1
|
Su X, Geng X, Li F, Song M, Lv R, Zhang Y, Yuan J, Dong J, Shi Y, Zhao L. Microneedles loaded with l-arginine-modified puerarin-derived carbon nanoparticles improved treatment of diabetic wound via photothermal and nitric oxide-based gas therapy. J Colloid Interface Sci 2025; 691:137353. [PMID: 40127558 DOI: 10.1016/j.jcis.2025.137353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/26/2025]
Abstract
Due to the high-glucose environment of diabetic wounds, a significant proliferation of bacteria at wound site can occur, resulting in an inflammatory response that extends the inflammatory phase of the wound, thereby complicating the healing process in diabetic wounds. Eliminating the proliferation of bacteria plays a crucial role in promoting the healing of diabetic wounds. Under near-infrared (NIR) laser irradiation, l-arginine (L-Arg) -modified natural product puerarin (Pue)-derived carbon nanoparticles (l-Arg-CNP) not only exhibited excellent photothermal effects but also produced reactive oxygen species (ROS) to react with l-Arg for producing Nitric Oxide (NO), thus contributing to a synergistic antibacterial therapy in diabetic wound. At the same time, l-Arg-CNP retained Pue's original characteristics to promote cell proliferation and angiogenesis. Following the loading of l-Arg-CNP into microneedle patches (l-Arg-CNP@MN), it can deliver them into the deeper wound, effectively killing bacteria, reducing inflammatory infiltration, and promoting neovascularization at the wound site. It offers an effective therapeutic strategy for treating diabetic wound healing.
Collapse
Affiliation(s)
- Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China.
| | - Xinrong Geng
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China.
| | - Fang Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China.
| | - Mingzhu Song
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China.
| | - Ruizhen Lv
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China.
| | - Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China.
| | - Jiayu Yuan
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China.
| | - Jia Dong
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China.
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, Liaoning, China; Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
2
|
Wu C, Liu B, Wen Q, Zhai Q. A carbon nanotube/pyrrolidonecarboxylic acid zinc sponge for programmed management of diabetic wounds: Hemostatic, antibacterial, anti-inflammatory, and healing properties. Mater Today Bio 2025; 32:101769. [PMID: 40290885 PMCID: PMC12033991 DOI: 10.1016/j.mtbio.2025.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Wound healing in patients with diabetes is challenging because of chronic inflammation, inadequate vascularization, and susceptibility to infection. Current wound dressings often target specific stages of healing and lack comprehensive therapeutic approaches. This study introduces a novel approach using a photodetachable sponge scaffold incorporating carbon nanotubes (CNTs), known for their high photothermal conversion efficiency, electrical conductivity, and water absorption properties. The scaffold incorporated pyrrolidonecarboxylic acid zinc (PC1Z2), a compound with anti-inflammatory and moisturizing properties, which was cross-linked within a network of CNTs and a decellularized dermal matrix. The resulting shape-memory sponge scaffold actively interfaces with endogenous electric fields, facilitating electrical signal transmission to skin cells and accelerating tissue repair. Upon exposure to near-infrared (NIR) light, the PC1Z2 scaffold enhanced antibacterial efficacy (98 %) through photothermal conversion, promoting tissue metabolism at the wound site. Notably, the scaffold absorbed wound exudates and gradually released Zn2+, effectively reducing chronic inflammation in the mice. In a diabetic rat wound model, the PC1Z2 scaffold absorbed exudates, reduced inflammation, and accelerated granulation tissue formation, wound angiogenesis, and re-epithelialization. This innovative PC1Z2 sponge dressing shows promise for enhancing the healing of diabetic wounds.
Collapse
Affiliation(s)
- Chenwei Wu
- Department of Urology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| | - Bo Liu
- Department of Burns and Plastics Surgery, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545000, China
| | - Qiulan Wen
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Qiliang Zhai
- Department of Urology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
3
|
Weng J, Chen Y, Zeng Y, Jin W, Ji Y, Zhang W, Wang S, Li H, Yi M, Niu X, Deng X, Huang J, Su X, Chen L. A novel hydrogel loaded with plant exosomes and stem cell exosomes as a new strategy for treating diabetic wounds. Mater Today Bio 2025; 32:101810. [PMID: 40391025 PMCID: PMC12088786 DOI: 10.1016/j.mtbio.2025.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/08/2025] [Accepted: 04/26/2025] [Indexed: 05/21/2025] Open
Abstract
Diabetic wound healing is constrained by various factors, including chronic inflammation, sustained oxidative stress, impaired angiogenesis, and abnormal wound microenvironments. Exosomes derived from mesenchymal stem cells (MSC-exo) contain a wealth of bioactive substances that play a positive role in promoting diabetic wound healing. Plant-derived exosomes, as a novel therapeutic approach, are continuously being explored. Momordica charantia (MC) has been shown to possess blood glucose-lowering effects, and its exosomes are of significant relevance for treating diabetic wounds. However, direct application of exosomes to wounds faces challenges such as poor stability and short retention time, limiting their therapeutic effectiveness and clinical applicability. Encapsulating exosomes in hydrogels is an effective strategy to preserve their bioactivity. In this study, we fabricated a hydrogel loaded with MSC-exo and MC exosomes (MC-exo) by photopolymerization of methacrylated gelatin (GelMA) and dopamine (MEMC-Gel). The resulting MEMC-Gel exhibited favorable mechanical properties, adhesion, degradability, absorbency, and biocompatibility. In vitro, MEMC-Gel demonstrated the ability to resist inflammation, counter oxidative stress, promote fibroblast migration, support endothelial cell angiogenesis, and regulate macrophage polarization. In a diabetic mouse wound model, MEMC-Gel accelerated wound healing by inhibiting inflammation and oxidative stress, modulating macrophage immune responses and hyperglycemia within the microenvironment, promoting angiogenesis, and enhancing epithelialization. In conclusion, MEMC-Gel is an outstanding hydrogel dressing that synergistically promotes repair by loading MSC-exo and MC-exo, significantly accelerating diabetic wound healing through multiple mechanisms. This multifunctional hydrogel, based on exosomes from two different sources, provides an innovative therapeutic strategy for diabetic wound repair with broad clinical application potential.
Collapse
Affiliation(s)
- Jialu Weng
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yizhang Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yuhan Zeng
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Wenzhang Jin
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Ying Ji
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
| | - Wa Zhang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Shunfu Wang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Haobing Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Meilin Yi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xiaoying Niu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xuchen Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Jiancheng Huang
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
| | - Xiang Su
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Lulu Chen
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| |
Collapse
|
4
|
Chen J, Qu B, Yang D, Wang Y, Zhu H, Wang Z, Zhang X, Ma H, Zhao N, Zhao L, Zhou L, He X, Li P. Combined metabolomics and network pharmacology to elucidate the mechanisms of Huiyang Shengji decoction in treating diabetic skin ulcer mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156569. [PMID: 40120541 DOI: 10.1016/j.phymed.2025.156569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Diabetic skin ulcer is a clinical disorder of glucose metabolism that has a long treatment period and is prone to recurrent episodes. Huiyang Shengji decoction (HYSJD) is an effective traditional Chinese medicine for its clinical treatment, but its metabolic effects in patients with diabetic skin ulcers have not been well studied. PURPOSE Our study aimed to investigate the mechanism of pharmacological treatment of HYSJD in treating diabetic skin ulcers. METHODS The potential mechanism underlying diabetic wound treatment by HYSJD was screened using network pharmacology. Ultra-high performance liquid chromatography-MS/MS metabolomics analysis and correlation analysis were performed to investigate potential target pathways and genes. Furthermore, the db/db diabetic wound tissues and RAW264.7 macrophage inflammation model verified the mechanism using molecular biology experiments. RESULTS In network pharmacology, HYSJD played a mainly therapeutic effect by regulating PI3K/AKT signaling pathway, EGFR tyrosine kinase inhibitor resistance, metabolic pathway, and other related metabolic-related pathways. Metabolomics analysis disclosed that L-lysine content increased, while those of linoleic and deoxycholic acids decreased in plasma between the HYSJD-treated group and the control group, participating in biotin metabolism. Among them, PPARγ played an important role. The experiments conducted in db/db mice indicated that HYSJD facilitates VEGF secretion and PPARγ expression. In vitro experiments have revealed that HYSJD inhibits macrophage ROS production, augments mitochondrial ATP production, elevates mitochondrial membrane potential, and diminishes the mitochondrial ECAR rate. Furthermore, these effects culminate in promoting M2 macrophage polarization through PPARγ activation. The molecular docking results revealed that the active compounds from HYSJD were capable of binding to PPARγ protein primarily through hydrogen bonding interactions. Notably, all binding energies were found to be lower than -3 kcal/mol, indicating strong and favorable interactions between the active compounds and the target receptor. CONCLUSIONS The findings suggested that HYSJD regulates biotin metabolism by reducing excess levels of linoleic and deoxycholic acids and increasing levels of L-lysine, which in turn promotes diabetic wound healing by promoting M2 macrophage polarization through PPARγ up-regulation. These findings indicated that HYSJD is a decoction that can effectively treat diabetic skin ulcers.
Collapse
Affiliation(s)
- Jia Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China; Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Baoquan Qu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Danyang Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Haoyue Zhu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Zhengchun Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Xiawei Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Ning Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Li Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China; Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Lijiaming Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Xiujuan He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China.
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China.
| |
Collapse
|
5
|
Yan J, Zhao Y, Cui C, Zhou L, Xu Y, Bai Z, Zhang K, Tong J, Liu Y, Sun L, Du M, Mi Y, Wang X, Wu X, Li B. Dynamic multistage nanozyme hydrogel reprograms diabetic wound microenvironment: synergistic oxidative stress alleviation and mitochondrial restoration. Mater Today Bio 2025; 32:101780. [PMID: 40290892 PMCID: PMC12032933 DOI: 10.1016/j.mtbio.2025.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/06/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Chronic diabetic wounds remain a significant clinical challenge due to persistent bacterial infections, oxidative stress, impaired angiogenesis, and mitochondrial dysfunction. Traditional therapies often fail to address these interrelated pathological factors, highlighting the urgent need for innovative solutions. Here, we present a Mn-ZIF@GOx/BC (MZGB) hydrogel system, where Mn-ZIF@GOx (MZG) nanozymes are successfully integrated into a bacterial cellulose (BC) hydrogel via hydrogen bonding and electrostatic interactions. The MZGB hydrogel lowers wound pH by oxidizing excess glucose into gluconic acid. It exhibits strong ROS scavenging capabilities through its superoxide dismutase and catalase-like activities, while simultaneously providing oxygen. By restoring redox homeostasis, it protects mitochondrial function and enhances cellular energy metabolism. By reprogramming macrophages, MZGB creates a favorable immune microenvironment, significantly promoting angiogenesis through paracrine mechanisms. This facilitates cell-to-cell communication, forming a positive feedback loop. Moreover, MZGB demonstrates ROS-independent antibacterial properties. BC hydrogel ensures adhesion and moisture regulation, forming a protective barrier and maintaining an optimal wound environment. This multifunctional hydrogel represents a promising nanotherapeutic approach for efficiently treating diabetic wounds by precisely regulating the wound microenvironment.
Collapse
Affiliation(s)
| | | | | | | | - Yurong Xu
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Kaifang Zhang
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Jiahui Tong
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Meijun Du
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Yanling Mi
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
6
|
Zhang Z, Zhang Y, Peng L, Xing Y, Zhou X, Zheng S, Zhang Y, Shao L. Multifunctional dual-layer microneedles loaded with selenium-doped carbon quantum dots and Astilbin for ameliorating diabetic wound healing. Mater Today Bio 2025; 32:101739. [PMID: 40290883 PMCID: PMC12022665 DOI: 10.1016/j.mtbio.2025.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
Diabetic wounds (DW) represent a significant clinical challenge due to chronic inflammation, excessive oxidative stress, and impaired angiogenesis, all of which hinder effective tissue regeneration. Existing drug delivery systems often fail to achieve sustained and targeted therapeutic efficacy. In this study, we developed a novel dissolvable dual-layer methacrylated gelatin (GelMA) microneedle (MN) co-loading selenium-doped carbon quantum dots (Se-CQDs) and Astilbin (AST) for enhanced DW treatment. The outer layer, enriched with Se-CQDs, rapidly scavenges reactive oxygen species (ROS), effectively alleviating oxidative stress at the wound site. Sequentially, the inner layer releases AST, exerting potent anti-inflammatory and pro-angiogenic effects. Preliminary findings suggest these effects may involve the modulation of cytoskeletal dynamics and peroxisome function, contributing to endothelial cell migration and angiogenesis. This controlled, sequential release MN establishes a low-oxidative, anti-inflammatory microenvironment, thereby promoting angiogenesis and accelerating wound repair. The pioneering integration of selenium-doped quantum dots and AST-loaded hydrogels offers a synergistic therapeutic strategy, setting a new standard for advanced diabetic wound care with substantial clinical promise.
Collapse
Affiliation(s)
- Zhen Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yulin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Liang Peng
- The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Yi Xing
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Xinru Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Shuo Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
7
|
Liu X, Li L, Nan F, Liu J, Zou H, Zhang N, Wang H. Study on risk factors of Montgomery T-tube extraction in patients with post-tracheotomy tracheal stenosis based on Cox regression analysis. BMC Pulm Med 2025; 25:273. [PMID: 40448073 DOI: 10.1186/s12890-025-03732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/16/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Although Montgomery T-tube implantation has become an effective method for treating tracheal stenosis, the T-tube needs to be removed as a temporary treatment. At present, there is still a lack of research on the relevant factors affecting T-tube extraction. Therefore, we aimed to explore the clinical characteristics of post-tracheotomy tracheal stenosis (PTTS) disease and the risk factors affecting Montgomery T-tube extraction. METHODS Retrospective analysis of patients who underwent Montgomery T-tube implantation in the Respiratory and Critical Care Medicine of Emergency General Hospital and the Department of Respiratory Medicine at Dongzhimen Hospital from June 2014 to September 2024. They were followed up for at least 6 months. T-tube extraction was used as the main outcome measure. A logarithmic rank test was used to analyze the association between clinical characteristics and T-tube extraction. Kaplan-Meier analysis was performed to analyze the rate of T-tube extraction. Multivariate stepwise Cox regression analysis was used to explore the variables that may affect the association of T-tube extraction. RESULTS A total of 49 patients were included, and 18 (36.7%) patients had successful extraction. In the Kaplan-Meier analysis, the rate of extubation was lower in patients with BMI ≥ 24, diabetes mellitus, and a narrow distance of less than or equal to 1 cm from the glottis (P < 0.05). In multivariate Cox regression analysis, cerebrovascular disease (HR 0.341, 95% confidence interval [CI] 0.127-0.918) and diabetes mellitus (HR 0.216, 95% confidence interval [CI] 0.049-0.959) may be independent risk factors for T-tube extraction. CONCLUSIONS Diabetes mellitus and cerebrovascular diseases are independent risk factors for T-tube extraction, and more attention should be paid to these patients in clinical practice. CLINICAL TRIAL NUMBER This study is a retrospective observational study, and no clinical trial registration number was applied for.
Collapse
Affiliation(s)
- XiaoFeng Liu
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Li
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - FuYao Nan
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - JiaPing Liu
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Heng Zou
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Nan Zhang
- Department of Pulmonary and Critical Care Medicine II, Beijing Emergency General Hospital, Beijing, China.
- Department of Oncology, Beijing Emergency General Hospital, Beijing, China.
| | - HongWu Wang
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
8
|
Wang J, Ji L, Gao Y, Sun J, Zhou X, Ding Y, Zhou Z, Guo X, Liu C, Wang Y, Zhang Q, Lv Z, Ma D. Inhibition of CDK5 signaling mediated inflammation in macrophages promotes cutaneous wound healing. Sci Rep 2025; 15:18509. [PMID: 40425656 PMCID: PMC12116921 DOI: 10.1038/s41598-025-02488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) plays a critical role in the inflammatory response. Macrophages are pivotal orchestrators of inflammation, fibrosis, and wound repair. However, the effectiveness of CDK5 in macrophages on cutaneous wound healing remains inadequately characterized. We determined the role of CDK5 signaling pathway in macrophages in mouse cutaneous wound healing through the established macrophage-specific deletion of CDK5 (myeCDK5-/-) mice and the pharmacological CDK5 inhibitor Roscovitine. Phosphorylated proteomics, western blotting, Masson staining, and dualimmunofluorescence staining were performed to investigate the potential mechanisms underlying CDK5-mediated inflammatory regulation in macrophages in wound healing. CDK5 expression and phosphorylation were both elevated significantly in cutaneous wound healing process in mice. Moreover, an accelerated wound healing in myeCDK5-/- mice was exhibited with the reduced pro-inflammatory mediators (IL-1β and iNOS) and the elevated anti-inflammatory markers (IL-10 and CD163) expression significantly. CDK5 deficiency in macrophages enhanced tissue remodeling, evidenced by increased collagen deposition and capillary density (CD31+ cells). Consistently, Roscovitine-treated mice also showed accelerated wound healing, accompanied by decreased pro-inflammatory factors and increased anti-inflammatory markers at the wound site. Mechanistically, the decreased phosphorylation of SIRT1 at the Ser14 and Ser47 sites, as a substrate of CDK5, was confirmed in myeCDK5-/- mice. These data are the first to indicate that CDK5 signaling-dependent regulation of SIRT1 phosphorylation in macrophage-mediated inflammation is required for the wound healing process, warranting consideration of the CDK5-SIRT1 pathway as a therapeutic target for cutaneous wound healing.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, and Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- The Fourth Department of Bone Injury, The First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang, 050011, China
| | - Lin Ji
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, and Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- The Fourth Department of Bone Injury, The First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang, 050011, China
| | - Yingbo Gao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, and Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Jingyu Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, and Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Xiaobin Zhou
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, and Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yujia Ding
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, and Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zihan Zhou
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, and Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Xiaofan Guo
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, and Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Chao Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, and Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yujie Wang
- The Fourth Department of Bone Injury, The First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang, 050011, China
| | - Qingfu Zhang
- Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Zhenmu Lv
- Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- The Fourth Department of Bone Injury, The First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang, 050011, China
| | - Dong Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, and Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
9
|
Kim J, Bong KW, Cho JK, Song SC. Thermo-responsive hydrogel via sustained Co-delivery of TA and PDGF to modulate the diabetic microenvironment and accelerate diabetic wound healing. J Mater Chem B 2025. [PMID: 40400445 DOI: 10.1039/d5tb00563a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
In modern society, the need for diabetic wound healing is increasing due to the increase in the number of diabetic patients. In particular, chronic inflammation is a major problem in diabetic wounds due to excessive accumulation of reactive oxygen species (ROS). Therefore, it is essential to remove ROS and promote angiogenesis for effective diabetic wound healing. In this study, we developed a thermo-responsive poly(organophosphazene) hydrogel system (TSP-TP) designed to deliver antioxidants and growth factors for a long period of time. The TSP-TP hydrogel stably loads and continuously releases tannic acid (TA) and platelet-derived growth factor (PDGF) through various physical interactions. Effective ROS scavenging induced macrophage polarization and alleviated chronic inflammation, while the sustained release of PDGF promoted angiogenesis, ultimately maximizing wound healing efficacy in a diabetic mouse model. Based on these results, the proposed TSP-TP hydrogel demonstrates synergistic effects through sustained delivery of antioxidants and growth factors, demonstrating a promising system with high applicability in diabetic wound treatment.
Collapse
Affiliation(s)
- Jisun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jung-Kyo Cho
- Nexgel Biotech, Co., Ltd., Hanam, 12939, Republic of Korea
| | - Soo-Chang Song
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
- Nexgel Biotech, Co., Ltd., Hanam, 12939, Republic of Korea
| |
Collapse
|
10
|
Chen Z, Chan K, Li X, Gong L, Ma Y, Huang C, Lu Y, Wang L, Piao C. Polymeric Nanomedicines in Diabetic Wound Healing: Applications and Future Perspectives. Int J Nanomedicine 2025; 20:6423-6446. [PMID: 40420911 PMCID: PMC12105632 DOI: 10.2147/ijn.s514000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
The management of diabetic wound continues to pose significant clinical obstacles, primarily attributed to bacterial infections, excessive inflammation, oxidative stress, and impaired angiogenesis. These pathological factors not only severely affect patient well-being but also create considerable burden on medical services. Current managements often show limited efficacy, necessitating the exploration of alternative therapeutic strategies. Polymeric nanomedicines (PNs), owing to their nanoscale properties, enhanced cellular uptake, stability, bioavailability, and biocompatibility, have been broadly utilized for diabetic wound treatment. PNs demonstrate remarkable capabilities in microbial inhibition, inflammation regulation, oxidative stress mitigation, and vascular network formation, particularly when combined with various agents, including organic substances (eg, exosomes), inorganic substances (eg, metals), and biomaterials (eg, chitosan, hyaluronic acid, and hydrogels). This article systematically examines recent progress in PN-based interventions for diabetic wound recovery, highlighting the pivotal role of PNs in mitigating bacterial infection, modulating inflammatory responses, and promoting cellular regeneration. Additionally, we provide a novel perspective on the multifunctionality of PNs and their potential for overcoming the limitations of conventional therapies. Overall, PNs represent an innovative and promising approach to diabetic wound management, outperforming conventional therapies in stability, targeted delivery, and multifunctionality. In the future, investigations should concentrate on refining PNs formulations and administration strategies so as to enhance biocompatibility, and conducting well-designed clinical trials to validate their therapeutic efficacy.
Collapse
Affiliation(s)
- Zeyao Chen
- Department of Endocrinology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Kakei Chan
- Department of Endocrinology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Xin Li
- Department of Endocrinology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Department of Gynecology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Li Gong
- Department of Diabetes, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Yingjie Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Chiwen Huang
- Faculty of Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Yan Lu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese, Guangzhou, People’s Republic of China
| | - Li Wang
- Department of Endocrinology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Chunli Piao
- Department of Endocrinology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| |
Collapse
|
11
|
Krymchenko R, Pfirrmann M, van der Leeuw S, Avila-Martinez N, Versteeg EMM, Meuwese RTC, Vlig M, Verdoes M, Boekema BKHL, van Kuppevelt TH, Daamen WF. Preparation, fractionation, and characterization of solubilized elastin and comparison of cellular response on fibroblasts and macrophages. Int J Biol Macromol 2025; 315:144548. [PMID: 40409629 DOI: 10.1016/j.ijbiomac.2025.144548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/09/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Elastin and elastin-derived compounds are promising biomaterials due to their biological activity, unique natural crosslinks, and ability to mimic native tissue properties. Solubilized elastin peptides retain the bioactivity of elastin and are more suitable for wound care applications than the insoluble form. Chemically solubilized elastins have shown advantageous effects in skin regeneration in humans. Here, five solubilized elastins were prepared via chemical (stepwise and continuously hydrolyzed with oxalic acid - OxA-st-ELN and OxA-ELN, or with potassium hydroxide - KOH-ELN), enzymatic (Enz-ELN), or combined (Combi-ELN) methods. OxA-st-ELN had the largest molecular weights (MWs) fragments, while Enz-ELN and Combi-ELN yielded the smallest. The effects of elastin preparations were evaluated on primary human cells - dermal fibroblasts and macrophages. In fibroblast assays, Enz-ELN induced elastin, collagen, and fibrillin-2 protein deposition, while other preparations exhibited levels comparable to the control. α-smooth muscle actin (SMA) expression remained low across all conditions. Continuous oxalic acid hydrolysis simplified the traditional stepwise approach while maintaining bioactivity. Macrophage studies showed chemical hydrolysates preserved the M0-like subtype, while Enz-ELN promoted a pro-inflammatory M1-like phenotype, and Combi-ELN had mixed effects. OxA-ELN and KOH-ELN appeared to be the most promising options for developing biomaterial dermal scaffolds that support tissue regeneration in vivo.
Collapse
Affiliation(s)
- Roman Krymchenko
- Radboud university medical center, Research Institute for Medical Innovation, Department of Medical BioSciences, Nijmegen, the Netherlands
| | - Maren Pfirrmann
- Radboud university medical center, Research Institute for Medical Innovation, Department of Medical BioSciences, Nijmegen, the Netherlands
| | - Sjoerd van der Leeuw
- Radboud university medical center, Research Institute for Medical Innovation, Department of Medical BioSciences, Nijmegen, the Netherlands
| | - Nancy Avila-Martinez
- Radboud university medical center, Research Institute for Medical Innovation, Department of Medical BioSciences, Nijmegen, the Netherlands
| | - Elly M M Versteeg
- Radboud university medical center, Research Institute for Medical Innovation, Department of Medical BioSciences, Nijmegen, the Netherlands
| | - Rob T C Meuwese
- Radboud university medical center, Research Institute for Medical Innovation, Department of Medical BioSciences, Nijmegen, the Netherlands
| | - Marcel Vlig
- Alliance of Dutch Burn Care, Burn Research Lab, Beverwijk, the Netherlands
| | - Martijn Verdoes
- Radboud university medical center, Research Institute for Medical Innovation, Department of Medical BioSciences, Nijmegen, the Netherlands; Leiden University Medical Center, Department of Immunology, Leiden, the Netherlands
| | - Bouke K H L Boekema
- Alliance of Dutch Burn Care, Burn Research Lab, Beverwijk, the Netherlands; Amsterdam University Medical Center (AUMC), Amsterdam, the Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences Research Institute, Amsterdam, the Netherlands; Department of Plastic, Reconstructive and Hand Surgery, AUMC, location VUmc, Amsterdam, the Netherlands
| | - Toin H van Kuppevelt
- Radboud university medical center, Research Institute for Medical Innovation, Department of Medical BioSciences, Nijmegen, the Netherlands
| | - Willeke F Daamen
- Radboud university medical center, Research Institute for Medical Innovation, Department of Medical BioSciences, Nijmegen, the Netherlands.
| |
Collapse
|
12
|
Li Y, Zhang Q, Duan B, Qu X, Guo M, Mackay CR, Zhang X, Wang Q. Near-infrared light driven photodynamic therapy by hyaluronic acid encapsulated ionic polymer integrated with oxygen self-supply and high acetate supplement for chronic wound healing. Int J Biol Macromol 2025; 314:144424. [PMID: 40403517 DOI: 10.1016/j.ijbiomac.2025.144424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 04/17/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Hypoxia, persistent inflammation, excessive reactive oxygen species (ROS), bacterial infection, immune regulation disorder, and impaired angiogenesis are critical factors hindering diabetic wound healing. So far, clinical treatment still lacks comprehensive solutions to address these challenges. The main objective of this study is to develop and evaluate a novel multifunctional nanomaterial (Gen-BioCa/i-ZnPPOPs@HA) for enhancing the treatment of bacterial-infected diabetic wounds through a combination of photodynamic therapy, oxygen self-supply, and acetate supplementation. When infection occurs, Hyaluronic Acid (HA) shells are initially decomposed by hyaluronidase (HAase) secreted by the bacteria, releasing Gen, biomass Calcium peroxide (BioCa) and ionic porphyrin-based polyporous organic polymer (i-ZnPPOPs). BioCa decomposes to oxygen and Ca(OH)2, which alleviates the hypoxia in diabetes wounds and neutralize lactic acid released by the damaged blood vessels. Under NIR irradiation, cationic i-ZnPPOPs combined with Gen showed bacteria-targeting capacity, rapid and high-efficient microbicidal activity. The vitro/vivo experiments results revealed that Gen-BioCa/i-ZnPPOPs@HA could promote macrophages toward M2 polarization, accelerating angiogenesis, collagen deposition and tissues remodeling. In addition, further introduction of acetate supplement shorten the inflammatory period and accelerated wound healing process. This study provides a new strategy for the treatment of chronic bacterial infectious diseases, indicating the important potential of multifunctional nanomaterials in chronic wounds treatment.
Collapse
Affiliation(s)
- Yanhong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Binqiu Duan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyan Qu
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Mei Guo
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
13
|
Lv XT, Yang WX, Zhang X, Li BL, Wang WY, Wang GE. Guilongwan Ameliorates Experimental Diabetic Foot Ulcer in Rats via the Inhibition of Delta-Like 4/Notch1 Signaling in M1 Macrophages. Adv Biol (Weinh) 2025:e70004. [PMID: 40390328 DOI: 10.1002/adbi.202400819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/16/2025] [Indexed: 05/21/2025]
Abstract
Guilongwan (GLW), a representative of traditional Chinese Medicine (TCM) has been utilized to treating diabetic foot ulcer (DFU)-related syndrome including an intolerance of cold with cold limbs, blood circulation disorder, and immune dysfunction for decades. However, the chemical and biological mechanisms of GLW remain unclear. This study aims to discover the biological mechanisms of GLW on DFU by using streptozotocin- and skin-puncher-induced DFU rat models, in vitro macrophage models, and in silico analysis. The alterations in pathology, Notch1 signaling, and macrophage polarization are detected. The results indicated that GLW promoted wound healing, cutaneous cell proliferation, and angiogenesis in DFU rats by inhibiting delta-like (DLL) 4/Notch1 signaling. In addition, GLW inhibited M1 polarization and promoted M2 polarization in diabetic wounds. Seventeen chemical compounds in GLW-medicated serum are identified. In silico analysis and in vitro experiments demonstrated that GLW-medicated serum and its main compounds inhibited the expression of DLL4 in matrix metalloproteinase-9-induced M1 macrophages. In conclusion, GLW ameliorated experimental DFU rats via the inhibition of DLL4/Notch1 signaling in M1 macrophages. This study provided a new biologic mechanism for GLW in the treatment of DFU.
Collapse
Affiliation(s)
- Xi-Ting Lv
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wen-Xiu Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Zhang
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Bao-Ling Li
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Wen-Ying Wang
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Guo-En Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
14
|
Lu J, Guo Y, Yang Z, Xie M, Zhang S, Li K, Yang J, Xue S, Xu D, Yan K, Liu Y. Calycosin-7-glucoside-Loaded Hydrogel Promotes Wound Healing in Gestational Diabetes Mellitus. ACS APPLIED BIO MATERIALS 2025; 8:4186-4199. [PMID: 40300146 DOI: 10.1021/acsabm.5c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The prevalence of gestational diabetes mellitus (GDM) is currently on the rise globally, which heightens the risk of adverse pregnancy outcomes and subsequently increases the likelihood of cesarean delivery. GDM can induce hyperglycemic conditions in cesarean wounds, leading to delayed wound healing and complications such as itching, pain, and scarring. These complications significantly impact the quality of life and mental health of mothers. Furthermore, there is a lack of effective clinical prevention strategies. Consequently, the need to improve wound healing after cesarean sections in women with GDM is a pressing concern that warrants our attention. To maximize the therapeutic impact and extend the bioavailability of calycosin-7-glucoside (CG), it was integrated into a hybridized hydrogel (GOHA) as a drug carrier to create the GOHACG hydrogel. Bases on our tests, the GOHACG hydrogel demonstrated a strong capacity for water absorption, appropriate pore size, and good biocompatibility to adjust to the in situ surroundings of the wound. GOHACG also promoted epidermal regeneration, collagen deposition, angiogenesis, and the conversion of macrophages from the M1 to M2 phenotype. Indicating a reduction in the inflammatory response, accelerated wound repair, and minimized skin scarring in a postcesarean delivery model involving gestational diabetic mellitus mice. In brief, the GOHACG possesses significant properties that enhance wound healing in GDM model, suggesting its potential effects in treating wound healing of GDM.
Collapse
Affiliation(s)
- Jicong Lu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingying Guo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaoyuan Yang
- The 988 Hospital of the Joint Service Support Force of the Chinese People's Liberation Army, Zhengzhou 450000, China
| | - Mengxia Xie
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuangyu Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Keji Li
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jingjing Yang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shanhui Xue
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Da Xu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kanglu Yan
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuehua Liu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
15
|
Hou X, Wang H, Yao X, Zhou Q, Niu X. Pt-Induced Sublattice Distortion Facilitates Enzyme Cascade Reactions for Eradicating Intracellularly Methicillin-Resistant Staphylococcus aureus and Enhancing Diabetic Wound Healing. ACS NANO 2025; 19:17709-17727. [PMID: 40307061 DOI: 10.1021/acsnano.5c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Metal oxide nanozymes hold significant potential in combating bacterial infections; however, their ordered crystal structures limit the enhancement of catalytic activity, posing challenges in addressing clinical needs for eliminating intracellularly colonized bacteria. Here, we report the development of an integrated diagnostic-therapeutic microneedle patch incorporates the Res@PtZ-Z nanozyme hybrid. Res@PtZ-Z consists of a ZIF shell loaded with the natural compound resveratrol (Res), encapsulating a Pt-doped zinc oxide (ZnO) nanozyme core (PtZ). The Res component modulates charge distribution on the ZIF shell and attenuates bacterial virulence, thereby promoting the uptake of Res@PtZ-Z by host cells. The PtZ core, doped with Pt4+ to induce sublattice distortion in ZnO, exhibits oxidase-like, peroxidase-like, and catalase-like activities. Under intracellular hypoxic conditions, the cascade of these enzyme-like activities ensures a sustained generation of reactive oxygen species (ROS), enabling robust antibacterial effects. Additionally, Res@PtZ-Z enables real-time infection monitoring by oxidizing the 3,3',5,5'-tetramethylbenzidine (TMB) substrate to produce a distinct colorimetric response. This approach addresses both methicillin-resistant Staphylococcus aureus (MRSA) invasion and intracellular persistence, contributing to improved infection management and promoting wound healing.
Collapse
Affiliation(s)
- Xiaoning Hou
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xinyu Yao
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Qianliao Zhou
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
16
|
Li Y, Du K, Peng D, Zhang X, Piao Y, Peng M, He W, Wang Y, Wu H, Liu Y, Xiao J, Shi L, Li D. Local delivery of siRNA using lipid-based nanocarriers with ROS-scavenging ability for accelerated chronic wound healing in diabetes. Biomaterials 2025; 322:123411. [PMID: 40381523 DOI: 10.1016/j.biomaterials.2025.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/21/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Diabetic wound healing poses a significant clinical challenge with limited therapeutic efficacy due to uncontrolled reactive oxygen species (ROS), inflammatory responses, and extracellular matrix (ECM) degradation caused by abnormal macrophage activity in the wound microenvironment. To address these concerns, we propose a novel formulation that combines Tempo-conjugated lipid with the commercially cationic lipid DOTAP to expedite diabetic wound healing through targeted siRNA delivery (cLpT@siRNA) and restoration of the wound microenvironment. The developed cLpT@siRNA nanocomplexes effectively scavenge excessive ROS levels, facilitate polarization of proinflammatory M1 macrophages towards an anti-inflammatory M2 phenotype, and suppress MMP9 gene expression in macrophages. In the ICR mouse model of diabetic wounds, cLpT@siRNA nanocomplexes significantly accelerate wound healing, promoting neovascularization and collagen deposition. Overall, the cLpT@siRNA nanocomplexes based on antioxidant and cationic lipids provide a promising strategy for delivering siRNA in diabetic wound treatment and hold great potential for clinical translation.
Collapse
Affiliation(s)
- Yuanfeng Li
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kaiyi Du
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Danfeng Peng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xuanlong Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yinzi Piao
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Mengna Peng
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Wei He
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yumeng Wang
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Haoyue Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Jian Xiao
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dongdong Li
- Translational Medicine Laboratory, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
17
|
Cheng M, Hou Y, Chen Q, Ge S, Chen C, Zheng X, Zhang C. Exploring the wound-healing mechanism of Cayratia japonica extract: A combined experimental and network pharmacology study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119810. [PMID: 40239878 DOI: 10.1016/j.jep.2025.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wound healing is a complex biological process and remains a significant challenge due to the lack of effective therapeutic drugs. Cayratia japonica (CJG), a traditional folk medicine, has been widely used for its anti-inflammatory and efficacy in treating traumatic injuries. AIM OF THE STUDY This study aimed to investigate the wound-healing effects of CJG and elucidate its underlying mechanism. METHODS First, the phytochemical composition of CJG was identified using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), and its potential wound-healing mechanisms were predicated via network pharmacology. Next, in vivo experiments were conducted by dividing subjects into control, CJG (1.5-6 mg/cm2), and bFGF (150 IU/cm2) groups to assess its therapeutic efficacy. Finally, the mechanism of CJG and its key bioactive component, luteolin-7-O-glucoside (LUT-7G), were explained through polymerase chain reaction (PCR), Western blotting, histopathology, immunofluorescence, plasmid transfection, colony formation unit assays, and cellular thermal shift assay (CETSA). RESULTS LC-MS/MS identified 15 major constituents of CJG and 102 potential wound healing-related targets. Network pharmacology analysis revealed key enriched pathways, including AMPK, TNF, and metabolic pathways. In vivo, CJG significantly accelerated wound-healing by inhibiting inflammatory responses, promoting angiogenesis, and modulating collagen deposition. In vitro, LUT-7G treatment markedly enhanced the proliferation and migration of HaCaT and HSF cells. Mechanistically, LUT-7G exerted its wound-healing effects by activating the AMPK/CTHRC1/TGF-β1 signaling pathway in HaCaT cells. In conclusion, CJG significantly promotes wound healing by regulating AMPK signaling pathways, indicating its promising clinical application prospects.
Collapse
Affiliation(s)
- Mengqin Cheng
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Hou
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 21000, China
| | - Qi Chen
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Shanchun Ge
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Ce Chen
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Xueping Zheng
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 21000, China.
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
18
|
Zheng Z, Zhang H, Yang J, Liu X, Chen L, Li W, Mi S, Zhou H, Zheng W, Xue W, Lin D, Ding W, Li S, Huang W, Yang L. Recent advances in structural and functional design of electrospun nanofibers for wound healing. J Mater Chem B 2025; 13:5226-5263. [PMID: 40237139 DOI: 10.1039/d4tb02718c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The global prevalence of acute and chronic wounds has surged, escalating healthcare burdens and necessitating advanced therapeutic strategies for effective wound management. Electrospun nanofibers have emerged as promising biomimetic platforms for tissue engineering and drug delivery, due to their structural resemblance to the native extracellular matrix (ECM), high porosity, and tunable surface-to-volume ratio. Recent advances in structural design have expanded their applications from conventional two-dimensional (2D) wound dressings to multifunctional three-dimensional (3D) architectures, enabling enhanced mechanical adaptability, bioactive molecule loading, and spatiotemporal control over wound microenvironments. These innovations leverage nanofibers' customizable topography and composition to recapitulate critical ECM cues, thereby fostering cell proliferation, angiogenesis, and immunomodulation during tissue regeneration. This review systematically evaluates cutting-edge strategies focusing on optimizing 2D arrangements and the structural design of multilayered and functionally patterned 3D electrospun nanofibers in wound healing applications. We further present the advantages and limitations of various nanofiber structures, along with the key challenges and future directions for advancing electrospun nanofibers specifically designed for enhanced wound healing.
Collapse
Affiliation(s)
- Zesen Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Jiaxin Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Xiaoyang Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wenwen Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Siqi Mi
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Hai Zhou
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Weihan Zheng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Wanting Xue
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Dongxin Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Wanting Ding
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Shiyu Li
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China.
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Li Y, Fu Z, Deng C, Qian J, Wang Z, Lu Y, Zhang S, Liu G, Wen J, Chen Y, Jiang J, Liu X, Zheng X, Shen X, Su W, Yang M, Tang J, Wang Y, Meng B, Yang X. miR-301a-5p regulated IKKβ/NF-κB axis and macrophage polarization to accelerate skin wound healing. Int J Biol Macromol 2025; 311:143995. [PMID: 40339851 DOI: 10.1016/j.ijbiomac.2025.143995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Wound healing is a highly coordinated biological process encompassing four distinct yet interconnected stages. Notably, microRNA (miRNA) dysregulation is related to non-healing wounds, and miRNAs are considered promising therapeutic targets for wound healing. However, its function and underlying mechanism in wound healing remain incompletely understood. Here, we detected and characterized the miRNA expression patterns during wound healing. Interestingly, miR-301a-5p was significantly downregulated in the initial inflammatory stage and finally peaked in early proliferative phases, suggesting its potential role in modulating phase transition from inflammatory to proliferative phase. Moreover, miR-301a-5p not only promoted the proliferation and migration of macrophages, but also suppressed the excessive inflammatory response, as evidenced by both facilitating the expression of IL-10 and TGF-β and suppressing the pro-inflammatory factors expression. Mechanistically, miR-301a-5p directly targeted inhibitor of κB kinaseβ (IKKβ) and regulated its expression to modulate nuclear factor κB (NF-κB) pathway and macrophage polarization (M1 to M2). Importantly, miR-301a-5p overexpression significantly promoted the regeneration of full-thickness skin wound in mice by regulating NF-κB and macrophage polarization, thereby facilitating epidermal regeneration and collagen deposition. Together, our study found that miR-301a-5p as a novel regulator in the wound healing process transition, and provided potent pro-healing agents for wound healing.
Collapse
Affiliation(s)
- Yun Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Chengjie Deng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jingchun Qian
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ziming Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yanjie Lu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Shaoyang Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Guanlin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jingyi Wen
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yuanlin Chen
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jingyu Jiang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xue Liu
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xinyan Zheng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xinhe Shen
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Wenrou Su
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan 650106, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China.
| | - Buliang Meng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China; Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan 650106, China.
| |
Collapse
|
20
|
Shi S, Ou X, Wang Q, Zhang L. Macrophage-Derived Extracellular Vesicles: A Novel Therapeutic Alternative for Diabetic Wound. Int J Nanomedicine 2025; 20:5763-5777. [PMID: 40343196 PMCID: PMC12060905 DOI: 10.2147/ijn.s518655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
Diabetic wounds represent a significant clinical and economic challenge owing to their chronicity and susceptibility to complications. Dysregulated macrophage function is a key factor in delayed wound healing. Recent studies have emphasized the therapeutic potential of macrophage-derived extracellular vesicles (MDEVs), which are enriched with bioactive molecules such as proteins, lipids, and nucleic acids that mirror the state of their parent cells. MDEVs influence immune modulation, angiogenesis, extracellular matrix remodeling, and intercellular communication. In this review, we summarize and discuss the biological properties and therapeutic mechanisms of MDEVs in diabetic wound healing, highlighting strategies to enhance their efficacy through bioengineering and advanced delivery systems. We also explore the integration of MDEVs into innovative wound care technologies. Addressing current limitations and advancing clinical translation of MDEVs could advance diabetic wound management, offering a precise, effective, and versatile therapeutic option.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Qian Wang
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Li Zhang
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| |
Collapse
|
21
|
Gu S, Xu L, Huang B, Xiong K, Yang X, Ye J. Decoding Macrophage Dynamics: A Pathway to Understanding and Treating Inflammatory Skin Diseases. Int J Mol Sci 2025; 26:4287. [PMID: 40362523 PMCID: PMC12071885 DOI: 10.3390/ijms26094287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Psoriasis and atopic dermatitis (AD) are both chronic inflammatory skin diseases. Their pathogenesis remains incompletely understood. The polarization states of macrophages, as a crucial part of the innate immune system, are influenced by various factors such as cytokines, inflammatory mediators, and epigenetics. Research has demonstrated that macrophages play a "double-edged sword" role in the pathological process of inflammatory skin diseases: they both drive inflammation progression and participate in tissue repair. This article summarizes the roles of macrophages in the inflammatory development and tissue homeostasis of psoriasis and atopic dermatitis. It explores the impact of different factors on macrophages and inflammatory skin diseases. In conclusion, understanding the classification and plasticity of macrophages is crucial for a deeper understanding of the pathogenesis of psoriasis and AD and the development of personalized treatments.
Collapse
Affiliation(s)
- Shengliang Gu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.G.); (L.X.); (B.H.)
- Yunnan Provincial Clinical Medical Centre for Traditional Chinese Medicine Project (Dermatology), Kunming 650500, China
| | - Lei Xu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.G.); (L.X.); (B.H.)
| | - Bin Huang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.G.); (L.X.); (B.H.)
| | - Kai Xiong
- The First School of Clinical Medicine, Guizhou University of Chinese Medicine, Guiyang 550025, China;
| | - Xuesong Yang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.G.); (L.X.); (B.H.)
- Yunnan Provincial Clinical Medical Centre for Traditional Chinese Medicine Project (Dermatology), Kunming 650500, China
| | - Jianzhou Ye
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (S.G.); (L.X.); (B.H.)
- Yunnan Provincial Clinical Medical Centre for Traditional Chinese Medicine Project (Dermatology), Kunming 650500, China
| |
Collapse
|
22
|
Hou B, Xu A, Zhang S, Cai W, Wen Y, Wang Y, Zhu X, Huang S, Huang J, Qiu L, Sun H. Application of sodium alginate and polyethylene glycol bilayer multifunctional hydrogel microneedles in infectious and diabetic wounds. Int J Biol Macromol 2025; 310:143471. [PMID: 40288706 DOI: 10.1016/j.ijbiomac.2025.143471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/28/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Chronic wounds are challenging to heal due to persistent infection, prolonged inflammation, and impaired angiogenesis, which can ultimately lead to severe disabilities. Current treatment strategies are unable to provide the comprehensive conditions needed for effective chronic wound healing. Herein, we proposed a multifunctional microneedle patch for chronic wound healing, consisting of a needle-like drug-loading gel (DG) constructed with polyethylene glycol (PEG) and a backing hydrogel (BHG) layer constructed with sodium alginate. This design combines the therapeutic effects of drug delivery with the protective benefits of a hydrogel. The needle-like DG layer effectively penetrates the bacterial biofilm, releasing Erythromycin, Vaccarin, Demethylsuberosin, and Cyanidin, agents with synergistic antibacterial, anti-inflammatory, pro-angiogenic, and antioxidant effects in a temperature response-dependent manner. Together, these components address multiple barriers to chronic wound healing. The DG layer also maintains a moist wound environment for the wound. The pH-responsive properties of Cyanidin visually indicate the wound healing status. The multifunctional microneedle patch (DG@BHG) significant enhances healing in both infected and diabetic wounds, leveraging the combined effects of drug action and hydrogel support. This approach presents a novel therapeutic strategy for chronic wound healing by addressing infection, inflammation, and angiogenesis simultaneously.
Collapse
Affiliation(s)
- Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Anjing Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shijie Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yao Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shubing Huang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiarui Huang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
23
|
Xing C, Hou L, Sun C, Chen H, Li Y, Li L, Wu Y, Li L, An H, Wen Y, Du H. Injectable polypeptide/chitosan hydrogel with loaded stem cells and rapid gelation promoting angiogenesis for diabetic wound healing. Int J Biol Macromol 2025; 306:141578. [PMID: 40023432 DOI: 10.1016/j.ijbiomac.2025.141578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Diabetic wounds face challenges like infection, prolonged inflammation, and poor vascularization. To address these, we developed an injectable hydrogel for diabetic wound dressing by grafting palmitoyl tetrapeptide-7 (Pal-7) onto chitosan (CS) to form CS/Pal-7 (CP7). Glutaraldehyde (GA) was used to enhance crosslinking between CS, creating the CP7 hydrogel. The hydrogel showed rapid gelation, good mechanical properties, biocompatibility, and strong antibacterial effects. Additionally, stem cells derived from human deciduous teeth (SHED) were loaded into the CP7 hydrogel to form SHED@CP7. This complex promoted human umbilical vein endothelial cell (HUVEC) migration and tube formation, aiding angiogenesis, and induced macrophage polarization toward the M2 phenotype, exerting anti-inflammatory effects. In streptozotocin-induced diabetic mouse wounds, SHED@CP7 significantly improved wound healing with over 95 % wound closure, increased collagen deposition, and reduced tumor necrosis factor-α (TNF-α) expression by approximately 75 % and Interleukin-6 (IL-6) expression by around 81 %. It also increased Interleukin-10 (IL-10) expression by approximately 58 %, modulating the inflammatory microenvironment for regeneration. Moreover, SHED@CP7 enhanced angiogenesis, as shown by a 69 % increase in endothelial cell marker CD31 staining, supporting faster wound healing. These results highlight the potential of SHED@CP7 as an effective treatment for diabetic wounds.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liangxuan Hou
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chunbin Sun
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongyu Chen
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingxian Li
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Luping Li
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yawen Wu
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liang Li
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Heng An
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing Key Laboratory for Bioengineering and Sensing Technology, Beijing 100083, China.
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
24
|
Han J, Meng Q, Xue S, Su W, Wu J. Silk fibroin methacryloyl hydrogel loaded with silver-gallic acid nanoparticles for enhanced diabetic wound healing. Int J Biol Macromol 2025; 307:142108. [PMID: 40089238 DOI: 10.1016/j.ijbiomac.2025.142108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/27/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Diabetic wound healing is hindered by oxidative stress, impaired angiogenesis, and inflammation. To address these issues, we developed a novel silver-gallic acid nanoparticle and incorporated it into a methacryloyl silk fibroin hydrogel (Ag@GA/Gel) based on the concept of polyphenol-metal nanoparticle networks for diabetic wound healing. In vitro experiments demonstrated that this hydrogel could promote macrophage polarization toward the M2 phenotype, scavenge reactive oxygen species, and exhibit pro-angiogenic and antibacterial properties. In vivo experiments showed that Ag@GA/Gel enhanced wound healing in diabetic mice, evidenced by a reduction in pro-inflammatory cytokine (IL-6) expression at the wound site. Additionally, levels of the anti-inflammatory factor (TGF-β), the M2 macrophage marker (CD206), and angiogenesis markers (VEGF, CD31) were elevated. The experimental results indicate that Ag@GA/Gel is a promising therapeutic approach for diabetic wound healing.
Collapse
Affiliation(s)
- Jing Han
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, People's Republic of China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, People's Republic of China
| | - Qingxun Meng
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, People's Republic of China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, People's Republic of China
| | - Shihua Xue
- Preventive and Restorative Dental Sciences, University of California, San Francisco, CA 94143, USA
| | - Wenxuan Su
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, People's Republic of China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, People's Republic of China
| | - Jiannan Wu
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, People's Republic of China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, People's Republic of China.
| |
Collapse
|
25
|
Shi Z, Li S, Chen W, Yan H. The effect of blue and green light on human umbilical cord mesenchymal stem cells for promoting proliferation and wound healing. Sci Rep 2025; 15:14787. [PMID: 40295587 PMCID: PMC12037727 DOI: 10.1038/s41598-025-99083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Photobiomodulation (PBM) has been widely utilized in regenerative medicine, including dermatology, dentistry, and neurology. However, the optimal energy density of PBM for human umbilical cord mesenchymal stem cells (hUC-MSCs) remains underexplored, hindering its development and potential clinical application. This study aims to identify the optimal wavelength and irradiation fluence for promoting the proliferation of hUC-MSCs by comparing the effects of different wavelengths and irradiation fluences. Our results show that green light enhances the anti-inflammatory properties of hUC-MSCs, with the 76s being the most effective in inhibiting IL-6 and GM-CSF. Blue light with 38 s is more effective in promoting angiogenesis, significantly increasing the mRNA and protein secretion of VEGF, HGF, and FGF2 compared to the non-irradiated group. The peak secretion times varied, with VEGF and FGF2 peaking at 72 h and HGF at 24 h. RNA-Seq confirms the significant roles of blue and green light in inhibiting epithelial-mesenchymal transition and inflammation. In vitro co-culture models and conditioned media experiments validate these anti-inflammatory effects. These findings have important implications for accelerating the clinical application of stem cell therapies and provide new references for PBM use in hUC-MSCs.
Collapse
Affiliation(s)
- Zhuojun Shi
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Site Li
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Hong Yan
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Department of Plastic, Aesthetic, Reparative and Reconstructive Surgery/Wound Repair Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
26
|
Zhang J, Li W, Liu Y, Zheng J, Liu G, He M, Zheng Z, Zhu M, Cho N, Liang G, Han X, Ying H, Shi Q. OTUD1 delays wound healing by regulating endothelial function and angiogenesis in diabetic mice. J Adv Res 2025:S2090-1232(25)00282-6. [PMID: 40300668 DOI: 10.1016/j.jare.2025.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025] Open
Abstract
INTRODUCTION Diabetic non-healing wounds represent a major complication of diabetes, primarily due to impaired angiogenesis. Ovarian tumor deubiquitinase 1 (OTUD1), a deubiquitinase, has been implicated in vascular pathophysiology; however, its role in endothelial dysfunction and angiogenesis during diabetic wound healing is still poorly understood. OBJECTIVES This study explores whether OTUD1 influences angiogenesis and its underlying mechanisms. METHODS We developed OTUD1 knockout mice and induced type 1 and type 2 diabetes mellitus (T1DM and T2DM) by administering streptozotocin (STZ) alone or in combination with a high-fat diet (HFD), respectively. Human umbilical vein endothelial cells (HUVECs) incubated with high glucose and palmitic acid (HG + PA) were utilized to imitate hyperglycemia-induced endothelial dysfunction in vitro. Mass spectrometry combined with immunoprecipitation analysis was used to analyze the interacting proteins of OTUD1. Moreover, we developed endothelial-specific OTUD1 knockdown db/db mice using an adeno-associated virus serotype 2/BI30 (AAV2/BI30) vector. RESULTS Increased OTUD1 expressions were observed both in diabetic wound tissues and in HUVECs treated with HG + PA. OTUD1 deficiency promoted angiogenesis and fibrosis in wound tissues of T1DM and T2DM mice and alleviated HG + PA-induced endothelial migration inhibition, tube formation impairment, and oxidative stress in HUVECs. Mechanistically, OTUD1 directly interacted with β-catenin, reducing its K63-linked ubiquitination at residues K496, K508, and K625 via its catalytic site C320. This modification facilitated β-catenin phosphorylation, restricted its nuclear translocation, and downregulated the expression of angiogenesis-related factors. Finally, pharmacological inhibition of β-catenin reversed the improvement of delayed wound healing induced by OTUD1 knockdown in db/db mice. CONCLUSION These findings elucidate the OTUD1-β-catenin pathway's role in endothelial dysfunction-associated angiogenesis and suggest OTUD1 as a promising therapeutic target for diabetic non-healing wounds.
Collapse
Affiliation(s)
- Jiajia Zhang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Weiqi Li
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Yanan Liu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Jianing Zheng
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Guoxuan Liu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Mingyang He
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Zehang Zheng
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Majun Zhu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Han
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China.
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
27
|
Jiang X, Zhang X, Deng H, Lin L, Wang Y, Wang Y, Huang J, Yang N, Xu S, Wang J, Shi K, Tao K, Chen Z, Cai F, Zhou K, Xiao J. Modulation of Macrophage ferroptosis under the guide of infrared thermography promotes the healing of pressure injuries. J Adv Res 2025:S2090-1232(25)00283-8. [PMID: 40294817 DOI: 10.1016/j.jare.2025.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/02/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Accurately recognizing and regulating the transition time of macrophages to a pro- (M1-like) or anti-inflammatory (M2-like) state is essential for improving chronic inflammation in pressure injuries (PIs). OBJECTIVE This study aimed to evaluate the effectiveness of infrared thermography (IRT) in measuring wound temperature of PIs for the purpose of guiding treatment in regulating chronic inflammation. METHODS The healing process of 21 patients with PIs was monitored using IRT prospectively followed for 30 days. The wound temperature changing pattern of different healing outcomes were analyzed and calculated the optimal wound temperature range to guide the treatment time of anti-inflammation for 100 patients with PIs accurately. Additionally, the molecular mechanisms underlying the observed temperature changes in a mouse model of PI were investigated, and the effect of IRT-guided chronic inflammation targeting ferroptosis modulation on PIs was validated. RESULTS The application of IRT to monitor PIs temperatures outside the 36.23 °C to 37.37 °C range is indicative of a potential risk indicator, which allows for the timely guidance of treatment to markedly enhance the efficacy of PIs healing outcomes. This wound temperature change was also observed during the process of PIs healing in mice, as a result of the imbalance of M1-like/M2-like macrophages and the subsequent chronic inflammation. Mechanically, evidence indicates that ferroptosis is hyperactivated in PIs, and the enrichment of M1-like macrophages with iNOS/NO• can enhance their resistance to ferroptosis compared with M2-like macrophages, resulting in the imbalance of M1-like/M2-like macrophages and subsequent alteration of wound temperature. CONCLUSIONS The modulation of M2-like macrophage resistance to ferroptosis in PIs by NO• donors, suggesting by IRT-monitored temperature changes, has been demonstrated to significantly improve chronic inflammation. This establishes a foundation for the application of IRT to direct a therapeutic strategy for the precise promotion of PIs healing.
Collapse
Affiliation(s)
- Xiaoqiong Jiang
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Xuanlong Zhang
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huiming Deng
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lulu Lin
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuqi Wang
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shi Xu
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keqing Shi
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Tao
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zimiao Chen
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fuman Cai
- School of Nursing, Wenzhou Medical University, Wenzhou, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jian Xiao
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
28
|
Rong J, Li YY, Wang X, Wang JN, Song M. Non-coding RNAs in adipose-derived stem cell exosomes: Mechanisms, therapeutic potential, and challenges in wound healing. World J Stem Cells 2025; 17:102917. [PMID: 40308889 PMCID: PMC12038460 DOI: 10.4252/wjsc.v17.i4.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/23/2024] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
The treatment of complex wounds presents a significant clinical challenge due to the limited availability of standardized therapeutic options. Adipose-derived stem cell exosomes (ADSC-Exos) are promising for their capabilities to enhance angiogenesis, mitigate oxidative stress, modulate inflammatory pathways, support skin cell regeneration, and promote epithelialization. These exosomes deliver non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, which facilitate collagen remodeling, reduce scar formation, and expedite wound healing. This study reviews the mechanisms, therapeutic roles, and challenges of non-coding RNA-loaded ADSC-Exos in wound healing and identifies critical directions for future research. It aims to provide insights for researchers into the potential mechanisms and clinical applications of ADSC-Exos non-coding RNAs in wound healing.
Collapse
Affiliation(s)
- Jian Rong
- Department of Burns and Plastic Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Yao-Yao Li
- Department of Burns and Plastic Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Xin Wang
- Department of Burns and Plastic Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jia-Ning Wang
- Department of Burns and Plastic Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Mei Song
- Department of Burns and Plastic Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China.
| |
Collapse
|
29
|
Peng Y, Sheng J, Liu T, He R, Xu P. Identifying key targets and immune environment in wound healing based on iron overload-related genes. Arch Dermatol Res 2025; 317:719. [PMID: 40252113 DOI: 10.1007/s00403-025-04140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 04/21/2025]
Abstract
Wound healing (WH) poses a significant socio-economic burden due to its high incidence and recurrence rates. Iron overload (IO) could be a factor leading to delayed WH. This study thus analyzed IO-related genes (IORGs) in WH, offering possibilities for developing new therapeutic strategies. Differential gene expression (DEGs) analysis was conducted between the WH group and intact skin (IS) group, intersected with IORGs to obtain differentially expressed IORGs (DE-IORGs). Functional enrichment analysis and potential drug screening were performed on DE-IORGs. A protein-protein interaction (PPI) network of DE-IORGs was constructed, and hub genes were identified using CytoHubba and MCODE methods. ROC curves of hub genes were plotted, and their expression levels in WH and IS groups as well as inter-gene correlations were analyzed. Additionally, immune infiltration variances in WH and IS groups, along with miRNA and TFs of hub genes, were examined. Finally, the effect of EGFR on skin wound healing was verified by scratch healing assay. 39 DE-IORGs were predominantly enriched in signaling pathways like HIF-1 signaling pathway and Th17 cell differentiation. Potential drugs for treating WH (e.g., felbamate, SA-94315, GANT-58, rucaparib) were identified. Three hub genes related to IO in WH were pinpointed (HIF1A, CDKN2A, EGFR) with diagnostic value. Immune infiltration analysis showed higher levels of immune cells like endothelial cells and macrophages in the WH group. Additionally, 55 miRNAs (e.g., hsa-mir-200a-3p, hsa-mir-218-5p) and 2 TFs (L3MBTL2, ZNF76) regulating the three hub genes were predicted. Cell experiments showed that EGFR could promote skin wound healing. The study suggested HIF1A, CDKN2A, and EGFR as potential diagnostic biomarkers for effective WH diagnosis, offering new insights into identifying potenti1al therapeutic targets for WH treatment.
Collapse
Affiliation(s)
- Yinbo Peng
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Department of Plastic Surgery and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Institute of Traumatic Medicine of Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201900, China
| | - Juxiang Sheng
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Department of Plastic Surgery and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
| | - Tiantian Liu
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Department of Plastic Surgery and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Institute of Traumatic Medicine of Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201900, China
| | - Ruizhe He
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Department of Plastic Surgery and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Institute of Traumatic Medicine of Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201900, China
| | - Peng Xu
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China.
- Department of Plastic Surgery and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China.
- Institute of Traumatic Medicine of Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201900, China.
| |
Collapse
|
30
|
Geng S, Liu L, Yimingjiang M, Lin Z, Fu J, Yu S, Li X, Yan A, Yuan K, Huang G, Xu A. Self-Healing Polymeric Puerarin Hydrogel Dressing Promotes Diabetic Wound Healing Through Synergistic Immunomodulation and Tissue-Regenerative Remodeling. Bioengineering (Basel) 2025; 12:427. [PMID: 40281788 PMCID: PMC12024557 DOI: 10.3390/bioengineering12040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Chronic wound healing is a significant challenge in diabetes. Puerarin is an active compound extracted from the traditional Chinese medicine Pueraria lobata. Puerarin has been used in the treatment of diabetes and derives benefits from its antioxidant, anti-inflammatory, antibacterial, and pro-angiogenesis properties, but its efficacy is hampered by poor water solubility and bioavailability. In this study, we designed a polyvinyl alcohol (PVA)-borax-puerarin (BP) hydrogel system that self-assembled via boronic ester bonds. The BP hydrogel exhibited exceptional physical characteristics, including adaptability, injectability, plasticity, self-healing capabilities, and robust compressive strength, as well as good biocompatibility. In the chronic wound diabetic rats model, the BP hydrogel significantly accelerated wound healing, as evidenced by hematoxylin and eosin (HE) staining, as well as Masson and picrosirius red (PSR) staining. RNA-sequencing and multiple immunohistochemistry (mIHC) analyses revealed that the BP hydrogel exerts a therapeutic effect by modulating macrophage polarization, promoting angiogenesis, and regulating collagen remodeling. Our findings suggest that the BP hydrogel represents a promising wound dressing and holds great potential for clinical applications in acute and chronic wound management.
Collapse
Affiliation(s)
- Shaohui Geng
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China (S.Y.); (A.Y.); (K.Y.)
| | - Li Liu
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China (S.Y.); (A.Y.); (K.Y.)
| | - Mureziya Yimingjiang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China (S.Y.); (A.Y.); (K.Y.)
| | - Zhimin Lin
- School of Acupuncture and Moxibustion and Massage, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Jingyuan Fu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Shasha Yu
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China (S.Y.); (A.Y.); (K.Y.)
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Xinxin Li
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China;
| | - Aimin Yan
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China (S.Y.); (A.Y.); (K.Y.)
| | - Kai Yuan
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China (S.Y.); (A.Y.); (K.Y.)
| | - Guangrui Huang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China (S.Y.); (A.Y.); (K.Y.)
| | - Anlong Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China (S.Y.); (A.Y.); (K.Y.)
| |
Collapse
|
31
|
Ren RY, Zhao TG, Li LX, Tang XY, Li JL, Jiang F, Liu CG. Immunomodulatory All-Natural Kelp Decellularized Scaffold Prepared Using Deep Eutectic Solvent with Angiogenic Properties for Accelerating Diabetic Wound Healing. ACS Biomater Sci Eng 2025; 11:2306-2320. [PMID: 40111406 DOI: 10.1021/acsbiomaterials.4c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Excessive oxidative stress, chronic inflammation, and impaired vascularization are the main barriers to diabetic wound repair. A decellularized extracellular matrix (dECM) with a native ECM structure is a promising biomaterial candidate for diabetic wound healing. However, the traditional decellularization process (reagents) can diminish the structural stability, mechanical properties, and bioactive components of dECM. To address these issues, we developed an intrinsically bioactive kelp decellularized scaffold (Im-Gly2) using natural and gentle deep eutectic solvents (DES) for accelerating diabetic wound healing. Im-Gly2 had a stable porous 3D structure (80.7 μm) and suitable mechanical properties, which could support cell growth, proliferation, and migration. Due to the retention of fucoidan, polyphenols (735.3 μg/g), and flavonoids, Im-Gly2 demonstrated intrinsic antioxidant and immunomodulatory effects. It effectively reduced reactive oxygen species (ROS) production in RAW264.7 macrophages and promoted their differentiation into the M2 phenotype. Notably, Im-Gly2 promoted tube formation through paracrine mechanisms by inducing the expression of transforming and proliferative cytokines from the RAW264.7 macrophage. In vivo, Im-Gly2 accelerated the healing of diabetic wounds by alleviating inflammation, angiogenesis, granulation tissue formation, collagen deposition, and re-epithelialization. Taken together, our study provides a novel strategy for fabricating a bioactive kelp dECM without cross-linking with exogenous substances for accelerating chronic diabetic wound healing.
Collapse
Affiliation(s)
- Ru-Yi Ren
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Tian-Ge Zhao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Lu-Xi Li
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Xin-Yi Tang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Jia-Le Li
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Fei Jiang
- Medical College, Linyi University, Shuangling Road, Linyi, 276005, China
| | - Chen-Guang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
32
|
Wan T, Wei A, Ding Z, Gonzalez SC, Wang J, Hou X, Luo X, He L, Song Z. Inflammation and macrophage infiltration exacerbate adult incision response by early life injury. BMC Anesthesiol 2025; 25:165. [PMID: 40211125 PMCID: PMC11983940 DOI: 10.1186/s12871-025-03029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Neonatal hindpaw incision can evoke long-lasting changes in nociceptive processing following repeat injury in adulthood. Studies have focused on the effects and mechanisms in the spinal cord and brain, however changes in inflammation and macrophages in the periphery, especially at the site of early life injury, remain poorly defined. In this paper, we investigated the role of macrophages in the injured tissue in pain hypersensitivity caused by repeat hindpaw incisions and primed by neonatal injury. METHODS Hindpaw incision was performed in anesthetized adult rats. Among them, some had neonatal hindpaw incisions on postnatal day 3. To assess the role of inflammatory response in the priming of adult incision pain, the rats were treated with clodronate liposome, a macrophage depletion agent, and ketorolac tromethamine, the commonly used anti-inflammatory drug following surgery. Their mechanical pain sensitivity was measured via von Frey filaments. Inflammation induced by hindpaw incision was evaluated via Enzyme-linked Immunosorbent Assay, H&E, and immunofluorescence staining. The phenotypes of macrophages were examined by analyzing their surface markers by flow cytometry. RESULTS Mechanical pain hypersensitivity caused by the hindpaw incision in the adult rats was enhanced by previous neonatal injury, which also significantly increased microglial activation in the spinal dorsal horn, aggravation of inflammation, and infiltration of both M1 and M2 macrophages in damaged hindpaw tissue after the repeat incision in the adult rats on POD 5. Intraperitoneal injection of clodronate liposome alleviates nociceptive and inflammatory responses in neonatal injured rats. Intramuscular injection of ketorolac tromethamine decreased mechanical hyperalgesia and inflammatory responses primed by prior neonatal injury. CONCLUSIONS Neonatal tissue injury exacerbated mechanical hypersensitivity, infiltration, and activation of macrophages evoked by repeat hindpaw incision in adulthood.
Collapse
Affiliation(s)
- Tong Wan
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Anqi Wei
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
- Department of Anesthesiology, Guiqian International General Hospital, Guiyang, 550024, China
| | - Zhuofeng Ding
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China.
| | - Sarel Chavarria Gonzalez
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Jian Wang
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xinran Hou
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xiao Luo
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Liqiong He
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Zongbin Song
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China.
- Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China.
| |
Collapse
|
33
|
Yuan L, He Q, Zhang Y, Luo H, Xiang W, Deng C, Li C, Li X, Yao L, Ke D, Wang S, Zhou J, Wang J. 6-Gingerol microneedle promotes diabetic wound healing by regulating macrophage polarization. Int Immunopharmacol 2025; 151:114288. [PMID: 40007376 DOI: 10.1016/j.intimp.2025.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
Diabetic wound-healing difficulties are common for patients with diabetes. Compared to normal wound healing processes, the hyperglycaemic environment in diabetic wounds increases the proportion of M1 macrophages significantly, thereby prolonging the inflammatory phase of wound healing. Consequently, treatment approaches targeting macrophages are gaining increasing attention in both research and clinical practice. 6-Gingerol (6-G), a natural compound derived from ginger, is recognized for its anti-inflammatory, anti-tumour, and antioxidant properties. However, its application in diabetic wound treatment has been limited by poor water solubility and low bioavailability. In this study, we developed a hydrogel microneedle system (6-G@MN) combining 6-G with polyethylene glycol, hyaluronic acid, and gelatin. Our results demonstrated that 6-G@MN effectively promotes angiogenesis and collagen deposition in diabetic wounds while rebalancing macrophage populations in diabetic mice. Additionally, 6-G was shown to inhibit lipopolysaccharide-induced M1 macrophage polarization in vitro and to activate the AMPK/mTOR signalling pathway. In conclusion, we developed 6-G@MN as a novel therapeutic approach that integrates the advantages of the traditional Chinese medicine component 6-G with modern microneedle technology. By targeting macrophage polarization, the system can offer a promising strategy for improving the healing of diabetic wounds.
Collapse
Affiliation(s)
- Ling Yuan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qifeng He
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhang
- Department of General Practice, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Hongyu Luo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, China
| | - Wei Xiang
- Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Chendan Deng
- Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Chunli Li
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xuezhi Li
- Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Ling Yao
- Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Dazhi Ke
- Department of General Practice, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Shang Wang
- Chongqing University of Chinese Medicine, Chongqing 402760, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, China.
| | - Jianjun Zhou
- Chongqing University of Chinese Medicine, Chongqing 402760, China.
| | - Jianwei Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing University of Chinese Medicine, Chongqing 402760, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, China.
| |
Collapse
|
34
|
Yang C, Wang Y, Zhang Z, Wang C, Yu F, Zhao Z, Wang Z, Zhang L. Photothermal antimicrobial guar gum hydrogel cross-linked by bioactive small molecule lysine for infected wound healing. Int J Biol Macromol 2025; 301:140328. [PMID: 39870262 DOI: 10.1016/j.ijbiomac.2025.140328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
The healing of bacteria-infected wounds has long posed a significant clinical challenge. Traditional hydrogel wound dressings often lack self-healing properties and effective antibacterial characteristics, making wound healing difficult. In this study, a bioactive small molecule cross-linking agent 4-FPBA/Lys/4-FPBA (FLF) composed of 4-formylphenylboronic acid (4-FPBA) and lysine (Lys) was utilized to cross-link guar gum (GG) and a tannic acid/iron (TA/Fe3+) chelate through multiple dynamic bonds, leading to the formation of a novel self-healing hydrogel dressing GG-FLF/TA/Fe. The hydrogel exhibited excellent stretchability and self-healing ability, which enabled it to adapt to irregular wound sites. Meanwhile, the hydrogel demonstrated remarkable antibacterial efficacy (>99 %) facilitated by the synergistic effects of photothermal properties and aromatic Schiff bases. Additionally, it had adjustable rheological properties, good mechanical characteristics, conductivity, antioxidant characteristics and biocompatibility. Notably, the GG-FLF/TA/Fe hydrogel dressing irradiated with NIR displayed superior therapeutic effects in a mouse wound infection model (wound healing rate: 94.8 %), promoting recovery from bacterially infected wounds by enhancing collagen deposition, facilitating the formation of skin appendages and blood vessels, and regulating inflammatory factors. In summary, this study presented a novel approach to prepare biologically active antibacterial polysaccharide hydrogels and highlighted the substantial potential of this hydrogel as a biomedical antibacterial dressing.
Collapse
Affiliation(s)
- Chufan Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China
| | - Yan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhiyuan Zhang
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China
| | - Chen Wang
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China
| | - Fangzheng Yu
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China.
| | - Zhenyu Wang
- Key Laboratory of Biodiversity Conservation and Bioresources Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330000, China.
| | - Lingling Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430070, China.
| |
Collapse
|
35
|
Liu H, Ai R, Liu BZ, He L. Recent advances in hyaluronic acid-based hydrogels for diabetic wound healing. Int J Biol Macromol 2025; 304:140797. [PMID: 39924018 DOI: 10.1016/j.ijbiomac.2025.140797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Diabetic wound healing represents a complex biological challenge, often impeded by disrupted cellular processes and dysregulated inflammation, which can lead to chronic and non-healing wounds. Given the significant burden on patients and the healthcare system, there is an urgent need for advanced therapeutic strategies. Hyaluronic acid (HA)-based hydrogels have emerged as a promising solution due to their biocompatibility, biodegradability, and unique physiological functions. This review aims to provide a comprehensive overview of recent advances in HA-based hydrogels, highlighting their potential in addressing diabetic wound complications. Specifically, it examines challenges such as hyperglycemia-induced oxidative stress and impaired cellular signaling within the intricate diabetic wound microenvironment. Moreover, the review explores the composition and properties of HA, including its adhesive capabilities and role in reducing surgical trauma. Various crosslinking strategies and functional modifications are also discussed to endow HA-based hydrogels with antioxidant, antimicrobial, and growth factor-releasing capabilities. By summarizing the latest research and identifying areas for further exploration, this review contributes to the development of more effective HA-based hydrogel formulations for diabetic wound healing.
Collapse
Affiliation(s)
- Huan Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Ronger Ai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Bi-Zhi Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Li He
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
36
|
Meng H, Su J, Shen Q, Hu W, Li P, Guo K, Liu X, Ma K, Zhong W, Chen S, Ma L, Hao Y, Chen J, Jiang Y, Li L, Fu X, Zhang C. A Smart MMP-9-responsive Hydrogel Releasing M2 Macrophage-derived Exosomes for Diabetic Wound Healing. Adv Healthc Mater 2025; 14:e2404966. [PMID: 39955735 DOI: 10.1002/adhm.202404966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Chronic diabetic wounds are characterized by prolonged inflammation and excessive accumulation of M1 macrophages, which impede the healing process. Therefore, resolving inflammation promptly and transitioning to the proliferative phase are critical steps for effective diabetic wound healing. Exosomes have emerged as a promising therapeutic strategy. In this study, a smart hydrogel capable of responding to pathological cues in the inflammatory microenvironment to promote the transition from inflammation to proliferation by delivering M2 macrophage-derived exosomes (M2-Exos) is developed. The smart hydrogel is synthesized through the cross-linking of oxidized dextran, a matrix metalloproteinase (MMP)-9-sensitive peptide, and carboxymethyl chitosan containing M2-Exos. In response to elevated MMP-9 concentrations in the inflammatory microenvironment, the hydrogel demonstrates diagnostic logic, adjusting the release kinetics of M2-Exos accordingly. The on-demand release of M2-Exos facilitated macrophage polarization from the M1 to the M2 phenotype, thereby promoting the transition from the inflammatory to the proliferative phase and accelerating diabetic wound healing. The transcriptomic analysis further reveals that the MMP-9-responsive hydrogel with M2-Exos delivery exerts anti-inflammatory and regenerative effects by downregulating inflammation-related pathways. This study introduces an innovative, microenvironment-responsive exosome delivery system that enables precise control of therapeutic agent release, offering a personalized approach for the treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Hao Meng
- Medical Innovation Research Department, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Jianlong Su
- Medical Innovation Research Department, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Qi Shen
- Medical Innovation Research Department, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Wenzhi Hu
- Medical Innovation Research Department, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Pinxue Li
- Medical Innovation Research Department, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, PLA General Hospital and PLA Medical College, Beijing, 100048, China
| | - Kailu Guo
- College of Graduate, Tianjin Medical University, Tianjin, 300070, China
| | - Xi Liu
- Medical Innovation Research Department, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Kui Ma
- Medical Innovation Research Department, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Weicheng Zhong
- College of Graduate, Tianjin Medical University, Tianjin, 300070, China
| | - Shengqiu Chen
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liqian Ma
- Medical Innovation Research Department, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Yaying Hao
- Medical Innovation Research Department, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Junli Chen
- Medical Innovation Research Department, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Yufeng Jiang
- Department of Tissue Regeneration and Wound Repair, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Linlin Li
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xiaobing Fu
- Medical Innovation Research Department, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| | - Cuiping Zhang
- Medical Innovation Research Department, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100048, China
| |
Collapse
|
37
|
Zhu H, Wang W, Zhu J, Chen X, Wang J, Wang J, Liu D, Yang P, Liu Y. Methylglyoxal deteriorates macrophage efferocytosis in diabetic wounds through ROS-induced ubiquitination degradation of KLF4. Free Radic Biol Med 2025; 231:23-37. [PMID: 39986490 DOI: 10.1016/j.freeradbiomed.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
Diabetic wounds are a leading cause of disability and mortality in patients with diabetes, and persistent low-grade inflammation plays a significant role in their pathogenesis. Methylglyoxal (MGO), an active product of glucose metabolism, often induces chronic inflammation and is considered a major risk factor in the healing of diabetic wounds. Efferocytosis, the process by which macrophages clear apoptotic cells, is crucial for terminating the inflammatory response and tissue repair. However, the role of MGO in macrophage efferocytosis remains unclear. This study aimed to investigate whether MGO regulates macrophage efferocytosis and the underlying mechanisms. In this study, we observed impaired efferocytosis in diabetic wounds, leading to the accumulation of apoptotic neutrophils and a relative deficiency of M2 macrophages, with MGO being a significant cause. MGO promotes the production of ROS, which not only activates the MAPK p38 pathway, but also upregulates the transcription of the E3 ubiquitin ligase FBXO32, catalyzing the ubiquitination of the transcription factor KLF4 and suppressing the transcription of MerTK mRNA, thereby affecting the phagocytic function of macrophages. Inhibition of the MAPK p38 pathway or knockdown of FBXO32 reduced the ubiquitination and degradation of KLF4, thus mitigating the impairment of efferocytosis caused by oxidative stress. This study reveals the mechanism by which MGO inhibits efferocytosis in diabetic wounds, providing a new target and theoretical basis for the treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Hanting Zhu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenao Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiajun Zhu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xuelian Chen
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jizhuang Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiaqiang Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Peilang Yang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
38
|
Ou X, Yu Z, Zheng X, Chen L, Pan C, Li D, Qiao Z, Zheng X. An MXene nanocomposite hydrogel for enhanced diabetic infected wound healing via photothermal antibacterial properties and bioactive molecule integration. Mater Today Bio 2025; 31:101538. [PMID: 40026619 PMCID: PMC11871482 DOI: 10.1016/j.mtbio.2025.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/10/2025] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
Diabetic wounds are a major clinical challenge due to their chronic, non-healing nature, which significantly impacts patients' quality of life. Traditional treatments often fail to effectively promote wound healing, highlighting the need for new biomaterials. In this study, we developed a composite hydrogel (KC@PF@TA) that combines the photothermal and antibacterial properties of Ti₃C₂Tx-Ag (Titanium carbide-silver) with the regenerative effects of paeoniflorin (PF). The hydrogel was optimized by adjusting the composition, crosslinking density, and the incorporation of nanoparticles, which enhanced its mechanical strength, photothermal conversion efficiency, antibacterial properties, and biocompatibility. The optimized hydrogel demonstrated enhanced cell proliferation, migration, and robust photothermal and antibacterial properties in vitro. In a diabetic murine model of Staphylococcus aureus-infected wounds, KC@PF@TA exhibited exceptional therapeutic benefits in antibacterial, anti-inflammatory, angiogenic, and tissue regeneration. Overall, our results suggest that composite hydrogels with controlled bioactive agent release and mechanical modulation present a promising solution for treating chronic diabetic wounds.
Collapse
Affiliation(s)
| | | | - Xi Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Medical College, Chongqing University, Chongqing, 400014, China
| | - Le Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Medical College, Chongqing University, Chongqing, 400014, China
| | - Chuanyu Pan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Medical College, Chongqing University, Chongqing, 400014, China
| | - Dandan Li
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Medical College, Chongqing University, Chongqing, 400014, China
| | - Zhenzhen Qiao
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Medical College, Chongqing University, Chongqing, 400014, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Medical College, Chongqing University, Chongqing, 400014, China
| |
Collapse
|
39
|
Zhou Y, Huang H, Yuan Q, Ren J, Wu J, Zhao X, Lin Y, Lin Z, Xu L. Hydrogel dressing composed of nanoAg@QAC promotes the healing of bacterial infected diabetic wounds. BIOMATERIALS ADVANCES 2025; 169:214143. [PMID: 39662166 DOI: 10.1016/j.bioadv.2024.214143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Diabetes mellitus ranks as the eighth most prevalent cause of mortality and disability worldwide. It is a major challenge for clinics to treat diabetic-infected wounds. The hydrogel (referred to as NanoAg@QAC), which combines the advantages of nanosilver (NanoAg) and quaternary ammonium chitosan (QAC), possesses the characteristics of an ideal wound dressing, including proper mechanical properties, antimicrobial activity, anti-biofilm properties, and cytocompatibility. The NanoAg@QAC hydrogel proved to be efficacious in treating infections caused by S. aureus and P. aeruginosa in vivo, thereby promoting wound closure during the initial phase of healing. The application of the NanoAg@QAC hydrogel efficiently suppressed M1-type macrophage marker iNOS expression and simultaneously enhanced the M2-type macrophage marker CD206, which promoted the M1 to M2 transition. The hydrogel significantly reduced the pro-inflammatory cytokine interleukin-1β (IL-1β) and increased the levels of vascular endothelial growth factor A (VEGFA), which alleviated the inflammatory response of the wound and promoted neovascularization. Furthermore, the NanoAg@QAC hydrogel enhanced tissue regeneration and collagen deposition. Thisw study demonstrates that the NanoAg@QAC hydrogel exhibits significant potential for application in the treatment of diabetic-infected wounds.
Collapse
Affiliation(s)
- Yanyan Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Haiyan Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Qi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Jingyuan Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Jiashen Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Xilin Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Yuchun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China.
| | - Zhongning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China.
| | - Ling Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China; Shenzhen Research Institute of Xiamen University, Shenzhen, China.
| |
Collapse
|
40
|
Ma DJ, Li TH, Yang SY, Yu JJ, Li ST, Yu Y, Liu Y, Zang J, Kong L, Li XT. Self-assembling Bletilla polysaccharide nanogels facilitate healing of acute and infected wounds via inflammation control and antibacterial activity. Int J Biol Macromol 2025; 299:140125. [PMID: 39842574 DOI: 10.1016/j.ijbiomac.2025.140125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Wound healing is one of the fundamental problems faced by the medical profession. Thus, there is a need for the development of biomaterials that are safe, economically viable, possess anti-inflammatory and antibacterial characteristics, and enhance wound healing. In this study, we designed a nanomicelle of Bletilla striata polysaccharide (BSP) self-loaded with Azithromycin (AZI). The properties are improved by physically blending Carbomer 940 (CBM) with Gelatin (GEL) to serve as the hydrogel matrix. The preparation was made by combining the nanomicelle, used as the precursor solution, with the gel matrix. It was designed to treat wound infections and promote healing. Relevant experiments indicate its excellent biocompatibility. The hydrogel not only promotes cell migration, proliferation, angiogenesis, and collagen deposition associated with skin healing, but also regulates the polarization of macrophages from the M1 to M2 phenotype, as well as the expression of related factors. Additionally, in vitro experiments demonstrate its good antibacterial activity. In addition, we demonstrated the gel's anti-inflammatory, antibacterial, and pro-healing effects in acute wounds and methicillin-resistant Staphylococcus aureus (MRSA) wounds. Therefore, the nanomicellar gel enhances antibacterial activity and related immune regulation, offering a new direction in the treatment of acute and chronic wounds.
Collapse
Affiliation(s)
- De-Jin Ma
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Tian-Hua Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Su-Yu Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Jun-Jie Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Shu-Tong Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China.
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine Targeted Delivery Key laboratory, Shenyang 110847, China.
| |
Collapse
|
41
|
Fang Z, Zhang S, Wang W, Xu Y, Lu M, Qian Y, Xiao X, Li Y, Tang BZ, Zhang M. Aggregation-induced emission-based phototheranostics to combat bacterial infection at wound sites: A review. Biomaterials 2025; 315:122950. [PMID: 39522351 DOI: 10.1016/j.biomaterials.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The healing of chronic wounds infected by bacteria has attracted increasing global concerns. In the past decades, antibiotics have certainly brought hope to cure bacteria-infected chronic wounds. However, the misuse of antibiotics leads to the emergence of numerous multidrug-resistant bacteria, which aggravate the health threat to clinical patients. To address these increasing challenges, scientists are committed to creating novel non-antibiotic strategies to kill bacteria and promote bacteria-infected chronic wound healing. Fortunately, with the quick development of nanotechnology, the representatives of phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), exhibit promising possibilities in promoting bacteria-infected wound healing. Well-known, photothermal agents and photosensitizers largely determine the effects of PTT and PDT. A common problem for these molecules is the aggregation-induced quenching effect, which highly limits their further applicability in biomedical and clinical fields. Fortunately, the occurrence of aggregation-induced emission luminogens (AIEgens) efficiently overcomes the photobleaching and exhibit advantages, such as strongly aggregated emission, superior photostability, aggregation-enhanced reactive oxygen species (ROS), and heat generation, which makes great sense to the development of PTT and PDT. This article reviews various studies conducted on novel AIEgen-based materials that can mediate potent PDT, PTT, and a combination of PDT and PTT to promote bacteria-infected chronic wound healing.
Collapse
Affiliation(s)
- Zhurun Fang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Shixuan Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Mengmeng Lu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xiyan Xiao
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuanyuan Li
- Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
42
|
Xie J, Huang Y, Hu X, Wu X, Luo X, Wei P, Jing W, Zhao B, Su J. A Constant Filgotinib Delivery Adhesive Platform Based on Polyethylene Glycol (PEG) Hydrogel for Accelerating Wound Healing via Restoring Macrophage Mitochondrial Homeostasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408791. [PMID: 39679768 DOI: 10.1002/smll.202408791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Skin wound healing is often hindered by disrupted mitochondrial homeostasis and imbalanced macrophage glucose metabolism, posing a critical challenge to improve patient outcomes. Developing new wound healing dressings capable of effectively regulating macrophage immune-metabolic functions remains a pressing issue. Herein, a highly adhesive polyethylene glycol (PEG) hydrogel loaded with the Janus kinase 1 (JAK1) inhibitor Filgotinib (Fil@GEL) is prepared to modulate macrophage metabolic reprogramming and restore normal mitochondrial function. Fil@GEL exhibits superior shear adhesion strength compared to commercially available tissue binder products, providing adequate adhesion for skin wound closure. Additionally, Fil@GEL exhibits the capacity to inhibit M1-type macrophage polarization by suppressing the JAK-STAT signaling pathway, and induces a metabolic shift in macrophages from aerobic glycolysis to oxidative phosphorylation, which results in decreased lactate production, reduced reactive oxygen species (ROS) levels, and the restoration of mitochondrial homeostasis. The Fil@GEL hydrogel significantly accelerates skin wound healing compared to the control group, reduces intra-wound inflammation, and promotes collagen regeneration. In summary, this highly adhesive hydrogel demonstrates exceptional performance as a drug carrier, exerting immunometabolic modulation through firm wound adhesion and sustained filgotinib release, underscoring its substantial potential as an effective wound dressing.
Collapse
Affiliation(s)
- Jian Xie
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Yiqian Huang
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing, 102600, China
| | - Xiaofeng Hu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Xiaowei Wu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai, 200125, China
| | - Xi Luo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing, 102600, China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing, 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing, 102600, China
| | - Jiansheng Su
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| |
Collapse
|
43
|
Sadeghi M, Moghaddam A, Amiri AM, Charoghdoozi K, Mohammadi M, Dehnavi S, Orazizadeh M. Improving the Wound Healing Process: Pivotal role of Mesenchymal stromal/stem Cells and Immune Cells. Stem Cell Rev Rep 2025; 21:680-697. [PMID: 39921839 DOI: 10.1007/s12015-025-10849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Wound healing, a physiological process, involves several different types of cells, from immune cells to non-immune cells, including mesenchymal stromal/stem cells (MSC), and their interactions. Immune cells including macrophages, neutrophils, dendritic cells (DC), innate lymphoid cells (ILC), natural killer (NK) cells, and B and T lymphocytes participate in wound healing by secreting various mediators and interacting with other cells. MSCs, as self-renewing, fast proliferating, and multipotent stromal/stem cells, are found in a wide variety of tissues and critically involved in different phases of wound healing by secreting various molecules that help to improve tissue healing and regeneration. In this review, first, we described the four main phases of wound healing, second, we reviewed the function of MSCs, MSC secretome and immune cells in improving the progress of wound repair (mainly focusing on skin wound healing), third, we explained the immune cells/MSCs interactions in the process of wound healing and regeneration, and finally, we introduce clinical applications of MSCs to improve the process of wound healing.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Moghaddam
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kianush Charoghdoozi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
44
|
Zhang H, Dong X, Liu Y, Duan P, Liu C, Liu K, Yu Y, Liang X, Dai H, Yu A. An injectable and adaptable system for the sustained release of hydrogen sulfide for targeted diabetic wound therapy by improving the microenvironment of inflammation regulation and angiogenesis. Acta Biomater 2025; 196:364-379. [PMID: 39993519 DOI: 10.1016/j.actbio.2025.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/02/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The combined effects of persistent chronic inflammation, oxidative stress, microcirculation disorders, and dysregulated cellular energy metabolism often hinder the repair of diabetic skin wounds. Traditional treatment methods are typically insufficient in simultaneously addressing these complex factors, resulting in delayed wound healing and a high propensity for recurrence and chronic ulceration. This study developed an innovative strategy based on reactive oxygen species (ROS)-responsive nanoparticles loaded with an ultraviolet (UV)-light-responsive hydrogen sulfide (H2S) donor. This approach leverages the endogenous ROS present in diabetic wounds and external UV light as dual triggers to facilitate the controlled and stepwise release of H2S. The material design explicitly targets the critical challenges in diabetic wound repair, including the inhibition of chronic inflammation, oxidative stress reduction, microcirculation improvement, and support of cellular energy metabolism, thereby significantly accelerating wound healing. This adaptive release of signaling molecules effectively modulates the wound regeneration microenvironment, enhancing the repair process and offering a promising solution for diabetic skin wound management. STATEMENT OF SIGNIFICANCE: This study developed an innovative strategy based on reactive oxygen species (ROS)-responsive nanoparticles loaded with an ultraviolet (UV)-light-responsive hydrogen sulfide (H2S) donor. This approach leverages the endogenous ROS present in diabetic wounds and external UV light as dual triggers to facilitate the controlled and stepwise release of H2S. The material design explicitly targets the critical challenges in diabetic wound repair, including the inhibition of chronic inflammation, oxidative stress reduction, microcirculation improvement, and support of cellular energy metabolism, thereby significantly accelerating wound healing. This adaptive release of signaling molecules effectively modulates the wound regeneration microenvironment, enhancing the repair process and offering a promising solution for diabetic skin wound management.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Yuhang Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Changjiang Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Yifeng Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xinyue Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China; National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
45
|
Li X, Yi M, Song Z, Ni T, Tu L, Yu M, Zhang L, Shi J, Gao W, Zhang Q, Yan W. A calcitonin gene-related peptide co-crosslinked hydrogel promotes diabetic wound healing by regulating M2 macrophage polarization and angiogenesis. Acta Biomater 2025; 196:109-122. [PMID: 40020959 DOI: 10.1016/j.actbio.2025.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Delayed diabetic wound (DBW) healing is a severe complication of diabetes, characterized notably by peripheral sensory neuropathy. The underlying mechanism of sensory nerves and DBW remain unclear. Here, we demonstrate the role of calcitonin gene-related peptide (CGRP) in regulating epithelialization and angiogenesis in DBW. Subsequently, we design and synthesis a gelatin methacryloyl (GelMA-CGRP) hydrogel that slowly releases CGRP, and evaluated its effect on promoting DBW healing. The results show that CGRP is abnormally downregulated in DBW, and CGRP ablation further delays DBW healing. This is due to the reduced M2 polarization and decreased angiogenesis in the absence of CGRP, whereas local application of GelMA-CGRP accelerates DBW healing. Mechanistic studies indicate that CGRP promotes M2 macrophage polarization by inhibiting the p53 signaling pathway and enhances endothelial cell function, thereby accelerating DBW healing. These findings suggest that CGRP could provide a novel therapeutic approach for diabetic wound treatment. STATEMENT OF SIGNIFICANCE: Current methods for treating diabetic wounds have many limitations. Compared to conventional dressings, hydrogels combined with drugs or biological factors to promote diabetic wound healing have become an important research direction in recent years. This study reveals the key role of CGRP in the pathogenesis of diabetic wounds. The research found that CGRP promotes M2 macrophage polarization and angiogenesis by inhibiting the p53 signaling pathway, thereby promoting diabetic wound healing. We further utilized the carrier properties of GelMA hydrogel to develop a GelMA-CGRP hydrogel material that slowly delivers CGRP and effectively treats diabetic wounds. This material demonstrates strong biocompatibility and antimicrobial properties, offering a novel approach for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Xiangyu Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Min Yi
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Ziyan Song
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Tianyi Ni
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Liying Tu
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Miao Yu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Lantian Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Jingping Shi
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Weicheng Gao
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| | - Wei Yan
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| |
Collapse
|
46
|
Xiang C, Pu C, Zhong X, Wang Y, Song W, Wang X, Chen K, Li K, Luo Y, Jiang K, Jiang D. Functional hydrogels promote chronic infectious wound healing by re-rousing macrophage M1 and inducing bacterial copper-like death. Mater Today Bio 2025; 31:101571. [PMID: 40051527 PMCID: PMC11883446 DOI: 10.1016/j.mtbio.2025.101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 03/09/2025] Open
Abstract
Traditional antibiotics are often ineffective against biofilm-associated infections, and biofilm-induced macrophage immune evasion directly halts the wound healing process. Disrupting biofilms and regulating macrophage immune functions are critical to improving wound healing. In this study, we synthesized g-C3N4 with peroxidase (POD) enzyme activity via thermal polymerization and copper alginate microspheres (CAM) via gas cutting. These were co-encapsulated into GelMA hydrogels to form a functionalized wound repair system (GelMA/CAM@g-C3N4) with both anti-biofilm and local immune microenvironment remodeling capabilities. In vitro, this system exhibited excellent biocompatibility and promoted endothelial cell migration, vascular formation, and CD31 expression. It also polarized macrophages toward the M1 phenotype, restoring their pro-inflammatory functions, upregulating inflammatory cytokines (IL-1, IL-6, TNF-α), and inhibiting Staphylococcus aureus and Escherichia coli. In vivo, the system suppressed S. aureus growth, promoted angiogenesis and collagen deposition, and reshaped the pathological microenvironment to achieve wound repair and regeneration. Conclusions: This system offers a new therapeutic strategy for chronic infectious wounds.
Collapse
Affiliation(s)
- Chao Xiang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Chaoyu Pu
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - XueMei Zhong
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yong Wang
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Weiyong Song
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Xingkuan Wang
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Kemiao Chen
- Chongqing Medical University, 401120, Chongqing, China
| | - Kai Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China
| | - Yue Luo
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Ke Jiang
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China
| |
Collapse
|
47
|
Han M, Wang J, Wu Y, Liao J, Guo J, Tang Z. CEBPA as a potential hub gene for cutaneous inflammation in type 2 diabetes mellitus. Int J Biol Macromol 2025; 298:140080. [PMID: 39837449 DOI: 10.1016/j.ijbiomac.2025.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/29/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND The role of inflammation in the development of type 2 diabetes mellitus (T2DM) related skin complications necessitates further investigation. This study aims to explore the correlation between inflammation and cutaneous alterations in T2DM, enhancing comprehension of underlying mechanism involved. METHODS Utilizing bioinformatics, the GSE38396 and GSE92724 datasets were employed to identify differentially expressed genes (DEGs) and potential hub genes in T2DM-related skin inflammation. Subsequently, gene functional enrichment analysis was employed for functional annotation. Finally, we validated the regulatory impact of hub gene on inflammation during high glucose incubation using the in vitro model. RESULTS A comprehensive analysis identified 742 DEGs, including 9 hub genes and 4 potential biomarkers. Compared to the CON group, the expression of M2 macrophages was significantly upregulated in the T2DM group, while resting dendritic cells and eosinophils showed notable decreases, indicating a significant correlation with CEBPA. Furthermore, functional enrichment analysis revealed significant enrichment of DEGs in pathways linked to immunity and diabetes pathogenesis. Interestingly, overexpression of CEBPA demonstrated anti-inflammatory effects under hyperglycemic conditions, while silencing CEBPA expression appeared to worsen inflammation. CONCLUSION CEBPA emerges as a potential hub gene for skin inflammation in T2DM, shedding light on the underlying mechanisms of this condition.
Collapse
Affiliation(s)
- Mingzheng Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jingchun Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yijin Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
48
|
Li P, Fan Z, Huang Y, Luo L, Wu X. Mitochondrial dynamics at the intersection of macrophage polarization and metabolism. Front Immunol 2025; 16:1520814. [PMID: 40196123 PMCID: PMC11973336 DOI: 10.3389/fimmu.2025.1520814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Macrophages are vital sentinels in innate immunity, and their functions cannot be performed without internal metabolic reprogramming. Mitochondrial dynamics, especially mitochondrial fusion and fission, contributes to the maintenance of mitochondrial homeostasis. The link between mitochondrial dynamics and macrophages in the past has focused on the immune function of macrophages. We innovatively summarize and propose a link between mitochondrial dynamics and macrophage metabolism. Among them, fusion-related FAM73b, MTCH2, SLP-2 (Stomatin-like protein 2), and mtSIRT, and fission-related Fis1 and MTP18 may be the link between mitochondrial dynamics and macrophage metabolism association. Furthermore, post-translational modifications (PTMs) of mtSIRT play prominent roles in mitochondrial dynamics-macrophage metabolism connection, such as deacetylates and hypersuccinylation. MicroRNAs such as miR-150, miR-15b, and miR-125b are also possible entry points. The metabolic reprogramming of macrophages through the regulation of mitochondrial dynamics helps improve their adaptability and resistance to adverse environments and provides therapeutic possibilities for various diseases.
Collapse
Affiliation(s)
- Pan Li
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Zhengbo Fan
- People’s Government of Huangshui Town, Shizhu Tujia Autonomous County, Chongqing, China
| | - Yanlan Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Liang Luo
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyan Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
49
|
He S, Li Z, Xie L, Lin R, Yan B, Li B, Luo L, Xv Y, Wen H, Liang Y, Huang C, Li Z. Biomimetic gene delivery system coupled with extracellular vesicle-encapsulated AAV for improving diabetic wound through promoting vascularization and remodeling of inflammatory microenvironment. J Nanobiotechnology 2025; 23:242. [PMID: 40128816 PMCID: PMC11931832 DOI: 10.1186/s12951-025-03261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Adeno-associated virus (AAV)-mediated gene transfer has demonstrated potential in effectively promoting re-epithelialization and angiogenesis. AAV vector has a safety profile; however, the relatively low delivery efficacy in chronic wound with an inflammatory microenvironment and external exposure has limited its prospective clinical translation. Here, we generated AAV-containing EVs (EV-AAVs) from cultured HEK 293T cells and confirmed that the gene transfer efficiency of VEGF-EV-AAV significantly surpassed that of free AAV. Subsequently, a biomimetic gene delivery system VEGF-EV-AAV/MSC-Exo@FHCCgel developing, and synergistically enhances anti-inflammation and transfection efficiency in the combination of human umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSC-Exo). Upon reaching physiological temperature, this hydrogel system transitions to a gel state, maintaining AAV bioactivity and facilitating a sustained release of the encapsulated vesicles. The encapsulation strategy enables the vesicles to rapidly fuse with endothelial cell membranes, ensuring controlled expression of endogenous VEGF. Results revealed that VEGF-EV-AAV/MSC-Exo@FHCCgel alleviates mitochondrial function in endotheliocyte under oxidative stress. Furthermore, it eliminates senescent macrophages by inhabitation of cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway to promote efferocytosis. The system increases Treg cells accumulation, leading to a reduction of inflammatory cytokines. Collectively, the biomimetic gene delivery system represents a promising multi-faceted strategy for chronic wound healing.
Collapse
Affiliation(s)
- Shan He
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenhao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lei Xie
- Department of Radiology, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Rongtian Lin
- R&D Center, Guangdong Luofushan Sinopharm Co., Ltd., Huizhou, 516100, China
| | - Biying Yan
- Department of Biology, Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Bixiang Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lingxi Luo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Youshan Xv
- Huiqiao Medical Center (International Medical Service), NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huangding Wen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yaxuan Liang
- Department of Biology, Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| | - Cong Huang
- Department of Ultrasound, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Zhiqing Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
50
|
Zhang S, Shao Y, Jin R, Ma B. Combining Network Pharmacology, Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation to Uncover the Efficacy and Mechanisms of Si-Miao-Yong-An Decoction in Diabetic Wound Healing. J Inflamm Res 2025; 18:4087-4101. [PMID: 40129870 PMCID: PMC11930845 DOI: 10.2147/jir.s506739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose Si-Miao-Yong-An (SMYA) Decoction, a traditional Chinese herbal mixture, shows promise for managing diabetic complications. Up to this point, no reports have explored the effects of SMYA on diabetic wounds or the underlying mechanisms. This study aimed to investigate the therapeutic potential of SMYA in promoting diabetic wound healing and to elucidate the underlying molecular mechanisms. Methods The wound healing effects of SMYA were evaluated in db/db diabetic mice by measuring wound closure rates and histological characteristics, including epidermal thickness and collagen deposition. Network pharmacology was utilized to identify active ingredients and corresponding therapeutic targets of SMYA, followed by validation through molecular docking and molecular dynamics simulations. KEGG and GO enrichment analyses were conducted to elucidate the relevant biological processes and pathways. In vitro studies involving high-glucose-treated HUVECs assessed the effects of SMYA-containing serum on cellular migration and angiogenesis. Finally, the expression of inflammatory factors and RAGE in the wound tissue was detected by qRT-PCR. Results SMYA significantly accelerated wound closure in db/db mice, as evidenced by improved epidermal thickness, tissue morphology, and collagen deposition. Network pharmacology identified 140 overlapping genes involved in angiogenesis and inflammation, with the AGE-RAGE signaling pathway playing a central role. Molecular docking and dynamics simulations revealed strong binding stability of quercetin and kaempferol to inflammation-related hub targets, including IL-6, TNF, and IL-1β. In vitro, SMYA-containing serum alleviated high-glucose-induced impairments in HUVEC migration and angiogenesis. Furthermore, qRT-PCR analysis showed that SMYA significantly downregulated Tnf, Il1b, Il6, and Rage expression in wound tissues, supporting its anti-inflammatory effect. Conclusion SMYA promotes diabetic wound healing by modulating the inflammatory microenvironment and inhibiting the AGE-RAGE signaling pathway. These findings provide robust evidence for SMYA's therapeutic potential and lay a foundation for its future clinical application in treating diabetic wounds.
Collapse
Affiliation(s)
- Shujuan Zhang
- Department of Laboratory Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yiming Shao
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Ranran Jin
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Baodong Ma
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|