
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| |
Collapse
|
14
|
Dinda B, Dinda M. Natural Products, a Potential Source of New Drugs Discovery to Combat Obesity and Diabetes: Their Efficacy and Multi-targets Actions in Treatment of These Diseases. NATURAL PRODUCTS IN OBESITY AND DIABETES 2022:101-275. [DOI: 10.1007/978-3-030-92196-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Sharma H, Rao PS, Singh AK. Fifty years of research on Tinospora cordifolia: From botanical plant to functional ingredient in foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Singh B, Nathawat S, Sharma RA. Ethnopharmacological and phytochemical attributes of Indian Tinospora species: A comprehensive review. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
17
|
Somanathan Karthiga R, Sukhdeo SV, Madhugiri Lakshminarayan S, Mysuru Nanjarajurs S. Efficacy of Citrus maxima fruit segment supplemented paranthas in STZ induced diabetic rats. J Food Sci 2021; 86:2091-2102. [PMID: 33864254 DOI: 10.1111/1750-3841.15707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/17/2021] [Accepted: 03/06/2021] [Indexed: 12/01/2022]
Abstract
The study was conducted to investigate the efficacy of Citrus maxima (Pomelo) fruit segments fortified paranthas compared to pomelo juice and naringin in streptozotocin-induced diabetic rats. The animals were divided into nine groups, Groups 1 to 3: negative control; Group 4: diabetic control; Groups 5 through 8: treatments with pomelo juice, naringin, plain paranthas, and pomelo supplemented paranthas; and Group 9 was positive control metformin. The groups were monitored for weight, oral glucose tolerance, insulin tolerance, bioavailability, biochemical parameters, and histopathological studies. Based on the result the group treated with paranthas fortified with pomelo fruit segment (Group 8) showed 19% of overall weight gain, approximately 50% reduction in plasma glucose level and improved serum protein (5.70 g/dl) and serum insulin (8.54 ng/ml) level as compared against diabetic control. The treatments had effectively lowered the level of liver enzyme and lipids (except HDL) in the serum along with the improved renal function. The group treated with pomelo juice and pomelo supplemented paranthas exhibited marked tolerance to the glucose and insulin similar to the positive control. Therefore, the antidiabetic activity was found to be more pronounced in the order of pomelo juice > fortified paranthas > naringin. Since pomelo juice is bitter and astringent in nature, the fruit can be better utilized in the form of fortified paranthas, which exerts antidiabetic effect similar to the positive control metformin. Hence, paranthas supplemented with pomelo fruit segments (bioactives-rich) aids in the reducing the risk of diabetes and can be recommended to gain nutritional benefits for normal and diabetic populations.
Collapse
Affiliation(s)
- Reshmi Somanathan Karthiga
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India
| | - Shinde Vijay Sukhdeo
- Animal House Facility, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India
| | - Sudha Madhugiri Lakshminarayan
- Flour Milling, Baking and Confectionery Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India
| | - Shashirekha Mysuru Nanjarajurs
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India
| |
Collapse
|
18
|
Rahman S, Jan G, Jan FG, Rahim HU. Phytochemical Screening and Antidiabetic, Antihyperlipidemic, and Antioxidant Effects of Leptopus Cordifolius Decne. In Diabetic Mice. Front Pharmacol 2021; 12:643242. [PMID: 33897432 PMCID: PMC8060645 DOI: 10.3389/fphar.2021.643242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Plants are well known in traditional herbal medicines for their hypoglycemic and hypolipidemic activities and are often used due to their accessibility, affordability, and corollary effects. Leptopus cordifolius has been reported to control diabetes in folkloric medicine, but no known scientific research has been conducted to assess the plausibility of this assertion. Therefore, the current study is aimed to investigate the antidiabetic and hypolipidemic effects of Leptopus cordifolius leaves in alloxan-induced diabetic mice. The antidiabetic and antihyperlipidemic evaluation was conducted in Swiss albino mice at doses of 150-250°mg/kg for 15°days. The blood glucose, total cholesterol, triglyceride, LDL, HDL, creatinine, ALP, SGPT, and SGOT levels were estimated according to standard procedures. Phytochemicals of leaves were analyzed using GC-MS analysis. Enzymatic antioxidant activity of the plant was investigated spectrophotometrically by carrying out superoxide dismutase, peroxidase, and catalase assays. The membrane stabilization potential of L. cordifolius leaf extracts was carried out using an in vitro haemolytic assay. The results revealed a dose response effect with the methanolic extract of L. cordifolius which had significant antihyperglycemic effects at 150-250°mg/kg in alloxan treated mice, although less than the positive control (glibenclamide). Hyperlipidemic activity was significant at 250 mg/kg. The biochemical parameters, such as total cholesterol, triglyceride, LDL, HDL, creatinine, ALP, SGPT, and SGOT, were significantly improved (p < 0.01) by the methanolic extract of 250 mg/kg compared to the diabetic group. Treatment for 15 days showed significant elevation (p < 0.01) of antioxidant enzymes. GC-MS analysis provided tentative identifications of 52 compounds in the methanolic extract of L. cordifolius, of which 12 compounds have reported antidiabetic activity. In conclusion, methanolic extract of L. cordifolius of 150 and 250°mg/kg body weight showed significant antidiabetic and antihyperlipidemic activities in alloxan-induced diabetic mice and, with further work, has the potential to be used to manage blood glucose and cholesterol levels.
Collapse
Affiliation(s)
- Shahid Rahman
- Pharmacology Lab, Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Gul Jan
- Pharmacology Lab, Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Farzana Gul Jan
- Pharmacology Lab, Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Hafeez Ur Rahim
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
19
|
Singh V, Reddy R, Sinha A, Marturi V, Panditharadyula SS, Bala A. A Review on Phytopharmaceuticals having Concomitant Experimental Anti-diabetic and Anti-cancer Effects as Potential Sources for Targeted Therapies Against Insulin-mediated Breast Cancer Cell Invasion and Migration. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716999200831113335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetes and breast cancer are pathophysiologically similar and clinically established
diseases that co-exist with a wider complex similar molecular signalling and having a similar set of
risk factors. Insulin plays a pivotal role in the invasion and migration of breast cancer cells. Several
ethnopharmacological evidences shed light on the concomitant anti-diabetic and anti-cancer activity
of medicinal plant and phytochemicals against breast tumors of patients with diabetes. This present
article reviewed the findings on medicinal plants and phytochemicals with concomitant antidiabetic
and anti-cancer effects reported in scientific literature to facilitate the development of dual-
acting therapies against diabetes and breast cancer. The schematic tabular form of published literature
on medicinal plants (63 plants belongs to 45 families) concluded the dynamics of phytochemicals
against diabetes and breast tumors that could be explored further for the discovery of therapies
for controlling of breast cancer cell invasion and migration in patients with diabetes.
Collapse
Affiliation(s)
- Vibhavana Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Rakesh Reddy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Venkatesh Marturi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Shravani S. Panditharadyula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Asis Bala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| |
Collapse
|
20
|
Jaiyesimi KF, Agunbiade OS, Ajiboye BO, Afolabi OB. Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat. J Diabetes Metab Disord 2021; 19:1543-1556. [PMID: 33553038 DOI: 10.1007/s40200-020-00690-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Background This study sought to investigate anti-hyperglycemic potentials of free and bound phenolic-rich extracts of Andrographis paniculata (A. paniculata) leaves, commonly called "king of the bitter", a plant locally employed in folkloric alternative medicine. Method In vitro antioxidant potentials such as total phenolic and flavonoid contents were evaluated in addition to phosphomolybdenum reducing total antioxidant activity in bound and free polyphenol-rich extracts of A. paniculata. Also, following induction of diabetes through a single intraperitoneal injection of freshly prepared alloxan monohydrate (150 mg/kg body weight, b.w), diabetic rats were divided into seven (7) treatment groups with six rats each (n = 6) i.e. group 1 (normal control), 2 (diabetic untreated), 3 (5 mg/kg glibenclamide -treated control), while 4-7 were administered 50 and 100 mg/kg b.w of free and bound phenolic extracts of A. paniculata, respectively for twenty-one (21) days. Results There was a significant (p < 0.05) difference in hematological indices, hepatic biomarkers, total protein, antioxidant enzymes activities, total thiol and fasting blood glucose levels of diabetic groups administered polyphenolic-rich extracts of A. paniculata compared to diabetic untreated control. Similarly, serum insulin levels, hexokinase and glucose-6-phoshatase activities were significantly (p < 0.05) improved in phenolic-rich extracts of A. paniculata-treated diabetic groups compared to diabetic untreated control. A significant (p < 0.05) reduction was as well observed in the levels of inflammatory biomarkers such as interleukin-6 (IL-6) and tumor necrosis factor (TNFα) among extract of A. paniculata administered diabetic groups compared diabetic untreated group. Conclusions Anti-hyperglycemic activities demonstrated by polyphenolic-rich extracts of A. paniculata when compared to glibenclamide and normal control, could possibly have been occasioned by β-cell protection, restoration of glycolytic enzymes as well as mitigation of inflammatory markers via antioxidant defensive/protective properties of the extracts.
Collapse
Affiliation(s)
- Kikelomo Folake Jaiyesimi
- College of Science, Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Oludare Shadrach Agunbiade
- College of Science, Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Bashiru Olaitan Ajiboye
- College of Science, Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Olakunle Bamikole Afolabi
- College of Science, Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| |
Collapse
|
21
|
Woldekidan S, Mulu A, Ergetie W, Teka F, Meressa A, Tadele A, Abebe A, Gemechu W, Gemeda N, Ashebir R, Sileshi M, Tolcha Y. Evaluation of Antihyperglycemic Effect of Extract of Moringa stenopetala (Baker f.) Aqueous Leaves on Alloxan-Induced Diabetic Rats. Diabetes Metab Syndr Obes 2021; 14:185-192. [PMID: 33488106 PMCID: PMC7815076 DOI: 10.2147/dmso.s266794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Diabetes is a serious metabolic disorder with complications that result in significant morbidity and mortality. Current drugs used for diabetes therapy are not free from side effects and do not restore normal glucose homeostasis. Therefore, the purpose of this study is to evaluate the antidiabetic effect of Moringa stenopetala (Baker f.) aqueous leaves extract. METHODS Thirty rats of weight 90-150 gram were distributed to five groups (n= 6). Then labelled as diabetic control (DC), normal control (NC), extract treated (MS 250 and 500mg/kg), and glibenclamide treated (GL 5mg/kg). The experimental rats were induced by intra-peritoneal injection of Alloxan monohydrate at a dose of 180 mg/kg after dissolving in normal saline. Clinical biochemistry such as AST, ALT, ALP, urea, creatinine, and cholesterol, blood glucose level, histopathological and preliminary phytochemical screening were evaluated. RESULTS Phytochemical tests revealed the presence of different secondary metabolites. Alkaloid, flavonoid, tannin, saponin, phytosteroids, phenols and terpenoids. Moringa stenopetala (Baker f.) leaves aqueous extract (250 and 500mg/kg) improved the body weight of rats, showed remarkable reduction in blood glucose concentration (P<0.05), and significantly decreased serum urea, creatinine, ALT, AST and ALP (P < 0.05). Levels of serum cholesterol remained unaltered in the experimental groups when compared with diabetic control. Histopathology of non-treated rats showed deterioration of insulin producing pancreas cells; nevertheless, β-cells restoration was observed due to administration of Moringa stenopetala (Baker f.) aqueous leaves extract. CONCLUSION It is possible to conclude that oral administration of Moringa stenopetala (Baker f.) aqueous leaf extracts (250mg/kg and 500mg/kg) for 28 days showed beneficial effects on antihyperglycemia, improved body weight and Alloxan damaged pancreatic β-cells, and restored biochemical changes.
Collapse
Affiliation(s)
- Samuel Woldekidan
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abay Mulu
- Department of Anatomy, School of Medicine, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wondwossen Ergetie
- Department of Pathology, School of Medicine, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Frehiwot Teka
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Asfaw Meressa
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ashenif Tadele
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Worku Gemechu
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Negero Gemeda
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Rekik Ashebir
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Meron Sileshi
- National Clinical Chemistry Reference Laboratory, Addis Ababa, Ethiopia
| | - Yoseph Tolcha
- National Clinical Chemistry Reference Laboratory, Addis Ababa, Ethiopia
| |
Collapse
|
22
|
Kumar P, Kamle M, Mahato DK, Bora H, Sharma B, Rasane P, Bajpai VK. <i>Tinospora cordifolia</i> (Giloy): Phytochemistry, Ethnopharmacology, Clinical Application and Conservation Strategies. Curr Pharm Biotechnol 2020; 21:1165-1175. [PMID: 32351180 DOI: 10.2174/1389201021666200430114547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
Tinospora cordifolia (Giloy) is a medicinal plant used in folk and Ayurvedic medicines throughout India since ancient times. All the parts of the plant are immensely useful due to the presence of different compounds of pharmaceutical importance belonging to various groups as alkaloids, diterpenoid lactones, glycosides, steroids, sesquiterpenoid, and phenolics. These compounds possess pharmacological properties, which make it anti-diabetic, antipyretic, anti-inflammatory, anti-oxidant, hepato-protective, and immuno-modulatory. However, due to the increasing population, there is an inadequate supply of drugs. Therefore, this review focuses on phytochemistry, ethnopharmacology, clinical application and its conservation strategies so that the plant can be conserved for future generations and utilized as alternative medicine as well as to design various pharmacologically important drugs.
Collapse
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli- 791109, Arunachal Pradesh, India
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli- 791109, Arunachal Pradesh, India
| | - Dipendra K Mahato
- School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Australia
| | - Himashree Bora
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli- 791109, Arunachal Pradesh, India
| | - Bharti Sharma
- Centre of Food Science and Technology, Banaras Hindu University, Varanasi- 221005, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Vivek K Bajpai
- Department of Energy and Material Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| |
Collapse
|
23
|
Satija S, Tambuwala MM, Pabreja K, Bakshi HA, Chellappan DK, Aljabali AA, Nammi S, Singh TG, Dureja H, Gupta G, Dua K, Mehta M, Garg M. Development of a novel HPTLC fingerprint method for simultaneous estimation of berberine and rutin in medicinal plants and their pharmaceutical preparations followed by its application in antioxidant assay. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-020-00035-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
DAS K, Khan M S, Sounder J, Mohan U, Prasad S V. Phytochemical Screening and Establishment of the Antidiabetic Potential of Aqueous Leaf Extract of the Endangered Plant Decalepis nervosa in Rats with Alloxan-induced Diabetes. Turk J Pharm Sci 2020; 17:319-328. [PMID: 32636710 DOI: 10.4274/tjps.galenos.2019.47135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/20/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To evaluate the presence of phytochemicals in and the antidiabetic activity of aqueous extract of Decalepis nervosa (AEDN) leaf. MATERIALS AND METHODS Either sex rats were grouped into 5 classes. Alloxan monohydrate and glibenclamide were used as diabetes induction drug and standard drug, respectively. Aqueous extract of the endangered medicinal plant DN was used in two different doses. Diabetes was induced with alloxan monohydrate at 150 mg/kg b.w. The AEDN was standardized with pharmacognostic and phytochemical screening and a chemical test confirmed the presence of phytoconstituents like glycoside, alkaloid, phenols, and flavonoids. Acute toxicity was evaluated for dose selection in an antidiabetic study. RESULTS Glibenclamide (5 mg/kg b.w.) and AEDN (200 and 400 mg) were given to all rats with induced diabetes. The reduced blood glucose level may be correlated with the presence of plant secondary metabolites (phenolic compounds), which was identified by thin layer chromatography and confirmed by high performance liquid chromatography studies. The decreased levels of serum total cholesterol, triglyceride, and liver enzyme activity showed the dose dependency of AEDN extract. An oral glucose tolerance test was performed after administration of 200 and 400 mg of AEDN and 5 mg of glibenclamide to different groups, which showed significantly lower oral glucose load during blood sample collection. Animal body weight and dose of AEDN extract had a significant effect on the glucose level in blood (p<0.01). CONCLUSION The first report on the phytochemicals and therapeutic activity of AEDN leaf showed potential antidiabetic activity by increased insulin secretion via enhanced peripheral glucose utilization mechanism.
Collapse
Affiliation(s)
- Kuntal DAS
- Krupanidhi College of Pharmacy Department of Pharmacognosy and Phytochemistry, Bangalore, India
| | - Saifulla Khan M
- Krupanidhi College of Pharmacy Department of Pharmacognosy and Phytochemistry, Bangalore, India
| | - James Sounder
- Krupanidhi College of Pharmacy Department of Pharmacognosy and Phytochemistry, Bangalore, India
| | - Usha Mohan
- Krupanidhi College of Pharmacy Department of Pharmacognosy and Phytochemistry, Bangalore, India
| | - Venkatesh Prasad S
- Krupanidhi College of Pharmacy Department of Pharmacognosy and Phytochemistry, Bangalore, India
| |
Collapse
|
25
|
Barmak A, Niknam K, Mohebbi G. Synthesis, Structural Studies, and α-Glucosidase Inhibitory, Antidiabetic, and Antioxidant Activities of 2,3-Dihydroquinazolin-4(1 H)-ones Derived from Pyrazol-4-carbaldehyde and Anilines. ACS OMEGA 2019; 4:18087-18099. [PMID: 31720511 PMCID: PMC6843711 DOI: 10.1021/acsomega.9b01906] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
A series of new quinazoline derivatives were designed and synthesized via a one-pot condensation reaction between isatoic anhydride and aromatic aldehydes with anilines using aluminum sulfate as a catalyst in refluxing ethanol. Their structures were confirmed by their physical, IR, 1H NMR, 13C NMR, and mass spectroscopy data and evaluated for some biological effects, including the antioxidant and α-glucosidase inhibitory activities as well as some in vivo hematological parameters. The ability of synthesized compounds in the inhibition of α-glucosidase was also investigated through the in silico study. The significant and important changes in some hematological tests were perceived. Notably, compound 4h showed more reducing effects on cholesterol and triglyceride levels. This molecule certainly has the potential to be developed as the antihyperlipemic compound. The tested compounds, in particular, compounds 4j and 4l, were found to be uniquely reducing blood sugar levels. The entire synthesized compounds showed the potent α-glucosidase inhibitory activity compared with acarbose as a standard material. Amongst, the compounds 4h and 4i showed the strongest enzyme inhibitory potentials than the standard drug acarbose. There was a good correlation between in vitro and in silico studies for ligands 4i and 4l. The majority of compounds presented a good radical scavenging activity, though the compound 4j exhibited the strongest activity, even to the standard of ascorbic acid. Further studies are required to determine whether these main compounds could be a potential treatment for diabetes and hyperlipidemia diseases.
Collapse
Affiliation(s)
- Alireza Barmak
- Department
of Chemistry, Faculty of Sciences, Persian
Gulf University, Bushehr 7516913817, Iran
| | - Khodabakhsh Niknam
- Department
of Chemistry, Faculty of Sciences, Persian
Gulf University, Bushehr 7516913817, Iran
| | - Gholamhossein Mohebbi
- The
Persian Gulf Marine Biotechnology Research Center, the Persian Gulf
Biomedical Research institute, Bushehr University
of Medical Sciences, Bushehr 7514763448, Iran
| |
Collapse
|
26
|
Recent Updates in Pharmacological Properties of Chitooligosaccharides. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4568039. [PMID: 31781615 PMCID: PMC6875261 DOI: 10.1155/2019/4568039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Chemical structures derived from marine foods are highly diverse and pharmacologically promising. In particular, chitooligosaccharides (COS) present a safe pharmacokinetic profile and a great source of new bioactive polymers. This review describes the antioxidant, anti-inflammatory, and antidiabetic properties of COS from recent publications. Thus, COS constitute an effective agent against oxidative stress, cellular damage, and inflammatory pathogenesis. The mechanisms of action and targeted therapeutic pathways of COS are summarized and discussed. COS may act as antioxidants via their radical scavenging activity and by decreasing oxidative stress markers. The mechanism of COS antidiabetic effect is characterized by an acceleration of pancreatic islets proliferation, an increase in insulin secretion and sensitivity, a reduction of postprandial glucose, and an improvement of glucose uptake. COS upregulate the GLUT2 and inhibit digestive enzyme and glucose transporters. Furthermore, they resulted in reduction of gluconeogenesis and promotion of glucose conversion. On the other hand, the COS decrease inflammatory mediators, suppress the activation of NF-κB, increase the phosphorylation of kinase, and stimulate the proliferation of lymphocytes. Overall, this review brings evidence from experimental data about protective effect of COS.
Collapse
|
27
|
Kumar A, Aswal S, Chauhan A, Semwal RB, Kumar A, Semwal DK. Ethnomedicinal Investigation of Medicinal Plants of Chakrata Region (Uttarakhand) Used in the Traditional Medicine for Diabetes by Jaunsari Tribe. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:175-200. [PMID: 30968350 PMCID: PMC6538708 DOI: 10.1007/s13659-019-0202-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The Himalayan region is the treasure house of natural wealth, particularly of medicinal and aromatic plants. These plants are used by the Indian traditional healers for the past many centuries to treat various ailments such as skin disorders, asthma, diabetes, snake bite, fever, pain, eye diseases, diarrhoea, indigestion, jaundice, burn, wound, liver disorder, CNS disorders and urinary tract infection. The indigenous traditional knowledge of medicinal plants and therapies of various local communities has been lost due to changes in traditional culture and the introduction of modern technologies. Therefore, it is essential to explore the traditional knowledge of the indigenous medicinal plants mainly in such areas where there is a severe threat to natural vegetation owing to human inhabitation. The present study aimed to explore the medicinal plants of Chakrata region (Jaunsar-Bawar Hills), Uttarakhand, India used in the folk medicine for the management of diabetes by Jaunsari Tribe. In a comprehensive field survey, the information about the medicinal plants have been mainly collected from the traditional healers and other elderly people belong to the tribal community. All the information about the medicinal plants of the study area was documented in a field book. Various tools have been used to collect the samples for identification purpose and the authentication of the plants was done with the help of taxonomists. The literature on these plants was also searched from online (PubMed and Scopus) as well as from some textbooks and Ayurvedic classical texts. The present survey-based work described a total of 54 plants belonging to 47 genera and 30 families used in the traditional medicine for the management of diabetes in Chakrata region. The information gathered from the local community revealed that the plants are effective in diabetes and one can use most of them without consulting a practitioner or traditional healer. The literature revealed that most of the surveyed plants are already used in the preparation of various antidiabetic formulations such as Chandraprabha vati, Nishamalaki chunra, Amritamehari churna and Nisakathakadi kashayam along with various patent drugs which are frequently prescribed by the Ayurvedic practitioners in India. The present study explored the traditional as well as scientific knowledge on the antidiabetic plants used by the tribal community. The documented information on these plants can be further used by the scientific community to develop new drugs/formulations with the help of modern techniques.
Collapse
Affiliation(s)
- Ankit Kumar
- Research and Development Centre, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Sonali Aswal
- Research and Development Centre, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Ashutosh Chauhan
- Department of Biotechnology, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Ruchi Badoni Semwal
- Department of Chemistry, Pt. Lalit Mohan Sharma Government Postgraduate College, Rishikesh, Uttarakhand, 249201, India
| | - Abhimanyu Kumar
- Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Deepak Kumar Semwal
- Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India.
| |
Collapse
|
28
|
Nakanekar A, Kohli K, Tatke P. Ayurvedic polyherbal combination (PDBT) for prediabetes: A randomized double blind placebo controlled study. J Ayurveda Integr Med 2019; 10:284-289. [PMID: 30661947 PMCID: PMC6938901 DOI: 10.1016/j.jaim.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 02/27/2018] [Accepted: 05/01/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Increasing prevalence of type 2 diabetes mellitus (DM) has become alarming, burdening health care systems throughout the world. Prediabetes is an intermediate step before manifestation of full blown DM. Effective intervention at this step would help stop/slow progression to DM. OBJECTIVE This study aimed at use of a polyherbal combination (PDBT - constituted of Tinospora cordifolia, Pterocarpus marsupium, Gymnema sylvestre, Zingiber officinale and Momordica charantia) along with life style modification compared to a placebo in prevention of DM among prediabetic individuals. MATERIALS AND METHODS The study was a double blinded, placebo controlled randomized clinical trial. Participants were divided in to a group on PDBT and life style management (LSM) and second on placebo and LSM. Participants in the intervention group received 2 gm/day of PDBT. All participants received the intervention for a period of 6 months. RESULTS One hundred and fourteen participants were enrolled in the study, 57 each in intervention and control group. At the end of the study, 8 participants from the intervention group, compared to 15 participants in the control group had converted to DM. There was a 47% risk reduction in the intervention group. Participants in the intervention group showed statistically significant decrease in their blood glucose level (fasting and PP), HbA1c, fasting serum insulin and HOMA-IR values. There was no significant change in BMI. No adverse effects were reported by any participants. CONCLUSION PDBT along with LSM in prediabetic participants was associated with reduction in conversion to DM than placebo along with LSM without any adverse effects.
Collapse
Affiliation(s)
| | - Kuldip Kohli
- Directorate of AYUSH, Government of Maharashtra, Mumbai, India
| | - Pratima Tatke
- CU Shah College of Pharmacy, SNDT University, Mumbai
| |
Collapse
|
29
|
El Haouari M, Rosado JA. Phytochemical, Anti-diabetic and Cardiovascular Properties of Urtica dioica L. (Urticaceae): A Review. Mini Rev Med Chem 2018; 19:63-71. [DOI: 10.2174/1389557518666180924121528] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes mellitus and cardiovascular diseases (CVD) have become the main cause of morbidity and death worldwide. In addition, current anti-diabetic and cardiovascular therapy is based on conventional drugs that have limited effectiveness and adverse side effects. In this regard, the role of medicinal herbs as a complementary or an alternative medicine is of great interest. Urtica dioica L. (Urticaceae), which is the focus of this review, has been widely used in traditional medicine to treat a variety of ailments, including, diabetes, hypertension and prostate cancer. The aim of this article is to review current knowledge related to the anti-diabetic and cardiovascular properties of U. dioica, with particular emphasis on the bioactive compounds, the plant parts used, and the action mechanism behind lowering blood glucose level and reducing risk of CVD. We also discuss the chemical composition and toxicological properties of the plant. From this review, it was suggested that the anti-diabetic and the cardiovascular effects of U. dioica are attributed to different classes of compounds, such as polyphenols, triterpens, sterols, flavonoids, and lectin which reduce the blood glucose level and the risk of CVD by their antihypertensive, antioxidant and anti-inflammatory properties and/or by interfering with different cellular signalization pathways, including increase of NO, inhibition of α-amylase and α-glycosidase, modulation of GLUT4 and protection of pancreatic β-cells, among others. The identification of the plant constituents and the understanding of their exact action mechanisms are necessary to prove the efficacy of the plant and develop it as pharmacological drug.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Centre Regional des Metiers de l'Education et de la Formation de Taza (CRMEF - Taza), B.P: 1178 - Taza Gare, Morocco
| | - Juan A. Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
30
|
Banda M, Nyirenda J, Muzandu K, Sijumbila G, Mudenda S. Antihyperglycemic and Antihyperlipidemic Effects of Aqueous Extracts of Lannea edulis in Alloxan-Induced Diabetic Rats. Front Pharmacol 2018; 9:1099. [PMID: 30323764 PMCID: PMC6172360 DOI: 10.3389/fphar.2018.01099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Lannea edulis (Sond.) Engl. commonly known as wild grape is used traditionally for the treatment of diabetes. It is only found in Eastern and Southern Africa. Phytochemical screening, antihyperglycemic and antihyperlipidemic effects of aqueous extracts of L. edulis in alloxan induced diabetic rats were carried out. We report herein the findings of this research work. Lannea edulis crude aqueous extracts were obtained by hot infusion and evaporation method. Phytochemical screening was carried out and subsequently toxicity studies of the aqueous extracts were performed to establish the Lethal Dose 50 (LD50) in albino rats. Alloxan monohydrate was used to induce diabetes in the rats. Lannea edulis positive control group doses of 100, 300, and 500 mg/kg were administered to 3 groups for 14 days. The positive control group was administered 5 mg/kg of glibenclamide. The negative and normal control groups were administered distilled water. To determine fasting blood glucose, blood was drawn on days 0, 1, 3, 5, 7, and 14 while it was drawn on days 0 and 14 for the determination of lipids. Phytochemical screening revealed the presence of flavonoids, saponins, tannins, cardiac glycosides, alkaloids and steroids. L. edulis diabetic positive control groups showed significant (P < 0.05) dose dependent reductions in fasting blood glucose levels. When day 0 mean blood glucose levels were compared to day 3 mean blood glucose levels of their respective groups, the 300 mg/kg L. edulis group showed a 23.3% drop and the 500 mg/kg L. edulis group showed a 52.6% drop. The 100 mg/kg L. edulis diabetic positive control group showed a 25.1% drop by day 5, the day on which it showed statistical significance (P < 0.05) compared to the diabetic control. In addition, administration of aqueous extracts of L. edulis to diabetic rats for 14 days significantly decreased (P < 0.05) the levels of serum total cholesterol, triglycerides, Low Density Lipoprotein (LDL) and Very Low Density Lipoprotein (VLDL) whilst increasing the levels of High Density Lipoprotein (HDL), when compared to the diabetic control group. It was concluded that L. edulis showed significant and dose dependent antihyperglycemic and antihyperlipidemic effects thus confirming its traditional use.
Collapse
Affiliation(s)
- Michelo Banda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - James Nyirenda
- Department of Chemistry, School of Natural Sciences, University of Zambia, Lusaka, Zambia
| | - Kaampwe Muzandu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Gibson Sijumbila
- School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| |
Collapse
|
31
|
Ouassou H, Zahidi T, Bouknana S, Bouhrim M, Mekhfi H, Ziyyat A, Legssyer A, Aziz M, Bnouham M. Inhibition of α-Glucosidase, Intestinal Glucose Absorption, and Antidiabetic Properties by Caralluma europaea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:9589472. [PMID: 30228829 PMCID: PMC6136516 DOI: 10.1155/2018/9589472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/28/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023]
Abstract
Many medicinal plants around the world are used for therapeutic purposes against several diseases, including diabetes mellitus. Due to their composition of natural substances that are effective and do not represent side effects for users, unlike synthetic drugs, in this study, we investigated the inhibitory effect of Caralluma europaea (CE) on α-glucosidase activity in vitro; then the kinetics of the enzyme were studied with increasing concentrations of sucrose in order to determine the inhibition type of the enzyme. In addition, this effect of Caralluma europaea (CE) was confirmed in vivo using rats as an experimental animal model. Among the five fractions of CE, only the ethyl acetate fraction of C. europaea (EACe) induced a significant inhibition of α-glucosidase and its inhibition mode was competitive. The in vivo studies were conducted on mice and rats using glucose and sucrose as a substrate, respectively, to determine the oral glucose tolerance test (OGTT). The results obtained showed that the EACe and the aqueous extract of C. europaea (AECe) have significantly reduced the postprandial hyperglycemia after sucrose and glucose loading in normal and diabetic rats. AECe, also, significantly decreased intestinal glucose absorption, in situ. The results obtained showed that Caralluma europaea has a significant antihyperglycemic activity, which could be due to the inhibition of α-glucosidase activity and enteric absorption of glucose.
Collapse
Affiliation(s)
- Hayat Ouassou
- Laboratory of Physiology, Genetics and Ethnopharmacology URAC-40, Department of Biology, Faculty of Sciences, University Mohamed I, Oujda, Morocco
| | - Touda Zahidi
- Laboratory of Water, Environment and Sustainable Development, Department of Biology, Faculty of Sciences, University Mohamed I, Oujda, Morocco
| | - Saliha Bouknana
- Laboratory of Physiology, Genetics and Ethnopharmacology URAC-40, Department of Biology, Faculty of Sciences, University Mohamed I, Oujda, Morocco
| | - Mohamed Bouhrim
- Laboratory of Physiology, Genetics and Ethnopharmacology URAC-40, Department of Biology, Faculty of Sciences, University Mohamed I, Oujda, Morocco
| | - Hassane Mekhfi
- Laboratory of Physiology, Genetics and Ethnopharmacology URAC-40, Department of Biology, Faculty of Sciences, University Mohamed I, Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Physiology, Genetics and Ethnopharmacology URAC-40, Department of Biology, Faculty of Sciences, University Mohamed I, Oujda, Morocco
| | - abdekhaleq Legssyer
- Laboratory of Physiology, Genetics and Ethnopharmacology URAC-40, Department of Biology, Faculty of Sciences, University Mohamed I, Oujda, Morocco
| | - Mohamed Aziz
- Laboratory of Physiology, Genetics and Ethnopharmacology URAC-40, Department of Biology, Faculty of Sciences, University Mohamed I, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Physiology, Genetics and Ethnopharmacology URAC-40, Department of Biology, Faculty of Sciences, University Mohamed I, Oujda, Morocco
| |
Collapse
|
32
|
Karamalakova Y, Nikolova G, Adhikari M, Stoev S, Agarwal P, Gadjeva V, Zhelev Z. Oxidative-protective effects of Tinospora cordifolia extract on plasma and spleen cells after experimental ochratoxicosis. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2761-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Chen D, Sun J, Dong W, Shen Y, Xu Z. Effects of polysaccharides and polyphenolics fractions of Zijuan tea (Camellia sinensis var. kitamura
) on α-glucosidase activity and blood glucose level and glucose tolerance of hyperglycaemic mice. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dejing Chen
- Shaanxi Key Laboratory of Bio-Resources; Shaanxi University of Technology; Hanzhong, Shaanxi China
- School of Biological Science and Engineering; Shaanxi University of Technology; Hanzhong, Shaanxi China
| | - Jingyuan Sun
- School of Biological Science and Engineering; Shaanxi University of Technology; Hanzhong, Shaanxi China
| | - Weixue Dong
- School of Biological Science and Engineering; Shaanxi University of Technology; Hanzhong, Shaanxi China
| | - Yixiao Shen
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA USA
| | - Zhimin Xu
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA USA
| |
Collapse
|
34
|
Antidiabetic plant-derived nutraceuticals: a critical review. Eur J Nutr 2017; 57:1275-1299. [PMID: 29022103 DOI: 10.1007/s00394-017-1552-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is one of the major health problems in the world, especially amongst the urban population. Chemically synthesized drugs used to decrease the ill effects of DM and its secondary complications cause adverse side effects, viz., weight gain, gastrointestinal disturbances, and heart failure. Currently, various other approaches, viz., diet control, physical exercise and use of antidiabetic plant-derived molecules/foods are advocated to manage DM, as they are economical with fewer or no side effects. This review mainly focuses on antidiabetic plants, chemically characterized plant molecules and plant-based foods in the treatment of DM. Very little science-based evidence is available on the mechanism of action of plant-derived food molecules on the DM targets. Critical DM targets include α-amylase, α-glucosidase, DPP-IV, aldose reductase, PPAR-γ, AMP kinase and GLUT4. In-depth studies carried out on a few of those targets with specific mechanisms of action are addressed in this review. This review may help future researchers in identifying a right plant molecule to treat DM or to develop food formulations for DM management.
Collapse
|
35
|
Polu PR, Nayanbhirama U, Khan S, Maheswari R. Assessment of free radical scavenging and anti-proliferative activities of Tinospora cordifolia Miers (Willd). BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:457. [PMID: 28893230 PMCID: PMC5594595 DOI: 10.1186/s12906-017-1953-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/30/2017] [Indexed: 01/16/2023]
Abstract
Background Tinospora cordifolia (Guduchi or Amrita) is an important drug of Ayurvedic System of Medicine and found mention in various classical texts for the treatment of diseases such as jaundice, fever, diabetes, cancer and skin disease etc. In view of its traditional claims, antioxidant and anti-proliferative activities were evaluated in the present study. Methods Ethanol extract (TCE) and subsequent petroleum ether (TCP), dichloromethane (TCD), n-Butanol (TCB) and aqueous (TCA) fractions of were prepared from stems of T cordifolia. Total phenolic, flavonoid content and anti-oxidant activity was assessed by different methods. Anti-proliferative activity was assessed in cervical carcinoma (HeLa) cell lines by MTT and SRB assay. Results Ethanol extract and n-butanol fractions shown to be superior in their scavenging activity in all the tested methods. n-butanol fractions shown antioxidant activity with an IC50 of 14.81 ± 0.53, 29.48 ± 2.23, 58.20 ± 0.70 and 21.17 ± 1.19 μg/mL by DPPH, ABTS, Nitric oxide and iron chelating activities respectively. Anti-proliferative activity results demonstrates that the TCD and ethanol extract of T cordifolia exhibits potent cytotoxic effect against HeLa with an IC50 of 54.23 ± 0.94 μg/mL and 101.26 ± 1.42 μg/mL respectively by MTT assay; and with an IC50 of 48.91 ± 0.33 μg/mL and 87.93 ± 0.85 μg/mL respectively by SRB assay. Conclusion The outcomes of the present study support the fact that T Cordifolia is a promising source of antioxidant agent and propose its further investigation. Moreover, dichloromethane fraction of T cordifolia shown to be the most potent anti-proliferative fraction and further mechanistic and phytochemical investigations are under way to identify the active principles.
Collapse
|
36
|
Abstract
Tinospora cordifolia (Menispermaceae) is an Ayurvedic medicinal plant distributed throughout the Indian subcontinent and China. The whole plant is used in folk and the Ayurvedic system of medicine alone and in combination with other plants. Due to its commercial importance, T. cordifolia has been of intense research interest for the last four decades with the isolation of diverse compounds such as alkaloids, sesquiterpenoids, diterpenoids, phenolics, steroids, aliphatic compounds and polysaccharides, along with the discovery of a wide spectrum of pharmacological properties like immunomodulation, anticancer, hepatoprotective and hypoglycemic. Although pharmacological activities of extracts and compounds of T. cordifolia have been studied both in vitro and in vivo, only few mechanisms of action have been explored and need further elaboration. In the present review, the pharmacological activities of compounds and different extracts of T. cordifolia are highlighted, along with those of the marketed products, showing the relevance of phytochemicals and the standardization of the marketed products for medicinal use. This compilation of the extensive literature of T. cordifolia here will be a referral point for clinical study and the development of standardized phytomedicines in healthcare.
Collapse
Affiliation(s)
- Deepika Singh
- Medicinal Chemistry Division, Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow 226015, India
| | - Prabir K Chaudhuri
- Medicinal Chemistry Division, Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow 226015, India
| |
Collapse
|
37
|
Wanjari MM, Mishra S, Dey YN, Sharma D, Gaidhani SN, Jadhav AD. Antidiabetic activity of Chandraprabha vati - A classical Ayurvedic formulation. J Ayurveda Integr Med 2016; 7:144-150. [PMID: 27665674 PMCID: PMC5052381 DOI: 10.1016/j.jaim.2016.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chandraprabha vati is a classical Ayurvedic formulation, markedly used for mitigation of Prameha, which correlates in many ways with obesity, metabolic syndrome and diabetes mellitus. OBJECTIVE The present study was aimed to investigate effect of Chandraprabha vati in experimentally-induced hyperglycemia and lipid profile alterations. MATERIALS AND METHODS Antidiabetic effect of Chandraprabha vati was studied in fifty five Wistar rats. Graded doses of Chandraprabha vati (50, 100 and 200 mg/kg) were administered orally for 7 days to normal and alloxan-hyperglycemic rats (65 mg/kg, intravenously), and to glucose loaded normal rats for oral glucose tolerance test (OGTT). Fasting plasma glucose levels were assessed on different time intervals along with plasma cholesterol and triglycerides. Metformin (500 mg/kg, orally) was used as standard drug. RESULTS Chandraprabha vati did not cause any significant reduction in plasma glucose levels of normal rats (p > 0.05) but normalized the impaired glucose tolerance at 60 and 120 min (p < 0.05-p < 0.001) in OGTT when compared to vehicle control. In alloxan-hyperglycemic rats, administration of Chandraprabha vati (200 mg/kg) significantly reduced plasma glucose at 3 h, 12 h, 3rd day and 7th day (p < 0.01-p < 0.001) along with reduction in cholesterol and triglycerides levels (p < 0.01-p < 0.001) when compared to diabetic control group. The effects were comparable with metformin. CONCLUSIONS Chandraprabha vati exhibited anti-hyperglycemic effect and attenuated alterations in lipid profile. The results support the use of Chandraprabha vati for correction of Prameha in clinical practice.
Collapse
Affiliation(s)
- Manish M Wanjari
- National Research Institute for Ayurveda-Siddha Human Resource Development, Gwalior, 474009, Madhya Pradesh, India.
| | - Sujata Mishra
- School of Studies in Biochemistry, Jiwaji University, Gwalior, 474011, Madhya Pradesh, India
| | - Yadu Nandan Dey
- National Research Institute for Ayurveda-Siddha Human Resource Development, Gwalior, 474009, Madhya Pradesh, India
| | - Deepti Sharma
- National Research Institute for Ayurveda-Siddha Human Resource Development, Gwalior, 474009, Madhya Pradesh, India
| | - Sudesh N Gaidhani
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Ankush D Jadhav
- National Research Institute for Ayurveda-Siddha Human Resource Development, Gwalior, 474009, Madhya Pradesh, India
| |
Collapse
|
38
|
Farsani MK, Amraie E, Kavian P, Keshvari M. Effects of aqueous extract of alfalfa on hyperglycemia and dyslipidemia in alloxan-induced diabetic Wistar rats. Interv Med Appl Sci 2016; 8:103-108. [PMID: 28203391 DOI: 10.1556/1646.8.2016.3.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the effects of aqueous extract of alfalfa on blood glucose and serum lipids in alloxan-induced diabetic rats. MATERIALS AND METHODS Thirty-two adult male Wistar rats weighing 210-250 g were selected and divided randomly into four groups of eight animals each for 21 days as follows: (1) control group, (2) diabetic control group, (3) diabetic group plus aqueous extract of alfalfa (250 mg/l), and (4) diabetic group plus aqueous extract of alfalfa (500 mg/l). Serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), very low-density lipoprotein (VLDL), glucose, and the liver enzymes such as aspartate transaminase (AST) and alanine transaminase (ALT) were measured at the end of period in all studied groups. RESULTS Administration of 250 and 500 mg/l aqueous alfalfa extract resulted in a significantly decreased glucose, TC, TG, LDL-C, VLDL, ALT, and AST levels and increased HDL levels as compared with the control group and diabetic control group (p < 0.05). Histological examination showed that the aqueous alfalfa extract caused reconstruction of damaged liver and pancreas. CONCLUSION These results suggest that aqueous alfalfa extract revealed significant effects on blood lipids and glucose levels in diabetic rats and might be useful in prevention and treatment of diabetes. However, further studies are needed to determine the exact impacts of those effects.
Collapse
Affiliation(s)
| | - Esmaiel Amraie
- Department of Science, Shahid Bahonar University of Kerman , Kerman, Iran
| | | | - Mahtab Keshvari
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute , Isfahan University of Medical Sciences , Isfahan, Iran
| |
Collapse
|
39
|
Co-administration of caffeine and hydromethanolic fraction of Citrullus lanatus seeds improved testicular functions in alloxan-induced diabetic male Wistar rats. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Mustaffa F, Hassan Z, Asmawi MZ. Cinnamomum iners Leaves as an Alternative Therapy for Diabetes. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajb.2016.44.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Sharma B, Dabur R. Protective Effects ofTinospora cordifoliaon Hepatic and Gastrointestinal Toxicity Induced by Chronic and Moderate Alcoholism. Alcohol Alcohol 2015; 51:1-10. [DOI: 10.1093/alcalc/agv130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022] Open
|
42
|
Amraie E, Farsani MK, Sadeghi L, Khan TN, Babadi VY, Adavi Z. The effects of aqueous extract of alfalfa on blood glucose and lipids in alloxan-induced diabetic rats. Interv Med Appl Sci 2015; 7:124-8. [PMID: 26525173 DOI: 10.1556/1646.7.2015.3.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/06/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022] Open
Abstract
Diabetes is a common metabolic disorder that is specified by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The use of nonpharmacological treatments (herbal agents) is a new approach in the management of diabetes. The aim of this study was to investigate the effect of aqueous extract of alfalfa on blood glucose and serum lipids in alloxan-induced diabetic rats. In this study, 32 female rats (210-250 g) were used which were divided randomly into 4 groups including intact control group, diabetic control group, and 2 diabetic groups which received 250 and 500 mg/kg doses of aqueous extract of alfalfa, respectively. In the diabetic groups, alloxan-monohydrate was injected peritoneally to create diabetic condition. The two last groups orally received aqueous extract of alfalfa for 21 days. At the end of experiment, sugar, cholesterol, triglycerides, high-density and low-density lipoprotein, and aspartate aminotransferase (ALT) and alanine aminotransferase (AST) levels were measured in the samples. Consumption of aqueous alfalfa extract significantly reduced glucose, cholesterol, triglycerides, and low-density lipoprotein (LDL) levels in the diabetic rats but enhanced high-density lipoprotein (HDL) levels. ALT and AST liver enzyme levels were also reduced in blood. Histological examination showed that the aqueous alfalfa extract caused reconstruction of damaged liver and enhanced Langerhans islets' diameter in pancreas. Therefore, all signs of diabetes were improved by oral administration of alfalfa in defined dose.
Collapse
|
43
|
Abedi Gaballu F, Abedi Gaballu Y, Moazenzade Khyavy O, Mardomi A, Ghahremanzadeh K, Shokouhi B, Mamandy H. Effects of a triplex mixture of Peganum harmala, Rhus coriaria, and Urtica dioica aqueous extracts on metabolic and histological parameters in diabetic rats. PHARMACEUTICAL BIOLOGY 2015; 53:1104-1109. [PMID: 25612773 DOI: 10.3109/13880209.2014.960943] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Several therapeutic effects such as antioxidant and blood glucose-lowering activities have been reported for Peganum harmala L (Zygophyllaceae) (PH) seeds, Rhus coriaria L (Anacardiaceae) (RC) fruits, and Urtica dioica L (Urticaceae) (UD) leaves. OBJECTIVE This study investigates the effects of a triplex mixture (1:1:1) of these medicinal plants on metabolic and histological parameters in diabetic rats. MATERIALS AND METHODS Aqueous extracts of PH, RC and UD were administered as either monotherapy or in combination at a final dose of 200 mg/kg to alloxan-induced diabetic rats by daily gavage. Biochemical parameters including blood glucose, liver function-related enzymes, lipid profile, and creatinine were estimated by spectrophotometric methods. Tissues from the liver and kidney stained with hematoxylin/eosin were histologically examined. The results obtained from the exposure groups were compared to either healthy or diabetic control groups. RESULTS Compared with the diabetic control rats, all aqueous extracts (ED50 = 11.5 ± 2.57 mg/ml) led to significant decreases in the levels of ALP (1.39-2.23-fold, p < 0.05), low-density lipoprotein cholesterol (LDL-C) (1.79-3.26-fold, p < 0.05), and blood glucose (1.27-4.16-fold, p < 0.05). The serum concentrations of TG was decreased only by treatment with UD and triplex mixture (1.25- and 1.20-fold, respectively, p < 0.05). Among the studied parameters, alanine aminotransferase (ALT), LDL-C, TG, and creatinine recovered to healthy control levels after 4 weeks of treatment with the extract mixture. CONCLUSION This study showed that PH, RC, and UD extracts, especially their combination, had significant antidiabetic, hypolipidemic, and liver and renal damage recovering effects.
Collapse
|
44
|
Satija S, Bansal P, Dureja H, Garg M. Microwave Assisted Extraction of Tinospora cordifolia and Optimization through Central Composite Design. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/jbs.2015.106.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
|
46
|
U EI, P AN, U NA. Assessment of acute toxicity profile of Lasianthera africana leaf extract in normal rats and its ameliorative effect in alloxan-induced diabetic rats. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajb2014.14179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
47
|
Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: critical appraisal and role in therapy. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/s2221-1691(15)30173-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
Combined potentiating action of phytochemical(s) from Cinnamomum tamala and Aloe vera for their anti-diabetic and insulinomimetic effect using in vivo rat and in vitro NIH/3T3 cell culture system. Appl Biochem Biotechnol 2014; 175:2542-63. [PMID: 25536877 DOI: 10.1007/s12010-014-1448-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
Abstract
The present investigation was undertaken to analyze the ethanolic extracts of leaves of Cinnamomum tamala and Aloe vera for their anti-diabetic and insulinomimitic effect by determining the levels of blood sugar, glycosylated hemoglobin, and serum lipid profile (total cholesterol, triglycerides, high density lipoprotein (HDL), and low density lipoprotein (LDL)) after daily administration of each alone and in combined at 250 mg/kg in alloxan (ALX)-induced diabetic rats. Treatment of diabetic rats with the extracts restored the elevated biochemical parameters significantly. The anti-diabetic effect further potentiated the insulin signaling pathway by co-administration of both extracts. The molecular mechanisms of modulating gene expression and cellular signaling through the insulin receptor were also evaluated on specific targets of the insulin signaling pathway, including insulin receptor substrate (IRS), phosphatidylinositol 3-kinase (PI3-K), AKT, and the glucose transporter (GLUT4) on NIH/3T3 cell line by western blotting, ELISA, semiquantitative RT-PCR, and real-time PCR. The active principle of both extracts revealed insulin mimicking effect as indicated by increased expression of pIRS1 and pAKT in time-dependent manner. There was no significant difference in PI3-K content between unchallenged and challenged groups. Enhanced expression of GLUT-4 transcript further suggested that the Cinnamomum and Aloe phytochemicals could serve as a good adjuvant in the present armamentarium of anti-diabetic drugs by either mimicking or improving insulin action. This study reveals that ethanolic extracts of C. tamala and A. vera have potent therapeutic efficacy and prospect for the development of phytomedicine for diabetes mellitus.
Collapse
|
49
|
Surya S, Salam AD, Tomy DV, Carla B, Kumar RA, Sunil C. Diabetes mellitus and medicinal plants-a review. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60585-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Chikezie PC, Uwakwe AA. Activities of three erythrocyte enzymes of hyperglycemic rats (Rattus norvegicus) treated with Allium sativa extract. J Diabetes Metab Disord 2014; 13:50. [PMID: 24918092 PMCID: PMC4031975 DOI: 10.1186/2251-6581-13-50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/14/2014] [Indexed: 11/18/2022]
Abstract
Background The present study sought to investigate erythrocyte glutathione S-transferases (GST), NADH-Methaemoglobin reductase (NADH-MR) and Na+/K+-ATPase activities of hypoglycemic rats treated with ethanol/water (1:2 v/v) extract of A. sativa as agent of glycemic control. Methods Hyperglycemia was induced by a single intra-peritoneal injection of 0.1 mol/L alloxan monohydrate in phosphate buffer saline (PBS) solution (pH = 7.4); dosage = 140 mg/kg. At the end of the experimental time (t = 76 h), erythrocyte GST, NADH-MR and Na+/K+-ATPase activities as well as serum fasting blood sugar (FBS) levels were measured by spectrophotometric methods. Results Serum FBS levels of control/normal (C/N) rats ranged between 72.93 ± 0.82–95.12 ± 0.92 mg/dL, whereas experimental rats without glycemic control gave: 249.41 ± 1.03–256.11 ± 1.23 mg/dL. Hyperglycemic rats treated with ethanol/water (1:2 v/v) extract of A. sativa exhibited comparative reduced serum levels of FBS alongside with erythrocyte GST, NADH-MR and Na+/K+-ATPase activities. The average relative activities of the three enzymes and corresponding order of enzyme activity in hyperglycemic rats treated with ethanol/water (1:2 v/v) extract of A. sativa was: NADH-MR = 60.99% > GST = 47.81% > Na+/K+-ATPase = 46.81%. In the same order, relative activities of the three enzymes in rats without glycemic control were: NADH-MR = 49.65% > GST = 23.69% > Na+/K+-ATPase = 17.02%. Conclusion Erythrocyte GST, NADH-MR and Na+/K+-ATPase activities gave insights into the pathophysiology of diabetic state and served as biomarkers for ascertaining therapeutic control in Type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Paul C Chikezie
- Department of Biochemistry, Imo state university, Owerri 460222, Nigeria
| | - Augustine A Uwakwe
- Department of Biochemistry, University of Port Harcourt, Port Harcourt 460222, Nigeria
| |
Collapse
|