1
|
Fan X, Gu C, Gao Z, Shen L, Yang X, Song Y, Bian Y, Xu Q, Wang F, Jiang X. Active binding mechanism to superoxide dismutase and toxicological implication for environmentally prevalent phthalates and their hydrolytic products: Coupling in vitro bioassay with molecular dynamics simulation. Int J Biol Macromol 2025; 311:143607. [PMID: 40306524 DOI: 10.1016/j.ijbiomac.2025.143607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Phthalic acid esters (PAEs) are widely used as plasticizers to improve the flexibility and durability of plastics. However, their environmental presence poses risks by inducing oxidative stress and contributing to metabolic syndrome. Despite being linked to various diseases, the mechanisms by which PAEs disrupt antioxidant enzymes, particularly superoxide dismutase (SOD), are not well understood. This study investigated the molecular interactions between PAEs, their metabolites, and SOD using bioassays and theoretical simulations. The results showed that key metabolites, monophthalates (MAEs) and phthalic acid (PA), strongly inhibited SOD activity, with potency increasing as side chain length decreased. In contrast, PAEs caused minor changes in SOD activity. The inhibition resulted from tight binding of MAEs and PA to the residues in the enzyme's bottom cavity. PAEs and metabolites induced significant structural changes in the secondary structures, catalytic channel, and hydrogen bond network, destabilizing the protein and impairing its function. A strong correlation between SOD inhibition and Gibbs free binding energies at Arg141 was observed. Arg141 and allelic residues can serve as biomarkers for early warnings of oxidative stress. This study improves our understanding of oxidative stress mechanisms caused by PAEs and emphasizes the need for better risk management of phthalate exposure.
Collapse
Affiliation(s)
- Xiuli Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Zhengyuan Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lezu Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinglun Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongrong Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
2
|
Shen S, Pan L, Li J, Wang J, Ahmad I, Liu H, Bai Y, Kang B, Yin J, Gao Y, Lu Y, Wang X. The Involvement of Amino Acid Metabolism in the Mechanisms of Salt Tolerance Adaptation in Medicago sativa and Medicago truncatula. PLANTS (BASEL, SWITZERLAND) 2025; 14:929. [PMID: 40265823 PMCID: PMC11945280 DOI: 10.3390/plants14060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
Amino acid metabolism constitutes a major metabolic pathway in plants, playing an important role in the modulation of plant responses to stress. In this study, we investigated the amino acid metabolism responses of M. sativa (Medicago sativa L.) and M. truncatula (Medicago truncatula L.) plants under salt stress using transcriptomic and proteomic approaches to elucidate their salt stress tolerance mechanisms in relation to the regulation of amino acid homeostasis. Transcriptome and proteome sequencing followed by Kyoto Gene and Genome Encyclopedia enrichment analysis revealed 34 differentially expressed genes and 45 differentially expressed proteins involved in valine, leucine, and isoleucine degradation, tyrosine metabolism, and glutathione metabolism. Significant differences were observed in the expression of glutathione S-transferase (GST) within the glutathione metabolic pathway between M. sativa and M. truncatula. The induction of valine, leucine, and isoleucine metabolism, aldehyde dehydrogenases (ALDHs), and alanine-glyoxylate aminotransferases (AGXTs), involved in intracellular reactive oxygen species scavenging, also significantly differed under salt stress. Significant differences were identified in the expression of tyrosine decarboxylases (TDCs) involved in tyrosine metabolism, which are responsible for tyramine biosynthesis and can enhance plant tolerance to salt stress. This study delved into the effects of amino acid metabolism on the salt tolerance mechanisms of M. sativa and M. truncatula, which is crucial in guiding the future breeding of salt-tolerant alfalfa varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaoshan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (L.P.); (J.L.); (J.W.); (I.A.); (H.L.); (Y.B.); (B.K.); (J.Y.); (Y.G.); (Y.L.)
| |
Collapse
|
3
|
Jamali T, Vaez-Mahdavi MR, Taravati A, Mohammadian R, Jalilvand F, Fallahi F, Ghazanfari T, Ardestani SK. Mustard lung with a unique oxidative stress profile as an independent pulmonary disease. Int Immunopharmacol 2025; 149:114210. [PMID: 39904044 DOI: 10.1016/j.intimp.2025.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Sulfur mustard (SM) exposure can lead to severe respiratory complications known as "mustard lung". Oxidative stress, resulting from an imbalance between pro-oxidants and antioxidants, plays a critical role in the pathogenesis of lung diseases, ultimately causing inflammation and tissue damage. This study aimed to examine the oxidative and antioxidative profiles in veterans with long-term health issues after SM exposure and compare them with profiles resembling asthma, chronic bronchitis (CB), and bronchiolitis obliterans (BO). Serum samples were analyzed for oxidative and antioxidative markers, including Protein Carbonyls (PC), Malondialdehyde (MDA), Total Peroxide (TPX), Total Antioxidant Capacity (TAC), oxidative stress index (OSI), Catalase (CAT), Superoxide Dismutase (SOD), Glucose-6-Phosphate Dehydrogenase (G6PD), Glutathione-S-Transferase (GST), Glutathione Peroxidase (GPX), and levels of reduced and oxidized glutathione. The findings revealed that patients with mustard lung displayed a substantial increase in TPX levels, highlighting the presence of elevated oxidative stress in this group. However, some factors show the compensatory mechanism of the body to balance the oxidative stress after years of exposure to SM. Comparison of veterans with BO, CB, and asthma-like conditions with corresponding diseases, despite many similarities, exhibited distinct patterns of some oxidative factors, indicating that their oxidative stress profiles are somewhat different. Notably, disease severity in mustard lung did not significantly affect oxidative stress levels or antioxidant responses. This study suggests that "mustard lung" should be recognized as a distinct pulmonary condition with unique oxidative stress patterns. This understanding provides valuable insights into the biochemical aspects and specific treatment approaches of SM-induced respiratory conditions.
Collapse
Affiliation(s)
- Tahereh Jamali
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Mohammad-Reza Vaez-Mahdavi
- Department of Physiology, Medical Faculty, Shahed University, Tehran, Iran; Department of Health Equity, Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Ali Taravati
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Razieh Mohammadian
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | - Faramarz Fallahi
- Department of Cardiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran
| | | |
Collapse
|
4
|
Mansouri RA, Aboubakr EM, Alshaibi HF, Ahmed AM. L-arginine administration exacerbates myocardial injury in diabetics via prooxidant and proinflammatory mechanisms along with myocardial structural disruption. World J Diabetes 2025; 16:100395. [PMID: 39959273 PMCID: PMC11718468 DOI: 10.4239/wjd.v16.i2.100395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 11/25/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND L-arginine (L-Arg) is one of the most widely used amino acids in dietary and pharmacological products. However, the evidence on its usefulness and dose limitations, especially in diabetics is still controversial. AIM To investigate the effects of chronic administration of different doses of L-Arg on the cardiac muscle of type 2 diabetic rats. METHODS Of 96 male rats were divided into 8 groups as follows (n = 12): Control, 0.5 g/kg L-Arg, 1 g/kg L-Arg, 1.5 g/kg L-Arg, diabetic, diabetic + 0.5 g/kg L-Arg, diabetic + 1 g/kg L-Arg, and diabetic + 1.5 g/kg L-Arg; whereas L-Arg was orally administered for 3 months to all treated groups. RESULTS L-Arg produced a moderate upregulation of blood glucose levels to normal rats, but when given to diabetics a significant upregulation was observed, associated with increased nitric oxide, inflammatory cytokines, and malonaldehyde levels in diabetic rats treated with 1 g/kg L-Arg and 1.5 g/kg L-Arg. A substantial decrease in the antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione concentrations, and Nrf-2 tissue depletion were observed at 1 g/kg and 1.5 g/kg L-Arg diabetic treated groups, associated with myocardial injury, fibrosis, α-smooth muscle actin upregulation, and disruption of desmin cardiac myofilaments, and these effects were not noticeable at normal treated groups. On the other hand, L-Arg could significantly improve the lipid profile of diabetic rats and decrease their body weights. CONCLUSION L-Arg dose of 1 g/kg or more can exacerbates the diabetes injurious effects on the myocardium, while 0.5 g/kg dose can improve the lipid profile and decrease the body weight.
Collapse
Affiliation(s)
- Rasha A Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 22254, Jeddah, Saudi Arabia
- College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Esam M Aboubakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy-South Valley University, Qena 83523, Egypt
| | - Huda F Alshaibi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 22254, Jeddah, Saudi Arabia
- Stem Cell Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel M Ahmed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
5
|
Yin B, Ren J, Liu X, Zhang Y, Zuo J, Wen R, Pei H, Lu M, Zhu S, Zhang Z, Wang Z, Zhai Y, Ma Y. Astaxanthin mitigates doxorubicin-induced cardiotoxicity via inhibiting ferroptosis and autophagy: a study based on bioinformatic analysis and in vivo/ vitro experiments. Front Pharmacol 2025; 16:1524448. [PMID: 39906141 PMCID: PMC11790656 DOI: 10.3389/fphar.2025.1524448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Background Doxorubicin (DOX), a widely employed chemotherapeutic agent in cancer treatment, has seen restricted use in recent years owing to its associated cardiotoxicity. Current reports indicate that doxorubicin-induced cardiotoxicity (DIC) is a complex phenomenon involving various modes of cell death. Astaxanthin (ASX), a natural carotenoid pigment, has garnered significant attention for its numerous health benefits. Recent studies have shown that ASX has a broad and effective cardiovascular protective effect. Our study aims to investigate the protective effects of ASX against DIC and elucidate its underlying mechanisms. This has substantial practical significance for the clinical application of DOX. Methods Bioinformatic analyses were conducted using transcriptomic data from the gene expression omnibus (GEO) database to identify key mechanisms underlying DIC. Network pharmacology was employed to predict the potential pathways and targets through which ASX exerts its effects on DIC. In vitro experiments, following pretreatment with ASX, H9C2 cells were exposed to DOX. Cell viability, injury and the protein expression levels associated with ferroptosis and autophagy were assessed. In the animal experiments, rats underwent 4 weeks of gavage treatment with various doses of ASX, followed by intraperitoneal injections of DOX every 2 days during the final week. Histological, serum, and protein analyses were conducted to evaluate the effects of ASX on DIC. Results The bioinformatics analysis revealed that ferroptosis and autophagy are closely associated with the development of DIC. ASX may exert an anti-DIC effect by modulating ferroptosis and autophagy. The experimental results show that ASX significantly mitigates DOX-induced myocardial tissue damage, inflammatory response, oxidative stress, and damage to H9C2 cells. Mechanistically, ASX markedly ameliorates levels of ferroptosis and autophagy both in vitro and in vivo. Specifically, ASX upregulates solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), while downregulating the expression of transferrin receptor 1 (TFRC), ferritin heavy chain (FTH1) and ferritin light chain (FTL). Additionally, ASX enhances the expression of P62 and decreases levels of Beclin1 and microtubule-associated proteins light chain 3 (LC3). Conclusion Our results indicate that ferroptosis and autophagy are critical factors influencing the occurrence and progression of DOX-induced cardiotoxicity. ASX can alleviate DIC by inhibiting ferroptosis and autophagy.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xuanyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Rui Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Huanting Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Miaomiao Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Siqi Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Zhenao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Ziyi Wang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yanyi Zhai
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| |
Collapse
|
6
|
Zhang D, Song XH, Yang D, Ge MZ, Qiu J, Jiang HQ, Sun YY, Li XD, Wu YJ. Subchronic Exposure to Low-Dose Chlorfenapyr and Emamectin Benzoate Disrupts Kidney Metabolism in Rats. TOXICS 2025; 13:65. [PMID: 39853063 PMCID: PMC11769156 DOI: 10.3390/toxics13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025]
Abstract
Residues of the pesticides chlorfenapyr (CFP) and emamectin benzoate (EMB) often coexist in the environment and can be accumulated in the body. To understand the impact of these two chemicals on health, we investigated their effect on the kidneys. In this study, rats were treated with CFP and/or EMB at low/medium/high doses of 1/3/9 mg/kg/day and 0.2/0.6/1.8 mg/kg/day, respectively, via oral gavage for 60 days. Kidneys and serum samples were collected and serum biochemistry and kidney histopathological changes were analyzed and examined. Kidney metabolome alterations were analyzed by using gas chromatography-mass spectrometry. The results showed that combined exposure to CFP and EMB elevated BUN levels and induced pathological damage, which presented as thinner renal tubular epithelial cells, an abnormal glomerular morphology, and an increased fibrotic area. CFP and/or EMB disrupted glutathione metabolism and carbohydrate metabolism, resulting in the alteration of kidney metabolomes and inducing oxidative stress in the cells of kidney tissues. In addition, CFP decreased ATP content and inhibited pyruvate PDH activity in the kidneys. These findings suggest that long-term exposure to CFP and EMB at environmentally relevant levels induce alterations in the renal metabolome, oxidative stress, and an insufficient energy supply, which may contribute to renal histopathological damage.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (D.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Hua Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (D.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (D.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mu-Zi Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (D.Z.)
| | - Jun Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (D.Z.)
| | - Han-Qing Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (D.Z.)
| | - Yan-Yan Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (D.Z.)
| | - Xiang-dong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (D.Z.)
| | - Yi-Jun Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (D.Z.)
| |
Collapse
|
7
|
Jeong SM, Nam HN, Choi SJ. Effects of the Interactions Between Food Additive Titanium Dioxide and Matrices on Genotoxicity. Int J Mol Sci 2025; 26:617. [PMID: 39859330 PMCID: PMC11765690 DOI: 10.3390/ijms26020617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Titanium dioxide (TiO2), a white color food additive, is widely used in bakery products, candies, chewing gums, soups, and creamers. Concerns about its potential genotoxicity have recently emerged, particularly following the European Union's ban on its usage as a food additive due to its genotoxicity potential. Conflicting in vitro and in vivo results regarding its genotoxicity highlight the need for further in-depth investigation. Moreover, food additives can interact with food components or biological matrices, potentially altering their biological responses and genotoxicity. In this study, we evaluated the interactions between two different sizes of additive TiO2 particles and food or biological matrices, including albumin, fetal bovine serum (FBS), and glucose. The results showed that the hydrodynamic diameters of TiO2 increased upon interaction with albumin or FBS, but not with glucose. The presence of albumin or FBS reduced TiO2-induced cytotoxicity, oxidative stress, in vitro intestinal transport, and ex vivo intestinal absorption to untreated control levels, regardless of particle size. While TiO2 caused DNA damage in intestinal Caco-2 cells, the interactions with albumin or FBS significantly reduced the DNA damage to levels comparable to untreated controls. The DNA damage was closely related to oxidative stress caused by TiO2. These findings suggest that the interaction of TiO2 with albumin or FBS, resulting in increased hydrodynamic diameters, mitigates its cytotoxicity, oxidative stress, intestinal transport, and genotoxicity. Further investigation is required to fully understand the potential genotoxicity of TiO2 in food contexts.
Collapse
Affiliation(s)
| | | | - Soo-Jin Choi
- Department of Food Science & Technology, Seoul Women’s University, Seoul 01797, Republic of Korea; (S.-M.J.); (H.-N.N.)
| |
Collapse
|
8
|
Kim J, Jo J, Cho S, Kim H. Genomic insights and functional evaluation of Lacticaseibacillus paracasei EG005: a promising probiotic with enhanced antioxidant activity. Front Microbiol 2024; 15:1477152. [PMID: 39469458 PMCID: PMC11513463 DOI: 10.3389/fmicb.2024.1477152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Probiotics, such as Lacticaseibacillus paracasei EG005, are gaining attention for their health benefits, particularly in reducing oxidative stress. The goal of this study was to reinforce the antioxidant capacity of EG005, along with comprehensive genomic analysis, with a focus on assessing superoxide dismutase (SOD) activity, acid resistance and bile tolerance, and safety. Methods EG005 was screened for SOD activity and change of SOD activity was tested under various pH conditions. Its survival rates were assessed in acidic (pH 2.5) and bile salt (0.3%) conditions and the antibiotic MIC test and hemolysis test were performed to evaluate safety. Genetic analyses including functional identification and phylogenetic tree construction were performed. The SOD overexpression system was constructed using Ptuf, Pldh1, Plhd2, and Pldh3 strong promoters. Results EG005 demonstrated higher SOD activity compared to Lacticaseibacillus rhamnosus GG, with optimal activity at pH 7.0. It showed significant acid and bile tolerance, with survival rates recovering to 100% after 3 h in acidic conditions. Phylogenetic analysis confirmed that EG005 is closely related to other L. paracasei strains with ANI values above 98%. Overexpression of SOD using the Ptuf promoter resulted in a two-fold increase in activity compared to the controls. Additionally, EG005 exhibited no hemolytic activity and showed antibiotic susceptibility within safe limits. Discussion Our findings highlight EG005's potential as a probiotic with robust antioxidant activity and high tolerance to gastrointestinal conditions. Its unique genetic profile and enhanced SOD activity through strong promoter support its application in probiotic therapies and functional foods. Further research should be investigated to find the in vivo effects of EG005 on gut health and oxidative stress reduction. In addition, attB and attP-based recombination, combined with CRISPR-Cas9 technologies, could offer a more stable alternative for long-term sodA gene expression in commercial and medical applications.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinchul Jo
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome Inc., Seoul, Republic of Korea
| | - Seoae Cho
- eGnome Inc., Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Wang X, Yang Z, Peng C, Yu H, Cui C, Xing Q, Hu J, Bao Z, Huang X. Comparative Analyses of Dynamic Transcriptome Profile of Heart Highlight the Key Response Genes for Heat Stress in Zhikong Scallop Chlamys farreri. Antioxidants (Basel) 2024; 13:1217. [PMID: 39456470 PMCID: PMC11505284 DOI: 10.3390/antiox13101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Heat stress resulting from global climate change has been demonstrated to adversely affect growth, development, and reproduction of marine organisms. The Zhikong scallop (Chlamys farreri), an important economical mollusk in China, faces increasing risks of summer mortality due to the prolonged heat waves. The heart, responsible for transporting gas and nutrients, is vital in maintaining homeostasis and physiological status in response to environmental changes. In this study, the effect of heat stress on the cardiac function of C. farreri was investigated during the continuous 30-day heat stress at 27 °C. The results showed the heart rate of scallops increased due to stress in the initial phase of high temperature exposure, peaking at 12 h, and then gradually recovered, indicating an acclimatization at the end of the experiment. In addition, the levels of catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) exhibited an initial increase followed by recovery in response to heat stress. Furthermore, transcriptome analysis of the heart identified 3541 differentially expressed genes (DEGs) in response to heat stress. Subsequent GO and KEGG enrichment analysis showed that these genes were primarily related to signal transduction and oxidative stress, such as the phosphatidylinositol signaling system, regulation of actin cytoskeleton, MAPK signaling pathway, FoxO signaling pathway, etc. In addition, two modules were identified as significant responsive modules according to the weighted gene co-expression network analysis (WGCNA). The upregulation of key enzymes within the base excision repair and gap junction pathways indicated that the heart of C. farreri under heat stress enhanced DNA repair and maintained cellular integrity. In addition, the variable expression of essential signaling molecules and cytoskeletal regulators suggested that the heart of C. farreri modulated cardiomyocyte contraction, intracellular signaling, and heart rate through complex regulation of phosphorylation and calcium dynamics in response to heat stress. Collectively, this study enhances our understanding of cardiac function and provides novel evidence for unraveling the mechanism underlying the thermal response in mollusks.
Collapse
Affiliation(s)
- Xinyuan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Haitao Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Chang Cui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.W.); (C.P.); (H.Y.); (C.C.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
10
|
Seol A, Kim JE, Jin YJ, Song HJ, Roh YJ, Kim TR, Park ES, Park KH, Park SH, Uddin MS, Lee SW, Choi YW, Hwang DY. Novel Therapeutic Effects of Euphorbia heterophylla L. Methanol Extracts in Macular Degeneration Caused by Blue Light in A2E-Laden ARPE-19 Cells and Retina of BALB/c Mice. Pharmaceuticals (Basel) 2024; 17:1193. [PMID: 39338355 PMCID: PMC11435363 DOI: 10.3390/ph17091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Natural products with high antioxidant activity are considered as innovative prevention strategies to effectively prevent age-related macular degeneration (AMD) in the early stage because the generation of reactive oxygen species (ROS) leading to the development of drusen is reported as an important cause of this disease. To investigate the prevention effects of the methanol extracts of Euphorbia heterophylla L. (MEE) on AMD, its effects on the antioxidant activity, inflammatory response, apoptosis pathway, neovascularization, and retinal tissue degeneration were analyzed in N-retinylidene-N-retinylethanolamine (A2E)-landed spontaneously arising retinal pigment epithelia (ARPE)-19 cells and BALB/c mice after exposure to blue light (BL). The MEE contained 10 active components and showed high free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and nitric oxide (NO) radicals. The pretreatments of high-dose MEE remarkably suppressed the production of intracellular ROS (88.2%) and NO (25.2%) and enhanced (SOD) activity (84%) and the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) in A2E + BL-treated ARPE-19 cells compared to Vehicle-treated group. The activation of the inducible nitric oxide synthase (iNOS)-induced cyclooxygenase-2 (COX-2) mediated pathway, inflammasome activation, and expression of inflammatory cytokines was significantly inhibited in A2E + BL-treated ARPE-19 cells after the MEE pretreatment. The activation of the apoptosis pathway and increased expression of neovascular proteins (36% for matrix metalloproteinase (MMP)-9) were inhibited in the MEE pretreated groups compared to the Vehicle-treated group. Furthermore, the thickness of the whole retina (31%), outer nuclear layer (ONL), inner nuclear layer (INL), and photoreceptor layer (PL) were significantly increased by the MEE pretreatment of BALB/c mice with BL-induced retinal degeneration. Therefore, these results suggest that the MEE, with its high antioxidative activity, protects against BL-induced retinal degeneration through the regulation of the antioxidative system, inflammatory response, apoptosis, and neovascularization in the AMD mouse model.
Collapse
Affiliation(s)
- Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji-Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You-Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee-Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu-Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Tae-Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Eun-Seo Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki-Ho Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - So-Hae Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | | | - Sang-Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Woo Choi
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
11
|
Wang C, Yang H, Liu Z, Bai L, Wang L, Zhou S. Multiomics Analysis of the Mechanism by Which Gibberellin Alleviates S-Metolachlor Toxicity in Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:2517. [PMID: 39274001 PMCID: PMC11396835 DOI: 10.3390/plants13172517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
S-metolachlor is a selective pre-emergence herbicide used in dryland. However, it is challenging to employ in paddy fields due to its phytotoxic effects on rice. As a common phytohormone, Gibberellin-3 (GA3) is inferred to have the ability to alleviate herbicide phytotoxicity. This study first quantitatively verified the phytotoxicity of s-metolachlor to rice and then demonstrated the mitigative effect of GA3 on these adverse reactions. Furthermore, a transcriptome of rice seedlings subjected to different treatments was constructed to assemble the reference genes, followed by comparative metabolomics and proteomics analyses. Metabolomics revealed an enrichment of flavonoid metabolites in the group of adding GA3, and these flavonoids can eliminate ROS in plants. Proteomics analysis indicated that differential proteins were enriched in the phenylpropanoid biosynthesis pathway responsible for the synthesis of flavonoids and that the functions of most differential proteins are associated with peroxidase. The proteome, combined with the transcriptome, revealed that the expressions of proteins and genes was related to the POD activity in the group of adding GA3. It was speculated that the elimination of ROS is key to alleviating the stress of s-metolachlor on rice growth. It was inferred that the mechanism of GA3 in alleviating the phytotoxicity of the substance s-metolachlor is by increasing the activity of the POD and influencing the growth of rice seedlings through the restoration of flavonoid synthesis. In this study, we screened GA3 as a safener to alleviate the phytotoxicity of s-metolachlor on rice. On this basis, the mechanism of alleviating phytotoxicity was studied. The application range of s-metolachlor might be expanded, providing a new supplementary method for weed control and herbicide resistance management.
Collapse
Affiliation(s)
- Cong Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haona Yang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhixuan Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lianyang Bai
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lifeng Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shangfeng Zhou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
12
|
Morajkar RV, Fatrekar AP, Vernekar AA. Approach of a small protein to the biomimetic bis-(μ-oxo) dicopper active-site installed in MOF-808 pores with restricted access perturbs substrate selectivity of oxidase nanozyme. Chem Sci 2024; 15:10810-10822. [PMID: 39027301 PMCID: PMC11253172 DOI: 10.1039/d4sc02136c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Advances in nanozymes have taken shape over the past few years in several domains. However, persisting challenging limitations of selectivity, specificity, and efficiency necessitate careful attention to aid in the development of next-generation artificial enzymes. Despite nanozymes having significant therapeutic and biotechnological prospects, the multienzyme mimetic activities can compromise their intended applications. Furthermore, the lack of substrate selectivity can hamper crucial biological pathways. While working on addressing the challenges of nanozymes, in this work, we aim to highlight the interplay between the substrates and bis-(μ-oxo) dicopper active site-installed MOF-808 for selectively mimicking oxidase. This oxidase mimetic with a small pore-aperture (1.4 nm), similar to the opening of enzyme binding pockets, projects a tight control over the dynamics and the reactivity of substrates, making it distinct from the general oxidase nanozymes. Interestingly, the design and the well-regulated activity of this nanozyme effectively thwart DNA from approaching the active site, thereby preventing its oxidative damage. Crucially, we also show that despite these merits, the oxidase selectivity is compromised by small proteins such as cytochrome c (Cyt c), having dimensions larger than the pore aperture of MOF-808. This reaction lucidly produces water molecules as a result of four electron transfer to an oxygen molecule. Such unintended side reactivities warrant special attention as they can perturb redox processes and several cellular energy pathways. Through this study, we provide a close look at designing next-generation artificial enzymes that can address the complex challenges for their utility in advanced applications.
Collapse
Affiliation(s)
- Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Chennai 600020 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Chennai 600020 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Chennai 600020 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
13
|
Huang Y, Sun Y, Huang Q, Wu S, Huang Z, Hong Y. Abamectin-induced behavioral alterations link to energy metabolism disorder and ferroptosis via oxidative stress in Chinese mitten crab, Eriocheir sinensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174558. [PMID: 38972409 DOI: 10.1016/j.scitotenv.2024.174558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The increasing application of abamectin (ABM) in agriculture has raised concerns regarding its environmental safety and potential adverse effects on aquatic environment safety. In the present study, the toxic effects of ABM exposure on the adult Chinese mitten crab, Eriocheir sinensis were investigated, with a focus on locomotion impairment, behavioral changes, oxidative stress, energy metabolism disruption, and ferroptosis. Crabs were exposed to sublethal concentrations of ABM at 2, 20 and 200 μg/L. After 21 d chronic exposure to 200 μg/L, residual ABM in hepatopancreas and muscles were detected as 12.24 ± 6.67 and 8.75 ± 5.42 μg/Kg, respectively. By using acute exposure experiments (96 h), we observed significant locomotion and behavioral alterations, alongside biochemical evidences of oxidative stress and energy metabolism impairment. The presence of ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, was notably identified in the hepatopancreas. Functional tests with N-acetylcysteine (NAC) supplementation showed restored behavioral responses and decrease of ferroptosis levels. It suggests that mitigating oxidative stress could counteract ABM-induced toxicity. Our findings highlight the critical roles of oxidative stress and ferroptosis in mediating the toxic effects of ABM on E. sinensis, underscoring the need for strategies to mitigate environmental exposure to pesticides.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Yan Sun
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Shu Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, Chengdu 611137, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China.
| |
Collapse
|
14
|
Yu X, Hou W, Xiao L. Gamma-Aminobutyric Acid (GABA) Avoids Deterioration of Transport Water Quality, Regulates Plasma Biochemical Indices, Energy Metabolism, and Antioxidant Capacity of Tawny Puffer ( Takifugui flavidus) under Transport Stress. BIOLOGY 2024; 13:474. [PMID: 39056669 PMCID: PMC11273879 DOI: 10.3390/biology13070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Live fish transportation is crucial for managing aquaculture but can pose health risks to fish due to stressors encountered during transportation. Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that plays a crucial role in the central nervous system and is considered to exhibit anti-stress effects. This study aims to investigate the effects of GABA on the transport water quality, plasma biochemical indices, energy metabolism, and antioxidant capacity of tawny puffer (Takifugu flavidus) under transport stress. Tawny puffer were pretreated by immersing in aquariums containing GABA (final concentrations at 0, 5, 50, and 150 mg/L) seawater for 3 days; then, simulated transport was conducted using oxygen-filled polyethylene bags containing the same concentration of GABA seawater as the pretreatment period. Water samples, plasma, and liver were collected after 0, 6, and 12 h of transport. The results revealed that with the prolongation of transportation time, the control group's water quality deteriorated, stress-related plasma biochemical indices increased, glycolytic substrate contents decreased, glycolytic enzyme activities and product contents increased, and aerobic metabolic enzyme activities exhibited initial increases followed by declines, ATPase activities decreased, antioxidant enzyme activities decreased, and the lipid peroxidation marker contents increased. It is noteworthy that GABA treatment could avoid water quality deterioration during transportation, inhibit an elevation in stress-related biochemical indicators, regulate energy metabolism, and reduce oxidative damage in tawny puffer, especially at 50 and 150 mg/L concentrations. In summary, GABA treatment can effectively alleviate the transport stress of tawny puffer.
Collapse
Affiliation(s)
- Xiaowen Yu
- Shanghai Fisheries Research Institute, Shanghai 200433, China;
| | - Wenjie Hou
- Shanghai Fisheries Research Institute, Shanghai 200433, China;
| | - Lixia Xiao
- Qidong Fishery Technology Promotion Station, Qidong 226299, China;
| |
Collapse
|
15
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Han J. Response of antioxidant activity, active constituent and rhizosphere microorganisms of Salvia miltiorrhiza to combined application of microbial inoculant, microalgae and biochar under Cu stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171812. [PMID: 38508267 DOI: 10.1016/j.scitotenv.2024.171812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
16
|
Han X, Ju L, Saengow C, Ren W, Ewoldt R, Fan T, Irudayaraj J. Nano oxygen chamber by cascade reaction for hypoxia mitigation and reactive oxygen species scavenging in wound healing. Bioact Mater 2024; 35:67-81. [PMID: 38312517 PMCID: PMC10835133 DOI: 10.1016/j.bioactmat.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Hypoxia, excessive reactive oxygen species (ROS), and impaired angiogenesis are prominent obstacles to wound healing following trauma and surgical procedures, often leading to the development of keloids and hypertrophic scars. To address these challenges, a novel approach has been proposed, involving the development of a cascade enzymatic reaction-based nanocarriers-laden wound dressing. This advanced technology incorporates superoxide dismutase modified oxygen nanobubbles and catalase modified oxygen nanobubbles within an alginate hydrogel matrix. The oxygen nano chamber functions through a cascade reaction between superoxide dismutase and catalase, wherein excessive superoxide in the wound environment is enzymatically decomposed into hydrogen peroxide, and this hydrogen peroxide is subsequently converted into oxygen by catalase. This enzymatic cascade effectively controls wound inflammation and hypoxia, mitigating the risk of keloid formation. Concurrently, the oxygen nanobubbles release oxygen continuously, thus providing a sustained supply of oxygen to the wound site. The oxygen release from this dynamic system stimulates fibroblast proliferation, fosters the formation of new blood vessels, and contributes to the overall wound healing process. In the rat full-thickness wound model, the cascade reaction-based nano oxygen chamber displayed a notable capacity to expedite wound healing without scarring. Furthermore, in the pilot study of porcine full-thickness wound healing, a notable acceleration of tissue repair was observed in the conceived cascade reaction-based gel treated group within the 3 days post-surgery, which represents the proliferation stage of healing process. These achievements hold significant importance in ensuring the complete functional recovery of tissues, thereby highlighting its potential as a promising approach for enhancing wound healing outcomes.
Collapse
Affiliation(s)
- Xiaoxue Han
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
| | - Leah Ju
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Chai Saengow
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wen Ren
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
| | - Randy Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy Fan
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
17
|
Kanon AP, Giezenaar C, Roy NC, Jayawardana IA, Lomiwes D, Montoya CA, McNabb WC, Henare SJ. Effects of Green and Gold Kiwifruit Varieties on Antioxidant Neuroprotective Potential in Pigs as a Model for Human Adults. Nutrients 2024; 16:1097. [PMID: 38674790 PMCID: PMC11055029 DOI: 10.3390/nu16081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Kiwifruit (KF) has shown neuroprotective potential in cell-based and rodent models by augmenting the capacity of endogenous antioxidant systems. This study aimed to determine whether KF consumption modulates the antioxidant capacity of plasma and brain tissue in growing pigs. Eighteen male pigs were divided equally into three groups: (1) bread, (2) bread + Actinidia deliciosa cv. 'Hayward' (green-fleshed), and (3) bread + A. chinensis cv. 'Hort16A' (yellow-fleshed). Following consumption of the diets for eight days, plasma and brain tissue (brain stem, corpus striatum, hippocampus, and prefrontal cortex) were collected and measured for biomarkers of antioxidant capacity, enzyme activity, and protein expression assessments. Green KF significantly increased ferric-reducing antioxidant potential (FRAP) in plasma and all brain regions compared with the bread-only diet. Gold KF increased plasma ascorbate concentration and trended towards reducing acetylcholinesterase activity in the brain compared with the bread-only diet. Pearson correlation analysis revealed a significant positive correlation between FRAP in the brain stem, prefrontal cortex, and hippocampus with the total polyphenol concentration of dietary interventions. These findings provide exploratory evidence for the benefits of KF constituents in augmenting the brain's antioxidant capacity that may support neurological homeostasis during oxidative stress.
Collapse
Affiliation(s)
- Alexander P. Kanon
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Caroline Giezenaar
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Food Experience and Sensory Testing Laboratory, School of Food and Advanced Technology, Palmerston North 4410, New Zealand
| | - Nicole C. Roy
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Isuri A. Jayawardana
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
| | - Dominic Lomiwes
- Immune Health and Physical Performance, Nutrition and Health Group, The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand;
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Smart Foods and Bioproducts, AgResearch Ltd., Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand
| | - Warren C. McNabb
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Sharon J. Henare
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
| |
Collapse
|
18
|
Feng W, Xu Y, Su S, Yu F, Li J, Jia R, Song C, Li H, Xu P, Tang Y. Transcriptomic analysis of hydrogen peroxide-induced liver dysfunction in Cyprinus carpio: Insights into protein synthesis and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170393. [PMID: 38280587 DOI: 10.1016/j.scitotenv.2024.170393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Hydrogen peroxide (H2O2), a prevalent reactive oxygen species (ROS) found in natural aquatic environments, has garnered significant attention for its potential toxicity in fish. However, the molecular mechanisms underlying this toxicity are not yet comprehensively understood. This study aimed to assess H2O2-induced liver dysfunction in common carp (Cyprinus carpio) and elucidate the underlying molecular mechanisms via biochemical and transcriptomic analyses. Common carp were divided into normal control (NC) and H2O2-treated groups (1 mM H2O2), the latter of which was exposed to H2O2 for 1 h per day over a period of 14 days. Serum biochemical analyses indicated that exposure to H2O2 resulted in moderate liver damage, characterized by elevated alanine aminotransferase (ALT) activity and lowered albumin (Alb) level. Concurrently, H2O2 exposure induced oxidative stress and modified the hepatic metabolic enzyme levels. Transcriptome analysis highlighted that 1358 and 1188 genes were significantly downregulated and upregulated, respectively, in the H2O2-treated group. These differentially expressed genes (DEGs) were significantly enriched in protein synthesis and a variety of metabolic functions such as peptide biosynthetic processes, protein transport, ribonucleoprotein complex biogenesis, oxoacid metabolic processes, and tricarboxylic acid metabolic processes. Dysregulation of protein synthesis is principally associated with the downregulation of three specific pathways: ribosome biogenesis, protein export, and protein processing in the endoplasmic reticulum (ER). Furthermore, metabolic abnormalities were primarily characterized by inhibition of the citrate cycle (TCA) and fatty acid biosynthesis. Significantly, anomalies in both protein synthesis and metabolic function may be linked to aberrant regulation of the insulin signaling pathway. These findings offer innovative insights into the mechanisms underlying H2O2 toxicity in aquatic animals, contributing to the assessment of ecological risks.
Collapse
Affiliation(s)
- Wenrong Feng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yuanfeng Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fan Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jianlin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changyou Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongxia Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
19
|
Yin T, Zhang J, Liu C, Xue Y, Liu Z, Liu S, Guo L, Wang J, Xia X. Environmental-related doses of afidopyropen induced toxicity effects in earthworms (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116223. [PMID: 38493704 DOI: 10.1016/j.ecoenv.2024.116223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Afidopyropen has high activity against pests. However, it poses potential risks to the soil ecology after entering the environment. The toxicity of afidopyropen to earthworms (Eisenia fetida) was studied for the first time in this study. The results showed that afidopyropen had low level of acute toxicity to E. fetida. Under the stimulation of chronic toxicity, the increase of reactive oxygen species (ROS) level activated the antioxidant and detoxification system, which led to the increase of superoxide dismutase (SOD) and glutathione S-transferase (GST) activities. Lipid peroxidation and DNA damage were characterized by the increase of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents. Meanwhile, the functional genes SOD, CAT, GST, heat shock protein 70 (HSP70), transcriptionally controlled tumor protein (TCTP), and annetocin (ANN) played a synergistic role in antioxidant defense. However, the comprehensive toxicity of high concentration still increased on the 28th day. In addition, strong histopathological damage in the body wall and intestine was observed, accompanied by weight loss, which indicated that afidopyropen inhibited the growth of E. fetida. The molecular docking revealed that afidopyrene combined with the surface structure of SOD and GST proteins, which made SOD and GST become sensitive biomarkers reflecting the toxicity of afidopyropen to E. fetida. Summing up, afidopyropen destroys the homeostasis of E. fetida through chronic toxic. These results provide theoretical data for evaluating the environmental risk of afidopyropen to soil ecosystem.
Collapse
Affiliation(s)
- Tao Yin
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Jingru Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Chang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Yannan Xue
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Zhenlong Liu
- Weifang Vocational College, Weifang 262737, PR China.
| | - Shuang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Longzhi Guo
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China; Shandong Province Higher Education Provincial Key Pesticide Toxicology and Application Technology Laboratory, Tai'an 271018, PR China.
| |
Collapse
|
20
|
Xue R, Wu Q, Guo L, Ye D, Cao Q, Zhang M, Xian Y, Chen M, Yan K, Zheng J. Pyridostigmine attenuated high-fat-diet induced liver injury by the reduction of mitochondrial damage and oxidative stress via α7nAChR and M3AChR. J Biochem Mol Toxicol 2024; 38:e23671. [PMID: 38454809 DOI: 10.1002/jbt.23671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Obesity is a major cause of nonalcohol fatty liver disease (NAFLD), which is characterized by hepatic fibrosis, lipotoxicity, inflammation, and apoptosis. Previous studies have shown that an imbalance in the autonomic nervous system is closely related to the pathogenesis of NAFLD. In this study, we investigated the effects of pyridostigmine (PYR), a cholinesterase (AChE) inhibitor, on HFD-induced liver injury and explored the potential mechanisms involving mitochondrial damage and oxidative stress. A murine model of HFD-induced obesity was established using the C57BL/6 mice, and PYR (3 mg/kg/d) or placebo was administered for 20 weeks. PYR reduced the body weight and liver weight of the HFD-fed mice. Additionally, the serum levels of IL-6, TNF-α, cholesterol, and triglyceride were significantly lower in the PYR-treated versus the untreated mice, corresponding to a decrease in hepatic fibrosis, lipid accumulation, and apoptosis in the former. Furthermore, the mitochondrial morphology improved significantly in the PYR-treated group. Consistently, PYR upregulated ATP production and the mRNA level of the mitochondrial dynamic factors OPA1, Drp1 and Fis1, and the mitochondrial unfolded protein response (UPRmt) factors LONP1 and HSP60. Moreover, PYR treatment activated the Keap1/Nrf2 pathway and upregulated HO-1 and NQO-1, which mitigated oxidative injury as indicated by decreased 8-OHDG, MDA and H2 O2 levels, and increased SOD activity. Finally, PYR elevated acetylcholine (ACh) levels by inhibiting AChE, and upregulated the α7nAChR and M3AChR proteins in the HFD-fed mice. PYR alleviated obesity-induced hepatic injury in mice by mitigating mitochondrial damage and oxidative stress via α7nAChR and M3AChR.
Collapse
Affiliation(s)
- Runqing Xue
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Wu
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Lulu Guo
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Dan Ye
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Cao
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Meng Zhang
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Yushan Xian
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Minchun Chen
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Kangkang Yan
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Jie Zheng
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| |
Collapse
|
21
|
Abu-Zahra NIS, Elseify MM, Atia AA, Al-Sokary ET. Impacts of florfenicol on immunity, antioxidant activity, and histopathology of Oreochromis niloticus: a potential protective effect of dietary spirulina platensis. Vet Res Commun 2024; 48:125-138. [PMID: 37563419 PMCID: PMC10811121 DOI: 10.1007/s11259-023-10189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
The misuse of antibiotics enhances the development of resistant microorganisms and decreases the efficacy of treatments. Florfenicol (FF) is one of the antibiotics approved for use in aquaculture in Egypt. Because of its extensive usage, potential negative impacts on aquatic creatures are a major concern. This motivates us to search for an appropriate neoadjuvant to work synergistically with FF and reduce adverse effects. Results from this study will contribute towards improving the understanding of the impacts of FF on Oreochromis niloticus and the possible amelioratory effects of Spirulina platensis algae (SP). O. niloticus (n = 240; 40 ± 2.5 g) were fed on two diets supplemented with or without SP for 4 weeks, then divided into four treatments each in three replicates (n = 60/treatment). G1; was fed a control diet, and the other groups were fed diets supplemented with FF (10 mg /kg of BW, G2), SP (2 g/kg of diet, G3), or FF + SP (G4) for 10 days. Among the four groups, the SP group (G3) had the best immunostimulatory effects as observed by a significant (p < 0.05) elevation in phagocytic activity, phagocytic index, IL6, and TNF-α. The treatment with FF had significantly impacted hepatic and renal tissues, as the values of liver enzymes and creatinine demonstrated tissue deterioration and also resulted in oxidative stress, which was expressed by an increase of GPx, CAT, and SOD in (G2). Additionally, the combined FF + SP improved the hematological parameters and decreased the oxidative damage induced by FF (G4). Thus, it was clear that FF has harmful effects on O. niloticus and that SP can modulate such impacts. These data recommend the use of SP as an effective immunostimulant and a probable adjuvant to FF in O. niloticus diets to attain maximum disease resistance.
Collapse
Affiliation(s)
- Nagwa I S Abu-Zahra
- Department of Fish Diseases, Kafrelsheikh Provincial Lab, Animal Health Research Institute (AHRI) Agriculture Research Center (ARC), Giza, Egypt.
| | - Mohamed M Elseify
- Department of Immunology, Kafrelsheikh Provincial Lab, Animal Health Research Institute (AHRI) Agriculture Research Center (ARC), Giza, Egypt
| | - Ayman A Atia
- Department of Pathology, Kafrelsheikh Provincial Lab, Animal Health Research Institute (AHRI) Agriculture Research Center (ARC), Giza, Egypt
| | - Eman T Al-Sokary
- Department of Biochemistry, Kafrelsheikh Provincial Lab, Animal Health Research Institute (AHRI) Agriculture Research Center (ARC), Giza, Egypt
| |
Collapse
|
22
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
23
|
Thomas C, Erni R, Wu JY, Fischer F, Lamers G, Grigolon G, Mitchell SJ, Zarse K, Carreira EM, Ristow M. A naturally occurring polyacetylene isolated from carrots promotes health and delays signatures of aging. Nat Commun 2023; 14:8142. [PMID: 38065964 PMCID: PMC10709416 DOI: 10.1038/s41467-023-43672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
To ameliorate or even prevent signatures of aging in ultimately humans, we here report the identification of a previously undescribed polyacetylene contained in the root of carrots (Daucus carota), hereafter named isofalcarintriol, which we reveal as potent promoter of longevity in the nematode C. elegans. We assign the absolute configuration of the compound as (3 S,8 R,9 R,E)-heptadeca-10-en-4,6-diyne-3,8,9-triol, and develop a modular asymmetric synthesis route for all E-isofalcarintriol stereoisomers. At the molecular level, isofalcarintriol affects cellular respiration in mammalian cells, C. elegans, and mice, and interacts with the α-subunit of the mitochondrial ATP synthase to promote mitochondrial biogenesis. Phenotypically, this also results in decreased mammalian cancer cell growth, as well as improved motility and stress resistance in C. elegans, paralleled by reduced protein accumulation in nematodal models of neurodegeneration. In addition, isofalcarintriol supplementation to both wild-type C57BL/6NRj mice on high-fat diet, and aged mice on chow diet results in improved glucose metabolism, increased exercise endurance, and attenuated parameters of frailty at an advanced age. Given these diverse effects on health parameters in both nematodes and mice, isofalcarintriol might become a promising mitohormesis-inducing compound to delay, ameliorate, or prevent aging-associated diseases in humans.
Collapse
Affiliation(s)
- Carolin Thomas
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Reto Erni
- Laboratory of Chemistry and Applied Biosciences, Department of Organic Chemistry, Swiss Federal Institute (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Jia Yee Wu
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Fabian Fischer
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
- CureVac SE, Tübingen, 72076, Germany
| | - Greta Lamers
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Sarah J Mitchell
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, 08540, USA
| | - Kim Zarse
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
- Institute of Experimental Endocrinology, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Erick M Carreira
- Laboratory of Chemistry and Applied Biosciences, Department of Organic Chemistry, Swiss Federal Institute (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland.
| | - Michael Ristow
- Laboratory of Energy Metabolism, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute (ETH) Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland.
- Institute of Experimental Endocrinology, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany.
| |
Collapse
|
24
|
Geng P, Jin Q, Zhou X, Zhu F. Effects of environmental pollutant benzop[α]yrene on the innate immunity of Scylla paramamosain and its mechanism. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109228. [PMID: 37967729 DOI: 10.1016/j.fsi.2023.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Benzo[α]pyrene (BaP), a polycyclic aromatic hydrocarbon, is present in the aquatic environment and may be harmful to aquatic animals. We exposed the mud crab Scylla paramamosain to BaP for 7 days, the of superoxide dismutase (SOD), catalase (CAT), phenoloxidase (PO), lysozyme (LZM), glutathione (GSH), glutathione-S-transferase (GST), and acid phosphatase (ACP) activities in the hemolymph of mud crab were reduced. Additionally, the reactive oxygen species content was increased in mud crabs after exposed to BaP. When BaP concentration was increased, the total hemocyte count (THC), the survival rate of hemocytes and their proliferation were decreased. Histopathology analysis revealed damaged hepatopancreas cells, which indicating that BaP exposure is cytotoxic to crab hemocytes. However, the degree of DNA damage did not worsen with increasing BaP concentration. The expression levels of p53, MCM7, Caspase-3, and Myosin were changed with increasing concentration of BaP, which indicated that BaP exposure may affect apoptosis and phagocytosis in mud crabs. As BaP concentration was increased, the apoptosis rate of hemocytes was increased and the phagocytosis was decreased. These results confirmed that BaP exposure inhibited the innate immune response of mud crabs. A possible explanation for this effect is that BaP reduces the antioxidant enzyme activity and increases the reactive oxygen species content in mud crabs, thereby oxidizing and damaging hemocytes, which stimulates phagocytosis and apoptosis and negatively affects the innate immunity of S. paramamosain.
Collapse
Affiliation(s)
- Peilin Geng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Qingri Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
25
|
Jia R, Dong Y, Hou Y, Feng W, Li B, Zhu J. Transcriptome Analysis Reveals the Effect of Stocking Density on Energy Metabolism in the Gills of Cherax quadricarinatus under Rice-Crayfish Co-Culture. Int J Mol Sci 2023; 24:11345. [PMID: 37511105 PMCID: PMC10378901 DOI: 10.3390/ijms241411345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Stocking density is a crucial factor affecting productivity in aquaculture, and high stocking density is a stressor for aquatic animals. In this study, we aimed to investigate the effects of stocking densities on oxidative stress and energy metabolism in the gills of Cherax quadricarinatus under rice-crayfish farming. The C. quadricarinatus were reared at low density (LD), medium density (MD), and high density (HD) for 90 days. The results showed that the superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and malondialdehyde (MDA) levels were higher in the HD group than those in the LD group. Transcriptomic analysis revealed 1944 upregulated and 1157 downregulated genes in the gills of the HD group compared to the LD group. Gene ontology (GO) enrichment analysis indicated that these differentially expressed genes (DEGs) were significantly associated with ATP metabolism. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis also showed that high stocking density resulted in the dysregulation of oxidative phosphorylation. Furthermore, high stocking density upregulated six lipid metabolism-related pathways. Overall, our findings, despite the limited number of samples, suggested that high stocking density led to oxidative stress and dysregulation of energy metabolism in the gills of C. quadricarinatus under rice-crayfish co-culture. Alteration in energy metabolism may be an adaptive response to adverse farming conditions.
Collapse
Affiliation(s)
- Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214082, China
| | - Yin Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yiran Hou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214082, China
| | - Wenrong Feng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214082, China
| | - Bing Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214082, China
| | - Jian Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214082, China
| |
Collapse
|
26
|
Ahmad Ansari M, Shahid M, Ahmad SF, Ahmad A, Alanazi A, Malik A, Bin Jardan YA, Attia SM, Bakheet SA, Raish M. Sinapic acid alleviates 5-fluorouracil-induced nephrotoxicity in rats via Nrf2/HO-1 signalling. Saudi Pharm J 2023; 31:1351-1359. [PMID: 37333019 PMCID: PMC10275981 DOI: 10.1016/j.jsps.2023.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Fluoropyrimidine 5-fluorouracil (5-FU) is a DNA analogue broadly used in chemotherapy, though treatment-associated nephrotoxicity limits its widespread clinical use. Sinapic acid (SA) has potent antioxidant, anti-inflammatory, and anti-apoptotic effects, we investigated its protective effects against 5-FU-induced nephrotoxicity in a rat model. We designated four treatment groups each Group I (control) received five intraperitoneal saline injections (once daily) from days 17 to 21; Group II received five intraperitoneal injections of 5-FU (50 mg/kg/day) from days 17 to 21; Group III received an oral administration of SA (40 mg/kg) for 21 days and five intraperitoneal injections of 5-FU (50 mg/kg/day) from days 17 to 21; and Group IV received an oral administration of SA (40 mg/kg) for 21 days (n-six rats in each group). blood samples were collected on day 22 from each group. Animals were sacrificed and their kidneys removed, and instantly frozen. 5-FU caused oxidative stress, inflammation, and activation of the apoptotic pathway by upregulating Bax and Caspase-3 and downregulating Bcl-2. However, SA exposure reduced serum toxicity indicators, boosted antioxidant defences, and reduced kidney apoptosis, which was confirmed by histopathological analysis. Therefore, prophylactic administration of SA could inhibit 5-FU-induced renal injuries in rats via suppression of renal inflammation and oxidative stress, primarily through regulation of NF-κB and proinflammatory cytokines, inhibition of renal apoptosis, and restoration of tubular epithelial antioxidant activities and cytoprotective defences.
Collapse
Affiliation(s)
- Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrazaq Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Zhou S, Yang Q, Song Y, Cheng B, Ai X. Effect of Copper Sulphate Exposure on the Oxidative Stress, Gill Transcriptome and External Microbiota of Yellow Catfish, Pelteobagrus fulvidraco. Antioxidants (Basel) 2023; 12:1288. [PMID: 37372018 DOI: 10.3390/antiox12061288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the potential adverse effects of the practical application of copper sulfate on yellow catfish (Pelteobagrus fulvidraco) and to provide insights into the gill toxicity induced by copper sulphate. Yellow catfish were exposed to a conventional anthelmintic concentration of copper sulphate (0.7 mg/L) for seven days. Oxidative stress biomarkers, transcriptome, and external microbiota of gills were examined using enzymatic assays, RNA-sequencing, and 16S rDNA analysis, respectively. Copper sulphate exposure led to oxidative stress and immunosuppression in the gills, with increased levels of oxidative stress biomarkers and altered expression of immune-related differentially expressed genes (DEGs), such as IL-1β, IL4Rα, and CCL24. Key pathways involved in the response included cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and Toll-like receptor signaling pathway. The 16S rDNA analysis revealed copper sulphate altered the diversity and composition of gill microbiota, as evidenced by a significant decrease in the abundance of Bacteroidotas and Bdellovibrionota and a significant increase in the abundance of Proteobacteria. Notably, a substantial 8.5-fold increase in the abundance of Plesiomonas was also observed at the genus level. Our findings demonstrated that copper sulphate induced oxidative stress, immunosuppression, and gill microflora dysbiosis in yellow catfish. These findings highlight the need for sustainable management practices and alternative therapeutic strategies in the aquaculture industry to mitigate the adverse effects of copper sulphate on fish and other aquatic organisms.
Collapse
Affiliation(s)
- Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Yi Song
- Chinese Academy of Fishery Sciences, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
- Key Laboratory of Aquatic Product Quality and Safety Control, Ministry of Agriculture, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
| | - Bo Cheng
- Chinese Academy of Fishery Sciences, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
- Key Laboratory of Aquatic Product Quality and Safety Control, Ministry of Agriculture, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| |
Collapse
|
28
|
Wei W, Yang Q, Xiang D, Chen X, Wen Z, Wang X, Xu X, Peng C, Yang L, Luo M, Xu J. Combined impacts of microplastics and cadmium on the liver function, immune response, and intestinal microbiota of crucian carp (Carassius carassius). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115104. [PMID: 37295303 DOI: 10.1016/j.ecoenv.2023.115104] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and the heavy metal cadmium (Cd) have attracted global attention for their toxicological interactions in aquatic organisms. The purpose of this investigation was evaluating the effect of MPs (1 mg L-1) and Cd (5 mg L-1) on the liver function, immune response of crucian carp (Carassius carassius) after 96 h exposure, and intestinal microbiota after 21 days, respectively. Co-exposure to MPs and Cd significantly enhanced MP accumulation in the liver of the crucian carp compared to the accumulation with exposure to MPs alone. Co-exposure to MPs and Cd triggered notable histopathological alterations accompanied by increased hepatic cell necrosis and inflammation, and was associated with higher aspartate aminotransferase and alanine aminotransferase levels, lower superoxide dismutase and catalase activity levels, but higher malondialdehyde content and total antioxidant capacity in the liver. Moreover, the combined treatment of MPs and Cd led to the up-regulated transcription of genes related to immune response, such as interleukin 8 (il-8), il-10, il-1β, tumor necrosis factor-α, and heat shock protein 70, both in the liver and spleen. Co-exposure to MPs and Cd reduced the variety and abundance of the intestinal microbiota in the crucian carp. Our research indicates that the combined exposure to MPs and Cd may exert synergistic toxic effects on crucian carp, which could impede the sustainable growth of the aquaculture industry and pose potential risks to food safety.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiufeng Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Dan Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhengrong Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingzhong Luo
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China.
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
29
|
Bergen J, Karasova M, Bileck A, Pignitter M, Marko D, Gerner C, Del Favero G. Exposure to dietary fatty acids oleic and palmitic acid alters structure and mechanotransduction of intestinal cells in vitro. Arch Toxicol 2023; 97:1659-1675. [PMID: 37117602 PMCID: PMC10182945 DOI: 10.1007/s00204-023-03495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Intestinal cells are continuously exposed to food constituents while adapting to peristaltic movement and fluid shear stress. Oleic acid (OA) and palmitic acid (PA) are among the most prevalent fatty acids with respect to dietary lipids. Despite the central importance of dietary lipids for a balanced diet, awareness about potential detrimental effects related to excessive consumption is increasing; this includes toxicity, metabolic deregulation, and, particularly for cancer cells, a benefit from the uptake of fatty acids related to promotion of metastasis. Expanding on this, we started elucidating the effects of OA and PA (25-500 µM) on non-transformed human intestinal epithelial cells (HCEC-1CT) in comparison to colon carcinoma cells (HCT116), with regard to the mechanosensory apparatus. Hence, intestinal cells' motility is on the one side essential to ensure adaption to peristaltic movement and barrier function, but also to enable metastatic progression. Incubation with both OA and PA (≥ 25 µM) significantly decreased membrane fluidity of HCT116 cells, whereas the effect on HCEC-1CT was more limited. Application of rhodamine-labelled PA demonstrated that the fatty acid is incorporated into the plasma membrane of HCT116, which could not be observed in the non-tumorigenic cell line. Down-streaming into the intracellular compartment, a pronounced rearrangement of actin cytoskeleton was evident in both cell lines (OA and PA; 25 and 100 µM). This was accompanied by a variation of translocation efficiency of the mechanosensitive co-transcription factor YAP1, albeit with a stronger effect seen for PA and the cancer cells. Untargeted proteomic analysis confirmed that exposure to OA and PA could alter the response capacity of HCT116 cells to fluid shear stress. Taken together, OA and PA were able to functionally modulate the mechanosensory apparatus of intestinal cells, implying a novel role for dietary fatty acids in the regulation of intestinal pathophysiology.
Collapse
Affiliation(s)
- Janice Bergen
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Martina Karasova
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
| |
Collapse
|
30
|
Xue Y, Li Z, Liu C, Liu D, Wang J, Liu C, Xia X. Effect of different exposure times and doses of cyantraniliprole on oxidative stress and genotoxicity in earthworms (Eisenia fetida). CHEMOSPHERE 2023; 319:138023. [PMID: 36731673 DOI: 10.1016/j.chemosphere.2023.138023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Cyantraniliprole, the second generation of diamide insecticides, is widely used to control various pests, which will certainly result in adverse effects on earthworms in soil. In this study, after exposure with six doses of cyantraniliprole (0, 0.5, 1, 2.5, 5, and 10 mg kg-1) by artificial soil method, six biomarkers, four functional genes, and histopathological changes of Eisenia fetida were measured on the 7th, 14th, 21st, and 28th days. The comprehensive toxicity was assessed by the IBR version 2 (IBRv2) method. The results showed that the reactive oxygen species (ROS) level was induced significantly. The superoxide dismutase (SOD) activity was activated in 7-28 days. The catalase (CAT) and glutathione S-transferases (GST) activities were also activated in the initial 14 days. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) contents in the high treatment increased until the late stage of exposure. On the 28th day, the metallothionein (MT) and calreticulin (CRT) genes were up-regulated, the transcriptionally controlled tumor protein (TCTP) gene was down-regulated. The SOD gene showed a good correlation with SOD activity. Extensive histopathological damage was found in the endoderm and ectoderm of E. fetida. The 5 and 10 mg kg-1 treatments showed higher comprehensive toxicity than the 0.5, 1, and 2.5 mg kg-1 treatments on the 28th day. These results suggest that cyantraniliprole exerted certain subchronic toxic effects of oxidative stress, DNA damage, and histopathological changes to E. fetida, which provided theoretical basis for rational use of cyantraniliprole and evaluation of its safety to soil environment.
Collapse
Affiliation(s)
- Yannan Xue
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Zhaoge Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Chao Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Dongmei Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Chang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
31
|
Liu F, Li G, Li H. Downregulated expression of TaDeg7 inhibits photosynthetic activity in bread wheat ( Triticum aestivum L.). PHOTOSYNTHETICA 2023; 61:97-107. [PMID: 39650130 PMCID: PMC11515814 DOI: 10.32615/ps.2023.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/14/2023] [Indexed: 12/11/2024]
Abstract
Deg proteases play critical roles in photoprotection and PSII-repair circle, which remains elusive in cereal crops including wheat. Here, a Deg7-encoding gene TaDeg7 was silenced in wheat via a Barley stripe mosaic virus-induced gene-silencing system (BSMV-VIGS). When the expression level of TaDeg7 was downregulated, the photosynthetic activity including CO2 assimilation rate, actual photochemical efficiency of PSII, and electron transport rate declined while the nonphotochemical quenching increased significantly. When grown in high light, the BSMV:TaDeg7 plants accumulated more soluble sugar, malondialdehyde, and superoxide anion but had lower superoxide dismutase activity and less ascorbic acid. Additionally, the expression levels of TaPsbA and TarbcS were repressed in the BSMV:TaDeg7 plants in high light. The BSMV:TaDeg7 plants also were more sensitive to high-light stress. Collectively, it appeared that TaDeg7 may be a potential target for wheat radiation-use efficiency improvement against high light stress.
Collapse
Affiliation(s)
- F.F. Liu
- College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - G.P. Li
- College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - H.W. Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
32
|
Sánchez-López L, Ropero de Torres N, Chico B, Soledad Fagali N, de los Ríos V, Escudero ML, García-Alonso MC, Lozano RM. Effect of Wear-Corrosion of Reduced Graphene Oxide Functionalized with Hyaluronic Acid on Inflammatory and Proteomic Response of J774A.1 Macrophages. METALS 2023; 13:598. [DOI: 10.3390/met13030598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The presence of a worn surface in the implanted material, as in the case of a replacement of a damaged osteoarticular joint, is the normal condition after implantation. This manuscript focuses precisely on the comparative study of the cellular behavior on worn CoCr surfaces, analyzing the effect of different surface modifications on macrophages’ responses. CoCr surfaces were modified by the deposition of electrochemically reduced graphene oxide (CoCrErGO), followed by additional surface functionalization with hyaluronic acid (CoCrErGOHA). After the wear corrosion processes, the macrophage response was studied. In addition, macrophage supernatants exposed to the surfaces, before and after wear, were also evaluated for osteoblast response through the analysis of the metabolic activity, plasma membrane damage, and phosphatase alkaline activity (ALP). The proteomic analysis and the quantitative TNF-α/IL-10 ratios of the J774A.1 macrophages exposed to the surfaces under study showed a polarization shift from M0 (basal state) to M1, associated with the pro-inflammatory response of all surfaces. A lower M1 polarization was observed upon exposure to the surface modification with ErGO, whereas posterior HA functionalization attenuated, even more, the M1 polarization. The wear corrosion process contributed to inflammation and exacerbated the M1 polarization response on macrophages to CoCr, which was diminished for the ErGO and attenuated the most for the ErGOHA surfaces. Comparative proteomics showed that the pathways related to M1 polarization were downregulated on the surfaces of CoCrErGOHA, which suggests mechanisms for the observed attenuation of M1 polarization. The suitable immuno-modulatory potential induced by the ErGOHA surface, with and without wear, together with the stimulation of ALP activity in osteoblasts induced by macrophage supernatants, promotes the mineralization processes necessary for bone repair. This makes it feasible to consider the adsorption of ErGOHA on CoCr as a recommended surface treatment for the use of biomaterials in osseous joint applications.
Collapse
Affiliation(s)
- Luna Sánchez-López
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- PhD Program in Advanced Materials and Nanotechnology, Doctoral School, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Noelia Ropero de Torres
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Belén Chico
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Natalia Soledad Fagali
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| | - Vivian de los Ríos
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - María Lorenza Escudero
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - María Cristina García-Alonso
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Rosa María Lozano
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
33
|
Ozyurt B, Ozkemahli G, Yirun A, Ozyurt AB, Bacanli M, Basaran N, Kocer-Gumusel B, Erkekoglu P. Comparative evaluation of the effects of bisphenol derivatives on oxidative stress parameters in HepG2 cells. Drug Chem Toxicol 2023; 46:314-322. [PMID: 35045766 DOI: 10.1080/01480545.2022.2028823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bisphenol A (BPA) BPA is an endocrine-disrupting chemical that has a wide range of uses. Exposure to BPA can be by oral, inhalation, and parenteral routes. Although its use in several products is limited, there is still concern on its adverse health effects, particularly for susceptible populations like children. Alternative bisphenols, such as bisphenol S (BPS) and bisphenol F (BPF), are now being used instead of BPA, although there is little information on the toxicity of these bisphenols. BPF is used as a plasticizer in the production of several industrial materials as well as in the coating of drinks and food cans. BPS is used in curing fast-drying epoxy glues, as a corrosion inhibitor and as a reactant in polymer reactions. In this study, the possible toxic effects of BPA, BPS, and BPF in HepG2 cells were evaluated comparatively. For this purpose, their effects on cytotoxicity, production of intracellular reactive oxygen species (ROS), oxidant/antioxidant parameters, and DNA damage have been examined. The cytotoxicity potentials of different bisphenols were found to be as BPS > BPF > BPA. All bisphenol derivatives caused increases in intracellular ROS production. We observed that all bisphenol derivatives cause an imbalance in some oxidant/antioxidant parameters. Bisphenols also caused significant DNA damage in order of BPF > BPA > BPS. We can suggest that both of the bisphenol derivatives used as alternatives to BPA also showed similar toxicities and may not be considered as safe alternatives. Mechanistic studies are needed to elucidate this issue.
Collapse
Affiliation(s)
- Busra Ozyurt
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Gizem Ozkemahli
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Anil Yirun
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey.,Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Çukurova University, Adana, Turkey
| | - Aylin Balci Ozyurt
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Merve Bacanli
- Gülhane Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Health Sciences University, Ankara, Turkey
| | - Nursen Basaran
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Lokman Hekim University, Ankara, Turkey
| | - Pinar Erkekoglu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
34
|
Harikrishnan R, Devi G, Balamurugan P, Abdel-Warith AWA, Younis EM, Doan HV, Balasundaram C, Davies SJ, El-Haroun E. Immunostimulatory effect of mannan-oligosaccharides supplementation diet in milkfish (Chanos chanos). FISH & SHELLFISH IMMUNOLOGY 2023; 133:108568. [PMID: 36717065 DOI: 10.1016/j.fsi.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/07/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The current study was designed to examine the impacts of dietary mannan-oligosaccharides (MOS) on growth, hemato-biochemical changes, digestive-antioxidant enzyme activity, immune response, and disease resistance of milkfish (Chanos chanos) fed diets contained MOS i.e. 1g, 2g, and 3g MOS. The growth parameters were significantly influence in milkfish fed all MOS diets, whereas the feed conversion ratio (FCR) and protein efficiency ratio (PER) were significantly influence with 2g or 3g MOS diets. The total protein (TP), globulin (GB), and glucose (GLU) levels, amylase, protease, liver enzymes were found significantly high in fish fed 2g or 3g MOS diets; but, lipase, trypsin, and alkaline phosphatase (ALP) enzymes were increased significantly at 3g MOS diet. All MOS inclusion levels were significantly increased total and Lactobacillus intestinal microflora population. The oxidative enzymes activity as superoxide desmutase (SOD) and catalyze (CAT) were progressively increased with all MOS supplementation diet, but the glutathione peroxidase (GPx) and lactate dehydrogenase (LDH) content were found significantly high in fish fed 2g or 3g MOS diets. Similarly, the reduced glutathione (GSH) and glutathione reductase (GR) contents were observed significantly high level in fish fed 3g MOS diet. The phagocytic (PC) and lysozyme (LYZ) activities were found gradually increase in fish fed increasing level of MOS diets, while the respiratory burst (RB) and malondialdehyde (MDA) activities were seen significant in fish fed 2g and 3g MOS diets. The current research work confirmed that C. chanos fed diets contained 3g kg-1 MOS recorded better growth performance, digestive-antioxidant, immune response, and disease resistance.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India.
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Paramaraj Balamurugan
- Department of Biotechnology, St. Michael College of Engineering and Technology, Kalayarkoil, 630 551, Tamil Nadu, India
| | - Abdel-Wahab A Abdel-Warith
- Department of Zoology, College of Science, King Saudi University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saudi University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Simon J Davies
- School of Science and Engineering, National University of Ireland Galway Republic of Ireland, H91 TK33, Galway, Ireland
| | - Ehab El-Haroun
- Fish Nutrition Research Laboratory, Animal Production Department, Faculty of Agriculture, Cairo University, Egypt
| |
Collapse
|
35
|
Cardioprotective effects of minocycline against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2023; 158:114055. [PMID: 36495663 DOI: 10.1016/j.biopha.2022.114055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Doxorubicin (Dox)-induced cardiotoxicity has limited its use. Inflammation, oxidative stress, and apoptosis have important roles in Dox-induced cardiotoxicity. Minocycline (Min) is an antibiotic with anti-inflammatory, anti-oxidant and anti-apoptotic properties. Here, the cardioprotective effects of Min against Dox-induced cardiotoxicity in adult male rats were evaluated. METHODS Forty-two adult male rats were divided into six groups including control group (normal saline), Dox group, Min groups (Min 45 mg/kg and Min 90 mg/kg), and treatment groups (Dox + Min 45 mg/kg and Dox + Min 90 mg/kg). Dox (2.5 mg/kg) was administered three times a week for two weeks, and Min once a day for three weeks via intraperitoneal route. Cardiac tissue sections were stained with hematoxylin and eosin for histological examination. The activities of lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB) in serum as well as the activity of catalase and superoxide dismutase (SOD) in cardiac tissue were measured. Cardiac tissue levels of malondialdehyde (MDA), TNF-α, and IL-1β were also measured using ELISA. RESULTS Compared with the Dox group, treatment with Min significantly decreased the activity of LDH and CK-MB. Min also increased the activity of catalase and SOD in the tissue samples. The results showed that the levels of MDA, TNF-α, and IL-1β in cardiac tissue samples were significantly lower in the Min groups compared with the Dox group. In addition, histopathological results showed that Min reduced the tissue damage caused by Dox. CONCLUSION Min reduced Dox-induced cardiotoxicity. The anti-oxidant and anti-inflammatory properties of Min may contribute to its protective effects.
Collapse
|
36
|
Song Z, Li P, Hu S, Liu C, Hao T, Han X. Influence of Dietary Phosphorus on the Growth, Feed Utilization, Proximate Composition, Intestinal Enzymes, and Oxidation Resistance of Sea Cucumber Apostichopus japonicus. AQUACULTURE NUTRITION 2023; 2023:2266191. [PMID: 37124880 PMCID: PMC10139806 DOI: 10.1155/2023/2266191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Six experimental diets (crude protein 12.58%, crude fat 1.93%, and total energy 10.72 kJ/kg) containing 0.24%, 0.37%, 0.51%, 0.62%, 0.77%, and 0.89% phosphorus were formulated to evaluate dietary phosphorus requirement for sea cucumber Apostichopus japonicus. The feeding trial was conducted in 18 fiberglass tanks (220 L) for 63 days. Each diet was randomly assigned to triplicate tanks of 50 sea cucumbers (9.99 g) and fed once daily. With the increase of dietary phosphorus level, weight gain (WG), specific growth rate (SGR), daily feed intake (DFI), feces production ratio, the activities of amylase, alkaline phosphatase, phosphofructokinase, succinate dehydrogenase, and glutathione peroxidase as well as the contents of glutathione and glutathione oxidized significantly increased and then decreased afterwards (P < 0.05). A. japonicus fed diet with 0.63%, 0.63%, and 0.55% dietary phosphorus was estimated to yield the highest WG (11.39 g), SGR (1.09%/d), and DFI (2.55%/d) according to the quadratic regression analysis of WG, SGR, and DFI against dietary phosphorus level, respectively. The apparent digestibility of dry material and energy followed an opposite tendency. Feed efficiency, the contents of whole-body phosphorus, initially increased and then plateaued, fitting piecewise-linear models with breakpoint at 0.57% and 0.55% dietary phosphorus. Daily phosphorus intake, pyruvate kinase activity, and the ratio of glutathione and glutathione oxidized increased (P < 0.05) but the apparent digestibility of phosphorus, the activities of alkaline protease, aspartate transaminase, and phosphoenolpyruvate carboxykinase decreased (P < 0.05), responding to the increasing dietary phosphorus. Considering the present results, the optimal dietary phosphorus for A. japonicus is 0.57-0.63%.
Collapse
Affiliation(s)
- Zhidong Song
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Peiyu Li
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Shunxin Hu
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Caili Liu
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Tiantian Hao
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Xiaozhao Han
- Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
37
|
Koba Y, Nakamoto M, Matsusaki M. Fabrication of a Polymeric Inhibitor of Proximal Metabolic Enzymes in Hypoxia for Synergistic Inhibition of Cancer Cell Proliferation, Survival, and Migration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51790-51797. [PMID: 36375210 DOI: 10.1021/acsami.2c16454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since conventional molecular targeted drugs often result in side effects, the development of novel molecular targeted drugs with both high efficacy and selectivity is desired. Simultaneous inhibition of metabolically and spatiotemporally related proteins/enzymes is a promising strategy for improving therapeutic interventions in cancer treatment. Herein, we report a poly-α-l-glutamate-based polymer inhibitor that simultaneously targets proximal transmembrane enzymes under hypoxia, namely, carbonic anhydrase IX (CAIX) and zinc-dependent metalloproteinases. A polymer incorporating two types of inhibitors more effectively inhibited the proliferation and migration of human breast cancer cells than a combination of two polymers functionalized exclusively with either inhibitor. Synergistic inhibition of cancer cells would occur owing to the hetero-multivalent interactions of the polymer with proximate enzymes on the cancer cell membrane. Our results highlight the potential of polymer-based cancer therapeutics.
Collapse
Affiliation(s)
- Yuki Koba
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| | - Masahiko Nakamoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
38
|
Shams SGE, Eissa RG. Amelioration of ethanol-induced gastric ulcer in rats by quercetin: implication of Nrf2/HO1 and HMGB1/TLR4/NF-κB pathways. Heliyon 2022; 8:e11159. [PMID: 36311358 PMCID: PMC9614827 DOI: 10.1016/j.heliyon.2022.e11159] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Gastric ulcer is a serious medical condition that can be developed due to an imbalance in the protective and destructive factors of the gastric system. Available therapies do not provide definite cure, thus, there is an urge to seek for alternative treatments. Quercetin is a natural flavonoid that possesses antioxidant and anti-inflammatory properties. In the current study, the antiulcerogenic effect of quercetin in ethanol-induced gastric ulcer (EI-GU) rat model was compared to Antodine® (a reference drug), to elucidate the potential underlying mechanisms. Quercetin (50 mg/kg) and Antodine® (20 mg/kg) were given orally for one week post ulcer induction by ethanol. EI-GU was associated with downregulation of SOD, CAT, Nrf2 and HO1, and accompanied by upregulation of inflammatory markers (i.e., HMGB1, NF-κB and TNFα) and an increase in Bax/Bcl2 ratio. Administration of quercetin resulted in a significant reduction in gastric volume in the stomach of ulcerative rats by 86% and a significant decrease in gastric lesion count by 3.5- folds, as compared with the ulcerative rats. Moreover, rats treated with quercetin showed upregulation of Nrf2 by 3.3-fold change and in HO1 by 3.5-fold change when compared to ulcerated rats, and decreased HMGB1, TLR4, NF-κB p65 and TNF-α by 50%, 53%, 52.9% and 54.9%, respectively. Treatment of rats with quercetin reduced Bax and Bax/Bcl2 ratio and increased Bcl2 relative to ulcerated rats. Thus, it can be concluded that the ulcerogenic curative properties of quercetin were mediated by antioxidant, anti-inflammatory and antiapoptotic activities.
Collapse
Affiliation(s)
| | - Rana G. Eissa
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt,Corresponding author.;
| |
Collapse
|
39
|
Chen Z, Xu Y, Lu Y, Miao Z, Yi Y, Wang L, Hou W, Ai Y, Wang H, Min T. Effect and mechanism of eugenol on storage quality of fresh-peeled Chinese water chestnuts. FRONTIERS IN PLANT SCIENCE 2022; 13:965723. [PMID: 36247627 PMCID: PMC9557107 DOI: 10.3389/fpls.2022.965723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The study aimed to investigate the effect and mechanism of eugenol treatment on fresh-peeled Chinese water chestnuts (CWCs). The results found that eugenol treatment maintained the appearance of fresh-peeled CWCs, accompanied by higher L* value, total solids and O2 contents, as well as lower browning degree, weight loss rate, CO2 content, a* and b* values. In addition, eugenol treatment significantly reduced the activities of peroxidase, phenylalanine ammonia-lyase, and polyphenol oxidase, as well as the total content of soluble quinone in fresh-peeled CWCs. Meanwhile, fresh-peeled CWCs treated with eugenol showed markedly lower content of total flavonoids, which may be related to yellowing. Furthermore, eugenol treatment suppressed the rates of O2·- and OH·- production as well as the contents of H2O2 and malondialdehyde in fresh-peeled CWCs. During the storage, eugenol treatment not only increased the activities of catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase as well as the DPPH free radical scavenging rate, but also increased the total phenolics, ascorbic acid and glutathione contents. In summary, eugenol treatment delayed the surface discoloration of fresh-peeled CWCs by improving the antioxidant capacity, inhibiting the phenolic compound metabolism and scavenging ROS, thus effectively maintaining the quality of fresh-peeled CWCs while extending their shelf life.
Collapse
Affiliation(s)
- Zhe Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuhan Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yang Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zeyu Miao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yang Yi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Limei Wang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wenfu Hou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Youwei Ai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongxun Wang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ting Min
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
40
|
Zheng T, Song Z, Tao Y, Qiang J, Ma J, Lu S, Xu P. Transport stress induces innate immunity responses through TLR and NLR signaling pathways and increases mucus cell number in gills of hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂). FISH & SHELLFISH IMMUNOLOGY 2022; 127:166-175. [PMID: 35716971 DOI: 10.1016/j.fsi.2022.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Transport stress poses a threat to most teleost fish in production, causing mass losses to the aquaculture industry. Fish gills are a mucosa-associated lymphoid tissue in direct contact with water, and they represent an ideal tissue type to study mechanisms of transport stress. In this study, hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂) were exposed to simulated transport stress for 16 h and then allowed to recover for 96 h. Gill tissues and blood samples were collected at 0 h, 2 h, 4 h, 8 h, and 16 h of transport stress and after 96 h of recovery, as well as from fish in a control group at the same sampling times. The activities of alkaline phosphatase, acid phosphatase, and superoxide dismutase and the total antioxidant capacity first increased and then decreased during the 16 h transport treatment. Exposure to 16 h of transport stress resulted in decreased serum triglyceride and total cholesterol contents, increased serum glucose content, increased activities of alanine aminotransferase and aspartate transaminase, and more mucus cells, compared with the control group. Transcriptome analysis revealed differential expression of 1525 genes (803 down-regulated and 722 up-regulated) between the control and 16 h transportation groups. Functional analyses revealed that the differentially expressed genes were enriched in immune response, signal transduction, and energy metabolism pathways. We found that tlr5, tnfɑ, hsp90ɑ, il-1ß, map2k4, il12ba were clearly up-regulated and arrdc2, syngr1a were clearly down-regulated following 8 h and/or 16 h simulated transport after qRT-PCR validation. These findings suggested that Toll- and NOD-like receptor signaling pathways potentially mediate transport stress. Transport stress altered innate immunity responses and energy use in the gill tissues of hybrid yellow catfish. After 96 h of recovery, only alanine aminotransferase and alkaline phosphatase activities and the number of mucus cells had returned to control levels. We speculate that for juvenile yellow catfish to recover to a normal state, a recovery period of more than 96 h is required after 16 h of transportation. These results provide new perspectives on the immune response of yellow catfish under transport stress and theoretical support for future optimization of their transportation.
Collapse
Affiliation(s)
- Tao Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Zhuo Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Junlein Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
41
|
Yang X, Yu X, Sun N, Shi X, Niu C, Shi A, Cheng Y. Glyphosate-based herbicide causes spermatogenesis disorder and spermatozoa damage of the Chinese mitten crab (Eriocheir sinensis) by affecting testes characteristic enzymes, antioxidant capacities and inducing apoptosis. Toxicol Appl Pharmacol 2022; 447:116086. [PMID: 35643123 DOI: 10.1016/j.taap.2022.116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Glyphosate-based herbicide (GBH) is a popular herbicide, which may contaminate the water environment and affect aquatic animals. In this study, testes morphology, physiology function, apoptosis pathway, and spermatozoa quality of Chinese mitten crab (Eriocheir sinensis) were evaluated after 7 days of GBH exposure (48.945 mg/l,1/2 of the 96 h LC50 value of GBH). Results showed that GBH induced spermatogenesis disorder by H.E. staining. The obvious vacuolar degenerations and fewer spermatids of the testes accompanied by decreased primary spermatocytes-type seminiferous tubules (PSc-STs) were observed. The extensive apoptosis of spermatids by TUNEL staining was visible. Meanwhile, testes'' characteristic enzyme activities associated with spermatogenesis, including lactate dehydrogenase (LDH) and acid phosphatase (ACP) were significantly decreased. Testes suffered oxidative damage as reflected by the significant decrease in superoxide dismutase (SOD) activities, the significant increase in malondialdehyde (MDA) contents, and heat shock proteins (HSP-70) mRNA expression. Further studies demonstrated that GBH induced apoptosis of testes through the mitochondrial apoptotic pathway by upregulating the relative mRNA expression of cysteinyl aspartate specific proteinase 3 (Caspase-3), Bcl-2-associated X protein (Bax), and downregulating B-cell lymphoma 2 (Bcl-2). Oxidative damage may be one of the causes of GBH-induced apoptosis in testes. After GBH exposure, the morphology of spermatophores was changed. The survival and the acrosome reaction (AR) ratio of spermatozoa was significantly decreased. Altogether, these results demonstrated that GBH affects spermatogenesis, spermatophore and spermatozoa quality of E.sinensis, which provides novel knowledge about the toxic effects of GBH on the reproductive system of crustaceans.
Collapse
Affiliation(s)
- Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Xiaowen Yu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Ningbo Sun
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xingliang Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Chao Niu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Aoya Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
42
|
Fialkowski RJ, Border SE, Bolitho I, Dijkstra PD. Social dominance and reproduction result in increased integration of oxidative state in males of an African cichlid fish. Comp Biochem Physiol A Mol Integr Physiol 2022; 269:111216. [PMID: 35430378 DOI: 10.1016/j.cbpa.2022.111216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Oxidative stress is a potential cost of social dominance and reproduction, which could mediate life history trade-offs between current and future reproductive fitness. However, the evidence for an oxidative cost of social dominance and reproduction is mixed, in part because organisms have efficient protective mechanisms that can counteract oxidative insults. Further, previous studies have shown that different aspects of oxidative balance, including oxidative damage and antioxidant function, vary dramatically between tissue types, yet few studies have investigated oxidative cost in terms of interconnectedness and coordination within the system. Here, we tested whether dominant and subordinate males of the cichlid Astatotilapia burtoni differ in integration of different components of oxidative stress. We assessed 7 markers of oxidative stress, which included both oxidative damage and antioxidant function in various tissue types (total of 14 measurements). Across all oxidative stress measurements, we found more co-regulated clusters in dominant males, suggesting that components of oxidative state are more functionally integrated in dominant males than they are in subordinate males. We discuss how a high degree of functional integration reflects increased robustness or efficiency of the system (e.g. increased effectiveness of antioxidant machinery in reducing oxidative damage), but we also highlight potential costs (e.g. activation of cytoprotective mechanisms may have unwanted pleiotropic effects). Overall, our results suggest that quantifying the extent of functional integration across different components of oxidative stress could reveal insights into the oxidative cost of important life history events.
Collapse
Affiliation(s)
- Robert J Fialkowski
- Central Michigan University, Department of Biology, Mount Pleasant, MI, USA.
| | - Shana E Border
- Central Michigan University, Department of Biology, Mount Pleasant, MI, USA; Illinois State University, School of Biological Sciences, Normal, IL, USA
| | - Isobel Bolitho
- University of Manchester, Department of Earth and Environmental Sciences, Manchester, UK
| | - Peter D Dijkstra
- Central Michigan University, Department of Biology, Mount Pleasant, MI, USA; Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
43
|
Fluctuating asymmetry and oxidative stress indicate environmental stress of Cane toads Rhinella marina. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Jikang J, Wenxiang L, Shuping Y. The effect of inoculation Leuconostoc mesenteroides and Lactiplantibacillus planetarium on the quality of Pleurotus eryngii Jiaosu. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Mohammady EY, Soaudy MR, Mohamed AE, EL-Erian MMA, Farag A, Badr AM, Bassuony NI, Ragaza JA, El-Haroun ER, Hassaan MS. Can dietary phytogenic mixture improve performance for growth, digestive enzyme activity, blood parameters, and antioxidant and related gene expressions of Nile tilapia, Oreochromis niloticus? Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
46
|
Metabonomic Analysis Provides New Insights into the Response of Zhikong Scallop (Chlamys farreri) to Heat Stress by Improving Energy Metabolism and Antioxidant Capacity. Antioxidants (Basel) 2022; 11:antiox11061084. [PMID: 35739981 PMCID: PMC9219709 DOI: 10.3390/antiox11061084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Temperature is an important factor affecting the growth, development and survival of marine organisms. A short episode of high temperature has been proven to be a severe threat to sustainable shellfish culture. Zhikong scallop (Chlamys farreri), a shellfish with broad economic and biological value in North China, has frequently experienced heat stress in summer in recent years. To understand the effects of heat stress on shellfish, the metabolism of C. farreri was analyzed after exposure to 27 °C for either 6 h or 30 d. After 6 h of heat stress exposure, a total of 326 and 264 significantly different metabolites (SDMs) were identified in gill and mantle tissues, respectively. After 30 d of heat stress exposure, a total of 381 and 341 SDMs were found in the gill and mantle tissues, respectively. These SDMs were mainly related to the metabolism of amino acids, carbohydrates, lipids and nucleotides. A decline in pyruvic acid, and an increase in citric acid and fumaric acid in the gills and mantle of C. farreri indicated an alteration in energy metabolism, which may be attributed to increased ATP production in order to overcome the heat stress. Among the SDMs, 33 metabolites, including pyruvic acid, glycine and citric acid, were selected as potential biomarkers for heat stress response in C. farreri. In addition, a decline in glutamine and β-Alanine levels indicated oxidative stress in C. farreri exposed to heat, as well as an increase in the total antioxidant capacity (T-AOC). Our findings suggested C. farreri have the potential to adapt to heat stress by regulating energy metabolism and antioxidant capacity.
Collapse
|
47
|
Tang X, Xi L, Niu Z, Jia L, Bai Y, Wang H, Ma M, Chen Q. Does a Moderately Warming Climate Compensate for the Negative Effects of UV-B Radiation on Amphibians at High Altitudes? A Test of Rana kukunoris Living on the Qinghai–Tibetan Plateau. BIOLOGY 2022; 11:biology11060838. [PMID: 35741359 PMCID: PMC9220193 DOI: 10.3390/biology11060838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Both the warming climate and ultraviolet-B radiation are notable environmental factors affecting tadpole development. However, the phenotypes of tadpoles living at high altitudes may be improved by moderately warming temperatures, reducing or eliminating the negative effects of oxidative damage caused by cool temperatures or strong ultraviolet-B radiation. To verify this hypothesis, Rana kukunoris tadpoles, which live at high altitudes, were exposed to ultraviolet-B radiation and ultraviolet-B radiation-free environments at 14 (cool temperature) and 22 °C (warm temperature), respectively. Ultraviolet-B radiation and a warm temperature had opposite influences on several traits of the tadpoles, and the moderate temperature could compensate for or override the negative effects of ultraviolet-B radiation by increasing the tadpoles’ preferred body temperature and critical tolerance temperature, thus enhancing the locomotion ability and thermal sensitivity of their antioxidant systems. The dark skin coloration and aggregation behavior of R. kukunoris tadpoles may also be effective strategies for allowing them to resist ultraviolet-B radiation and helping them to better adapt to a warming environment with stronger ultraviolet-B radiation. Thus, a moderate degree of warming may increase the capacity of living organisms to adapt to environmental changes and thus have positive effects on the development of tadpoles living at high altitudes. Abstract Both the warming climate and ultraviolet-B radiation (UVBR) are considered to be notable environmental factors affecting amphibian population decline, with particular effects on tadpole development. However, the phenotypes of tadpoles living at high altitudes may be improved by moderately warming temperatures, reducing or eliminating the negative effects of oxidative damage caused by cool temperatures or strong UVBR at high altitudes. To verify this hypothesis, Rana kukunoris tadpoles, which live at high altitudes, were used to test the effect of the interaction of temperature and UVBR on their development and antioxidant systems in a fully factorial design. The tadpoles were exposed to UVBR and UVBR-free environments at 14 (cool temperature) and 22 °C (warm temperature), respectively. UVBR and a warm temperature had opposite influences on several traits of the tadpoles, including their survival, developmental rate, individual size, preferred body temperature, thermal tolerance temperature, oxidative damage, and enzymatic and nonenzymatic antioxidant systems. The moderate temperature could compensate for or override the negative effects of UVBR by increasing the tadpoles’ preferred body temperature and critical tolerance temperature, thus enhancing the locomotion ability and thermal sensitivity of their antioxidant systems. Furthermore, the dark skin coloration and aggregation behavior of R. kukunoris tadpoles may also be effective strategies for allowing them to resist UVBR and helping them to better adapt to a warming environment with stronger UVBR. Thus, it is possible that a moderate degree of warming may increase the capacity of living organisms to adapt to environmental changes and thus have positive effects on the development of tadpoles living at high altitudes.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (L.X.); (Z.N.); (L.J.)
- Correspondence: (X.T.); (Q.C.)
| | - Lu Xi
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (L.X.); (Z.N.); (L.J.)
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (L.X.); (Z.N.); (L.J.)
| | - Lun Jia
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (L.X.); (Z.N.); (L.J.)
| | - Yucheng Bai
- Linxia People’s Hospital, Linxia 731199, China;
| | - Huihui Wang
- Institute of Solid Mechanics, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China;
| | - Miaojun Ma
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (L.X.); (Z.N.); (L.J.)
- Correspondence: (X.T.); (Q.C.)
| |
Collapse
|
48
|
Wu W, Guo W, Ni G, Wang L, Zhang H, Ng WL. Expression Level Dominance and Homeolog Expression Bias Upon Cold Stress in the F1 Hybrid Between the Invasive Sphagneticola trilobata and the Native S. calendulacea in South China, and Implications for Its Invasiveness. Front Genet 2022; 13:833406. [PMID: 35664338 PMCID: PMC9160872 DOI: 10.3389/fgene.2022.833406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
The role of hybridization is significant in biological invasion, and thermotolerance is a trait critical to range expansions. The South American Sphagneticola trilobata is now widespread in South China, threatening the native S. calendulacea by competition and hybridization. Furthermore, upon formation, their F1 hybrid can quickly replace both parents. In this study, the three taxa were used as a model to investigate the consequences of hybridization on cold tolerance, particularly the effect of subgenome dominance in the hybrid. Upon chilling treatments, physiological responses and transcriptome profiles were compared across different temperature points to understand their differential responses to cold. While both parents showed divergent responses, the hybrid’s responses showed an overall resemblance to S. calendulacea, but the contribution of homeolog expression bias to cold stress was not readily evident in the F1 hybrid possibly due to inherent bias that comes with the sampling location. Our findings provided insights into the role of gene expression in differential cold tolerance, and further contribute to predicting the invasive potential of other hybrids between S. trilobata and its congeners around the world.
Collapse
Affiliation(s)
- Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guangyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Longyuan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hui Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
- *Correspondence: Wei Lun Ng,
| |
Collapse
|
49
|
Koonyosying P, Kusirisin W, Kusirisin P, Kasempitakpong B, Sermpanich N, Tinpovong B, Salee N, Pattanapanyasat K, Srichairatanakool S, Paradee N. Perilla Fruit Oil-Fortified Soybean Milk Intake Alters Levels of Serum Triglycerides and Antioxidant Status, and Influences Phagocytotic Activity among Healthy Subjects: A Randomized Placebo-Controlled Trial. Nutrients 2022; 14:1721. [PMID: 35565689 PMCID: PMC9103900 DOI: 10.3390/nu14091721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
This study aimed to develop perilla fruit oil (PFO)-fortified soybean milk (PFO-SM), identify its sensory acceptability, and evaluate its health outcomes. Our PFO-SM product was pasteurized, analyzed for its nutritional value, and had its acceptability assessed by an experienced and trained descriptive panel (n = 100) based on a relevant set of sensory attributes. A randomized clinical trial was conducted involving healthy subjects who were assigned to consume deionized water (DI), SM, PFO-SM, or black sesame-soybean milk (BS-SM) (n = 48 each, 180 mL/serving) daily for 30 d. Accordingly, health indices and analyzed blood biomarkers were recorded. Consequently, 1% PFO-SM (1.26 mg ALA rich) was generally associated with very high scores for overall acceptance, color, flavor, odor, taste, texture, and sweetness. We observed that PFO-SM lowered levels of serum triglycerides and erythrocyte reactive oxygen species, but increased phagocytosis and serum antioxidant activity (p < 0.05) when compared to SM and BS-SM. These findings indicate that PFO supplementation in soybean milk could enhance radical-scavenging and phagocytotic abilities in the blood of healthy persons. In this regard, it was determined to be more efficient than black sesame supplementation. We are now better positioned to recommend the consumption of PFO-SM drink for the reduction of many chronic diseases. Randomized clinical trial registration (Reference number 41389) by IRSCTN Registry.
Collapse
Affiliation(s)
- Pimpisid Koonyosying
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Winthana Kusirisin
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Prit Kusirisin
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Boonsong Kasempitakpong
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Nipon Sermpanich
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Bow Tinpovong
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand; (B.T.); (N.S.)
| | - Nuttinee Salee
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand; (B.T.); (N.S.)
| | - Kovit Pattanapanyasat
- Office of Research and Development, Faculty of Medicine and Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Somdet Srichairatanakool
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Narisara Paradee
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
50
|
Chandler CE, Hernandez FG, Totten M, Robinett NG, Schatzman SS, Zhang SX, Culotta VC. Biochemical Analysis of CaurSOD4, a Potential Therapeutic Target for the Emerging Fungal Pathogen Candida auris. ACS Infect Dis 2022; 8:584-595. [PMID: 35179882 PMCID: PMC9906785 DOI: 10.1021/acsinfecdis.1c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen. With high mortality rates, there is an urgent need for new antifungals to combat C. auris. Possible antifungal targets include Cu-only superoxide dismutases (SODs), extracellular SODs that are unique to fungi and effectively combat the superoxide burst of host immunity. Cu-only SODs are essential for the virulence of diverse fungal pathogens; however, little is understood about these enzymes in C. auris. We show here that C. auris secretes an enzymatically active Cu-only SOD (CaurSOD4) when cells are starved for Fe, a condition mimicking host environments. Although predicted to attach to cell walls, CaurSOD4 is detected as a soluble extracellular enzyme and can act at a distance to remove superoxide. CaurSOD4 selectively binds Cu and not Zn, and Cu binding is labile compared to bimetallic Cu/Zn SODs. Moreover, CaurSOD4 is susceptible to inhibition by various metal-binding drugs that are without effect on mammalian Cu/Zn SODs. Our studies highlight CaurSOD4 as a potential antifungal target worthy of consideration.
Collapse
Affiliation(s)
- Courtney E Chandler
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Francisco G Hernandez
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Marissa Totten
- Divsion of Medical Microbiology, Department of Pathology and Division of Microbiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Natalie G Robinett
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Sabrina S Schatzman
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Sean X Zhang
- Divsion of Medical Microbiology, Department of Pathology and Division of Microbiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| |
Collapse
|