1
|
Li P, Liang M, Zhu J, Chen J, Xia L, Jin Z, Zhang X, Zhang S, Wang Q, Liu Z, Ping Y, Wang Z, Wong CC, Zhang Y, Yang H, Ye Z, Ma Y. Elevated activity of plasma dipeptidyl peptidase 4 upon stress can be targeted to reverse tumor immunosuppression. Pharmacol Res 2025; 215:107696. [PMID: 40295089 DOI: 10.1016/j.phrs.2025.107696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025]
Abstract
The interplay between stress-induced metabolic reprogramming and perturbations in the cancer-immune dialogue is a challenging research topic with huge knowledge gaps to fill. In a repeated social defeat model, we discovered that circulating corticosterone, blood glucose, and plasma DPP4 activity were increased in stressed mice. Consistently, three independent cohort studies showed that plasma DPP4 activity was positively correlated with the severity of psychological distress of newly diagnosed cancer patients. Stress-induced surge of glucocorticoid can boost DPP4 activity via glucocorticoid receptor signaling without influencing Dpp4 transcription or the abundance of soluble DPP4. Albeit catalytic inhibition of DPP4 upon stress can't normalize the behavioral pattern and glucocorticoid secretion, it managed to reverse the expansion of circulating neutrophils and monocytes, restored the efficacy of prophylactic tumor vaccine, and augmented the priming of tumor-antigen specific T cells. DPP4 blockade in the context of stress largely enhanced the intratumoral accumulation of CD8+T cells and DCs, cytokine production by CD8+T and NK cells in situ, and tumor antigen presentation in vitro. Proteome profiling of mouse plasma revealed stress-related DPP4-sensitive changes that can be linked to immunological alterations and disturbed protease network. Altogether, elevated DPP4 activity may be targeted in cancer patients with psychiatric comorbidities to boost anti-tumor immunity.
Collapse
Affiliation(s)
- Peipei Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Menghe Liang
- Collaborative Innovation Center for Cancer Personalized Medicine & Gusu School, Nanjing Medical University, Nanjing, China
| | - Junlin Zhu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Jian Chen
- The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Lin Xia
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Ziqi Jin
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Xiao Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Shuqing Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Qi Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhen Liu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenxin Wang
- Department of Oncology, Affiliated Hospital of Suzhou University, Shizi Street 188, Gusu District, Suzhou, China
| | - Catherine Cl Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Heng Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zilu Ye
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China; Collaborative Innovation Center for Cancer Personalized Medicine & Gusu School, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Jeong SH, Lee PH. Drug Repositioning and Repurposing for Disease-Modifying Effects in Parkinson's Disease. J Mov Disord 2025; 18:113-126. [PMID: 39914809 PMCID: PMC12061612 DOI: 10.14802/jmd.25008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 05/09/2025] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder and is characterized by progressive dopaminergic and nondopaminergic neuronal loss and the presence of Lewy bodies, which are primarily composed of aggregated α-synuclein. Despite advancements in symptomatic therapies, such as dopamine replacement and deep brain stimulation, no disease-modifying therapies (DMTs) have been identified to slow or arrest neurodegeneration in patients with PD. Challenges in DMT development include disease heterogeneity, the absence of reliable biomarkers, and the multifaceted pathophysiology of PD, encompassing neuroinflammation, mitochondrial dysfunction, lysosomal impairment, and oxidative stress. Drug repositioning and repurposing strategies using existing drugs for new therapeutic applications offer promising approaches to accelerate the development of DMTs for PD. These strategies minimize time, cost, and risk by using compounds with established safety profiles. Prominent candidates include glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, ambroxol, calcium channel blockers, statins, iron-chelating agents, c-Abl inhibitors, and memantine. Although preclinical and early clinical studies have demonstrated encouraging results, numerous phase III trials have yielded unfavorable outcomes, elucidating the complexity of PD pathophysiology and the need for innovative trial designs. This review evaluates the potential of prioritized repurposed drugs for PD, focusing on their mechanisms, preclinical evidence, and clinical trial outcomes, and highlights the ongoing challenges and opportunities in this field.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Li JH, Zuo YG. The "entanglement" between bullous pemphigoid and diabetes mellitus: a comprehensive review and expert recommendations. Expert Rev Clin Immunol 2025; 21:333-346. [PMID: 39521622 DOI: 10.1080/1744666x.2024.2428621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Bullous pemphigoid (BP) is an autoimmune bullous disease characterized by subepidermal tense blisters, accompanied by urticarial or eczema-like lesions. Circulating autoantibodies in BP patients target BP180 and BP230 at the dermal-epidermal junction. There has been a growing interest in unraveling the intricate relationship between BP and diabetes mellitus (DM), but a comprehensive review is lacking. AREAS COVERED A thorough search of PubMed was conducted to identify studies concerning the association between BP and DM (1978-2023). Our findings comprehensively summarize the intricate association between BP and DM, focusing on the characteristics, potential pathomechanisms, and the influence of various antidiabetic medications on BP development. EXPERT OPINION DM emerges as a prevalent comorbidity and potential risk factor for BP. New-onset DM can manifest during BP treatment, primarily due to corticosteroid therapy. Among all antidiabetic medications, dipeptidyl peptidase-IV inhibitors (DPP-4i) have the most solid association with BP onset. Other antidiabetic medications have also been reportedly associated with BP, including meglitinides, glucagon-like peptide 1 (GLP-1)-receptor agonists, and sodium-dependent glucose transporters 2 inhibitors (SGLT-2i). We suggest prescribing DPP-4i in caution for elderly DM patients with a history of autoimmune diseases.
Collapse
Affiliation(s)
- Jing-Hui Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- School of Medicine, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
4
|
Piatkowska-Chmiel I, Gawronska-Grzywacz M, PawLowski K, Dudka J, Slaska B, Tkaczyk-Wlizlo A, Kowal K, Herbet M. Restoring Brain Pathways Involved in Diabetes-Associated Neurocognitive Disorders: The Potential of Dipeptidyl Peptidase 4 Inhibitors as a Therapeutic Strategy. Curr Neuropharmacol 2025; 23:426-438. [PMID: 38860903 DOI: 10.2174/1570159x22666240517094428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Diabetes, a widespread chronic metabolic disease, is projected to affect 783 million people globally by 2045. Recent studies emphasize the neuroprotective potential of dipeptidyl peptidase 4 (DPP4i) inhibitors, pointing toward a promising avenue for intervention in addressing cognitive challenges associated with diabetes. Due to limited data on the effect of DPP4i on brain pathways involvedin diabetes-related neurocognitive disorders, the decision was made to conduct this study to fill existing knowledge gaps on this topic. METHODS The primary aim of our study was to evaluate the potential of DPP4 inhibitors (DPP4i) in preventing cognitive decline in mice with type 2 diabetes (T2D), placing special emphasis on gaining insight into the complex molecular mechanisms underlying this action. RESULTS We examined drug efficacy in modulating neurotrophic factors, calcium levels, and the expression of key genes (HIF1α, APP, Arc) crucial for neural plasticity. Conducting cognitive assessments with the hole board and passive avoidance tests, we discerned a remarkable influence of shortterm gliptin usage on the limiting progress of cognitive dysfunction in diabetic mice. The administration of DPP4 inhibitors ledto heightened neurotrophin levels, increased HIF1α in the prefrontal cortex, and a significant elevation in Arc mRNA levels. CONCLUSION Our findings reveal that DPP4 inhibitors effectively limit the progression of diabetesrelated cognitive disorders. This breakthrough discovery not only opens new research avenues but also constitutes a potential starting point for creating innovative strategies for the treatment of central nervous system disorders focused on improving cognitive abilities.
Collapse
Affiliation(s)
- Iwona Piatkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | | | - Kamil PawLowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jaroslaw Dudka
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Brygida Slaska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Angelika Tkaczyk-Wlizlo
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Krzysztof Kowal
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
5
|
Rossetti CL, Andrade IS, Fonte Boa LF, Neves MB, Fassarella LB, Bertasso IM, Souza MDGCD, Bouskela E, Lisboa PC, Takyia CM, Trevenzoli IH, Fortunato RS, Carvalho DPD. Liraglutide prevents body and fat mass gain in ovariectomized Wistar rats. Mol Cell Endocrinol 2024; 594:112374. [PMID: 39306226 DOI: 10.1016/j.mce.2024.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Estrogens exert beneficial metabolic effects by reducing food intake and enhancing energy expenditure through both central and peripheral mechanisms. The decrease of estrogen, as occurs in ovariectomy (OVX), leads to metabolic disturbances, such as increased body weight, adipose tissue mass, basal blood glucose, and impaired glucose tolerance. These effects can be reversed by reintroducing estrogen. GLP-1 and its receptor agonists, known for their antihyperglycemic properties, also exhibit anorexigenic effects. Besides that, research indicates that GLP-1 analogs can induce metabolic changes peripherally, such as increased fatty acid oxidation and inhibited lipogenesis. Given the shared metabolic actions of GLP-1 and estrogens, we explored whether liraglutide, a GLP-1 agonist, could mitigate the metabolic effects of estrogen deficiency. We tested this hypothesis using ovariectomized rats, a model that simulates menopausal estrogen deficiency, and treated them with either liraglutide or 17β-Estradiol benzoate for 21 days. Ovariectomy resulted in elevated DPP-IV activity in both plasma and inguinal white adipose tissue (iWAT). While estrogen replacement effectively countered the DPP-IV increase in both plasma and iWAT, liraglutide only prevented the rise in iWAT DPP-IV activity. Liraglutide prevented body weight and fat mass gain after ovariectomy to the same extent as estradiol treatment. This can be explained by the lower food intake and food efficiency caused by estradiol and liraglutide. However, liraglutide was associated with increased pro-inflammatory cytokines and inflammatory cells in white adipose tissue. Further research is crucial to fully understand the potential benefits and risks of using GLP-1 receptor agonists in the context of menopause.
Collapse
Affiliation(s)
- Camila Lüdke Rossetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, USA
| | - Iris Soares Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Fernando Fonte Boa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Barbosa Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Brito Fassarella
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iala Milene Bertasso
- Laboratorio de Fisiologia Endócrina, Instituto de Biologia, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria das Graças Coelho de Souza
- Laboratório de Pesquisa Clínica e Experimental em Biologia Vascular (BioVasc), Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliete Bouskela
- Laboratório de Pesquisa Clínica e Experimental em Biologia Vascular (BioVasc), Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratorio de Fisiologia Endócrina, Instituto de Biologia, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takyia
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Cirúrgicas, Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isis Hara Trevenzoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Soares Fortunato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Denise Pires de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Gomes SF, Valois A, Estevinho MM, Santiago M, Magro F. Association of Gut Microbiome and Dipeptidyl Peptidase 4 in Immune-Mediated Inflammatory Bowel Disease: A Rapid Literature Review. Int J Mol Sci 2024; 25:12852. [PMID: 39684563 PMCID: PMC11641704 DOI: 10.3390/ijms252312852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) are characterized by dysregulated immune responses and chronic tissue inflammation. In the setting of inflammatory bowel disease (IBD), dipeptidyl peptidase 4 (DPP4) and gut microorganisms have been proved to interplay, potentially influenced by dietary factors. This rapid review aimed to study the DPP4-gut microbiome link in IBD. A search across five databases and two gray literature sources identified seven relevant studies reporting data on DPP4 and gut microbiome in patients with IBD-related IMIDs or in vitro or in vivo models: one cross-sectional, one in vitro, and five in vivo studies. The findings revealed a significant impact of DPP4 and its substrates, i.e., glucagon-like peptide-1/2 (GLP-1/2), on the composition of gut microbiome and on the development of dysbiosis. Increased DPP4 activity is associated with decreased GLP-1/2; increased pathogenic bacterial phyla such as Actinobacteria, Bacteroidetes, Deferribacteres, Firmicutes, Fusobacteriota, Proteobacteria, and Verrucomicrobia; and decreased alpha diversity of beneficial gut microbes, including Clostridiaceae, Lachnospiraceae, and Ruminococcaceae families and short-chain fatty acid-producing bacteria like Odoribacter and Butryvibrio spp., with exacerbation of intestinal inflammation. This overview revealed that understanding the DPP4-gut microbiome association is critical for the development of DPP4-targeted therapeutic strategies to guarantee gut microbiome balance and modulation of immune response in IBD.
Collapse
Affiliation(s)
- Sandra F. Gomes
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal; (S.F.G.); (M.M.E.)
- Unit of Medical Education, Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, 4200-450 Porto, Portugal
- RISE-Health, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
| | - André Valois
- Unit of Clinical Pharmacology, São João University Hospital Center, 4200-319 Porto, Portugal;
| | - Maria Manuela Estevinho
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal; (S.F.G.); (M.M.E.)
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, 4200-450 Porto, Portugal
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, 4434-502 Vila Nova de Gaia, Portugal
| | - Mafalda Santiago
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), 4200-450 Porto, Portugal;
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal; (S.F.G.); (M.M.E.)
- RISE-Health, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Unit of Clinical Pharmacology, São João University Hospital Center, 4200-319 Porto, Portugal;
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), 4200-450 Porto, Portugal;
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
8
|
Kim KJ, Park JB, Lee SP, Kim HK, Kim YJ. Thalidomide and a Dipeptidyl Peptidase 4 Inhibitor in a Rat Model of Experimental Autoimmune Myocarditis. Korean Circ J 2023; 53:795-810. [PMID: 37880871 PMCID: PMC10751183 DOI: 10.4070/kcj.2023.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Myocarditis is a potentially fatal disease, but curative treatments have not yet been established. Myocardial inflammation is an important pathogenesis of this disease, and immunosuppressants such as methylprednisolone and immunoglobulin have been used for treatment; however, the effectiveness needs to be improved. Thalidomide and dipeptidyl peptidase (DPP) 4 inhibitors were recently investigated regarding their immunomodulatory properties. This study aimed to test whether thalidomide or a DPP4 inhibitor (evogliptin) can improve the effectiveness of myocarditis treatment using a rat model of experimental autoimmune myocarditis (EAM). METHODS Rats with or without myocarditis were administered thalidomide at 100 mg/kg/day and DPP4 inhibitor at 10 mg/kg/day orally. Measurement of echocardiography, serum inflammatory cytokines, myocardial histopathological examination, and immunohistochemical staining for leukocytes, macrophages, CD4+ T cells, and cytoskeleton were performed after 3 weeks, and the fibrosis area was measured after 3 and 6 weeks. RESULTS Thalidomide and DPP4 inhibitor did not reduce the severity of myocarditis compared with the EAM without treatment rats by comparing the echocardiographic data, myocardial CD4+, macrophages, neutrophil infiltrations, and the heart weight/body weight ratio in 3 weeks. The levels of inflammatory cytokines were not lower in the thalidomide and DPP4 inhibitor-treated group than in the untreated group in 3 weeks. In 6 weeks, thalidomide and DPP4 inhibitors did not reduce the fibrosis area compared to untreated groups. CONCLUSIONS Although thalidomide and the DPP4 inhibitor had an immunomodulatory effect and are used against inflammatory diseases, they did not ameliorate myocardial inflammation and fibrosis in this rat model of EAM.
Collapse
Affiliation(s)
- Kyung-Jin Kim
- Department of Internal Medicine, Ewha Womans University Medical Center, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jun-Bean Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Pyo Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung-Kwan Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Jin Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Stenlid R, Cerenius SY, Wen Q, Aydin BK, Manell H, Chowdhury A, Kristinsson H, Ciba I, Gjessing ES, Mörwald K, Gomahr J, Heu V, Weghuber D, Forslund A, Bergsten P. Adolescents with obesity treated with exenatide maintain endogenous GLP-1, reduce DPP-4, and improve glycemic control. Front Endocrinol (Lausanne) 2023; 14:1293093. [PMID: 38027106 PMCID: PMC10646558 DOI: 10.3389/fendo.2023.1293093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background GLP-1 receptor agonists (GLP-1RA) are increasingly used to treat adolescent obesity. However, the effect on endogenous GLP-1 secretory patterns following treatment in adolescents is unknown. The GLP-1RA exenatide was shown to significantly lower BMI and 2-hour glucose in adolescents with obesity, in the placebo-controlled, randomized controlled trial Combat-JUDO. The aim of this study was to evaluate effects of weekly injections of 2 mg exenatide extended release on secretory patterns of endogenous hormones during OGTT. Subjects and Measurements This study was a pre-planned sub-study of the Combat-JUDO trial, set at the Pediatric clinic at Uppsala University Hospital, Sweden and Paracelsus Medical University, Austria. 44 adolescents with obesity were included and randomized 1:1 to treatment:placebo. 19 patients in the treatment group and 18 in the placebo group completed the trial. Before and after treatment, GLP-1, glucose, insulin, glucagon and glicentin levels were measured during OGTT; DPP-4 and proinsulin were measured at fasting. A per-protocol approach was used in the analyses. Results Exenatide treatment did not affect GLP-1 levels during OGTT. Treatment significantly lowered DPP-4, proinsulin and the proinsulin-to-insulin ratio at fasting, increased glicentin levels but did not affect insulin, C-peptide or glucagon levels during OGTT. Conclusion Weekly s.c. injections with 2 mg of exenatide maintains endogenous total GLP-1 levels and lowers circulating DPP-4 levels. This adds an argument in favor of using exenatide in the treatment of pediatric obesity. Clinical trial registration clinicaltrials.gov, identifier NCT02794402.
Collapse
Affiliation(s)
- Rasmus Stenlid
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Sara Y. Cerenius
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Quan Wen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Banu Küçükemre Aydin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Hannes Manell
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Azazul Chowdhury
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Iris Ciba
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Erik S. Gjessing
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Katharina Mörwald
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Julian Gomahr
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Verena Heu
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Anders Forslund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| |
Collapse
|
10
|
Bak K, Moon S, Ko M, Choi YJ, Shin S. Impact of metformin on statin-associated myopathy risks in dyslipidemia patients. Pharmacol Res Perspect 2023; 11:e01114. [PMID: 37417539 PMCID: PMC10327420 DOI: 10.1002/prp2.1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
A growing number of patients with metabolic disorders are receiving statin and antidiabetic therapies as comedications. A signal of increased risk of myotoxicity due to potential interactions between antidiabetics and statins has been detected in previous studies. To investigate the effects of metformin on myopathy risks when added to preexisting statin therapy in dyslipidemia patients, we performed a retrospective cohort study using the Korean national health insurance data in statin-treated dyslipidemia patients with or without concomitant metformin use. We compared the risk of myopathy in statin + metformin users against statin-only users. Hazard ratios (HRs) and 95% confidence intervals (CIs) have been calculated following propensity score (PS) matching between study groups and subsequent stratification per patient factors. We included 4092 and 8161 patients in PS-matched statin + metformin and statin-only groups, respectively. The risk of myopathy decreased when metformin was used together with statins (adjusted HR 0.84; 95% CI 0.71-0.99). In subgroup analyses per individual statin agent and in stratified risk analyses, no specific statin agents or patient factors were associated with statistically significant myopathy risk. This study found that a comedication with metformin was associated with decreased myopathy risk in statin-treated dyslipidemia patients compared to statin-only users. Our findings suggest that metformin may provide protective effects on potential muscle toxicities induced by statin therapy.
Collapse
Affiliation(s)
- Keunhyeong Bak
- College of PharmacyAjou UniversitySuwonRepublic of Korea
| | - Suhyeon Moon
- College of PharmacyAjou UniversitySuwonRepublic of Korea
| | - Minjung Ko
- College of PharmacyAjou UniversitySuwonRepublic of Korea
| | - Yeo Jin Choi
- Department of Pharmacy, College of PharmacyKyung Hee UniversitySeoulRepublic of Korea
| | - Sooyoung Shin
- College of PharmacyAjou UniversitySuwonRepublic of Korea
- Research Institute of Pharmaceutical Science and Technology (RIPST)Ajou UniversitySuwonRepublic of Korea
| |
Collapse
|
11
|
Saini K, Sharma S, Khan Y. DPP-4 inhibitors for treating T2DM - hype or hope? an analysis based on the current literature. Front Mol Biosci 2023; 10:1130625. [PMID: 37287751 PMCID: PMC10242023 DOI: 10.3389/fmolb.2023.1130625] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
DPP-4 inhibition is an interesting line of therapy for treating Type 2 Diabetes Mellitus (T2DM) and is based on promoting the incretin effect. Here, the authors have presented a brief appraisal of DPP-4 inhibitors, their modes of action, and the clinical efficiency of currently available drugs based on DPP-4 inhibitors. The safety profiles as well as future directions including their potential application in improving COVID-19 patient outcomes have also been discussed in detail. This review also highlights the existing queries and evidence gaps in DPP-4 inhibitor research. Authors have concluded that the excitement surrounding DPP-4 inhibitors is justified because in addition to controlling blood glucose level, they are good at managing risk factors associated with diabetes.
Collapse
|
12
|
Bouzas C, Pastor R, Garcia S, Monserrat-Mesquida M, Martínez-González MÁ, Salas-Salvadó J, Corella D, Goday A, Martínez JA, Alonso-Gómez ÁM, Fernández-Barceló O, Vioque J, Romaguera D, Lopez-Miranda J, Estruch R, Tinahones FJ, Lapetra J, Serra-Majem L, Riquelme-Gallego B, Martín-Sánchez V, Pintó X, Delgado-Rodriguez M, Matía P, Vidal J, Cardenas-Salas JJ, Daimiel L, Ros E, Toledo E, Manzanares JM, Gonzalez-Monge I, Muñoz MÁ, Martinez-Urbistondo D, Tojal-Sierra L, Muñoz-Bravo C, Miralles-Gisbert S, Martin M, García-Ríos A, Castro-Barquero S, Fernández-García JC, Santos-Lozano JM, Basterra-Gortari FJ, Gutiérrez-Carrasquilla L, Guillem-Saiz P, Satorres A, Abete I, Sorto-Sanchez C, Díez-Espino J, Babio N, Fitó M, Tur JA. Comparative effects of glucagon-like peptide-1 receptors agonists, 4-dipeptidyl peptidase inhibitors, and metformin on metabolic syndrome. Biomed Pharmacother 2023; 161:114561. [PMID: 36934556 DOI: 10.1016/j.biopha.2023.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
AIMS To assess the comparative effects of glucagon-like peptide-1 receptor agonists (GLP-1RA), 4-dipeptidyl peptidase inhibitors (DPP-4I), and metformin treatment during one year on metabolic syndrome (MetS) components and severity in MetS patients. METHODS Prospective study (n = 6165 adults) within the frame of PREDIMED-Plus trial. The major end-point was changes on MetS components and severity after one- year treatment of GLP-1RA, DPP-4I, and metformin. Anthropometric measurements (weight, height and waist circumference), body mass index (BM), and blood pressure were registered. Blood samples were collected after overnight fasting. Plasma glucose, glycosylated hemoglobin (HbA1c), plasma triglycerides and cholesterol were measured. Dietary intakes as well as physical activity were assessed through validated questionnaires. RESULTS MetS parameters improved through time. The treated groups improved glycaemia compared with untreated (glycaemia ∆ untreated: -1.7 mg/dL(± 13.5); ∆ metformin: - 2.5(± 23.9) mg/dL; ∆ DPP-4I: - 4.5(± 42.6); mg/dL ∆ GLP-1RA: - 4.3(± 50.9) mg/dL; and HbA1c: ∆ untreated: 0.0(± 0.3) %; ∆ metformin: - 0.1(± 0.7) %; ∆ DPP-4I: - 0.1(± 1.0) %; ∆ GLP-1RA: - 0.2(± 1.2) %. Participants decreased BMI and waist circumference. GLP-1RA and DPP-4I participants registered the lowest decrease in BMI (∆ untreated: -0.8(± 1.6) kg/m2; ∆ metformin: - 0.8(± 1.5) kg/m2; ∆ DPP-4I: - 0.6(± 1.3) kg/m2; ∆ GLP-1RA: - 0.5(± 1.2) kg/m2. and their waist circumference (∆ untreated: -2.8(± 5.2) cm; ∆ metformin: - 2.6(± 15.2) cm; ∆ DPP-4I: - 2.1(± 4.8) cm; ∆ GLP-1RA: - 2.4(± 4.1) cm. CONCLUSION In patients with MetS and healthy lifestyle intervention, those treated with GLP-1RA and DPP-4I obtained better glycemic profile. Anthropometric improvements were modest.
Collapse
Affiliation(s)
- Cristina Bouzas
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Rosario Pastor
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; Faculty of Health Sciences,Catholic University of Avila, 05005 Avila, Spain
| | - Silvia Garcia
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Margalida Monserrat-Mesquida
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Miguel Ángel Martínez-González
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, 31008 Pamplona, Spain; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, USA
| | - Jordi Salas-Salvadó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, Human Nutrition Unit, IISPV, Hospital Universitari de Sant Joan, 43201 Reus, Spain; Unidad de Nutrición, Lípidos y Endocrinologia, Hospital Universitari de Sant Joan de Reus, Institut d'Insvestigacions Sanitàries Pere Virgili (IISPV), 43201 Reus, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Department of Preventive Medicine, University of Valencia, 46100 Valencia, Spain
| | - Albert Goday
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Mèdica (IMIM), 08003 Barcelona, Spain
| | - J Alfredo Martínez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Cardiometabolics Precision Nutrition Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain; Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Ángel M Alonso-Gómez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 48013 Vitoria, Gasteiz, Spain
| | - Olga Fernández-Barceló
- Department of Nursing, School of Health Sciences, University of Malaga, Institute of Biomedical Research in Málaga (IBIMA-University of Malaga), 29071 Málaga, Spain
| | - Jesús Vioque
- Instituto de Investigación Sanitaria y Biomédica de Alicante, ISABIAL-UMH, 03550 Alicante, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Dora Romaguera
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - José Lopez-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Córdoba, Spain
| | - Ramón Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Department of Internal Medicine, IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Virgen de la Victoria Hospital, Department of Endocrinology, University of Málaga, 29010 Málaga, Spain
| | - José Lapetra
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, 41013 Sevilla, Spain
| | - Lluís Serra-Majem
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Institute for Biomedical Research, University of Las Palmas de Gran Canaria, 35016 Las Palmas, Spain
| | - Blanca Riquelme-Gallego
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Department of Preventive Medicine, University of Granada, 18071 Granada, Spain
| | - Vicente Martín-Sánchez
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Institute of Biomedicine (IBIOMED), University of León, 24071 Leon, Spain
| | - Xavier Pintó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, Hospital Universitario de Bellvitge, 08907 Barcelona, Spain
| | - Miguel Delgado-Rodriguez
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Department of Health Sciences, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, 23071 Jaen, Spain
| | - Pilar Matía
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Josep Vidal
- Department of Endocrinology, IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | | | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Lipid Clinic, Department of Endocrinology and Nutrition, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain
| | - Estefanía Toledo
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, 31008 Pamplona, Spain
| | - Josep M Manzanares
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, Human Nutrition Unit, IISPV, Hospital Universitari de Sant Joan, 43201 Reus, Spain; Unidad de Nutrición, Lípidos y Endocrinologia, Hospital Universitari de Sant Joan de Reus, Institut d'Insvestigacions Sanitàries Pere Virgili (IISPV), 43201 Reus, Spain
| | | | - Miguel-Ángel Muñoz
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Mèdica (IMIM), 08003 Barcelona, Spain
| | - Diego Martinez-Urbistondo
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Cardiometabolics Precision Nutrition Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain; Internal Medicine Department, HM Sanchinarro, 28050 Madrid, Spain
| | - Lucas Tojal-Sierra
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 48013 Vitoria, Gasteiz, Spain
| | - Carlos Muñoz-Bravo
- Division of Preventive Medicine and Public Health, University of Malaga, Institute of Biomedical Research in Málaga (IBIMA-University of Malaga), Málaga, Spain
| | | | - Marian Martin
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Antonio García-Ríos
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Córdoba, Spain
| | - Sara Castro-Barquero
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Department of Internal Medicine, IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - José Carlos Fernández-García
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Virgen de la Victoria Hospital, Department of Endocrinology, University of Málaga, 29010 Málaga, Spain
| | - José Manuel Santos-Lozano
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, 41013 Sevilla, Spain
| | - F Javier Basterra-Gortari
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, 31008 Pamplona, Spain
| | - Liliana Gutiérrez-Carrasquilla
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, Human Nutrition Unit, IISPV, Hospital Universitari de Sant Joan, 43201 Reus, Spain; Unidad de Nutrición, Lípidos y Endocrinologia, Hospital Universitari de Sant Joan de Reus, Institut d'Insvestigacions Sanitàries Pere Virgili (IISPV), 43201 Reus, Spain
| | - Patricia Guillem-Saiz
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Department of Preventive Medicine, University of Valencia, 46100 Valencia, Spain
| | - Alba Satorres
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Mèdica (IMIM), 08003 Barcelona, Spain
| | - Itziar Abete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Carolina Sorto-Sanchez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 48013 Vitoria, Gasteiz, Spain
| | - Javier Díez-Espino
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, 31008 Pamplona, Spain
| | - Nancy Babio
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, Human Nutrition Unit, IISPV, Hospital Universitari de Sant Joan, 43201 Reus, Spain
| | - Montse Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Mèdica (IMIM), 08003 Barcelona, Spain
| | - Josep A Tur
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain.
| |
Collapse
|
13
|
You S, Bi Y, Miao M, Bao A, Du J, Xu T, Liu CF, Zhang Y, He J, Cao Y, Zhong C. Plasma sDPP4 (Soluble Dipeptidyl Peptidase-4) and Cognitive Impairment After Noncardioembolic Acute Ischemic Stroke. Stroke 2023; 54:113-121. [PMID: 36475470 DOI: 10.1161/strokeaha.122.040798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND DPP4 (dipeptidyl peptidase-4) inhibitors have been proven to promote neuronal regeneration, reverse the development of cognitive deficits. However, the association of circulating soluble form (sDPP4 [soluble DPP4]) with poststroke cognitive impairment (PSCI) is unclear. We aimed to investigate the association between plasma sDPP4 levels and PSCI in patients with ischemic stroke. METHODS A total of 600 noncardioembolic stroke patients were included based on a preplanned ancillary study from the CATIS (China Antihypertensive Trial in Acute Ischemic Stroke). We used the Montreal Cognitive Assessment to evaluate cognitive function at 3 months follow-up after ischemic stroke. Binary logistic regression analyses were performed to investigate the association of plasma sDPP4 levels with subsequent PSCI. We further calculated integrated discrimination improvement and category-free net reclassification improvement to investigate the incremental prognostic effect of plasma sDPP4 beyond the basic model with conventional risk factors. RESULTS Plasma sDPP4 was inversely associated with PSCI after ischemic stroke, and the adjusted odds ratio (95% CI) for the highest versus lowest quartile of sDPP4 was 0.49 (0.29-0.81; P for trend=0.011). Each 1-SD increase of logarithm-transformed plasma sDPP4 concentration was associated with 17% (odds ratio, 0.83 [95% CI, 0.70-0.99]) lower risk of PSCI. Adding plasma sDPP4 to the basic model notably improved risk reclassification for PSCI, as shown by a category-free net reclassification improvement of 19.10% (95% CI, 2.52%-35.68%; P=0.03) and integrated discrimination improvement of 0.79% (95% CI, 0.13%-1.46%; P=0.02). CONCLUSIONS Higher plasma sDPP4 levels were associated with decreased risk of cognitive impairment after noncardioembolic ischemic stroke.
Collapse
Affiliation(s)
- Shoujiang You
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, China (S.Y., C.-F.L., Y.C.).,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China (Y.B., M.M., A.B., J.D., T.X., Y.Z., C.Z.)
| | - Yucong Bi
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China (Y.B., M.M., A.B., J.D., T.X., Y.Z., C.Z.)
| | - Mengyuan Miao
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China (Y.B., M.M., A.B., J.D., T.X., Y.Z., C.Z.)
| | - Anran Bao
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China (Y.B., M.M., A.B., J.D., T.X., Y.Z., C.Z.)
| | - Jigang Du
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China (Y.B., M.M., A.B., J.D., T.X., Y.Z., C.Z.)
| | - Tan Xu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China (Y.B., M.M., A.B., J.D., T.X., Y.Z., C.Z.)
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, China (S.Y., C.-F.L., Y.C.).,Institutes of Neuroscience, Soochow University, Suzhou, China (C.-F.L., Y.C.)
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China (Y.B., M.M., A.B., J.D., T.X., Y.Z., C.Z.)
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (J.H.)
| | - Yongjun Cao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, China (S.Y., C.-F.L., Y.C.).,Institutes of Neuroscience, Soochow University, Suzhou, China (C.-F.L., Y.C.)
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China (Y.B., M.M., A.B., J.D., T.X., Y.Z., C.Z.)
| |
Collapse
|
14
|
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. The Anti-Inflammatory Effect of Novel Antidiabetic Agents. Life (Basel) 2022; 12:1829. [PMID: 36362984 PMCID: PMC9696750 DOI: 10.3390/life12111829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 11/05/2022] [Indexed: 08/10/2023] Open
Abstract
The incidence of type 2 diabetes (T2DM) has been increasing worldwide and remains one of the leading causes of atherosclerotic disease. Several antidiabetic agents have been introduced in trying to regulate glucose control levels with different mechanisms of action. These agents, and sodium-glucose cotransporter-2 inhibitors in particular, have been endorsed by contemporary guidelines in patients with or without T2DM. Their widespread usage during the last three decades has raised awareness in the scientific community concerning their pleiotropic mechanisms of action, including their putative anti-inflammatory effect. In this review, we delve into the anti-inflammatory role and mechanism of the existing antidiabetic agents in the cardiovascular system and their potential use in other chronic sterile inflammatory conditions.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Marios Sagris
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Alexios S. Antonopoulos
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Kostas Tsioufis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
15
|
Ferrari F, Moretti A, Villa RF. Incretin-based drugs as potential therapy for neurodegenerative diseases: current status and perspectives. Pharmacol Ther 2022; 239:108277. [DOI: 10.1016/j.pharmthera.2022.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
16
|
Paulose SK, Chakraborty K. Anti-hyperglycemic Δ 5 steroids, marginoids A-C from marine veined octopus Amphioctopus marginatus (Octopodidae): Prospective natural leads inhibit serineexopeptidase dipeptidyl peptidase-4. Steroids 2022; 186:109090. [PMID: 35850257 DOI: 10.1016/j.steroids.2022.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/25/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Three Δ5 steroid analogues, marginoids A-C were purified from the organic extract of marine veined octopus Amphioctopus marginatus (Taki, 1964) (family Octopodidae) distributed on the Asian and Mediterranean coasts. Their structures were elucidated as (5Z)-3β-acetoxy-cholesta-5-en-25-ethylene-22β-hydroxy-23,26-lactone (marginoid A), (5Z, 25Z)-3β-yl-(1'-(E)-3'-hydroxy-4'-methyl-hex-5'-enoate)-22-oxo-26-furanyl-cholesta-5,25-diene (marginoid B), and (5Z)-3β-yl-(7'-methoxypropan-8'-yl)-tetrahydro-2H-pyran-2-one-cholesta-5,24-dien (marginoid C) based on extensive spectroscopic experiments. Marginoid B with hydroxyl-methyl-hexanoate at the C-3 position in conjunction with the heterocyclic furanyl ring displayed superior anti-hyperglycemic properties as acknowledged by its promising serine protease dipeptidyl peptidase-4 attenuation potential (IC50 3.49 µM) displaying comparable activity with the standard DPP-4 inhibitor (DPP-4i) diprotin A (IC50 4.53 µM). The anti-hyperglycemic properties were corroborated by the promising antioxidant activities (IC50 ∼ 0.8-1.0 mM) of these Δ5 steroids, marginoids A-C. Sizeably greater electronic properties, balanced hydrophobic-lipophilic properties (log POW 6.4-8.3), and comparatively lower steric factors were directly proportional to their bioactive properties. Molecular simulation studies in the binding sites of DPP-4 and lesser binding energy (-12.17 kcal/mol) and inhibition constant (Ki 1.20 nM) of marginoid B could be correlated with anti-hyperglycemic properties. Promising bioactivities of marginoid B isolated from A. marginatus are anticipated for nutraceutical applications against hyperglycemia.
Collapse
Affiliation(s)
- Silpa Kunnappilly Paulose
- Marine Bioprospecting Section of Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| | - Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| |
Collapse
|
17
|
Han F, Ning M, Wang K, Gu Y, Qu H, Leng Y, Shen J. Design and exploration of gut-restricted bifunctional molecule with TGR5 agonistic and DPP4 inhibitory effects for treating ulcerative colitis. Eur J Med Chem 2022; 242:114697. [PMID: 36029562 DOI: 10.1016/j.ejmech.2022.114697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022]
Abstract
Ulcerative colitis (UC) is a gastrointestinal disease with complex etiology, and the shortage of the treatment further intensifies the need to discover new therapies based on novel mechanisms and strategies. TGR5 and DPP4 are beneficial to treat UC through multiple mechanisms, notably increasing GLP-2 levels by promoting secretion and inhibiting degradation respectively. However, some unwanted systemic effects caused by systemic exposure hinder development, especially the gallbladder-filling effects. Herein, we firstly reported a series of high-potency gut-restricted TGR5-DPP4 bifunctional molecules by gut-restriction and multitarget strategies to utilize the positive impacts of TGR5 and DPP4 on UC and avoid unwanted systemic effects. In particularly, racemic compound 15, a high-potency TGR5-DPP4 bifunctional molecule, showed favorable intestinal distribution, preferable efficacy in mice colitis model and good gallbladder safety. Therefore, the feasibility of gut-restricted TGR5-DPP4 bifunctional molecule was confirmed for the treatment UC, providing a new insight into the development of anti-UC drugs.
Collapse
Affiliation(s)
- Fanghui Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yipei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
18
|
Shibasaki I, Nakajima T, Fukuda T, Hasegawa T, Ogawa H, Tsuchiya G, Takei Y, Tezuka M, Kato T, Kanazawa Y, Kano Y, Kuwata T, Ouchi M, Toyoda S, Aso Y, Fukuda H. Serum and Adipose Dipeptidyl Peptidase 4 in Cardiovascular Surgery Patients: Influence of Dipeptidyl Peptidase 4 Inhibitors. J Clin Med 2022; 11:jcm11154333. [PMID: 35893426 PMCID: PMC9331841 DOI: 10.3390/jcm11154333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/25/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP-4) is a novel adipokine and may be involved in the association between adipose tissue and metabolic syndrome. We investigated DPP-4 and adiponectin levels in the serum, subcutaneous adipose tissue (SAT), and epicardial adipose tissue (EAT), and their relationship with preoperative factors, as well as comparing the DPP-4 levels in SAT and EAT with and without DPP-4 inhibitors. This study included 40 patients (25 men, age 67.5 ± 13.8 years). The serum adipokine, DPP-4, and adiponectin levels in SAT and EAT were measured using ELISA and Western blotting. The DPP-4 and adiponectin levels were significantly higher in the SAT than in the EAT. The serum DPP-4 and DPP-4 activity levels had no correlation with the DPP-4 levels in the SAT and EAT, but the DPP-4 levels in the SAT and EAT had a positive correlation. The DPP-4 levels in the SAT were positively correlated with atherosclerosis, diabetes mellitus, DPP-4-inhibitor use, and fasting blood glucose. The DPP-4 levels in the EAT showed a negative correlation with eGFR and a positive correlation with atrial fibrillation. The DPP-4 activity in the serum had a lower tendency in the group taking DPP-4 inhibitors than in the group not taking them. DPP-4 inhibitors may suppress angiogenesis and adipose-tissue hypertrophy.
Collapse
Affiliation(s)
- Ikuko Shibasaki
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
- Correspondence:
| | - Toshiaki Nakajima
- Department of Medical KAATSU Training, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (T.N.); (T.H.)
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Taira Fukuda
- Department of Liberal Arts and Human Development, Kanagawa University of Human Services, Yokosuka 238-8522, Kanagawa, Japan;
| | - Takaaki Hasegawa
- Department of Medical KAATSU Training, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (T.N.); (T.H.)
| | - Hironaga Ogawa
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Go Tsuchiya
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Yusuke Takei
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Masahiro Tezuka
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Takashi Kato
- Department of Cardiovascular Surgery, Maebashi Red Cross Hospital, Maebashi 371-0811, Gunma, Japan; (T.K.); (T.K.)
| | - Yuta Kanazawa
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Yasuyuki Kano
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| | - Toshiyuki Kuwata
- Department of Cardiovascular Surgery, Maebashi Red Cross Hospital, Maebashi 371-0811, Gunma, Japan; (T.K.); (T.K.)
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Hirotsugu Fukuda
- Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan; (H.O.); (G.T.); (Y.T.); (M.T.); (Y.K.); (Y.K.); (H.F.)
| |
Collapse
|
19
|
Ahmadi A, Bagheri Ekta M, Sahebkar A. Mechanisms of antidiabetic drugs and cholesterol efflux: A clinical perspective. Drug Discov Today 2022; 27:1679-1688. [PMID: 35182734 DOI: 10.1016/j.drudis.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
Reverse cholesterol transport (RCT) is a physiological process that reduces excess cholesterol in the body. Cholesterol efflux (CE), an important step in RCT, is mainly mediated by ATP-binding cassette transporters A1 and G1 and has a significant role in atheroprotection. Moreover, impairments in CE can lead to the development of diabetes and fatty liver disease. In this review, we summarize the possible effects of hypoglycemic agents on CE and how this might influence atherosclerosis and dyslipidemia-related pathologies. Newer antidiabetic agents could have significant potential for targeting CE and preventing or alleviating atherosclerosis, obesity, and liver steatosis, and simultaneously improving insulin secretion. However, more research is warranted to interpret the clinical relevance of these data.
Collapse
Affiliation(s)
- Ali Ahmadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948567, Iran
| | - Mariam Bagheri Ekta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, A.P. Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russian Federation
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, WA, Australia; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Ellipyrones A-B, from oval bone cuttlefish Sepia elliptica: Antihyperglycemic γ-pyrone enclosed macrocyclic polyketides attenuate dipeptidyl peptidase-4 and carbolytic enzymes. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02846-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Jaenisch SE, Abbott CA, Gorrell MD, Bampton P, Butler RN, Yazbeck R. Circulating Dipeptidyl Peptidase Activity Is a Potential Biomarker for Inflammatory Bowel Disease. Clin Transl Gastroenterol 2022; 13:e00452. [PMID: 35060938 PMCID: PMC8806366 DOI: 10.14309/ctg.0000000000000452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/06/2021] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Dipeptidyl peptidase (DPP)-4 is part of a larger family of proteases referred to as DPPs. DPP4 has been suggested as a possible biomarker for inflammatory bowel disease (IBD). Circulating DPP4 (cDPP4) enzyme activity was investigated as a potential biomarker for IBD. In addition, DPP enzyme activity and gene expression were quantified in colonic tissue of patients with IBD and non-IBD. METHODS In study 1, DPP enzyme activity was quantified in plasma samples from 220 patients with IBD (Crohn's disease [CD] n = 130 and ulcerative colitis [UC] n = 90) and non-IBD controls (n = 26) using a colorimetric assay. In study 2, tissue and plasma samples were collected from 26 patients with IBD and 20 non-IBD controls. Plasma C-reactive protein (CRP) was quantified in all patients. Colonic DPP4, DPP8, DPP9, and fibroblast activation protein (FAP) gene expression was determined by quantitative polymerase chain reaction. cDPP and cFAP enzyme activity was also measured. Sensitivity and specificity were determined by receiver operating characteristic curve analysis. RESULTS In study 1, total cDPP activity was found to differentiate patients with CD with active disease (n = 18) from those in remission (n = 19; sensitivity 78% and specificity 63%). In study 2, total cDPP and cFAP activity was 28% and 48% lower in patients with elevated CRP (>10 mg/L), respectively, compared with patients with normal CRP. Gene expression of DPP4, FAP, and DPP8 was also significantly higher in colonic biopsies from patients with IBD compared with non-IBD patients (P < 0.05). DISCUSSION Our findings implicate the DPP enzyme family in intestinal inflammation and suggest future biomarker applications to differentiate the pathophysiological aspects of IBD.
Collapse
Affiliation(s)
- Simone E. Jaenisch
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - Catherine A. Abbott
- Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Mark D. Gorrell
- Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Peter Bampton
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Ross N. Butler
- Department of Gastroenterology & Hepatology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Roger Yazbeck
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| |
Collapse
|
22
|
Roy A, Sahoo J, Narayanan N, Merugu C, Kamalanathan S, Naik D. Dipeptidyl peptidase-4 inhibitor-induced autoimmune diseases: Current evidence. World J Diabetes 2021; 12:1426-1441. [PMID: 34630898 PMCID: PMC8472501 DOI: 10.4239/wjd.v12.i9.1426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP-4i) have an important place in the management of type 2 diabetes. The DPP-4 enzyme is ubiquitously distributed throughout the human body and has multiple substrates through which it regulates several important physiological functions. DPP-4 regulates several immune functions, including T-cell activation, macrophage function, and secretion of cytokines. Studies have reported an increase in autoimmune diseases like bullous pemphigoid, inflammatory bowel disease, and arthritis with DPP-4i use. The relationship of DPP-4i and autoimmune diseases is a complex one and warrants further research into the effect of DPP-4 inhibition on the immune system to understand the pathogenesis more clearly. Whether a particular cluster of autoimmune diseases is associated with DPP-4i use remains an important contentious issue. Nevertheless, a heightened awareness from the clinicians is required to identify and treat any such diseases. Through this review, we explore the clinical and pathophysiological characteristics of this association in light of recent evidence.
Collapse
Affiliation(s)
- Ayan Roy
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, Jodhpur 342005, India
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Niya Narayanan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Chandhana Merugu
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
23
|
Paulose SK, Chakraborty K. Antioxidant spiropharanone, an undescribed variant of trans-decalin spiro-γ-lactone, from pharaoh cuttlefish Sepia pharaonis: Twin inhibitors of inflammatory 5-lipoxygenase and serine protease dipeptidyl peptidase-4. J Food Biochem 2021; 45:e13919. [PMID: 34486135 DOI: 10.1111/jfbc.13919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Marine pharaoh cuttlefish Sepia pharaonis (family Sepiidae) is regarded as an economically important class of cephalopod in the coastal Mediterranean and Asian regions. Bioassay-guided chromatographic purification of solvent extract of S. pharaonis led to the identification of a trans-decalin based spirolactone, spiropharanone, which was characterized as 1-hydroxy-7-(4'-methoxy-3-methylbut-2-enyl)-3,9,15-trimethyl-8-oxo-octahydro-5H-spiro[furan-8,9-naphtho]-8-yl-acetate by spectroscopic techniques. Spiropharanone exhibited significantly greater anti-inflammatory activity by attenuating pro-inflammatory 5-lipoxygenase (IC50 1.02 mM) than the non-steroidal drug ibuprofen (IC50 4.61 mM, p ≤ .05). Superior antioxidant properties of spiropharanone against free radicals (EC50 ~1.20 mM) and other oxidants (hydroxyl [EC50 0.97 mM] and superoxide [EC50 1.47 mM] scavenging) also reinforced its promising anti-inflammatory activity. The studied spiropharanone also exhibited significant attenuation toward insulin secretion regulating enzyme dipeptidyl peptidase-4 (IC50 0.92 mM) recognizing its anti-hyperglycemic potential. Significantly higher electronic properties (topological polar surface area ~100) combined with balanced hydrophilic-lipophilic properties (partition coefficient of logarithmic octanol-water ~3) and lesser docking parameters of spiropharanone demonstrated that the compound could be utilized as an important bioactive lead against oxidative stress, inflammation, and hyperglycemic-related ailments. PRACTICAL APPLICATIONS: Nutritionally rich edible marine pharaoh cuttlefish Sepia pharaonis occupies a prominent place among seafood fisheries owing to the presence of bioactive nutrients and functional food ingredients. These marine cuttlefish are widely distributed along the Asian and Mediterranean coasts, and consumed as culinary delicacy for decades. An undescribed trans-decalin spirolactone, spiropharanone was isolated from the organic extract of S. pharaonis based on bioactivity-assisted sequential chromatographic fractionation. Spiropharanone displayed promising antioxidant potential along with attenuation properties against inducible pro-inflammatory 5-lipoxygenase and insulin secretion regulating enzyme dipeptidyl peptidase-4. This study established the ameliorating potential of a naturally derived marine food constituent against inflammatory and diabetic ailments, and thus anticipated as functional food lead in pharmaceutical formulations towards inflammation and maintaining glucose homeostasis.
Collapse
Affiliation(s)
- Silpa Kunnappilly Paulose
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, India.,Department of Chemistry, Mangalore University, Mangalagangothri, India
| | - Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, India
| |
Collapse
|
24
|
Radbakhsh S, Atkin SL, Simental-Mendia LE, Sahebkar A. The role of incretins and incretin-based drugs in autoimmune diseases. Int Immunopharmacol 2021; 98:107845. [PMID: 34126341 DOI: 10.1016/j.intimp.2021.107845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Incretin hormones, including glucagon-like peptide (GLP)-1, GLP-2 and glucose-dependent insulinotropic polypeptide (GIP), are gastrointestinal peptides secreted from enteroendocrine cells. These hormones play significant roles in many physiological processes via binding to G-protein coupled receptors (GPCRs) on different organs and tissues; one of them is the immunomodulatory effect on the immune system and its molecular components such as cytokines and chemokines. Anti-inflammatory effects of incretins and dependent molecules involving long-acting analogs and DPP4 inhibitors through regulation of T and B cell activation may attenuate autoimmune diseases caused by immune system disorders in mistakenly recognizing self as the foreign agent. In this review, we investigate incretin effects on the immune system response and the potential benefits of incretin-based therapy for treating autoimmune diseases.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Ngetich E, Lapolla P, Chandrashekar A, Handa A, Lee R. The role of dipeptidyl peptidase-IV in abdominal aortic aneurysm pathogenesis: A systematic review. Vasc Med 2021; 27:77-87. [PMID: 34392748 PMCID: PMC8808362 DOI: 10.1177/1358863x211034574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abdominal aortic aneurysm (AAA) is an important vascular disease carrying significant mortality implications due to the risk of aneurysm rupture. Current management relies exclusively on surgical repair as there is no effective medical therapy. A key element of AAA pathogenesis is the chronic inflammation mediated by inflammatory cells releasing proteases, including the enzyme dipeptidyl peptidase IV (DPP-IV). This review sought to recapitulate available evidence on the involvement of DPP-IV in AAA development. Further, we assessed the experimental use of currently available DPP-IV inhibitors for AAA management in murine models. Embase, Medline, PubMed, and Web of Science databases were utilised to access the relevant studies. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). A narrative synthesis approach was used. Sixty-four studies were identified from the searched databases; a final 11 were included in the analysis. DPP-IV was reported to be significantly increased in both AAA tissue and plasma of patients and correlated with AAA growth. DPP-IV inhibitors (sitagliptin, vildagliptin, alogliptin, and teneligliptin) were all shown to attenuate AAA formation in murine models by reducing monocyte differentiation, the release of reactive oxygen species (ROS), and metalloproteinases (MMP-2 and MMP-9). DPP-IV seems to play a role in AAA pathogenesis by propagating the inflammatory microenvironment. This is supported by observations of decreased AAA formation and reduction in macrophage infiltration, ROS, matrix MMPs, and interleukins following the use of DPP-IV inhibitors in murine models. There is an existing translational gap from preclinical observations to clinical trials in this important and novel mechanism of AAA pathogenesis. This prior literature highlights the need for further research on molecular targets involved in AAA formation.
Collapse
Affiliation(s)
- Elisha Ngetich
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Anirudh Chandrashekar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
26
|
Nandi S, Ojha A, Nanda A, Sahoo RN, Swain R, Pattnaik KP, Mallick S. Vildagliptin plasticized hydrogel film in the control of ocular inflammation after topical application: study of hydration and erosion behaviour. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2021-3081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Vildagliptin (VID) is a dipeptidyl peptidase-4 (DPP-4) inhibitor used in controlling blood glucose level in type 2 diabetes. Vildagliptin improves beta cells function and is also suggested to effectively control the inflammation. The possible ocular anti-inflammatory property of vildagliptin has been explored using topically applied plasticized ocular film formulation. Film formulation was prepared by solvent cast and evaporation method using triethanolamine (TEA), dimethyl sulphoxide (DMSO), and polyethylene glycol 400 (PEG 400) as the plasticizer in HPMC hydrogel matrix base. Anti-inflammatory study was carried out in the carrageenan induced ocular rabbit model. Analytical methods confirmed that the drug was present almost in completely amorphized form in the film formulation. Level of hydration, swelling and erosion rate of the film played the controlling factor in the process of drug release, ocular residence and permeation. Maximum swelling rate of 363 h−1 has been shown by VHT compared to other formulation of VHD and VHP (174 and 242 h−1 respectively). Film containing DMSO exhibited highest in vitro release as well as ex vivo ocular permeation. Film formulation has shown a fast recovery of ocular inflammation in contrast to the untreated eye after inducing inflammation. Plasticized vildagliptin hydrogel film formulation could be utilized in the management and control of ocular inflammation particularly with diabetic retinopathy after proper clinical studies in higher animal and human individuals.
Collapse
Affiliation(s)
- Souvik Nandi
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
| | - Abinash Ojha
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
| | - Ashirbad Nanda
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
| | - Rudra Narayan Sahoo
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
- School of Pharmacy and Life Sciences , Centurion University of Technology and Management , Odisha , India
| | - Rakesh Swain
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
| | - Krushna Prasad Pattnaik
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
| | - Subrata Mallick
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar 751003 , India
| |
Collapse
|
27
|
Villumsen M, Schelde AB, Jimenez-Solem E, Jess T, Allin KH. GLP-1 based therapies and disease course of inflammatory bowel disease. EClinicalMedicine 2021; 37:100979. [PMID: 34386751 PMCID: PMC8343256 DOI: 10.1016/j.eclinm.2021.100979] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The disease course of inflammatory bowel disease (IBD) following treatment with glucagon-like peptide (GLP)-1 based therapies is unclear. The aim of this study was to examine the disease course of IBD in patients treated with GLP-1 based therapies compared with treatment with other antidiabetics. METHODS Using nationwide Danish registries, we identified patients with IBD and type 2 diabetes who received antidiabetic treatment between 1 January 2007 and 31 March 2019. The primary outcome was a composite of the need for oral corticosteroids, tumour necrosis factor-α inhibitors, IBD-related hospitalisation, or IBD-related surgery. In the setting of a new-user active comparator design, we used Poisson regression to estimate incidence rate ratios (IRR) comparing treatment with GLP-1 receptor agonists and dipeptidyl peptidase (DPP)-4 inhibitors with other antidiabetic therapies. The analyses were adjusted for age, sex, calendar year, IBD severity, and metformin use. FINDINGS We identified 3751 patients with a diagnosis of IBD and type 2 diabetes and with a prescription of an antidiabetic drug (GLP-1 receptor agonists/DPP-4 inhibitors: 982 patients; other antidiabetic treatment: 2769 patients). The adjusted IRR of the composite outcome was 0·52 (95% CI: 0·42-0·65) for patients exposed to GLP-1 receptor agonists/DPP-4 inhibitors compared with patients exposed to other antidiabetics. INTERPRETATION In patients with IBD and type 2 diabetes, we observed a lower risk of adverse clinical events amongst patients treated with GLP-1 based therapies compared with treatment with other antidiabetics. These findings suggest that treatment with GLP-1 based therapies may improve the disease course of IBD.
Collapse
Key Words
- ATC, Anatomical Therapeutic Chemical
- CD, Crohn's disease
- Colitis ulcerative
- Crohn's disease
- DPP, dipeptidyl peptidase
- Dipeptidyl peptidase-4 inhibitors
- GLP, glucagon-like-peptide
- Glucagon-like-peptide 1 receptor agonists
- IBD, inflammatory bowel disease
- ICD, International Classification of Diseases
- IMID, immune-mediated inflammatory disease
- IR, incidence rate
- IRR, incidence rate ratios
- PY, person-years
- Pharmacoepidemiology
- Prognosis
- SGLT2, Sodium-glucose Cotransporter-2
- TNF, tumour necrosis factor
- UC, ulcerative colitis
Collapse
Affiliation(s)
- Marie Villumsen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Corresponding author at: Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark.
| | - Astrid Blicher Schelde
- Department of Clinical Pharmacology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Espen Jimenez-Solem
- Department of Clinical Pharmacology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Copenhagen Phase IV unit (Phase4CPH), Department of Clinical Pharmacology and Center of Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Kristine Højgaard Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| |
Collapse
|
28
|
Yazbeck R, Jaenisch SE, Abbott CA. Dipeptidyl peptidase 4 inhibitors: Applications in innate immunity? Biochem Pharmacol 2021; 188:114517. [PMID: 33722535 PMCID: PMC7954778 DOI: 10.1016/j.bcp.2021.114517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase (DPP)-4 inhibitors are a class of orally available, small molecule inhibitors that prolong the insulinotropic activity of the incretin hormone glucagon-like peptide-1 (GLP-1) and are highly effective for the treatment of Type-2 diabetes. DPP4 can also cleave several immunoregulatory peptides including chemokines. Emerging evidence continues to implicate DPP4 inhibitors as immunomodulators, with recent findings suggesting DPP4 inhibitors modify specific aspects of innate immunity. This review summarises recent insights into how DPP4 inhibitors could be implicated in endothelial, neutrophil and monocyte/macrophage mediated immunity. Additionally, this review highlights additional avenues of research with DPP4 inhibitors in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- R Yazbeck
- College of Medicine and Public Health & Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia; College of Science and Engineering, Flinders University, Adelaide, Australia.
| | - S E Jaenisch
- College of Medicine and Public Health & Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia; College of Science and Engineering, Flinders University, Adelaide, Australia.
| | - C A Abbott
- College of Medicine and Public Health & Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia; College of Science and Engineering, Flinders University, Adelaide, Australia.
| |
Collapse
|
29
|
Pinheiro MM, Fabbri A, Infante M. Cytokine storm modulation in COVID-19: a proposed role for vitamin D and DPP-4 inhibitor combination therapy (VIDPP-4i). Immunotherapy 2021; 13:753-765. [PMID: 33906375 PMCID: PMC8080872 DOI: 10.2217/imt-2020-0349] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
A dysregulated immune response characterized by the hyperproduction of several pro-inflammatory cytokines (a.k.a. 'cytokine storm') plays a central role in the pathophysiology of severe coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this Perspective article we discuss the evidence for synergistic anti-inflammatory and immunomodulatory properties exerted by vitamin D and dipeptidyl peptidase-4 (DPP-4) inhibitors, the latter being a class of antihyperglycemic agents used for the treatment of Type 2 diabetes, which have also been reported as immunomodulators. Then, we provide the rationale for investigation of vitamin D and DPP-4 inhibitor combination therapy (VIDPP-4i) as an immunomodulation strategy to ratchet down the virulence of SARS-CoV-2, prevent disease progression and modulate the cytokine storm in COVID-19.
Collapse
Affiliation(s)
| | - Andrea Fabbri
- Department of Systems Medicine, Division of Endocrinology & Diabetes, Diabetes Research Institute Federation (DRIF), CTO Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Marco Infante
- Department of Systems Medicine, Division of Endocrinology & Diabetes, Diabetes Research Institute Federation (DRIF), CTO Hospital, University of Rome Tor Vergata, Rome, Italy
- UniCamillus, Saint Camillus International University of Health Sciences, Section of Endocrinology, Diabetes and Metabolism, Rome, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Rome, Italy
| |
Collapse
|
30
|
Changes in the transcriptional activity of the entero-insular axis genes in streptozotocin-induced diabetes and after the administration of TNF-α non-selective blockers. Endocr Regul 2021; 54:160-171. [PMID: 32857721 DOI: 10.2478/enr-2020-0019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The aim of the present study was to investigate the transcriptional activity of the GLP-1R, DPP-4, SGLT-1, INSR, and IGF-1R genes in GALT cells of rats with streptozotocin-induced diabetes in both untreated and treated with pentoxifylline, as a non-specific blocker of TNF-α. METHODS The expression of GLP-1R, DPP-4, SGLT-1, INSR, and IGF-1R genes in GALT cells of rats was studied by real time quantitative polymerase chain reaction. RESULTS It was shown that the development of diabetes was accompanied by the decrease of GLP-1R and an increase of DPP-4 genes expression in rat ileum. The administration of pentoxifyl-line to diabetic animals led to an increase in the transcriptional activity of GLP-1R on the 4th week and decrease in transcriptional activity of DPP-4 on the 2nd and 4th weeks of the experiment. An increase in the normalized expression of SGLT-1 on the 4th week of the experimental diabetes was also noted, while the administration of pentoxifylline to diabetic animals did not lead to significant changes in this index. The transcriptional activity of the INSR and IGF-1R genes was reduced in diabetic rats and the administration of the non-specific TNF-α blocker - pentoxifylline led to a significant increase only for INSR gene in animals on the 4th week of the experimental diabetes. CONCLUSIONS The expression of incretins, glucose transporters, and pro-inflammatory cytokines (e.g. TNF-α) in immune cells may be used as markers of several autoimmune pathologies progression such as type 1 diabetes due to their effect on the balance of pro- and anti-inflammatory factors.
Collapse
|
31
|
Lee H, Chung HJ, Pawar A, Patorno E, Kim DH. Evaluation of Risk of Bullous Pemphigoid With Initiation of Dipeptidyl Peptidase-4 Inhibitor vs Second-generation Sulfonylurea. JAMA Dermatol 2021; 156:1107-1114. [PMID: 32697283 DOI: 10.1001/jamadermatol.2020.2158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Importance Despite several recent reports on the elevated risk of bullous pemphigoid in patients with type 2 diabetes treated with dipeptidyl peptidase-4 (DPP-4) inhibitors, evidence on the absolute risk and comparative safety against other antidiabetics is limited. Objective To characterize the incidence rate of bullous pemphigoid associated with DPP-4 inhibitor use compared with second-generation sulfonylureas. Design, Setting, and Participants This cohort study used data from 2 large commercial insurance claims databases (Optum Clinformatics Data Mart from October 17, 2006, to December 31, 2018, and IBM MarketScan Research Database from October 17, 2006, to December 31, 2017) and Medicare data from January 1, 2006, to December 31, 2016. Patients with type 2 diabetes who initiated treatment with DPP-4 inhibitors or second-generation sulfonylurea were included. Main Outcomes and Measures The primary outcome of the study was bullous pemphigoid, identified using diagnosis codes. After 1:1 propensity score matching, the incidence rates of bullous pemphigoid and the hazard ratios (HRs) with 95% CIs comparing patients who initiated DPP-4 inhibitor and second-generation sulfonylurea therapy were estimated. Subgroup analyses by age, sex, race, and individual DPP-4 agents were performed. The results from each database were pooled using inverse-variance fixed-effects meta-analysis. Results A total of 1 664 880 patients who initiated DPP-4 inhibitors (51.0% female; mean [SD] age, 63.9 [9.7] years) and sulfonylurea (50.4% female; mean [SD] age, 63.9 [9.9] years) were included. The incidence rate of bullous pemphigoid per 1000 person-years was 0.42 in the DPP-4 inhibitor group vs 0.31 in the sulfonylurea group (HR, 1.42; 95% CI, 1.17-1.72). Higher rates per 1000 person-years for DPP-4 inhibitor vs sulfonylurea groups were seen in those who were 65 years or older (0.79 vs 0.49; HR, 1.62; 95% CI, 1.32-1.99), white (0.93 vs 0.54; HR, 1.70; 95% CI, 1.30-2.24), and treated with linagliptin (1.20 vs 0.55; HR, 1.68; 95% CI, 1.16-2.43). Conclusions and Relevance This study found that patients who initiated DPP-4 inhibitor therapy had higher risk of bullous pemphigoid than those who initiated second-generation sulfonylurea therapy. Clinicians should be aware of this rare adverse effect of DPP-4 inhibitors in subgroups of patients who are older, white, and linagliptin users.
Collapse
Affiliation(s)
- Hemin Lee
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Hye Jin Chung
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Ajinkya Pawar
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Elisabetta Patorno
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dae Hyun Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Zheng Z, Liang P, Hou B, Lu X, Ma Q, Yu X, Han S, Peng B, Chen T, Liu W, Yin J, He X. The effect of dipeptidyl peptidase IV on disease-associated microglia phenotypic transformation in epilepsy. J Neuroinflammation 2021; 18:112. [PMID: 33975617 PMCID: PMC8114532 DOI: 10.1186/s12974-021-02133-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/18/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that disease-associated microglia (DAM), a recently discovered subset of microglia, plays a protective role in neurological diseases. Targeting DAM phenotypic transformation may provide new therapeutic options. However, the relationship between DAM and epilepsy remains unknown. METHODS Analysis of public RNA-sequencing data revealed predisposing factors (such as dipeptidyl peptidase IV; DPP4) for epilepsy related to DAM conversion. Anti-epileptic effect was assessed by electroencephalogram recordings and immunohistochemistry in a kainic acid (KA)-induced mouse model of epilepsy. The phenotype, morphology and function of microglia were assessed by qPCR, western blotting and microscopic imaging. RESULTS Our results demonstrated that DPP4 participated in DAM conversion and epilepsy. The treatment of sitagliptin (a DPP4 inhibitor) attenuated KA-induced epilepsy and promoted the expression of DAM markers (Itgax and Axl) in both mouse epilepsy model in vivo and microglial inflammatory model in vitro. With sitagliptin treatment, microglial cells did not display an inflammatory activation state (enlarged cell bodies). Furthermore, these microglia exhibited complicated intersections, longer processes and wider coverage of parenchyma. In addition, sitagliptin reduced the activation of NF-κB signaling pathway and inhibited the expression of iNOS, IL-1β, IL-6 and the proinflammatory DAM subset gene CD44. CONCLUSION The present results highlight that the DPP4 inhibitor sitagliptin can attenuate epilepsy and promote DAM phenotypic transformation. These DAM exhibit unique morphological features, greater migration ability and better surveillance capability. The possible underlying mechanism is that sitagliptin can reduce the activation of NF-κB signaling pathway and suppress the inflammatory response mediated by microglia. Thus, we propose DPP4 may act as an attractive direction for DAM research and a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Zhicheng Zheng
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China
| | - Peiyu Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China
| | - Baohua Hou
- Medical College, Henan Polytechnic University, Jiaozuo, China
| | - Xin Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China
| | - Qianwen Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China
| | - Xiaomin Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Taoxiang Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China.
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China.
| |
Collapse
|
33
|
Tripolino C, Ciaffi J, Pucino V, Ruscitti P, van Leeuwen N, Borghi C, Giacomelli R, Meliconi R, Ursini F. Insulin Signaling in Arthritis. Front Immunol 2021; 12:672519. [PMID: 33995414 PMCID: PMC8119635 DOI: 10.3389/fimmu.2021.672519] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammatory arthritis is burdened by an increased risk of metabolic disorders. Cytokines and other mediators in inflammatory diseases lead to insulin resistance, diabetes and hyperlipidemia. Accumulating evidence in the field of immunometabolism suggests that the cause-effect relationship between arthritis and metabolic abnormalities might be bidirectional. Indeed, the immune response can be modulated by various factors such as environmental agents, bacterial products and hormones. Insulin is produced by pancreatic cells and regulates glucose, fat metabolism and cell growth. The action of insulin is mediated through the insulin receptor (IR), localized on the cellular membrane of hepatocytes, myocytes and adipocytes but also on the surface of T cells, macrophages, and dendritic cells. In murine models, the absence of IR in T-cells coincided with reduced cytokine production, proliferation, and migration. In macrophages, defective insulin signaling resulted in enhanced glycolysis affecting the responses to pathogens. In this review, we focalize on the bidirectional cause-effect relationship between impaired insulin signaling and arthritis analyzing how insulin signaling may be involved in the aberrant immune response implicated in arthritis and how inflammatory mediators affect insulin signaling. Finally, the effect of glucose-lowering agents on arthritis was summarized.
Collapse
Affiliation(s)
- Cesare Tripolino
- Geriatric Medicine Unit, Department of Medical Functional Area, "San Giovanni di Dio" Hospital, Crotone, Italy
| | - Jacopo Ciaffi
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli (IOR), Bologna, Italy
| | - Valentina Pucino
- Institute of Inflammation and Ageing, University of Birmingham and Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nina van Leeuwen
- Rheumatology Department, Leiden University Medical Center, Leiden, Netherlands
| | - Claudio Borghi
- Unità Operativa Medicina Interna Cardiovascolare-IRCCS Azienda Ospedaliera-Universitaria, Bologna, Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome "Campus Biomedico", Rome, Italy
| | - Riccardo Meliconi
- Geriatric Medicine Unit, Department of Medical Functional Area, "San Giovanni di Dio" Hospital, Crotone, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesco Ursini
- Geriatric Medicine Unit, Department of Medical Functional Area, "San Giovanni di Dio" Hospital, Crotone, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Kim HY, Kim JH, Jeong HG, Jin CH. Anti-diabetic effect of the lupinalbin A compound isolated from Apios americana: In vitro analysis and molecular docking study. Biomed Rep 2021; 14:39. [PMID: 33692902 PMCID: PMC7938295 DOI: 10.3892/br.2021.1415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/03/2021] [Indexed: 12/29/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) and α-glucosidase inhibitors have been developed as anti-diabetic agents for the treatment of diabetes mellitus. In the present study, the anti-diabetic effects of the lupinalbin A compound isolated from Apios americana was investigated by measuring its inhibitory activity against DPP4 and α-glucosidase. To detect the inhibitory effect of lupinalbin A, DPP4 and α-glucosidase assays were performed in vitro. Molecular docking analysis was performed using AutoDock 4.2. The IC50 values of lupinalbin A against DPP4 and α-glucosidase were 45.2 and 53.4 µM, respectively. Analysis of the enzyme kinetics revealed that lupinalbin A interacted with the active site of DPP4 in a competitive manner, with an inhibition constant (Ki) value of 35.1±2.0 µM, whereas the lupinalbin A interaction with α-glucosidase was non-competitive, with a Ki value of 45.0 µM. Molecular docking analysis revealed a binding pose between the DPP4 enzyme and lupinalbin A. Taken together, these data suggest lupinalbin A is more effective against DPP4 than α-glucosidase, with regard to its anti-diabetic effects.
Collapse
Affiliation(s)
- Hyo-Young Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Jang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Chungcheongnam-do 34134, Republic of Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| |
Collapse
|
35
|
Investigation into the role of anti-diabetic agents in cachexia associated with metastatic cancer. Life Sci 2021; 274:119329. [PMID: 33711389 DOI: 10.1016/j.lfs.2021.119329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
Cancer cachexia (CC) is a syndrome associated with cancer, and the global burden is increasing rapidly. Alteration in carbohydrate, lipid and protein metabolism along with systemic inflammation are characteristics of CC. Until now the available treatment for CC is limited to controlling inflammation and nutrition. Anti-diabetics are widely used agents to treat diabetics, this agent's act by regulating the carbohydrate metabolism, also they are known to have beneficial effects in maintaining protein and lipid balance. Role of anti-diabetics in cancer is being evaluated continuously and biguanides, dipeptidyl peptidase 4 (DPP4) inhibitors and Sodium glucose co-transporter 2 (SGLT2) inhibitors have proven anti-cancer potential. In this study, metastatic B16-F1 cell line induced cancer cachexia model used to evaluate potential of biguanides (metformin), DPP-4 inhibitors (teneligliptin and vildagliptin) and SGLT2 inhibitors (empagliflozin and dapagliflozin) in cancer cachexia. Our results suggest that anti-diabetic agents have potential to decrease rate of proliferation of tumor, restrict body mass markers, decrease inflammation, regulate carbohydrate mechanism and induce skeletal muscle hypertrophy. These findings may be helpful in management of cancer cachexia and increase the quality of life and survival chances of cancer cachexia patient.
Collapse
|
36
|
Yoon H, Sung JH, Song MJ. Effects of the Antidiabetic Drugs Evogliptin and Sitagliptin on the Immune Function of CD26/DPP4 in Th1 Cells. Biomol Ther (Seoul) 2021; 29:154-165. [PMID: 33148870 PMCID: PMC7921863 DOI: 10.4062/biomolther.2020.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 01/20/2023] Open
Abstract
This study aimed to investigate whether the antidiabetic drugs dipeptidyl peptidase 4 (DPP4) inhibitors such as evogliptin and sitagliptin affect the membrane DPP4 (mDPP4) enzymatic activity and immune function of T helper1 (Th1) cells in terms of cytokine expression and cell profiles. The mDPP4 enzymatic activity, cytokine expression, and cell profiles, including cell counts, cell viability, DNA synthesis, and apoptosis, were measured in pokeweed mitogen (PWM)-activated CD4+CD26+ H9 Th1 cells with or without the DPP4 inhibitors, evogliptin and sitagliptin. PWM treatment alone strongly stimulated the expression of mDPP4 and cytokines such as interleukin (IL)-2, IL-10, tumor necrosis factor-alpha, interferon-gamma, IL-13, and granulocyte-macrophage colony stimulating factor in the CD4+CD26+ H9 Th1 cells. Evogliptin or sitagliptin treatment potently inhibited mDPP4 activity in a dose-dependent manner but did not affect either the cytokine profile or cell viability in PWM-activated CD4+CD26+ H9 Th1 cells. These results suggest that, following immune stimulation, Th1 cell signaling pathways for cytokine expression function normally after treatment with evogliptin or sitagliptin, which efficiently inhibit mDPP4 enzymatic activity in Th1 cells.
Collapse
Affiliation(s)
- Hyunyee Yoon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.,Protein Immunology Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Kore
| | - Ji Hyun Sung
- Flow Cytometry Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Moon Jung Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
37
|
Yang W, Cai X, Zhang S, Han X, Ji L. Dipeptidyl peptidase-4 inhibitor treatment and the risk of bullous pemphigoid and skin-related adverse events: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Res Rev 2021; 37:e3391. [PMID: 32741073 DOI: 10.1002/dmrr.3391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022]
Abstract
AIMS This meta-analysis aimed to evaluate the risk of developing bullous pemphigoid (BP) and other skin-related adverse events (AEs) in patients with type 2 diabetes (T2DM) undergoing dipeptidyl peptidase-4 inhibitor (DPP-4i) treatment in randomized controlled trials (RCTs). METHODS In this meta-analysis, the MEDLINE, Embase, and Cochrane Central Register of Controlled Trials databases were searched for RCTs, which involve patients with T2DM reporting skin-related AEs. RCTs that comparatively evaluated the effects of DPP-4i treatment and placebo on patients with T2DM and reported skin-related AEs were included in the analysis. The odds ratio (OR) and 95% confidence interval (CI) were calculated using the Peto's methods. The GRADE approach was used to rate the quality of evidence. RESULTS A total of 46 randomized placebo-controlled trials, including 3 trials with reports of BP (n = 38 011), that reported skin-related AEs were included (n = 59 332). Compared to the placebo group, the risk of developing BP was significantly higher in the DPP-4i treatment group (OR = 7.38, 95% CI 2.00-27.25, I2 = 0%, P = .003; quality rating: very low). Additionally, DPP-4i treatment was associated with an increased overall risk of developing skin-related AEs (OR = 1.22, 95% CI 1.02-1.46, I2 = 32%, P = .03; quality rating: moderate). CONCLUSIONS This meta-analysis suggested that treatment with DPP-4is, including sitagliptin, saxagliptin, and linagliptin, was associated with an increased risk of developing BP. Additionally, the risk of developing skin-related AEs increased when all DPP-4is were combined. Skin lesion, especially BP, should be monitored in patients with diabetes undergoing DPP-4i treatment. Future studies should evaluate the susceptible population and develop strategies for early detection of skin-related AEs.
Collapse
Affiliation(s)
- Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| |
Collapse
|
38
|
Choi B, Kim EY, Kim JE, Oh S, Park SO, Kim SM, Choi H, Song JK, Chang EJ. Evogliptin Suppresses Calcific Aortic Valve Disease by Attenuating Inflammation, Fibrosis, and Calcification. Cells 2021; 10:E57. [PMID: 33401457 PMCID: PMC7824080 DOI: 10.3390/cells10010057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve disease (CAVD) accompanies inflammatory cell infiltration, fibrosis, and ultimately calcification of the valve leaflets. We previously demonstrated that dipeptidyl peptidase-4 (DPP-4) is responsible for the progression of aortic valvular calcification in CAVD animal models. As evogliptin, one of the DPP-4 inhibitors displays high specific accumulation in cardiac tissue, we here evaluated its therapeutic potency for attenuating valvular calcification in CAVD animal models. Evogliptin administration markedly reduced calcific deposition accompanied by a reduction in proinflammatory cytokine expression in endothelial nitric oxide synthase-deficient mice in vivo, and significantly ameliorated the mineralization of the primary human valvular interstitial cells (VICs), with a reduction in the mRNA expression of bone-associated and fibrosis-related genes in vitro. In addition, evogliptin ameliorated the rate of change in the transaortic peak velocity and mean pressure gradients in our rabbit model as assessed by echocardiography. Importantly, evogliptin administration in a rabbit model was found to suppress the effects of a high-cholesterol diet and of vitamin D2-driven fibrosis in association with a reduction in macrophage infiltration and calcific deposition in aortic valves. These results have indicated that evogliptin prohibits inflammatory cytokine expression, fibrosis, and calcification in a CAVD animal model, suggesting its potential as a selective therapeutic agent for the inhibition of valvular calcification during CAVD progression.
Collapse
Affiliation(s)
- Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Soyoon Oh
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Si-On Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang-Min Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyuksu Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jae-Kwan Song
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Biochemistry, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
39
|
Chen YC, Chen TH, Sun CC, Chen JY, Chang SS, Yeung L, Tsai YW. Dipeptidyl peptidase-4 inhibitors and the risks of autoimmune diseases in type 2 diabetes mellitus patients in Taiwan: a nationwide population-based cohort study. Acta Diabetol 2020; 57:1181-1192. [PMID: 32318876 PMCID: PMC7173685 DOI: 10.1007/s00592-020-01533-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
AIMS Dipeptidyl peptidase-4, a transmembrane glycoprotein expressed in various cell types, serves as a co-stimulator molecule to influence immune response. This study aimed to investigate associations between DPP-4 inhibitors and risk of autoimmune disorders in patients with type 2 diabetes mellitus in Taiwan. METHODS This retrospective cohort study used the nationwide data from the diabetes subsection of Taiwan National Health Insurance Research Database between January 1, 2009, and December 31, 2013. Cox proportional hazards models were developed to compare the risk of autoimmune disorders and the subgroup analyses between the DPP-4i and DPP-4i-naïve groups. RESULTS A total of 774,198 type 2 diabetic patients were identified. The adjusted HR of the incidence for composite autoimmune disorders in DPP-4i group was 0.56 (95% CI 0.53-0.60; P < 0.001). The subgroup analysis demonstrated that the younger patients (aged 20-40 years: HR 0.47, 95% CI 0.35-0.61; aged 41-60 years: HR 0.50, 95% CI 0.46-0.55; aged 61-80 years: HR 0.63, 95% CI 0.58-0.68, P = 0.0004) and the lesser duration of diabetes diagnosed (0-5 years: HR 0.48, 95% CI 0.44-0.52; 6-10 years: HR 0.48, 95% CI 0.43-0.53; ≧ 10 years: HR 0.86, 95% CI 0.78-0.96, P < 0.0001), the more significant the inverse association of DPP-4 inhibitors with the incidence of composite autoimmune diseases. CONCLUSIONS DPP-4 inhibitors are associated with lower risk of autoimmune disorders in type 2 diabetes mellitus patients in Taiwan, especially for the younger patients and the lesser duration of diabetes diagnosed. The significant difference was found between the four types of DPP-4 inhibitors and the risk of autoimmune diseases. This study provides clinicians with useful information regarding the use of DPP-4 inhibitors for treating diabetic patients.
Collapse
Affiliation(s)
- Yi-Chuan Chen
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tien-Hsing Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chin Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Yuan Chen
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shy-Shin Chang
- Department of Family Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ling Yeung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yi-Wen Tsai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Family Medicine, Chang Gung Memorial Hospital, Keelung Branch, No. 222, Maijin Road, Keelung, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
40
|
Mozafari N, Azadi S, Mehdi-Alamdarlou S, Ashrafi H, Azadi A. Inflammation: A bridge between diabetes and COVID-19, and possible management with sitagliptin. Med Hypotheses 2020; 143:110111. [PMID: 32721805 PMCID: PMC7361050 DOI: 10.1016/j.mehy.2020.110111] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/04/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
Abstract
Patients with SARS-CoV-2 infections experience lymphopenia and inflammatory cytokine storms in the severe stage of the disease, leading to multi-organ damage. The exact pattern of immune system changes and their condition during the disease process is unclear. The available knowledge has indicated that the NF-kappa-B pathway, which is induced by several mediators, has a significant role in cytokine storm through the various mechanisms. Therefore, identifying the state of the immune cells and the dominant mechanisms for the production of cytokines incorporated in the cytokine storm can be a critical step in the therapeutic approach. On the other hand, some studies identified a higher risk for diabetic patients. Diabetes mellitus exhibits a close association with inflammation and increases the chance of developing COVID-19. Patients with diabetes mellitus have shown to have more virus entry, impaired immunity response, less viral elimination, and dysregulated inflammatory cytokines. The parallel analysis of COVID-19 and diabetes mellitus pathogenesis has proposed that the control of the inflammation through the interfering with the critical points of major signaling pathways may provide the new therapeutic approaches. In recent years, the role of Dipeptidyl Peptidase 4 (DPP4) in chronic inflammation has been proved. Numerous immune cells express the DPP4 protein. DPP4 regulates antibody production, cytokine secretion, and immunoglobulin class switching. DPP4 inhibitors like sitagliptin reduce inflammation intensity in different states. Following the accumulating data, we hypothesize that sitagliptin might reduce COVID-19 severity. Sitagliptin, an available DPP4 inhibitor drug, showed multidimensional anti-inflammatory effects among diabetic patients. It reduces the inflammation mostly by affecting on NF-kappa-B signaling pathway. Under the fact that inflammatory mediators are active in individuals with COVID-19, blocking the predominant pathway could be helpful.
Collapse
Affiliation(s)
- Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soha Azadi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Mehdi-Alamdarlou
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
41
|
Sakai Y, Chen G, Ni Y, Zhuge F, Xu L, Nagata N, Kaneko S, Ota T, Nagashimada M. DPP-4 Inhibition with Anagliptin Reduces Lipotoxicity-Induced Insulin Resistance and Steatohepatitis in Male Mice. Endocrinology 2020; 161:5892311. [PMID: 32790863 DOI: 10.1210/endocr/bqaa139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Excessive hepatic lipid accumulation drives the innate immune system and aggravates insulin resistance, hepatic inflammation, and fibrogenesis, leading to nonalcoholic steatohepatitis (NASH). Dipeptidyl peptidase-4 (DPP-4) regulates glucose metabolism and is expressed in many different cell types, including the cells of the immune system. In addition, DPP-4 may be involved in macrophage-mediated inflammation and insulin resistance. This study investigated the effects of anagliptin (Ana), an inhibitor of DPP-4, on macrophage polarity and phenotype in the livers of mice with steatohepatitis. We investigated the effects of Ana on steatohepatitis induced via a high-cholesterol high-fat (CL) diet or a choline-deficient L-amino acid-defined, high-fat (CDAHF) diet. DPP-4 activity, liver histology, and insulin sensitivity were evaluated, and liver DPP-4+ macrophages were quantified using fluorescence-activated cell sorting (FACS). Liver and plasma DPP-4 activity increased significantly in mice on both diets. FACS revealed that, compared with chow-fed mice, the CL-fed mice exhibited a significant increase in the proportion of DPP-4+ liver macrophages, particularly the M1-type macrophages. Ana decreased hepatic lipid and M1 macrophage accumulation and stimulated M2 macrophage accumulation in the liver, thereby attenuating insulin resistance, steatohepatitis, and fibrosis. Importantly, Ana alleviated hepatic fibrosis and steatohepatitis in mice fed CL diet and CDAHF diet. Using Ana to inhibit DPP-4 reduced lipotoxicity-induced hepatic insulin resistance through regulating the M1/M2 macrophage status.
Collapse
Affiliation(s)
- Yuriko Sakai
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Guanliang Chen
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Yinhua Ni
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Fen Zhuge
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Liang Xu
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Naoto Nagata
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Tsuguhito Ota
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Mayumi Nagashimada
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
42
|
Huang J, Jia Y, Sun S, Meng L. Adverse event profiles of dipeptidyl peptidase-4 inhibitors: data mining of the public version of the FDA adverse event reporting system. BMC Pharmacol Toxicol 2020; 21:68. [PMID: 32938499 PMCID: PMC7493367 DOI: 10.1186/s40360-020-00447-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/07/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND To describe and analyze the patterns of adverse events associated with dipeptidyl peptidase-4 inhibitors (DPP-4is) (sitagliptin, saxagliptin, linagliptin, vildagliptin, and alogliptin) from the FDA Adverse Event Reporting System (FAERS) and to highlight areas of safety concerns. METHODS Adverse events spontaneously submitted to the FAERS between 2004 Q1 to 2019 Q2 were included. The online tool OpenVigil 2.1 was used to query the database. The research relied on definitions of preferred terms (PTs) specified by the Medical Dictionary for Regulatory Activities (MedDRA) and the standardized MedDRA Queries (SMQ). The reporting odds ratio (ROR), with 95% confidence intervals (CIs) was calculated for disproportionality analysis. RESULTS Over 16 years, a total of 9706 adverse event reports were identified. Alogliptin was excluded from further analysis due to insufficient sample size. Compared with the non-insulin antidiabetic drugs, the four DPP-4is were all disproportionately associated with four SMQs: "gastrointestinal nonspecific inflammation and dysfunctional conditions," "hypersensitivity," "severe cutaneous adverse reactions," and "noninfectious diarrhoea". As for PT level analyses, DPP-4is are associated with higher reporting of the gastrointestinal tract, pancreas, malignancies, infection, musculoskeletal disorders, general disorders, hypersensitivity, and skin AEs. CONCLUSIONS Data mining of the FAERS is useful for examining DPP-4 inhibitors-associated adverse events. The findings of the present study are compatible with clinical experience, and it provides valuable information to decision-makers and healthcare providers in clinical practice.
Collapse
Affiliation(s)
- Jing Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuntao Jia
- Department of Pharmacy, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shusen Sun
- Department of Pharmacy Practice, College of Pharmacy and Health Sciences, Western New England University, 1215 Wilbraham Road, Springfield, USA.,Department of Pharmacy, Xiangya Hospital Central South University, Changsha, Hunan, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Long Meng
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
43
|
Lee H, Chung HJ, Pawar A, Patorno E, Kim DH. Livedoid and Purpuric Skin Eruptions Associated With Coagulopathy in Severe COVID-19. JAMA Dermatol 2020; 156:1-3. [PMID: 32756881 PMCID: PMC7376463 DOI: 10.1001/jamadermatol.2020.2800] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/30/2020] [Indexed: 01/22/2023]
Abstract
Question What is the absolute risk of bullous pemphigoid in patients who initiate use of dipeptidyl peptidase–4 inhibitors and its comparative risk against sulfonylurea use? Findings In this cohort study of 1 664 880 patients with type 2 diabetes, the incidence rate of bullous pemphigoid per 1000 person-years among patients who initiated dipeptidyl peptidase–4 inhibitor therapy was 0.42 compared with 0.31 for sulfonylurea. The risk was 42% higher with dipeptidyl peptidase–4 inhibitors than with sulfonylurea and 62% to 70% higher in subgroups of patients who were 65 years or older, white, and linagliptin users. Meaning These findings suggest that use of dipeptidyl peptidase–4 inhibitors is associated with higher risk of bullous pemphigoid compared with sulfonylurea, and that clinicians should be aware of this rare adverse effect in subgroups with higher risk. Importance Despite several recent reports on the elevated risk of bullous pemphigoid in patients with type 2 diabetes treated with dipeptidyl peptidase–4 (DPP-4) inhibitors, evidence on the absolute risk and comparative safety against other antidiabetics is limited. Objective To characterize the incidence rate of bullous pemphigoid associated with DPP-4 inhibitor use compared with second-generation sulfonylureas. Design, Setting, and Participants This cohort study used data from 2 large commercial insurance claims databases (Optum Clinformatics Data Mart from October 17, 2006, to December 31, 2018, and IBM MarketScan Research Database from October 17, 2006, to December 31, 2017) and Medicare data from January 1, 2006, to December 31, 2016. Patients with type 2 diabetes who initiated treatment with DPP-4 inhibitors or second-generation sulfonylurea were included. Main Outcomes and Measures The primary outcome of the study was bullous pemphigoid, identified using diagnosis codes. After 1:1 propensity score matching, the incidence rates of bullous pemphigoid and the hazard ratios (HRs) with 95% CIs comparing patients who initiated DPP-4 inhibitor and second-generation sulfonylurea therapy were estimated. Subgroup analyses by age, sex, race, and individual DPP-4 agents were performed. The results from each database were pooled using inverse-variance fixed-effects meta-analysis. Results A total of 1 664 880 patients who initiated DPP-4 inhibitors (51.0% female; mean [SD] age, 63.9 [9.7] years) and sulfonylurea (50.4% female; mean [SD] age, 63.9 [9.9] years) were included. The incidence rate of bullous pemphigoid per 1000 person-years was 0.42 in the DPP-4 inhibitor group vs 0.31 in the sulfonylurea group (HR, 1.42; 95% CI, 1.17-1.72). Higher rates per 1000 person-years for DPP-4 inhibitor vs sulfonylurea groups were seen in those who were 65 years or older (0.79 vs 0.49; HR, 1.62; 95% CI, 1.32-1.99), white (0.93 vs 0.54; HR, 1.70; 95% CI, 1.30-2.24), and treated with linagliptin (1.20 vs 0.55; HR, 1.68; 95% CI, 1.16-2.43). Conclusions and Relevance This study found that patients who initiated DPP-4 inhibitor therapy had higher risk of bullous pemphigoid than those who initiated second-generation sulfonylurea therapy. Clinicians should be aware of this rare adverse effect of DPP-4 inhibitors in subgroups of patients who are older, white, and linagliptin users.
Collapse
Affiliation(s)
- Hemin Lee
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Hye Jin Chung
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Ajinkya Pawar
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Elisabetta Patorno
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Dae Hyun Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Wang X, Gessier F, Perozzo R, Stojkov D, Hosseini A, Amirshahrokhi K, Kuchen S, Yousefi S, Lötscher P, Simon HU. RIPK3–MLKL–Mediated Neutrophil Death Requires Concurrent Activation of Fibroblast Activation Protein-α. THE JOURNAL OF IMMUNOLOGY 2020; 205:1653-1663. [DOI: 10.4049/jimmunol.2000113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022]
|
45
|
Stoian AP, Papanas N, Prazny M, Rizvi AA, Rizzo M. Incretin-Based Therapies Role in COVID-19 Era: Evolving Insights. J Cardiovasc Pharmacol Ther 2020; 25:494-496. [DOI: 10.1177/1074248420937868] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic has led the scientific community to breach new frontiers in the understanding of human physiology and disease pathogenesis. It has been hypothesized that the human dipeptidyl peptidase 4 (DPP4) enzyme receptor may be a functional target for the spike proteins of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Since DPP4-inhibitors are currently used for the treatment of patients with type-2 diabetes (T2DM), there is currently high interest in the possibility that these agents, or incretin-based therapies (IBTs) in general, may be of benefit against the new coronavirus infection. Diabetes is associated with increased COVID-19 severity and mortality, and accumulating evidence suggests that IBTs may favorably alter the clinical course of SARS-CoV-2 infection due to their inherent mechanisms of action. Further research into prognostic variables associated with various antidiabetic treatment regimens, and in particular the IBT, in patients with T2DM affected by the COVID-19 pandemic is therefore warranted.
Collapse
Affiliation(s)
- Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, “Carol Davila” University of Medicine, Bucharest, Romania
| | - Nikolaos Papanas
- Diabetes Center, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Greece
| | - Martin Prazny
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ali A. Rizvi
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA
| | - Manfredi Rizzo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy
| |
Collapse
|
46
|
Romacho T, Sell H, Indrakusuma I, Roehrborn D, Castañeda TR, Jelenik T, Markgraf D, Hartwig S, Weiss J, Al-Hasani H, Roden M, Eckel J. DPP4 deletion in adipose tissue improves hepatic insulin sensitivity in diet-induced obesity. Am J Physiol Endocrinol Metab 2020; 318:E590-E599. [PMID: 31891536 DOI: 10.1152/ajpendo.00323.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Besides a therapeutic target for type 2 diabetes, dipeptidyl peptidase 4 (DPP4) is an adipokine potentially upregulated in human obesity. We aimed to explore the role of adipocyte-derived DPP4 in diet-induced obesity and insulin resistance with an adipose tissue-specific knockout (AT-DPP4-KO) mouse. Wild-type and AT-DPP4-KO mice were fed for 24 wk with a high fat diet (HFD) and characterized for body weight, glucose tolerance, insulin sensitivity by hyperinsulinemic-euglycemic clamp, and body composition and hepatic fat content. Image and molecular biology analysis of inflammation, as well as adipokine secretion, was performed in AT by immunohistochemistry, Western blot, real-time-PCR, and ELISA. Incretin levels were determined by Luminex kits. Under HFD, AT-DPP4-KO displayed markedly reduced circulating DPP4 concentrations, proving AT as a relevant source. Independently of glucose-stimulated incretin hormones, AT-DPP4-KO had improved glucose tolerance and hepatic insulin sensitivity. AT-DPP4-KO displayed smaller adipocytes and increased anti-inflammatory markers. IGF binding protein 3 (IGFBP3) levels were lower in AT and serum, whereas free IGF1 was increased. The absence of adipose DPP4 triggers beneficial AT remodeling with decreased production of IGFBP3 during HFD, likely contributing to the observed, improved hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Tania Romacho
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- komIT Center of Competence for Innovative Diabetes Therapy, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Henrike Sell
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ira Indrakusuma
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Diana Roehrborn
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tamara R Castañeda
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tomas Jelenik
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Markgraf
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sonja Hartwig
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- komIT Center of Competence for Innovative Diabetes Therapy, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
47
|
Sun J, Chu S, Lu M, Pan Q, Li D, Zheng S, Ma L. The roles of dipeptidyl peptidase-4 and its inhibitors in the regulation of airway epithelial-mesenchymal transition. Exp Lung Res 2020; 46:163-173. [PMID: 32292085 DOI: 10.1080/01902148.2020.1753853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective: Dipeptidyl peptidase 4 (DPP4), also known as CD26, is a transmembrane glycoprotein with peptidase activity expressed on epithelial cells and some immune cells. It also occurs as a soluble form. Studies have revealed that the expression level of lymphocyte sCD26/sDPP4 was elevated in the asthmatic patients. Airway remodeling increases in asthma severity and these structural changes include, amongst others, the loss of epithelial integrity because of cell shedding, goblet cell hyperplasia, destruction of ciliated cells, and EMT. So we try to find whether sCD26/sDPP4 has a role in pathological/dysregulated transition from bronchial epithelial cells into fibroblasts cells in response to TGFβ1 exposure in vitro. Therefore, our purpose in the present work was to identify the role of sCD26/sDPP4 in airway EMT regulation. Methods: The EMT cell model was established based on human 16HBE cells. The effects of sCD26/sDPP4 and its inhibitors on airway EMT and that of sCD26/sDPP4 on Th17/IL-17 and its role in airway EMT were investigated in vitro. Results: The mRNA and protein level of E-Cadherin decreased after the treatment of TGF-β1 in 16HBE cells, while α-SMA was up-regulated. The level of E-Cadherin was significantly down-regulated after the sCD26/sDPP4 stimulation, and that of α-SMA was dramatically elevated. DPP4 inhibitors promoted the level of E-cadherin and inhibited that of α-SMA. Additionally, in the DPP4-treated IL-17 cells group, E-Cadherin was markedly down-regulated at the mRNA and protein level, while α-SMA was reversely up-regulated. Conclusion: The TGF-β1-induced EMT of human bronchial epithelial cells could be promoted by sCD26/sDPP4. The suppression of EMT in human bronchial epithelial cells was achieved by DPP4 inhibitor, and the TGF-β1-mediated EMT of human airway cells was promoted by the synergy of IL-17 and sCD26/sDPP4 in vitro.
Collapse
Affiliation(s)
- Jingyi Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China.,Institute of Respiratory Diseases, Guilin Medical University, Guilin, China.,Guangxi Colleges and Universities Key Laboratory of Respiratory Disease, Guilin, China
| | - Shuyuan Chu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China.,Institute of Respiratory Diseases, Guilin Medical University, Guilin, China.,Guangxi Colleges and Universities Key Laboratory of Respiratory Disease, Guilin, China
| | - Minyan Lu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China.,Institute of Respiratory Diseases, Guilin Medical University, Guilin, China.,Guangxi Colleges and Universities Key Laboratory of Respiratory Disease, Guilin, China
| | - Qilu Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China.,Institute of Respiratory Diseases, Guilin Medical University, Guilin, China.,Guangxi Colleges and Universities Key Laboratory of Respiratory Disease, Guilin, China
| | - Daofu Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China.,Institute of Respiratory Diseases, Guilin Medical University, Guilin, China.,Guangxi Colleges and Universities Key Laboratory of Respiratory Disease, Guilin, China
| | - Shaojie Zheng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China.,Institute of Respiratory Diseases, Guilin Medical University, Guilin, China.,Guangxi Colleges and Universities Key Laboratory of Respiratory Disease, Guilin, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China.,Institute of Respiratory Diseases, Guilin Medical University, Guilin, China.,Guangxi Colleges and Universities Key Laboratory of Respiratory Disease, Guilin, China
| |
Collapse
|
48
|
Singh AK, Gangopadhyay KK, Singh R. Risk of acute pancreatitis with incretin-based therapy: a systematic review and updated meta-analysis of cardiovascular outcomes trials. Expert Rev Clin Pharmacol 2020; 13:461-468. [PMID: 32129106 DOI: 10.1080/17512433.2020.1736041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The link of acute pancreatitis (AP) with Incretin based therapies (IBTs) in type 2 diabetes has existed since United States Food and Drug Administration alert in 2010. This issue still remains unresolved due to conflicting results among studies. RESEARCH DESIGN AND METHODS We performed a systematic search of the PubMed, Embase, and Cochrane Library databases until 31 July 2019, and retrieved all cardiovascular outcome trials (CVOTs) of IBTs conducted for ≥12 months that reported the pre-specified and or pre-adjudicated pancreatitis outcomes. Subsequently, we conducted a meta-analysis to study the risk of AP observed with IBT in CVOTs. RESULTS A meta-analysis of seven CVOTs of GLP-1 receptor agonists (GLP-1RAs) compared with placebo (N = 55,932) found no significant increase in AP (odds ratio [OR], 1.05; 95% confidence interval [CI], 0.77-1.42; p = 0.77). In contrast, meta-analysis of five CVOTs comparing DPP-4 inhibitors with placebo (N = 47,714) and six CVOTs comparing DPP-4 inhibitors with placebo or active comparator (N = 53,747), found a significant increase (OR, 1.81; 95% CI, 1.21-2.70; p = 0.04 and OR, 1.54; 95% CI, 1.08-2.18; p = 0.02, respectively) in AP without any significant heterogeneity. CONCLUSIONS This meta-analysis revealed a significant association between pancreatitis and DPP-4 inhibitors; however, no such association was observed for GLP-1RAs.
Collapse
Affiliation(s)
| | | | - Ritu Singh
- Department of Gynecology & Obstetrics, G. D Hospital & Diabetes Institute , Kolkata, India
| |
Collapse
|
49
|
Gliptin-Associated Bullous Pemphigoid: A Valuable Model of the Mechanism of Breakdown of Immune Tolerance against BP180. J Invest Dermatol 2020; 139:755-756. [PMID: 30904079 DOI: 10.1016/j.jid.2018.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 01/21/2023]
Abstract
The study by Plaquevent et al. strongly supports the recent discovery that the use of gliptins is a risk factor for bullous pemphigoid (BP). However, regarding the phenotype of gliptin-associated BP and the necessity of gliptin withdrawal, clinical data remain scarce. We predict that future studies of gliptin-associated BP will offer valuable information concerning autoimmunity against BP180 and may also shed light on the pathology of autoimmune diseases in general.
Collapse
|
50
|
Liu H, Guo L, Xing J, Li P, Sang H, Hu X, Du Y, Zhao L, Song R, Gu H. The protective role of DPP4 inhibitors in atherosclerosis. Eur J Pharmacol 2020; 875:173037. [PMID: 32097656 DOI: 10.1016/j.ejphar.2020.173037] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Diabetes is a chronic non-communicable disease whose incidence continues to grow rapidly, and it is one of the most serious and critical public health problems. Diabetes complications, especially atherosclerosis-related chronic vascular complications, are a serious threat to human life and health. Growing evidence suggests that dipeptidyl peptidase 4 (DPP4) inhibitors, beyond their role in improving glycemic control, are helpful in ameliorating endothelial dysfunction in humans and animal models of T2DM. In fact, DPP4 inhibitors have been shown by successive studies to play a protective effect against vascular complications. On one hand, in addition to their hypoglycemic effects, DPP4 inhibitors participate in the control of atherosclerotic risk factors by regulating blood lipids and lowering blood pressure. On the other hand, DPP4 inhibitors exert anti-atherosclerotic effects directly through multiple mechanisms, including improving endothelial cell dysfunction, increasing circulating endothelial progenitor cell (EPCs) levels, regulating mononuclear macrophages and smooth muscle cells, inhibiting inflammation and oxidative stress and improving plaque instability. Herein, we review the beneficial roles of DPP4 inhibitors in atherosclerosis as detailed.
Collapse
Affiliation(s)
- Hengdao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lingli Guo
- Department of General Medicine, The Third People's Provincial Hospital of Henan Province, Zhengzhou, 450000, Henan, China
| | - Junhui Xing
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peicheng Li
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University. Xinxiang, Henan, 453100, China
| | - Haiqiang Sang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaofang Hu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yunpeng Du
- Department of Cardiology, Huixian People's Hospital, Xinxiang, Henan, 453600, China
| | - Liangping Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University. Xinxiang, Henan, 453100, China
| | - Ruipeng Song
- Department of Endocrinology, The Third People's Provincial Hospital of Henan Province, Zhengzhou, 450000, Henan, China.
| | - Heping Gu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|