1
|
Qian H, Liu Y, Choi H, Lee S. Exploring the causal effects of physical activity, diet, and nutrition on hypertension and hyperlipidemia: a multivariable Mendelian randomization analysis. BMC Cardiovasc Disord 2025; 25:196. [PMID: 40102720 PMCID: PMC11921495 DOI: 10.1186/s12872-025-04539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/30/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND AND AIM Hypertension and hyperlipidaemia are major risk factors for cardiovascular diseases, contributing to significant morbidity and mortality worldwide. Lifestyle interventions, including modifications in diet, nutrition, and physical activity, are commonly recommended, but their causal effects on these conditions remain uncertain. This study aims to explore the causal effects of these factors on hypertension and hyperlipidaemia using multivariate Mendelian randomisation analysis, providing insights for effective cardiovascular prevention strategies. METHODS AND RESULTS Genetic data related to physical activity, diet, and nutrition were obtained from public databases and analyzed using multivariate Mendelian randomisation. The analysis employed MR Egger, weighted median, and inverse variance weighting (IVW) methods, with tests for heterogeneity and multiplicity ensuring the reliability of the results. In the hypertension analysis, low-calorie diets showed a positive association in weighted median and IVW analyses, with weighted median analysis showing an association of 1.122 (95% CI: 1.014-1.243, P = 0.026) and IVW analysis showing an association of 1.095 (95% CI: 1.013-1.184, P = 0.023). However, MR Egger's analysis showed no significant association (association of 0.688, 95% CI: 0.411-1.155, P = 0.230). Calcium supplements and dietary fibre did not demonstrate significant associations across all methods. Physical activity also did not show significant causal links with hypertension. Regarding hyperlipidaemia, calcium supplements exhibited significant effects across all methods, though with notable variation, while dietary fibre and physical activity showed no significant impacts. CONCLUSIONS The study suggests a positive association between low-calorie diets and hypertension, as indicated by significant results from weighted median and IVW analyses. Other dietary factors, physical activity, and calcium supplementation exhibited varied or non-significant effects on hypertension and hyperlipidaemia. These findings highlight the need for further research to understand the underlying mechanisms and support the development of effective public health interventions.
Collapse
Affiliation(s)
- Haonan Qian
- Department of Physical Education, Hanyang University, Seoul, 04763, Korea
| | - Yaowen Liu
- Department of Physical Education, Hanyang University, Seoul, 04763, Korea
| | - Hyunsoo Choi
- Department of Physical Education, Hanyang University, Seoul, 04763, Korea
| | - Seongno Lee
- Department of Physical Education, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
2
|
do Nascimento HMA, da Silva JYP, de Oliveira SPA, Sampaio KB, Monteiro M, de Souza FS, de Medeiros ES, de Albuquerque TMR, de Souza EL. Thermal and storage stability of novel nutraceuticals combining potential probiotic Limosilactobacillus fermentum strains and freeze-dried jabuticaba [Myrciaria cauliflora (Mart.) O. Berg] peel. Braz J Microbiol 2025; 56:23-38. [PMID: 39621294 PMCID: PMC11885189 DOI: 10.1007/s42770-024-01576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
This study evaluated the stability of novel nutraceuticals containing jabuticaba freeze-dried peel (FJP) and a mix of potential probiotic L. fermentum strains [139, 263 and 296 (LfM)] (JM: FJP + LfM; JFM: FJB + LfM + fructooligosaccharides) through determination of thermal stability, viable cell counts, bacterial physiological status, phenolic compound contents, and antioxidant activity during 90 days of storage (11% relative humidity, 4 and 25 ºC). JM and JFM were thermally stable, with satisfactory stability in temperature variations. JFM had higher L. fermentum viable cell counts than JM during storage. However, the physiological status of L. fermentum cells in JM and JFM indicated maintenance of vitality and functionality rather than death, regardless of the storage temperature. JM and JFM had a high content of phenolic acids and anthocyanins and antioxidant activity during storage. JFM stored under refrigeration had the most outstanding stability and potential functionality regarding the high viable probiotic cell counts, phenolic compound content, and antioxidant activity.
Collapse
Affiliation(s)
| | | | | | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Mariana Monteiro
- Laboratory of Functional Foods, Josué de Castro Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeir, RJ, Brazil
| | - Fábio Santos de Souza
- Laboratory of Quality Control of Medicines, Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Eliton Souto de Medeiros
- Laboratory of Materials and Biosystems, Center of Technology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
- Centro de Ciências da Saúde, Departamento de Nutrição, Universidade Federal da Paraíba, Campus I- Cidade Universitária, João Pessoa, PB, CEP: 58051-900, Brazil.
| |
Collapse
|
3
|
da Silva JYP, do Nascimento HMA, de Albuquerque TMR, Sampaio KB, Dos Santos Lima M, Monteiro M, Leite IB, da Silva EF, do Nascimento YM, da Silva MS, Tavares JF, de Brito Alves JL, de Oliveira MEG, de Souza EL. Revealing the Potential Impacts of Nutraceuticals Formulated with Freeze-Dried Jabuticaba Peel and Limosilactobacillus fermentum Strains Candidates for Probiotic Use on Human Intestinal Microbiota. Probiotics Antimicrob Proteins 2024; 16:1773-1789. [PMID: 37561381 DOI: 10.1007/s12602-023-10134-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
This study evaluated the impacts of novel nutraceuticals formulated with freeze-dried jabuticaba peel (FJP) and three potentially probiotic Limosilactobacillus fermentum strains on the abundance of bacterial groups forming the human intestinal microbiota, metabolite production, and antioxidant capacity during in vitro colonic fermentation. The nutraceuticals had high viable counts of L. fermentum after freeze-drying (≥ 9.57 ± 0.09 log CFU/g). The nutraceuticals increased the abundance of Lactobacillus ssp./Enterococcus spp. (2.46-3.94%), Bifidobacterium spp. (2.28-3.02%), and Ruminococcus albus/R. flavefaciens (0.63-4.03%), while decreasing the abundance of Bacteroides spp./Prevotella spp. (3.91-2.02%), Clostridium histolyticum (1.69-0.40%), and Eubacterium rectale/C. coccoides (3.32-1.08%), which were linked to positive prebiotic indices (> 1.75). The nutraceuticals reduced the pH and increased the sugar consumption, short-chain fatty acid production, phenolic acid content, and antioxidant capacity, besides altering the metabolic profile during colonic fermentation. The combination of FJP and probiotic L. fermentum is a promising strategy to produce nutraceuticals targeting intestinal microbiota.
Collapse
Affiliation(s)
- Jaielison Yandro Pereira da Silva
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - Heloísa Maria Almeida do Nascimento
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | | | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, PE, 56302-100, Brazil
| | - Mariana Monteiro
- Laboratory of Functional Foods, Josué de Castro Institute of Nutrition, Federal University of Rio de Janeiro, RJ, 21941-902, Brazil
| | - Iris Batista Leite
- Laboratory of Functional Foods, Josué de Castro Institute of Nutrition, Federal University of Rio de Janeiro, RJ, 21941-902, Brazil
| | - Evandro Ferreira da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Yuri Mangueira do Nascimento
- Health Sciences Center, Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Marcelo Sobral da Silva
- Health Sciences Center, Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Josean Fechine Tavares
- Health Sciences Center, Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - Maria Elieidy Gomes de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
4
|
Costa PCT, de Luna Freire MO, de Oliveira Coutinho D, Godet M, Magnani M, Antunes VR, de Souza EL, Vidal H, de Brito Alves JL. Nutraceuticals in the management of autonomic function and related disorders: A comprehensive review. Pharmacol Res 2024; 208:107368. [PMID: 39191337 DOI: 10.1016/j.phrs.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Nutraceuticals have been described as phytocomplexes when derived from foods of plant origin or a pool of secondary metabolites when derived from foods of animal origin, which are concentrated and administered in an appropriate form and can promote beneficial health effects in the prevention/treatment of diseases. Considering that pharmaceutical medications can cause side effects, there is a growing interest in using nutraceuticals as an adjuvant therapeutic tool for several disorders involving autonomic dysfunction, such as obesity, atherosclerosis and other cardiometabolic diseases. This review summarizes and discusses the evidence from the literature on the effects of various nutraceuticals on autonomic control, addressing the gut microbiota modulation, production of secondary metabolites from bioactive compounds, and improvement of physical and chemical properties of cell membranes. Additionally, the safety of nutraceuticals and prospects are discussed. Probiotics, resveratrol, quercetin, curcumin, nitrate, inositol, L-carnosine, and n-3 polyunsaturated fatty acids (n-3 PUFAs) are among the nutraceuticals most studied to improve autonomic dysfunction in experimental animal models and clinical trials. Further human studies are needed to elucidate the effects of nutraceuticals formulated of multitarget compounds and their underlying mechanisms of action, which could benefit conditions involving autonomic dysfunction.
Collapse
Affiliation(s)
- Paulo César Trindade Costa
- Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Murielle Godet
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Marciane Magnani
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Hubert Vidal
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | |
Collapse
|
5
|
Bajinka O, Sylvain Dovi K, Simbilyabo L, Conteh I, Tan Y. The predicted mechanisms and evidence of probiotics on type 2 diabetes mellitus (T2DM). Arch Physiol Biochem 2024; 130:475-490. [PMID: 36630122 DOI: 10.1080/13813455.2022.2163260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a serious endocrine and metabolic disease that is highly prevalent and causes high mortality and morbidity rates worldwide. This review aims to focus on the potential of probiotics in the management of T2DM and its complications and to summarise the various mechanisms of action of probiotics with respect to T2DM. In this review, experimental studies conducted between 2016 and 2022 were explored. The possible mechanisms of action are based on their ability to modulate the gut microbiota, boost the production of short-chain fatty acids (SCFAs) and glucagon-like peptides, inhibit α-glucosidase, elevate sirtuin 1 (SIRT1) levels while reducing fetuin-A levels, and regulate the level of inflammatory cytokines. This review recommends carrying out further studies, especially human trials, to provide robust evidence-based knowledge on the use of probiotics for the treatment of T2DM.IMPACT STATEMENTT2DM is prevalent worldwide causing high rates of morbidity and mortality.Gut microbiota play a significant role in the pathogenesis of T2DM.Probiotics can be used as possible therapeutic tools for the management of T2DM.The possible mechanisms of action of probiotics include modulation of the gut microbiota, production of SCFAs and glucagon-like peptides, inhibition of α-glucosidase, raising SIRT1, reducing fetuin-A levels, and regulating the level of inflammatory cytokines.
Collapse
Affiliation(s)
- Ousman Bajinka
- Department of Medical Microbiology, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kodzovi Sylvain Dovi
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, P. R. China
| | - Lucette Simbilyabo
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Ishmail Conteh
- Department of Epidemiology and Health Statistics, Xiangya School of public health central South University, Changsha, P. R. China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Cruz Neto JPR, de Oliveira AM, de Oliveira KÁR, Sampaio KB, da Veiga Dutra ML, de Luna Freire MO, de Souza EL, de Brito Alves JL. Safety Evaluation of a Novel Potentially Probiotic Limosilactobacillus fermentum in Rats. Probiotics Antimicrob Proteins 2024; 16:752-762. [PMID: 37119497 DOI: 10.1007/s12602-023-10077-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
Limosilactobacillus (L) fermentum (strains 139, 263, 296) is a novel probiotic mixture isolated from fruit processing by-products. The use of this formulation has been associated with improvements in cardiometabolic, inflammatory, and oxidative stress parameters. The present study evaluated the safety of a potential multi-strain probiotic by genotoxicity (micronucleus assay) and subchronic toxicity study (13-week repeated dose). In the genotoxicity evaluation, L. fermentum 139, 263, 296 did not increase the frequency of micronuclei in erythrocytes of rats of both sexes at doses up to 1010 CFU/mL. In the subchronic toxicity study, the administration of L. fermentum did not promote adverse health effects, such as behavioral changes, appearance of tumors, changes in hematological and biochemical parameters. In addition, higher doses of L. fermentum 139, 263, 296 have been shown to reduce the levels of pro-inflammatory cytokines. Administration of potentially probiotic L. fermentum did not promote adverse health effects in rats and could be evaluated as a potential probiotic for humans.
Collapse
Affiliation(s)
- José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Alison Macário de Oliveira
- Department of Biochemistry, Biological Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Kataryne Árabe Rimá de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Maria Letícia da Veiga Dutra
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil.
| |
Collapse
|
7
|
Carneiro dos Santos LA, Carvalho RDDO, Cruz Neto JPR, de Albuquerque Lemos DE, de Oliveira KÁR, Sampaio KB, de Luna Freire MO, Aburjaile FF, Azevedo VADC, de Souza EL, de Brito Alves JL. A Mix of Potentially Probiotic Limosilactobacillus fermentum Strains Alters the Gut Microbiota in a Dose- and Sex-Dependent Manner in Wistar Rats. Microorganisms 2024; 12:659. [PMID: 38674604 PMCID: PMC11052373 DOI: 10.3390/microorganisms12040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Multi-strain Limosilactobacillus (L.) fermentum is a potential probiotic with reported immunomodulatory properties. This study aimed to evaluate the composition, richness, and diversity of the gut microbiota in male and female rats after treatment with a multi-strain of L. fermentum at different doses. Thirty rats (fifteen male and fifteen female) were allocated into a control group (CTL), a group receiving L. fermentum at a dose of 108 CFU (Lf-108), and a group receiving L. fermentum at a dose of 1010 CFU (Lf-1010) for 13 weeks. Gut microbiota and serum cytokine levels were evaluated after L. fermentum treatment. Male CTL rats had a lower relative abundance of Bifidobacteriaceae and Prevotella and a lower alpha diversity than their female CTL counterparts (p < 0.05). In addition, male CTL rats had a higher Firmicutes/Bacteroidetes (F/B) ratio than female CTL rats (p < 0.05). In female rats, the administration of L. fermentum at 108 CFU decreased the relative abundance of Bifidobacteriaceae and Anaerobiospirillum and increased Lactobacillus (p < 0.05). In male rats, the administration of L. fermentum at 1010 CFU decreased the F/B ratio and increased Lachnospiraceae and the diversity of the gut microbiota (p < 0.05). The relative abundance of Lachnospiraceae and the alpha-diversity of gut microbiota were negatively correlated with serum levels of IL1β (r = -0.44) and TNFα (r = -0.39), respectively. This study identified important changes in gut microbiota between male and female rats and showed that a lower dose of L. fermentum may have more beneficial effects on gut microbiota in females, while a higher dose may result in more beneficial effects on gut microbiota in male rats.
Collapse
Affiliation(s)
- Lucas Alves Carneiro dos Santos
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | | | - José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Deborah Emanuelle de Albuquerque Lemos
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Kataryne Árabe Rimá de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Flavia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (F.F.A.); (V.A.d.C.A.)
| | - Vasco Ariston de Carvalho Azevedo
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (F.F.A.); (V.A.d.C.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| |
Collapse
|
8
|
de Luna Freire MO, Cruz Neto JPR, de Albuquerque Lemos DE, de Albuquerque TMR, Garcia EF, de Souza EL, de Brito Alves JL. Limosilactobacillus fermentum Strains as Novel Probiotic Candidates to Promote Host Health Benefits and Development of Biotherapeutics: A Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10235-1. [PMID: 38393628 DOI: 10.1007/s12602-024-10235-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Fruits and their processing by-products are sources of potentially probiotic strains. Limosilactobacillus (L.) fermentum strains isolated from fruit processing by-products have shown probiotic-related properties. This review presents and discusses the results of the available studies that evaluated the probiotic properties of L. fermentum in promoting host health benefits, their application by the food industry, and the development of biotherapeutics. The results showed that administration of L. fermentum for 4 to 8 weeks promoted host health benefits in rats, including the modulation of gut microbiota, improvement of metabolic parameters, and antihypertensive, antioxidant, and anti-inflammatory effects. The results also showed the relevance of L. fermentum strains for application in the food industry and for the formulation of novel biotherapeutics, especially nutraceuticals. This review provides evidence that L. fermentum strains isolated from fruit processing by-products have great potential for promoting host health and indicate the need for a translational approach to confirm their effects in humans using randomized, double-blind, placebo-controlled trials.
Collapse
Affiliation(s)
- Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | | | | | - Estefânia Fernandes Garcia
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
9
|
Dos Santos Nascimento D, Sampaio KB, do Nascimento YM, de Souza TA, de Souza FS, Júnior JVC, Tavares JF, da Silva MS, de Brito Alves JL, de Souza EL. Evaluating the Stability of a Novel Nutraceutical Formulation Combining Probiotic Limosilactobacillus fermentum 296, Quercetin, and Resveratrol Under Different Storage Conditions. Probiotics Antimicrob Proteins 2024; 16:13-25. [PMID: 36417111 DOI: 10.1007/s12602-022-10011-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
This study evaluated the stability of a novel nutraceutical formulation composed of the probiotic Limosilactobacillus fermentum 296, quercetin (QUE), and resveratrol (RES) (LFQR) under different storage conditions. The effects of different relative humidities (RH; 11, 22, and 33%) and storage temperatures (refrigeration temperature -4 °C and room temperature -25 °C) on the stability of LFQR were evaluated through the determination of thermal stability, viable cell counts, bacterial physiological status, antioxidant capacity, and contents of QUE and RES during long-term storage. RH did not affect endothermic reactions and mass reduction in LFQR. After a 15-day-humidification period, L. fermentum 296 had higher viable cell counts in LFQR under refrigeration temperature storage when compared to room temperature storage regardless of the RH. The physiological status of L. fermentum 296 in LFQR was overall similar during 90 days of storage (11% RH) under refrigeration and room temperature. L. fermentum 296 had the highest viable cell counts (> 6 log CFU/g) in LFQR up to day 90 of refrigeration storage (11% RH). LFQR kept high contents of QUE and RES and maintained antioxidant capacity during 90 days of storage under refrigeration and room temperature. The results showed that the higher stability and functionality of LFQR during long-term storage should be guaranteed under 11% RH and refrigeration temperature.
Collapse
Affiliation(s)
| | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Yuri Mangueira do Nascimento
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Thalisson Amorim de Souza
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Fábio Santos de Souza
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - José Venancio Chaves Júnior
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Josean Fechine Tavares
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcelo Sobral da Silva
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
10
|
Sampaio KB, de Brito Alves JL, do Nascimento YM, Tavares JF, da Silva MS, Dos Santos Nascimento D, de Araújo Rodrigues NP, Monteiro MC, Garcia EF, de Souza EL. Effects of Simulated Gastrointestinal Conditions on Combined Potentially Probiotic Limosilactobacillus fermentum 296, Quercetin, and/or Resveratrol as Bioactive Components of Novel Nutraceuticals. Probiotics Antimicrob Proteins 2024; 16:308-319. [PMID: 36708461 DOI: 10.1007/s12602-023-10046-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
This study evaluated the effects of simulated gastrointestinal conditions (SGIC) on combined potentially probiotic Limosilactobacillus fermentum 296 (~ 10 log CFU/mL), quercetin (QUE, 160 mg), and/or resveratrol (RES, 150 mg) as the bioactive components of novel nutraceuticals. Four different nutraceuticals were evaluated during exposure to SGIC and analyzed the plate counts and physiological status of L. fermentum 296, contents and bioaccessibility of QUE and RES, and antioxidant capacity. Nutraceuticals with QUE and RES had the highest plate counts (4.94 ± 0.32 log CFU/mL) and sizes of live cell subpopulations (28.40 ± 0.28%) of L. fermentum 296 after SGIC exposure. An index of injured cells (Gmean index, arbitrary unit defined as above 0.5) indicated that part of L. fermentum 296 cells could be entered the viable but nonculturable state when the nutraceuticals were exposed to gastric and intestinal conditions while maintaining vitality. The nutraceuticals maintained high contents (QUE ~ 29.17 ± 0.62 and RES ~ 23.05 mg/100 g) and bioaccessibility (QUE ~ 41.0 ± 0.09% and RES ~ 67.4 ± 0.17%) of QUE and RES, as well as high antioxidant capacity (ABTS assay ~ 88.18 ± 1.16% and DPPH assay 75.54 ± 0.65%) during SGIC exposure, which could be linked to the protective effects on L. fermentum 296 cells. The developed nutraceuticals could cross along the gastrointestinal tract with high concentrations of functioning potentially probiotic cells and bioavailable phenolic compounds to exert their beneficial impacts on consumer health, being an innovative strategy for the co-ingestion of these bioactive components.
Collapse
Affiliation(s)
- Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Cidade Universitária, CEP, João Pessoa, PB, 58051-900, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Cidade Universitária, CEP, João Pessoa, PB, 58051-900, Brazil
| | | | - Josean Fechine Tavares
- Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcelo Sobral da Silva
- Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Davi Dos Santos Nascimento
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Cidade Universitária, CEP, João Pessoa, PB, 58051-900, Brazil
| | | | - Mariana Costa Monteiro
- Laboratory of Functional Foods, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Estefânia Fernandes Garcia
- Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Cidade Universitária, CEP, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
11
|
Kwun SY, Yoon JA, Kim GY, Bae YW, Park EH, Kim MD. Isolation of a Potential Probiotic Levilactobacillus brevis and Evaluation of Its Exopolysaccharide for Antioxidant and α-Glucosidase Inhibitory Activities. J Microbiol Biotechnol 2024; 34:167-175. [PMID: 38282411 PMCID: PMC10840464 DOI: 10.4014/jmb.2304.04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 01/30/2024]
Abstract
The probiotic properties of ten lactic acid bacteria and antioxidant and α-glucosidase inhibitory activities of the exopolysaccharide (EPS) of the selected strain were investigated in this study. Levilactobacillus brevis L010 was one of the most active strains across all the in vitro tests. The cell-free supernatant (50 g/l) of L. brevis L010 showed high levels of both α-glucosidase inhibitory activity (98.73 ± 1.32%) and 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity (32.29 ± 3.86%). The EPS isolated from cell-free supernatant of L. brevis L010 showed 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activity (80.27 ± 2.51%) at 80 g/l, DPPH radical-scavenging activity (38.19 ± 9.61%) at 40 g/l, and ferric reducing antioxidant power (17.35 ± 0.20 mg/l) at 80 g/l. Further, EPS exhibited inhibitory activities against α-glucosidase at different substrate concentrations. Kinetic analysis suggests that the mode of inhibition was competitive, with a kinetic constant of Km = 2.87 ± 0.88 mM and Vmax = 0.39 ± 0.06 μmole/min. It was concluded that the EPS might be one of the plausible candidates for possible antioxidant and α-glucosidase activities of the L. brevis L010 strain.
Collapse
Affiliation(s)
- Se-Young Kwun
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeong-Ah Yoon
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ga-Yeon Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young-Woo Bae
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun-Hee Park
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myoung-Dong Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Fermentation and Brewing, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Zhao J, Zhao F, Yuan J, Liu H, Wang Y. Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon 2023; 9:e21431. [PMID: 38027795 PMCID: PMC10643359 DOI: 10.1016/j.heliyon.2023.e21431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. It is caused by excess levels of free radicals and leads to the damage of DNA, proteins, and lipids. The crucial role of gut microbiota in regulating oxidative stress has been widely demonstrated. Studies have suggested that the redox regulatory effects of gut microbiota are related to gut microbiota metabolites, including fatty acids, lipopolysaccharides, tryptophan metabolites, trimethylamine-N-oxide and polyphenolic metabolites. In recent years, the potential benefits of probiotics have been gaining increasing scientific interest owing to their ability to modulate gut microbiota and oxidative stress. In this review, we summarise the adverse health effects of oxidative stress and discuss the role of the gut microbiota and its metabolites in redox regulation. Based on the influence of gut microbiota metabolites, the roles of probiotics in preventing oxidative stress are highlighted.
Collapse
Affiliation(s)
| | | | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
13
|
Łoniewski I, Szulińska M, Kaczmarczyk M, Podsiadło K, Styburski D, Skonieczna-Żydecka K, Bogdański P. Multispecies probiotic affects fecal short-chain fatty acids in postmenopausal women with obesity: A post hoc analysis of a randomized, double-blind, placebo-controlled study. Nutrition 2023; 114:112109. [PMID: 37441828 DOI: 10.1016/j.nut.2023.112109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES Probiotics are known to regulate host metabolism. The aim of this study was to assess whether interventions with a multi-strain probiotic formula affect fecal short-chain fatty acids (SCFAs). METHODS The analysis was carried out in 56 obese, postmenopausal women randomized to three groups: probiotic dose 2.5 × 109 CFU/d (n = 18; lower probiotic dose [LPD]), 1 × 1010 CFU/d (n = 18; higher probiotic dose [HPD]), or placebo (n = 20). RESULTS An increase in three SCFA fecal concentrations in the HPD group was observed: acetic acid (C2; effect [E] = 1.72, SE = 0.73; 95% confidence interval [CI], 0.28-3.16; P = 0.019), butyric acid (C4; E = 0.98, SE = 0.46; 95% CI, 0.08-1.88; P = 0.033), and valeric acid (C5; E = 0.68, SE = 0.23; 95% CI, 0.23-1.12; P = 0.003). The mediation analysis showed that the decrease in uric acid under HPD may be transmitted through the elevation of C5 content. Multi-strain probiotic increases the SCFA content in the stool in a dose-dependent manner, which may diminish some cardiovascular risk factors because of a reduction in blood uric acid levels. CONCLUSION Assessing long-term health benefits requires further research, including assessment of blood SCFA concentrations and multiomic and mechanistic approaches.
Collapse
Affiliation(s)
- Igor Łoniewski
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland; Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences in Poznań, Poznań, Poland
| | | | - Konrad Podsiadło
- Department of Clinical Biochemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | | | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences in Poznań, Poznań, Poland
| |
Collapse
|
14
|
Lima MDC, do Nascimento HMA, da Silva JYP, de Brito Alves JL, de Souza EL. Evidence for the Beneficial Effects of Brazilian Native Fruits and Their By-Products on Human Intestinal Microbiota and Repercussions on Non-Communicable Chronic Diseases-A Review. Foods 2023; 12:3491. [PMID: 37761200 PMCID: PMC10527964 DOI: 10.3390/foods12183491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Non-communicable chronic diseases (NCDs) are the most widespread cause of mortality worldwide. Intestinal microbiota balance can be altered by changes in the abundance and/or diversity of intestinal microbiota, indicating a role of intestinal microbiota in NCD development. This review discusses the findings of in vitro studies, pre-clinical studies and clinical trials on the effects of Brazilian native fruits, their by-products, as well as their bioactive compounds on human intestinal microbiota and NCD. The major bioactive compounds in Brazilian native fruits and their by-products, and the impacts of their administration on outcomes linked to intestinal microbiota modulation are discussed. Mechanisms of intestinal microbiota affecting NCD could be linked to the modulation of absorption and energy balance, immune and endocrine systems, and inflammatory response. Brazilian native fruits, such as acerola, açaí, baru, buriti, guava, jabuticaba, juçara, and passion fruit, have several bioactive compounds, soluble and insoluble fibers, and a variety of phenolic compounds, which are capable of changing these key mechanisms. Brazilian native fruits and their by-products can help to promote positive intestinal and systemic health benefits by driving alterations in the composition of the human intestinal microbiota, and increasing the production of distinct short-chain fatty acids and phenolic metabolites, thereby enhancing intestinal integrity and homeostasis. Evidence from available literature shows that the modulatory impacts of Brazilian native fruits and their by-products on the composition and metabolic activity of the intestinal microbiota could improve several clinical repercussions associated with NCD, reinforcing the influence of intestinal microbiota in extra-intestinal outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Evandro Leite de Souza
- Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.d.C.L.); (H.M.A.d.N.); (J.Y.P.d.S.); (J.L.d.B.A.)
| |
Collapse
|
15
|
Carrizales-Sánchez AK, Tamez-Rivera O, Rodríguez-Gutiérrez NA, Elizondo-Montemayor L, Gradilla-Hernández MS, García-Rivas G, Pacheco A, Senés-Guerrero C. Characterization of gut microbiota associated with metabolic syndrome and type-2 diabetes mellitus in Mexican pediatric subjects. BMC Pediatr 2023; 23:210. [PMID: 37138212 PMCID: PMC10155456 DOI: 10.1186/s12887-023-03983-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Childhood obesity is a serious public health concern that confers a greater risk of developing important comorbidities such as MetS and T2DM. Recent studies evidence that gut microbiota may be a contributing factor; however, only few studies exist in school-age children. Understanding the potential role of gut microbiota in MetS and T2DM pathophysiology from early stages of life might contribute to innovative gut microbiome-based interventions that may improve public health. The main objective of the present study was to characterize and compare gut bacteria of T2DM and MetS children against control subjects and determine which microorganisms might be potentially related with cardiometabolic risk factors to propose gut microbial biomarkers that characterize these conditions for future development of pre-diagnostic tools. RESULTS Stool samples from 21 children with T2DM, 25 with MetS, and 20 controls (n = 66) were collected and processed to conduct 16S rDNA gene sequencing. α- and β-diversity were studied to detect microbial differences among studied groups. Spearman correlation was used to analyze possible associations between gut microbiota and cardiometabolic risk factors, and linear discriminant analyses (LDA) were conducted to determine potential gut bacterial biomarkers. T2DM and MetS showed significant changes in their gut microbiota at genus and family level. Read relative abundance of Faecalibacterium and Oscillospora was significantly higher in MetS and an increasing trend of Prevotella and Dorea was observed from the control group towards T2DM. Positive correlations were found between Prevotella, Dorea, Faecalibacterium, and Lactobacillus with hypertension, abdominal obesity, high glucose levels, and high triglyceride levels. LDA demonstrated the relevance of studying least abundant microbial communities to find specific microbial communities that were characteristic of each studied health condition. CONCLUSIONS Gut microbiota was different at family and genus taxonomic levels among controls, MetS, and T2DM study groups within children from 7 to 17 years old, and some communities seemed to be correlated with relevant subjects' metadata. LDA helped to find potential microbial biomarkers, providing new insights regarding pediatric gut microbiota and its possible use in the future development of gut microbiome-based predictive algorithms.
Collapse
Affiliation(s)
- Ana K Carrizales-Sánchez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Av. Ignacio Morones Prieto 3000, Monterrey, Nuevo Leon, C.P. 64710, Mexico
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon, C.P. 64849, Mexico
| | - Oscar Tamez-Rivera
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Av. Ignacio Morones Prieto 3000, Monterrey, Nuevo Leon, C.P. 64710, Mexico
| | - Nora A Rodríguez-Gutiérrez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Av. Ignacio Morones Prieto 3000, Monterrey, Nuevo Leon, C.P. 64710, Mexico
- Hospital Regional Materno Infantil de Alta Especialidad, Av. San Rafael 460, C.P. 67140, Guadalupe, Nuevo Leon, Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Av. Ignacio Morones Prieto 3000, Monterrey, Nuevo Leon, C.P. 64710, Mexico
| | | | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Av. Ignacio Morones Prieto 3000, Monterrey, Nuevo Leon, C.P. 64710, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo Leon, Mexico
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon, C.P. 64849, Mexico.
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon, C.P. 64849, Mexico.
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Zapopan, Jalisco, C.P. 45138, Mexico.
| |
Collapse
|
16
|
Yeramilli V, Cheddadi R, Shah J, Brawner K, Martin C. A Review of the Impact of Maternal Prenatal Stress on Offspring Microbiota and Metabolites. Metabolites 2023; 13:metabo13040535. [PMID: 37110193 PMCID: PMC10142778 DOI: 10.3390/metabo13040535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Maternal prenatal stress exposure affects the development of offspring. We searched for articles in the PubMed database and reviewed the evidence for how prenatal stress alters the composition of the microbiome, the production of microbial-derived metabolites, and regulates microbiome-induced behavioral changes in the offspring. The gut-brain signaling axis has gained considerable attention in recent years and provides insights into the microbial dysfunction in several metabolic disorders. Here, we reviewed evidence from human studies and animal models to discuss how maternal stress can modulate the offspring microbiome. We will discuss how probiotic supplementation has a profound effect on the stress response, the production of short chain fatty acids (SCFAs), and how psychobiotics are emerging as novel therapeutic targets. Finally, we highlight the potential molecular mechanisms by which the effects of stress are transmitted to the offspring and discuss how the mitigation of early-life stress as a risk factor can improve the birth outcomes.
Collapse
Affiliation(s)
- Venkata Yeramilli
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Riadh Cheddadi
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Juhi Shah
- Burnett School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA
| | - Kyle Brawner
- Department of Biology, Lipscomb University, Nashville, TN 37204, USA
| | - Colin Martin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Li Z, Wang K, Ding Y, Ma W, Sun Y, Liu X, Qian L, Li Y, Hong J, Xu D. Dapagliflozin modulates the faecal microbiota after myocardial infarction in non-diabetic mice. Clin Exp Pharmacol Physiol 2023; 50:68-81. [PMID: 36164968 DOI: 10.1111/1440-1681.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/03/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022]
Abstract
The gut microbiota seems to be a major modulator of cardiovascular diseases, such as myocardial infarction. Dapagliflozin, a sodium glucose cotransporter 2 inhibitor (SGLT2i), is an antidiabetic agent that was recently utilized in patients with cardiovascular diseases. This study aims to investigate the effects of dapagliflozin on the faecal microbiota of postinfarction non-diabetic mice. A total of 19 male mice were randomly divided into three groups, where two groups were enduced with myocardial infarction (MI) by left anterior descending ligation. One day after the surgery, each group was administered normal saline (15 mL/kg/day, 0.9%) or dapagliflozin (1.5 mg/kg/day) for 4 weeks. Echocardiography was obtained on day 28 post MI. Masson's trichrome staining was used to determine the degree of fibrosis. Faecal samples were collected to assess the microbiome by 16S ribosomal RNA gene sequencing. We found that dapagliflozin significantly improved cardiac function in the non-diabetic myocardial infarction mice model after the 28-day treatment, especially in ejection fraction and fractional shortening (p < 0.01). Enterotypes were composed of Muribaculaceae and Lactobacillaceae after dapagliflozin treatment, while Muribaculaceae and Erysipelotrichaceae were the main enterotypes post-MI. Dapagliflozin increased the abundance of beneficial bacteria like Lactobacillaceae, while decreasing the abundance of beneficial bacteria like Bifidobacteriaceae. It was interesting to discover that Proteobacteria (especially Desulfovibrionaceae) were enriched after the dapagliflozin treatment for myocardial infarction. Dapagliflozin increased the abundance of the main beneficial bacteria. In post-myocardial infarction treatments, using dapagliflozin could positively contribute to the improvement of cardiac function and alter the structure of faecal microbiota.
Collapse
Affiliation(s)
- Zhongming Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinzhang Ding
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Ma
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianling Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lijun Qian
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansong Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Hong
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
do Nascimento LCP, de Souza EL, de Luna Freire MO, de Andrade Braga V, de Albuqeurque TMR, Lagranha CJ, de Brito Alves JL. Limosilactobacillus fermentum prevents gut-kidney oxidative damage and the rise in blood pressure in male rat offspring exposed to a maternal high-fat diet. J Dev Orig Health Dis 2022; 13:719-726. [PMID: 35437140 DOI: 10.1017/s2040174422000198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxidative stress along the gut-kidney axis is a risk factor for developing arterial hypertension in offspring from dams fed a high-fat diet. Considering the antioxidant capacity of probiotic strains, this study evaluated the effects of a daily multistrain formulation with Limosilactobacillus fermentum 139, 263, and 296 on blood pressure (BP), renal function, and oxidative stress and along the gut-kidney axis in male offspring from dams fed a high-fat high-cholesterol (HFHC) diet during pregnancy and lactation. Dams were fed a diet control or HFHC diet during pregnancy and lactation. At 100 days of age, part of the male offspring from dams fed a HFHC diet received Limosilactobacillus fermentum formulation for 4 weeks (HFHC + Lf) daily. After the 4-week intervention, BP (tail-cuff plethysmography) and urinary and biochemical variables were measured. In addition, malondialdehyde levels, enzymatic activities of superoxide dismutase, catalase, glutathione-S-transferase, and nonenzymatic antioxidant defense (thiols content) were measured in the colon and renal cortex. Male offspring from dams fed a HFHC had increased blood pressure, impaired renal function, and oxidative stress along the gut-kidney axis. Administration of Limosilactobacillus fermentum reduced systolic, diastolic, and mean blood pressure levels and alleviated renal function impairment and oxidative stress along the gut-kidney axis in male offspring from dams fed a HFHC diet. Administration of Limosilactobacillus fermentum formulation attenuated programmed hypertension in the HFHC group through oxidative stress modulation along the gut-kidney axis.
Collapse
Affiliation(s)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Valdir de Andrade Braga
- Department of Biotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Cláudia Jacques Lagranha
- Laboraroty of Biochemistry and Exercise Biochemistry, Federal University of Pernambuco, Vitória DE Santo Antão, Pernambuco, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
19
|
Brito Sampaio K, Luiz de Brito Alves J, Mangueira do Nascimento Y, Fechine Tavares J, Sobral da Silva M, dos Santos Nascimento D, dos Santos Lima M, Priscila de Araújo Rodrigues N, Fernandes Garcia E, Leite de Souza E. Nutraceutical formulations combining Limosilactobacillus fermentum, quercetin, and or resveratrol with beneficial impacts on the abundance of intestinal bacterial populations, metabolite production, and antioxidant capacity during colonic fermentation. Food Res Int 2022; 161:111800. [DOI: 10.1016/j.foodres.2022.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
|
20
|
Rastogi S, Singh A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front Pharmacol 2022; 13:1042189. [PMID: 36353491 PMCID: PMC9638459 DOI: 10.3389/fphar.2022.1042189] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
The highest density of microbes resides in human gastrointestinal tract, known as “Gut microbiome”. Of note, the members of the genus Lactobacillus that belong to phyla Firmicutes are the most important probiotic bacteria of the gut microbiome. These gut-residing Lactobacillus species not only communicate with each other but also with the gut epithelial lining to balance the gut barrier integrity, mucosal barrier defence and ameliorate the host immune responses. The human body suffers from several inflammatory diseases affecting the gut, lungs, heart, bone or neural tissues. Mounting evidence supports the significant role of Lactobacillus spp. and their components (such as metabolites, peptidoglycans, and/or surface proteins) in modulatingimmune responses, primarily through exchange of immunological signals between gastrointestinal tract and distant organs. This bidirectional crosstalk which is mediated by Lactobacillus spp. promotes anti-inflammatory response, thereby supporting the improvement of symptoms pertaining to asthma, chronic obstructive pulmonary disease (COPD), neuroinflammatory diseases (such as multiple sclerosis, alzheimer’s disease, parkinson’s disease), cardiovascular diseases, inflammatory bowel disease (IBD) and chronic infections in patients. The metabolic disorders, obesity and diabetes are characterized by a low-grade inflammation. Genus Lactobacillus alleviates metabolic disorders by regulating the oxidative stress response and inflammatory pathways. Osteoporosis is also associated with bone inflammation and resorption. The Lactobacillus spp. and their metabolites act as powerful immune cell controllers and exhibit a regulatory role in bone resorption and formation, supporting bone health. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus spp. in alleviating inflammatory diseases pertaining to different organs from animal and clinical trials. The present narrative review explores in detail the complex interactions between the gut-dwelling Lactobacillus spp. and the immune components in distant organs to promote host’s health.
Collapse
|
21
|
de Assis Gadelha DD, de Brito Alves JL, da Costa PCT, da Luz MS, de Oliveira Cavalcanti C, Bezerril FF, Almeida JF, de Campos Cruz J, Magnani M, Balarini CM, Rodrigues Mascarenhas S, de Andrade Braga V, de França-Falcão MDS. Lactobacillus group and arterial hypertension: A broad review on effects and proposed mechanisms. Crit Rev Food Sci Nutr 2022; 64:3839-3860. [PMID: 36269014 DOI: 10.1080/10408398.2022.2136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hypertension is the leading risk factor for cardiovascular diseases and is associated with intestinal dysbiosis with a decrease in beneficial microbiota. Probiotics can positively modulate the impaired microbiota and impart benefits to the cardiovascular system. Among them, the emended Lactobacillus has stood out as a microorganism capable of reducing blood pressure, being the target of several studies focused on managing hypertension. This review aimed to present the potential of Lactobacillus as an antihypertensive non-pharmacological strategy. We will address preclinical and clinical studies that support this proposal and the mechanisms of action by which these microorganisms reduce blood pressure or prevent its elevation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marciane Magnani
- Technology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | | | | |
Collapse
|
22
|
Martín Giménez VM, Rukavina Mikusic NL, Lee HJ, García Menéndez S, Choi MR, Manucha W. Physiopathological mechanisms involved in the development of hypertension associated with gut dysbiosis and the effect of nutritional/pharmacological interventions. Biochem Pharmacol 2022; 204:115213. [PMID: 35985404 DOI: 10.1016/j.bcp.2022.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota dysbiosis represents a triggering factor for cardiovascular diseases, including hypertension. In addition to the harmful impact caused by hypertension on different target organs, gut dysbiosis is capable of causing direct damage to critical organs such as the brain, heart, blood vessels, and kidneys. In this sense, it should be noted that pharmacological and nutritional interventions may influence gut microbiota composition, either inducing or preventing the development of hypertension. Some of the most important nutritional interventions at this level are represented by pro-, pre-, post- and/or syn-biotics, as well as polysaccharides, polyunsaturated fatty acids ω-3, polyphenols and fiber contained in different foods. Meanwhile, certain natural and synthetic active pharmaceutical ingredients, including antibiotics, antihypertensive and immunosuppressive drugs, vegetable extracts and vitamins, may also have a key role in the modulation of both gut microbiota and cardiovascular health. Additionally, gut microbiota may influence drugs and food-derived bioactive compounds metabolism, positively or negatively affecting their biological behavior facing established hypertension. The understanding of the complex interactions between gut microbiome and drug/food response results of great importance to developing improved pharmacological therapies for hypertension prevention and treatment. The purpose of this review is to critically outline the most relevant and recent findings on cardiovascular, renal and brain physiopathological mechanisms involved in the development of hypertension associated with changes in gut microbiota, besides the nutritional and pharmacological interventions potentially valuable for the prevention and treatment of this prevalent pathology. Finally, harmful food/drug interventions on gut microbiota are also described.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Hyun Jin Lee
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Sebastián García Menéndez
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina
| | - Marcelo Roberto Choi
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
23
|
Bioprospecting for Novel Probiotic Strains from Human Milk and Infants: Molecular, Biochemical, and Ultrastructural Evidence. BIOLOGY 2022; 11:biology11101405. [PMID: 36290309 PMCID: PMC9598434 DOI: 10.3390/biology11101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Demographic, genetic factors, and maternal lifestyle could modify and alter the microbial diversity of human milk and infants’ gut. We screened human breast milk and infant stool samples from Egyptian sources for possible novel probiotic strains. Forty-one isolates were submitted to the gene bank database, classified, and identified through physiological and biochemical tests. All samples revealed antibiotic resistance, antibacterial activity, and high probiotic features. Six of the isolates revealed less than 95% Average Nucleotide Identity with deposited sequences in the database. Isolate Lactobacillus delbrueckii ASO 100 exhibited the lowest identity ratio with promising probiotic and antibacterial features, enlightening the high probability of being a new probiotic species. Abstract Human milk comprises a diverse array of microbial communities with health-promoting effects, including colonization and development of the infant’s gut. In this study, we characterized the bacterial communities in the Egyptian mother–infant pairs during the first year of life under normal breastfeeding conditions. Out of one hundred isolates, forty-one were chosen for their potential probiotic properties. The selected isolates were profiled in terms of morphological and biochemical properties. The taxonomic evidence of these isolates was investigated based on 16S rRNA gene sequence and phylogenetic trees between the isolates’ sequence and the nearest sequences in the database. The taxonomic and biochemical evidence displayed that the isolates were encompassed in three genera: Lactobacillus, Enterococcus, and Lactococcus. The Lactobacillus was the most common genus in human milk and feces samples with a high incidence of its different species (Lacticaseibacillus paracasei, Lactobacillus delbrueckii, Lactiplantibacillus plantarum, Lactobacillus gasseri, and Lacticaseibacillus casei). Interestingly, BlastN and Jalview alignment results evidenced a low identity ratio of six isolates (less than 95%) with database sequences. This divergence was supported by the unique physiological, biochemical, and probiotic features of these isolates. The isolate L. delbrueckii, ASO 100 exhibited the lowest identity ratio with brilliant probiotic and antibacterial features suggesting the high probability of being a new species. Nine isolates were chosen and subjected to probiotic tests and ultrastructural analysis; these isolates exhibited antibiotic resistance and antibacterial activity with high probiotic characteristics, and high potentiality to be used as prophylactic and therapeutic agents in controlling intestinal pathogens.
Collapse
|
24
|
Lacerda DC, Trindade da Costa PC, Pontes PB, Carneiro dos Santos LA, Cruz Neto JPR, Silva Luis CC, de Sousa Brito VP, de Brito Alves JL. Potential role of Limosilactobacillus fermentum as a probiotic with anti-diabetic properties: A review. World J Diabetes 2022; 13:717-728. [PMID: 36188141 PMCID: PMC9521441 DOI: 10.4239/wjd.v13.i9.717] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress, inflammation, and gut microbiota impairments have been implicated in the development and maintenance of diabetes mellitus. Strategies capable of recovering the community of commensal gut microbiota and controlling diabetes mellitus have increased in recent years. Some lactobacilli strains have an antioxidant and anti-inflammatory system capable of protecting against oxidative stress, inflammation, and diabetes mellitus. Experimental studies and some clinical trials have demonstrated that Limosilactobacillus fermentum strains can beneficially modulate the host antioxidant and anti-inflammatory system, resulting in the amelioration of glucose homeostasis in diabetic conditions. This review presents and discusses the currently available studies on the identification of Limosilactobacillus fermentum strains with anti-diabetic properties, their sources, range of dosage, and the intervention time in experiments with animals and clinical trials. This review strives to serve as a relevant and well-cataloged reference of Limosilactobacillus fermentum strains capable of inducing anti-diabetic effects and promoting health benefits.
Collapse
Affiliation(s)
- Diego Cabral Lacerda
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, 58051-900, Paraíba, Brazil
| | - Paulo César Trindade da Costa
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, 58051-900, Paraíba, Brazil
| | - Paula Brielle Pontes
- Department of Neuropsychiatry, Health Sciences Center, Federal University of Pernambuco, Recife, 50670-901, Pernambuco, Brazil
| | | | | | - Cristiane Cosmo Silva Luis
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, 58051-900, Paraíba, Brazil
| | | | | |
Collapse
|
25
|
Beneficial effects of probiotic supplementation on glucose and triglycerides in a mouse model of metabolic syndrome. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Höcht C, Allo MA, Polizio AH, Morettón MA, Carranza A, Chiappetta DA, Choi MR. New and developing pharmacotherapies for hypertension. Expert Rev Cardiovasc Ther 2022; 20:647-666. [PMID: 35880547 DOI: 10.1080/14779072.2022.2105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Despite the significant contribution of hypertension to the global burden of disease, disease control remains poor worldwide. Considering this unmet clinical need, several new antihypertensive drugs with novel mechanisms of action are under development. AREAS COVERED The present review summarizes the recent advances in the development of emerging pharmacological agents for the management of hypertension. The latest technological innovations in the design of optimized formulations of available antihypertensive drugs and the potential role of the modification of intestinal microbiota to improve blood pressure (BP) control are also covered. EXPERT OPINION Significant efforts have been made to develop new antihypertensive agents with novel actions that target the main mechanisms involved in resistant hypertension. Sacubitril/valsartan may emerge as a potential first-line drug due to its superiority over renin angiotensin system inhibitors, and SGLT2 inhibitors can reduce BP in difficult-to-control hypertensive patients with type 2 diabetes. In addition, firibastat and aprocitentan may expand the therapeutic options for resistant hypertension by novel mechanism of actions. Since gut dysbiosis not only leads to hypertension but also causes direct target organ damage, prebiotics and probiotics could represent a potential strategy to prevent or reduce the development of hypertension and to contribute to BP control.
Collapse
Affiliation(s)
- Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
| | - Miguel A Allo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
| | - Ariel Héctor Polizio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
| | - Marcela A Morettón
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentinac
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea Carranza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentinae
| | - Diego A Chiappetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentinac
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcelo Roberto Choi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentinae
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Buenos Aires, Argentina f
| |
Collapse
|
27
|
Bhanja A, Nayak N, Mukherjee S, Sutar PP, Mishra M. Treating the Onset of Diabetes Using Probiotics Along with Prebiotic from Pachyrhizus erosus in High-Fat Diet Fed Drosophila melanogaster. Probiotics Antimicrob Proteins 2022; 14:884-903. [PMID: 35710863 DOI: 10.1007/s12602-022-09962-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/20/2022]
Abstract
The increasing mortality due to hypertension and hypercholesterolemia is directly linked with type-2 diabetes. This shows the lethality of the disease. Reports suggest that the prebiotics along with probiotics help in lowering the effects of type-2 diabetes. Prebiotic like inulin is best known for its anti-diabetic effect. The current study utilizes jicama extract as prebiotic source of inulin along with the bacterial strains with probiotic properties (Lactiplantibacillus plantarum and Enterococcus faecium) for treating type-2 diabetes in high-fat diet-induced Drosophila melanogaster model. The high-fat diet-induced Drosophila showed deposition of lipid droplets and formation of micronuclei in the gut. The larva and adult treated with probiotics and synbiotic (probiotic + prebiotic- inulin) comparatively reduced the lipid deposition and micronuclei number in the gut. The increased amount of triglyceride in the whole body of the fatty larva and adult indicated the onset of diabetes. The overexpression of insulin-like genes (Dilp 2) and (Dilp 5) confirmed the insulin resistance, whereas the expression was reduced in the larva and adult supplemented with probiotics and synbiotic. The reactive oxygen species level was reduced with the supplementation of probiotics. The weight, larva size, crawling speed and climbing were also altered in high-fat diet-induced Drosophila melanogaster. The study confirmed the effects of probiotics and synbiotic in successfully lowering diabetes in Drosophila. The study also proved the anti-diabetic potential of the probiotics. Further, it was also confirmed that the probiotics work better in the presence of prebiotic.
Collapse
Affiliation(s)
- Amrita Bhanja
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Nibedita Nayak
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Sumit Mukherjee
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
28
|
Paulino do Nascimento LC, Lacerda DC, Ferreira DJS, de Souza EL, de Brito Alves JL. Limosilactobacillus fermentum, Current Evidence on the Antioxidant Properties and Opportunities to be Exploited as a Probiotic Microorganism. Probiotics Antimicrob Proteins 2022; 14:960-979. [PMID: 35467236 DOI: 10.1007/s12602-022-09943-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 12/14/2022]
Abstract
The unbalance in the production and removal of oxygen-reactive species in the human organism leads to oxidative stress, a physiological condition commonly linked to the occurrence of cancer, neurodegenerative, inflammatory, and metabolic disorders. The implications of oxidative stress in the gut have been associated with gut microbiota impairments and gut dysbiosis. Some lactobacilli strains have shown an efficient antioxidant system capable of protecting against oxidative stress and related-chronic diseases. Recently, in vitro and experimental studies and some clinical trials have demonstrated the efficacy of the administration of various Limosilactobacillus fermentum strains to modulate beneficially the host antioxidant system resulting in the amelioration of a variety of systemic diseases phenotypes. This review presents and discusses the currently available studies on identifying L. fermentum strains with anti-oxidant properties, their sources, range of the administered doses, and duration of the intervention in experiments with animals and clinical trials. This review strives to serve as a relevant and well-cataloged reference of L. fermentum strains with capabilities of inducing anti-oxidant effects and health-promoting benefits to the host, envisaging their broad applicability to disease control.
Collapse
Affiliation(s)
| | - Diego Cabral Lacerda
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil
| | | | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil.
| |
Collapse
|
29
|
Potentially Probiotic Limosilactobacillus fermentum Fruit-Derived Strains Alleviate Cardiometabolic Disorders and Gut Microbiota Impairment in Male Rats Fed a High-Fat Diet. Probiotics Antimicrob Proteins 2022; 14:349-359. [PMID: 35066820 DOI: 10.1007/s12602-021-09889-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
High-fat diet (HFD) consumption is a risk factor for dyslipidemias, insulin resistance, and arterial hypertension linked with gut dysbiosis. Probiotic administration has been suggested as a safe therapeutic strategy for gut microbiota modulation and treatment and/or prevention of cardiometabolic disorders. Here, we assessed the effects of a potentially probiotic formulation containing strains of the Limosilactobacillus (L.) fermentum 139, 263, and 296 on the cardiometabolic disorders and gut microbiota derangements provoked by the HFD consumption. Male Wistar rats were allocated into control diet (CTL, n = 6), HFD (n = 6), and HFD receiving L. fermentum formulation (HFD-LF, n = 6) groups for 4 weeks. L. fermentum formulation (109 colony-forming unit (CFU)/ml of each strain) was daily administered by oral gavage. After 4-week follow-up, biochemical measurements, blood pressure (BP), heart rate (HR), sympathetic tone, and gut microbiota composition were evaluated. HFD consumption for 4 weeks increased lipid profile, insulin resistance, sympathetic tone, and blood pressure and impaired gut microbiota composition in male rats. Administration of L. fermentum formulation improved the gut microbiota composition, lipid profile, insulin resistance, autonomic dysfunction, and BP in rats fed with a HFD. Administration of a potentially fruit-derived probiotic formulation of L. fermentum strains improved gut microbiota composition and alleviated hyperlipidemia, insulin resistance, and sympathetic hyperactivity and increased BP in rats fed a HFD. Our findings may encourage the development of randomized controlled trials to assess the effects of L. fermentum treatment in subjects with cardiometabolic disorders.
Collapse
|
30
|
Dynamics of physiological responses of potentially probiotic fruit-derived Limosilactobacillus fermentum in apple and orange juices during refrigeration storage and exposure to simulated gastrointestinal conditions. Arch Microbiol 2021; 204:38. [DOI: 10.1007/s00203-021-02672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022]
|
31
|
Limosilactobacillus fermentum Strains with Claimed Probiotic Properties Exert Anti-oxidant and Anti-inflammatory Properties and Prevent Cardiometabolic Disorder in Female Rats Fed a High-Fat Diet. Probiotics Antimicrob Proteins 2021; 15:601-613. [PMID: 34817804 DOI: 10.1007/s12602-021-09878-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
This study assessed the effects of a mixed formulation containing Limosilactobacillus (L.) fermentum 139, L. fermentum 263, and L. fermentum 296 on cardiometabolic parameters, inflammatory markers, short-chain fatty acid (SCFA) fecal contents, and oxidative stress in colon, liver, heart, and kidney tissues of female rats fed a high-fat diet (HFD). Female Wistar rats were allocated into control diet (CTL, n = 6), HFD (n = 6), and HFD receiving L. fermentum formulation (HFD-LF, n = 6). L. fermentum formulation (1 × 109 CFU/mL of each strain) was administered two twice a day for 4 weeks. Administration of L. fermentum increased acetate and succinate fecal contents and reduced hyperlipidemia and hyperglycemia in rats fed a HFD (p < 0.05). Administration of L. fermentum decreased low-grade inflammation and improved antioxidant capacity along the gut, liver, heart, and kidney tissues in female rats fed a HFD (p < 0.05). Administration of L. fermentum prevented dyslipidemia, inflammation, and oxidative stress in colon, liver, heart, and kidney in female rats fed a HFD.
Collapse
|
32
|
de Luna Freire MO, do Nascimento LCP, de Oliveira KÁR, de Oliveira AM, Napoleão TH, Lima MDS, Lagranha CJ, de Souza EL, de Brito Alves JL. Effects of a Mixed Limosilactobacillus fermentum Formulation with Claimed Probiotic Properties on Cardiometabolic Variables, Biomarkers of Inflammation and Oxidative Stress in Male Rats Fed a High-Fat Diet. Foods 2021; 10:foods10092202. [PMID: 34574313 PMCID: PMC8471400 DOI: 10.3390/foods10092202] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/31/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
High-fat diet (HFD) consumption has been linked to dyslipidemia, low-grade inflammation and oxidative stress. This study investigated the effects of a mixed formulation with Limosilactobacillusfermentum 139, L. fermentum 263 and L. fermentum 296 on cardiometabolic parameters, fecal short-chain fatty acid (SCFA) contents and biomarkers of inflammation and oxidative stress in colon and heart tissues of male rats fed an HFD. Male Wistar rats were grouped into control diet (CTL, n = 6), HFD (n = 6) and HFD with L. fermentum formulation (HFD-Lf, n = 6) groups. The L.fermentum formulation (1 × 109 CFU/mL of each strain) was administered twice a day for 4 weeks. After a 4-week follow-up, biochemical parameters, fecal SCFA, cytokines and oxidative stress variables were evaluated. HFD consumption caused hyperlipidemia, hyperglycemia, low-grade inflammation, reduced fecal acetate and propionate contents and increased biomarkers of oxidative stress in colon and heart tissues when compared to the CTL group. Rats receiving the L. fermentum formulation had reduced hyperlipidemia and hyperglycemia, but similar SCFA contents in comparison with the HFD group (p < 0.05). Rats receiving the L. fermentum formulation had increased antioxidant capacity throughout the colon and heart tissues when compared with the control group. Administration of a mixed L. fermentum formulation prevented hyperlipidemia, inflammation and oxidative stress in colon and heart tissues induced by HFD consumption.
Collapse
Affiliation(s)
| | - Luciana Caroline Paulino do Nascimento
- Health Sciences Center, Department of Nutrition, Federal University of Paraiba, João Pessoa 58051900, PB, Brazil; (L.C.P.d.N.); (K.Á.R.d.O.); (E.L.d.S.)
| | - Kataryne Árabe Rimá de Oliveira
- Health Sciences Center, Department of Nutrition, Federal University of Paraiba, João Pessoa 58051900, PB, Brazil; (L.C.P.d.N.); (K.Á.R.d.O.); (E.L.d.S.)
| | - Alisson Macário de Oliveira
- Biological Sciences Center, Department of Biochemistry, Federal University of Pernambuco, Recife 50670901, PE, Brazil; (A.M.d.O.); (T.H.N.)
| | - Thiago Henrique Napoleão
- Biological Sciences Center, Department of Biochemistry, Federal University of Pernambuco, Recife 50670901, PE, Brazil; (A.M.d.O.); (T.H.N.)
| | - Marcos dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina 56302100, PE, Brazil;
| | - Cláudia Jacques Lagranha
- Laboratory of Biochemistry and Exercise Biochemistry, Federal University of Pernambuco, Vitória de Santo Antão 55608680, PE, Brazil;
| | - Evandro Leite de Souza
- Health Sciences Center, Department of Nutrition, Federal University of Paraiba, João Pessoa 58051900, PB, Brazil; (L.C.P.d.N.); (K.Á.R.d.O.); (E.L.d.S.)
| | - José Luiz de Brito Alves
- Health Sciences Center, Department of Nutrition, Federal University of Paraiba, João Pessoa 58051900, PB, Brazil; (L.C.P.d.N.); (K.Á.R.d.O.); (E.L.d.S.)
- Correspondence: or ; Tel./Fax: +55-81998495485
| |
Collapse
|
33
|
Pimentel TC, Gomes de Oliveira LI, de Lourdes Chaves Macedo E, Costa GN, Dias DR, Schwan RF, Magnani M. Understanding the potential of fruits, flowers, and ethnic beverages as valuable sources of techno-functional and probiotics strains: Current scenario and main challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Kao TW, Huang CC. Recent Progress in Metabolic Syndrome Research and Therapeutics. Int J Mol Sci 2021; 22:6862. [PMID: 34202257 PMCID: PMC8269131 DOI: 10.3390/ijms22136862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) is a well-defined yet difficult-to-manage disease entity. Both the precipitous rise in its incidence due to contemporary lifestyles and the growing heterogeneity among affected populations present unprecedented challenges. Moreover, the predisposed risk for developing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in populations with MetS, and the viral impacts on host metabolic parameters, underscores the need to investigate this mechanism thoroughly. Recent investigations of metabolomics and proteomics have revealed not only differentially expressed substances in MetS, but also the consequences of diet consumption and physical activity on energy metabolism. These variations in metabolites, as well as protein products, also influence a wide spectrum of host characteristics, from cellular behavior to phenotype. Research on the dysregulation of gut microbiota and the resultant inflammatory status has also contributed to our understanding of the underlying pathogenic mechanisms. As for state-of-the-art therapies, advancing depictions of the bio-molecular landscape of MetS have emerged and now play a key role in individualized precision medicine. Fecal microbiota transplantation, aiming to restore the host's homeostasis, and targeting of the bile acid signaling pathway are two approaches to combatting MetS. Comprehensive molecular inquiries about MetS by omics measures are mandatory to facilitate the development of novel therapeutic modalities.
Collapse
Affiliation(s)
- Ting-Wei Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Chin-Chou Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
35
|
Milk Kefir therapy reduces inflammation and alveolar bone loss on periodontitis in rats. Biomed Pharmacother 2021; 139:111677. [PMID: 33965727 DOI: 10.1016/j.biopha.2021.111677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that affects the tooth-supporting tissues. This study evaluated the anti-inflammatory and antiresorptive effects of milk kefir (MK) on periodontitis in rats. Micro-Raman spectroscopy was performed on MK at different fermentation times to verify the presence of Lactobacillus kefiri. From these results, Wistar rats were divided into the following groups: C (Control); EP (experimental periodontitis); K1 (animals that received MK with one day of fermentation); K1+EP; K4 (animals without EP using MK with four days of fermentation) and K4+EP. MK was administered 28 days before EP induction and during the disease development period (11 days). On day 28, in the EP groups, periodontitis was induced. The animals were euthanized on day 39. The hemimaxillae were removed and the following parameters were evaluated: micro-Raman analysis of the presence of inflammation; histomorphometric analysis to quantify alveolar bone loss and immunohistochemistry for IL-6, TNF-α, IL-Iβ and IL-10 in the periodontal ligament. Micro-Raman analysis showed that four days fermentation MK has a higher intensity spectrum of L. kefiri. Furthermore, the administration of this probiotic reduced the intensity of the inflammation spectrum when compared to one day fermentation MK. It was observed that the animals from the K4+EP group showed significant reduction of alveolar bone loss, as well as a lower IL-6, TNF-α and IL-Iβ immunoexpression and a higher IL-10 immunoexpression, when compared to EP groups. We conclude that MK has anti-inflammatory and antiresorptive effects on periodontitis in rats and that these effects are fermentation time dependent.
Collapse
|
36
|
Molina-Tijeras JA, Diez-Echave P, Vezza T, Hidalgo-García L, Ruiz-Malagón AJ, Rodríguez-Sojo MJ, Romero M, Robles-Vera I, García F, Plaza-Diaz J, Olivares M, Duarte J, Rodríguez-Cabezas ME, Rodríguez-Nogales A, Gálvez J. Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis. Pharmacol Res 2021; 167:105471. [PMID: 33529749 DOI: 10.1016/j.phrs.2021.105471] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022]
Abstract
Obesity is one of the main features of metabolic syndrome, where a low-grade chronic inflammation and gut dysbiosis contribute to the development of the related metabolic dysfunctions. Different probiotics have demonstrated beneficial effects on this condition, increasing the interest in the development of probiotic treatments. Lactobacillus fermentum CECT5716 has shown anti-inflammatory effects and capacity to modulate microbiota composition in different experimental models. In this study, L. fermentum CECT5716 was evaluated in a model of high fat diet-induced obesity in mice. It exerts anti-obesity effects, associated with its anti-inflammatory properties and amelioration of endothelial dysfunction and gut dysbiosis. The probiotic restores Akkermansia sp. abundance and reduced Erysipelotrichi class and Clostridium spp presence as well as increased Bacteroides proportion. In conclusion, this probiotic represents a very interesting approach. Our findings describe, for the first time, the ability of this probiotic to ameliorate experimental obesity through microbiome modulation, affecting different bacteria that have been reported to play a key role in the pathogenesis of obesity. Therefore, this suggests a potential use of L. fermentum CECT5716 in clinical practice, also taking into account that probiotic treatments have demonstrated to be relatively safe and well tolerated.
Collapse
Affiliation(s)
- Jose Alberto Molina-Tijeras
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Patricia Diez-Echave
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Laura Hidalgo-García
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Antonio Jesús Ruiz-Malagón
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Maria Jesús Rodríguez-Sojo
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Miguel Romero
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER-Enfermedades Cardiovasculares, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Iñaki Robles-Vera
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER-Enfermedades Cardiovasculares, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - Julio Plaza-Diaz
- Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy and Institute of Nutrition and Food Technology "Jose Mataix", Center for Biomedical Research (CIBM), University of Granada, Armilla, 18100 Granada, Spain; Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | | | - Juan Duarte
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER-Enfermedades Cardiovasculares, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Maria Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Digestivo, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
37
|
de Oliveira Y, Cavalcante RGS, Cavalcanti Neto MP, Magnani M, Braga VDA, de Souza EL, de Brito Alves JL. Oral administration of Lactobacillus fermentum post-weaning improves the lipid profile and autonomic dysfunction in rat offspring exposed to maternal dyslipidemia. Food Funct 2021; 11:5581-5594. [PMID: 32524104 DOI: 10.1039/d0fo00514b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Maternal dyslipidemia alters the gut microbiota composition and contributes to the development of arterial hypertension (AH) in offspring. Here, we evaluated the effects of a new Lactobacillus fermentum probiotic formulation given post-weaning on cardiometabolic parameters and gut microbiota in male and female rat offspring from dams exposed to maternal dyslipidemia during pregnancy and lactation. METHODS Wistar rats (n = 14) were fed with a control diet (CTL = 7) or a dyslipidemic diet (DLP = 7) during pregnancy and lactation. After weaning, male and female offspring received a standard diet up to 90 days of life. Rats were allocated into three groups: CTL group + saline solution (n = 14); DLP group + saline solution (n = 14) and DLP group receiving a probiotic cocktail (n = 14). A vehicle or probiotic formulation containing L. fermentum 139, L. fermentum 263 and L. fermentum 296 (ratio 1 : 1 : 1, 1 × 109 CFU mL-1) was administered daily by oral gavage for 8 weeks. RESULTS The intervention with the probiotic formulation of L. fermentum in male and female offspring reduced total cholesterol (TC) and increased HDL-c, but did not affect the insulin resistance induced by maternal dyslipidemia. Additionally, the male and female rats that received the probiotic formulation of L. fermentum demonstrated improvement in fecal Lactobacillus sp. counts, blood pressure and sympathetic tone, without affecting baroreflex modulation. CONCLUSION The probiotic formulation containing L. fermentum improved the lipid profile and autonomic dysfunction in male and female offspring exposed to maternal dyslipidemia.
Collapse
Affiliation(s)
- Yohanna de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil.
| | | | | | - Marciane Magnani
- Department of Food Engineering, Technology Center, Federal University of Paraíba, Joao Pessoa, Brazil
| | - Valdir de Andrade Braga
- Department of Biotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, Brazil and Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil.
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
38
|
Romão da Silva LDF, de Oliveira Y, de Souza EL, de Luna Freire MO, Braga VDA, Magnani M, de Brito Alves JL. Effects of probiotic therapy on cardio-metabolic parameters and autonomic modulation in hypertensive women: a randomized, triple-blind, placebo-controlled trial. Food Funct 2021; 11:7152-7163. [PMID: 32756643 DOI: 10.1039/d0fo01661f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS We assessed the effects of probiotic therapy for 8 weeks on cardiometabolic variables and autonomic function in women medically diagnosed with arterial hypertension. METHODS AND RESULTS Forty women with arterial hypertension, 20-50 years, were assigned to two groups in this randomized, triple-blind, placebo-controlled clinical trial. Patients in the probiotic group received a daily sachet containing Lactobacillus para casei LPC-37, Lactobacillus rhamnosus HN001, Lactobacillus acidophilus NCFM, and Bifidobacterium lactis HN019 (109 CFU of each strain) for 8 weeks. Patients in the placebo group received identical sachets with polydextrose (1 g day-1, for 8 weeks). Anthropometric, BP, electrocardiogram, biochemical measurements, fecal microbiota composition, and glucose hydrogen breath test were assessed at baseline and after 8 weeks intervention. Anthropometric variables (weight, BMI, and waist circumference) were similar between the two groups (p > 0.05). Probiotic supplementation significantly reduced fasting glucose (change -10.3 mg dL-1, p < 0.05) and cholesterol levels (change -23.6 mg dL-1, p < 0.05), and increased the HDL-cholesterol (change 6.5 mg dL-1, p < 0.05) compared with the baseline condition. Probiotic supplementation lowered, although without statistical significance, systolic BP by about 5 mmHg and diastolic BP by about 2 mmHg in hypertensive women. Lastly, probiotic administration reduced the low frequency (LF) oscillation and LF/high frequency (HF) ratio (p < 0.05) in the frequency domain of heart rate variability, suggesting an improvement in autonomic modulation. CONCLUSION Probiotic therapy for 8 weeks reduced fasting glucose levels, and improved the lipid profile and autonomic modulation in hypertensive women.
Collapse
Affiliation(s)
| | - Yohanna de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil.
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil.
| | | | | | - Marciane Magnani
- Department of Food Engineering, Technology Center, Federal University of Paraíba, Joao Pessoa, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
39
|
Influence of Dietary Components and Traditional Chinese Medicine on Hypertension: A Potential Role for Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563073. [PMID: 33986817 PMCID: PMC8079198 DOI: 10.1155/2021/5563073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Hypertension (HTN) is an important worldwide public health issue affecting human health. The pathogenesis of HTN involves complex factors such as genetics, external environment, diet, and the gut microbial dysbiosis. The gut microbiota, as a medium of diet and drug metabolism, is closely correlated to host's health and disease (including HTN). Literatures were randomly collected from various databases including PubMed, ScienceDirect, Google Scholar, and China National Knowledge Infrastructure (CNKI). In this review, we elucidate the relationship between HTN and gut microbiota, as well as concerning the effects of different dietary components, diet-derived microbial metabolites, and traditional Chinese medicine (TCM) on intestinal flora. These studies have shown that diet and TCM can regulate and balance the intestinal flora, which are inclined to increasing the abundance of Akkermansia, Bifidobacterium, and Bacteroides and reducing the ratio of Firmicutes and Bacteroidetes. Moreover, monitoring the dynamic change of gut microflora may indicate patient prognosis and personalized response to treatment. This review aims to provide novel perspectives and potential personalized interventions for future HTN management from the perspective of gut microbiota.
Collapse
|
40
|
Almada-Érix CN, Almada CN, Cabral L, Barros de Medeiros VP, Roquetto AR, Santos-Junior VA, Fontes M, Gonçalves AESS, Dos Santos A, Lollo PC, Magnani M, Sant'Ana AS. Orange Juice and Yogurt Carrying Probiotic Bacillus coagulans GBI-30 6086: Impact of Intake on Wistar Male Rats Health Parameters and Gut Bacterial Diversity. Front Microbiol 2021; 12:623951. [PMID: 34135869 PMCID: PMC8202523 DOI: 10.3389/fmicb.2021.623951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/03/2021] [Indexed: 01/14/2023] Open
Abstract
This study aimed to investigate the impact of the food matrix (orange juice and yogurt) on the effects of the spore-forming probiotic microorganism Bacillus coagulans GBI-30 6086 in health parameters and gastrointestinal tract (gut) bacterial diversity in Wistar male rats. Rats (n = 48) were randomly distributed into six groups. The groups were the Control (which received sterile distilled water), Juice (which received orange juice), Yogurt (which received yogurt), Probiotic Bacillus (which received B. coagulans GBI-30 6086 in distilled water), Probiotic Juice (which received orange juice with B. coagulans GBI-30 6086), and Probiotic Yogurt (which received yogurt with B. coagulans GBI-30 6086). Each animal belonging to the different groups was treated for 21 days. The daily administration of probiotic juice or probiotic yogurt did not affect the rats’ food or body weight. Rats fed with Probiotic Yogurt showed lower glucose and triglycerides levels (p < 0.05) in comparison to the control group (p < 0.05), while no changes in these parameters were observed in the rats fed with Probiotic Juice. Rats fed with Probiotic Yogurt showed a higher gut bacterial diversity than the control group (p < 0.05), and higher abundance (p < 0.05) of Vibrionales, Enterobacteriales, Burkholderiales, Erysipelotrichales, and Bifidobacteriales compared to all other groups. No changes were observed in the expression levels of antioxidant enzymes or heat shock protein 70 of rats fed with probiotic yogurt or probiotic juice. Results reveal that the consumption of yogurt containing B. coagulans GBI-30 6086 decreases triglycerides and glucose levels and positively impacts the gut bacterial ecology in healthy rats. These animal model findings indicate that the matrix also impacts the functionality of foods carrying spore-forming probiotics. Besides, this research indicates that yogurt is also a suitable food carrier of Bacillus coagulans GBI-30 6086.
Collapse
Affiliation(s)
- Carine N Almada-Érix
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Caroline N Almada
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Lucélia Cabral
- Institute of Biosciences, Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Viviane Priscila Barros de Medeiros
- Laboratory of Microbial Processes in Food, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Aline R Roquetto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Valfredo A Santos-Junior
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.,Department of Physical Education, Federal University of Great Dourados, Dourados, Brazil
| | - Melline Fontes
- Research Informatics Core, Research Resource Center, University of Illinois at Chicago, Chicago, IL, United States.,Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Campinas, Brazil
| | - Any Elisa S S Gonçalves
- Internal Medicine Department, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Andrey Dos Santos
- Internal Medicine Department, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Pablo C Lollo
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.,Department of Physical Education, Federal University of Great Dourados, Dourados, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Food, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
41
|
Teixeira CG, Fusieger A, Milião GL, Martins E, Drider D, Nero LA, de Carvalho AF. Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics Antimicrob Proteins 2021; 13:915-925. [PMID: 33565028 DOI: 10.1007/s12602-021-09751-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/11/2023]
Abstract
Weissella strains have been the subject of much research over the last 5 years because of the genus' technological and probiotic potential. Certain strains have attracted the attention of the pharmaceutical, medical, and food industries because of their ability to produce antimicrobial exopolysaccharides (EPSs). Moreover, Weissella strains are able to keep foodborne pathogens in check because of the bacteriocins, hydrogen peroxide, and organic acids they can produce; all listed have recognized pathogen inhibitory activities. The Weissella genus has also shown potential for treating atopic dermatitis and certain cancers. W. cibaria, W. confusa, and W. paramesenteroides are particularly of note because of their probiotic potential (fermentation of prebiotic fibers) and their ability to survive in the gastrointestinal tract. It is important to note that most of the Weissella strains with these health-promoting properties have been shown to be save safe, due to the absence or the low occurrence of virulence or antibiotic-resistant genes. A large number of scientific studies continue to report on and to support the use of Weissella strains in the food and pharmaceutical industries. This review provides an overview of these studies and draws conclusions for future uses of this rich and previously unexplored genus.
Collapse
Affiliation(s)
- Camila Gonçalves Teixeira
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Andressa Fusieger
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Gustavo Leite Milião
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Evandro Martins
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| |
Collapse
|
42
|
Brandão LR, de Brito Alves JL, da Costa WKA, Ferreira GDAH, de Oliveira MP, Gomes da Cruz A, Braga VDA, Aquino JDS, Vidal H, Noronha MF, Cabral L, Pimentel TC, Magnani M. Live and ultrasound-inactivated Lacticaseibacillus casei modulate the intestinal microbiota and improve biochemical and cardiovascular parameters in male rats fed a high-fat diet. Food Funct 2021; 12:5287-5300. [PMID: 34009228 DOI: 10.1039/d1fo01064f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to evaluate the effects of ingestion of live (9 log CFU mL-1) and ultrasound-inactivated (paraprobiotic, 20 kHz, 40 min) Lacticaseibacillus casei 01 cells for 28 days on healthy parameters (biochemical and cardiovascular) and intestinal microbiota (amplicon sequencing of 16S ribosomal RNA) of rats fed a high-fat diet. Twenty-four male Wistar rats were divided into four groups of six animals: CTL (standard diet), HFD (high-fat diet), HFD-LC (high-fat diet and live L. casei), and HFD-ILC (high-fat diet and inactivated L. casei). The administration of live and ultrasound-inactivated L. casei prevented the increase (p < 0.05) in cholesterol levels (total and LDL) and controlled the insulin resistance in rats fed a high-fat diet. Furthermore, it promoted a modulation of the intestinal microbial composition by increasing (p < 0.05) beneficial bacteria (Lachnospiraceae and Ruminoccocaceae) and decreasing (p < 0.05) harmful bacteria (Clostridiaceae, Enterobacteriaceae, and Helicobacteriacea), attenuating the effects promoted by the HFD ingestion. Only live cells could increase (p < 0.05) the HDL-cholesterol, while only inactivated cells caused attenuation (p < 0.05) of the blood pressure. Results show beneficial effects of live and inactivated L. casei 01 and indicate that ultrasound inactivation produces a paraprobiotic with similar or improved health properties compared to live cells.
Collapse
Affiliation(s)
- Larissa Ramalho Brandão
- Department of Food Engineering, Technology, Federal University of Paraíba, João Pessoa, Brazil.
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | | | - Adriano Gomes da Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valdir de Andrade Braga
- Department of Biotechnology, Biotechnology Center Federal University of Paraíba, João Pessoa, Brazil
| | - Jailane de Souza Aquino
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Hubert Vidal
- Univ-Lyon, CarMeN (Cardio, Metabolism, Diabetes and Nutrition) Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | - Melline Fontes Noronha
- Research Informatics Core, Research Resource Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucélia Cabral
- Institute of Biosciences, Department of General and Applied Biology, São Paulo State University, Rio Claro, SP, Brazil
| | | | - Marciane Magnani
- Department of Food Engineering, Technology, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
43
|
Lv XC, Chen M, Huang ZR, Guo WL, Ai LZ, Bai WD, Yu XD, Liu YL, Rao PF, Ni L. Potential mechanisms underlying the ameliorative effect of Lactobacillus paracasei FZU103 on the lipid metabolism in hyperlipidemic mice fed a high-fat diet. Food Res Int 2021; 139:109956. [DOI: 10.1016/j.foodres.2020.109956] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
|
44
|
de Oliveira SD, Araújo CM, Borges GDSC, Lima MDS, Viera VB, Garcia EF, de Souza EL, de Oliveira MEG. Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata D.C.) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110200] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Sampaio KB, do Nascimento YM, Tavares JF, Cavalcanti MT, de Brito Alves JL, Garcia EF, de Souza EL. Development and in vitro evaluation of novel nutraceutical formulations composed of Limosilactobacillus fermentum, quercetin and/or resveratrol. Food Chem 2020; 342:128264. [PMID: 33041168 DOI: 10.1016/j.foodchem.2020.128264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 01/04/2023]
Abstract
This study developed and carried out an in vitro evaluation of nutraceutical formulations composed of potentially probiotic Limosilactobacillus fermentum (L. fermentum 139, L. fermentum 263 or L. fermentum 296), quercetin and/or resveratrol. L. fermentum strains had counts of >9 log CFU/g and contents of QUE and RES of >200 µg/mg in formulations after freeze-drying. Formulations with QUE and RES protected L. fermentum during exposure to in vitro acidic stomach conditions. L. fermentum strains had counts of >6 log CFU/g on day 60 and/or 90 of refrigeration storage. Contents of QUE (>29%) and RES (>50%) in formulations were potentially bioaccessible. Higher counts of L. fermentum and higher contents of QUE and RES were found in formulations stored under refrigerated rather than under room temperature. All nutraceutical formulations had antioxidant properties. Combinations of probiotic L. fermentum and QUE and/or RES should be an innovative strategy to develop added-value nutraceutical formulations.
Collapse
Affiliation(s)
- Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Josean Fechine Tavares
- Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Mônica Tejo Cavalcanti
- Center for Agro-Food Science and Technology, Federal University of Campina Grande, Pombal, Paraíba, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Estefânia Fernandes Garcia
- Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
46
|
Gan Y, Tang MW, Tan F, Zhou XR, Fan L, Xie YX, Zhao X. Anti-obesity effect of Lactobacillus plantarum CQPC01 by modulating lipid metabolism in high-fat diet-induced C57BL/6 mice. J Food Biochem 2020; 44:e13491. [PMID: 33006202 DOI: 10.1111/jfbc.13491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 11/28/2022]
Abstract
Lactic acid bacteria (LAB) are an important group of microorganisms in the food industry. LAB with health benefits are considered natural elements promoting consumer health. The study investigated the anti-obesity effects of Lactobacillus plantarum CQPC01 (LP-CQPC01) on high-fat diet-induced mice. Liver morphology, liver function indexes, lipid indexes, and inflammatory factors in the serum and liver were determined. Expressions of lipid metabolism-related gene were also detected by qPCR. LP-CQPC01 slowed the HFD-induced increase in body weight, decreased the organ indexes, alleviated hepatic lipid accumulation, and inhibited the increased adipose cell volume. LP-CQPC01 decreased lipid levels of serum and liver, and the contents of pro-inflammatory factors, and increased the IL-4 and IL-10 contents. LP-CQPC01 downregulated the expressions of the C/EBP-α and PPARγ mRNA and upregulated CYP7A1, CPT1, LPL, CAT, SOD1, and SOD2 mRNA. Our results indicated that LP-CQPC01 is a potential probiotic for preventing or alleviating high-energy intake-related lipid conditions. PRACTICAL APPLICATIONS: Obesity is a factor of a variety of cardiovascular diseases. Therefore, it is necessary to suppress the occurrence of fat accumulation in time. This study investigated the effect of LP-CQPC01 on lipid regulation in mice fed a high-fat diet (HFD) and clarified the mechanism of strain to alleviate obesity by enhancing the decomposition of cholesterol and detoxification of fat. LP-CQPC01 reduced fat accumulation without oxidative damage, and was confirmed by the attenuated pathological changes of liver. This research can serve as a significant reference for future research, prevention, and treatment of high-energy intake-related lipid conditions, and the development of functional foods with anti-obesity activity.
Collapse
Affiliation(s)
- Yi Gan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Ming-Wei Tang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xian-Rong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Ling Fan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yu-Xin Xie
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
47
|
Gan Y, Chen H, Zhou XR, Chu LL, Ran WT, Tan F, Zhao X. Regulating effect of Lactobacillus plantarum CQPC03 on lipid metabolism in high-fat diet-induced obesity in mice. J Food Biochem 2020; 44:e13495. [PMID: 32989790 DOI: 10.1111/jfbc.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 09/09/2020] [Indexed: 01/22/2023]
Abstract
Probiotics are regard as safety approaches for preventing and treating some chronic diseases. This study investigated the regulating effect of Lactobacillus plantarum CQPC03 (LP-CQPC03) on lipid metabolism in high-fat diet (HFD)-induced obesity in mice. The results showed that administration of LP-CQPC03 at a concentration of 1.0 × 109 CFU/kg body weight inhibits HFD-induced obesity and improves lipid metabolism in the liver and serum. LP-CQPC03 intervention attenuated obesity-induced hepatic tissue damage, led decreases in hepatic triglyceride (42.02 mmol/gprot), total cholesterol (3.85 mmol/gprot), and LDL-C (1.03 mmol/gprot), and an increase in HDL-C (1.07 mmol/gprot). The same tendencies were observed in serum of HFD-fed mice. LP-CQPC03 intervention led a decrease in serum levels of aspartic transaminase, alanine transaminase, and alkaline phosphatase. LP-CQPC03 alleviated inflammation by increasing the level of interleukin (IL)-4 and IL-10, and decreasing the levels of pro-inflammatory factors, including IL-6, IL-1β, tumor necrosis factor-α, and interferon-γ. LP-CQPC03 also increased activities of SOD and GSH-Px in liver significantly and dropped the hepatic malondialdehyde (MDA) level from 3.39 nmol/gprot to 1.90 nmol/gprot. RT-qPCR results showed that the lipid metabolism-improving effect of LP-CQPC03 was performed by upregulating the expression of carnitine palmitoyltransferase 1, lipoprotein lipase, catalase, and superoxide dismutase 1. This study indicates that L. plantarum CQPC03 might be a potential probiotic that can help mitigate the adverse effects of excessive lipids on the liver, and prevent or alleviate high-energy intake-related obesity. PRACTICAL APPLICATIONS: Intaking high-energy foods is a potential risk of lipid metabolic disorder. Therefore, it is necessary to seek an effective and safe approach for preventing the obesity-related disease. This study found that LP-CQPC03 limited the rate of increase in body weight of mice fed on HFD, maintained normal hepatic tissue morphology, and exhibited a strong regulating effect on lipid metabolism. And the threshold concentration of LP-CQPC03 for the lipid-lowering effect was 1.0 × 109 CFU/kg body weight. Therefore, LP-CQPC03 is a potential probiotic for preventing or alleviating high-energy intake-related obesity.
Collapse
Affiliation(s)
- Yi Gan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Hong Chen
- Department of Clinical Nutrition, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College (The Six People's Hospital of Chongqing), Chongqing, China
| | - Xian-Rong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Ling-Ling Chu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Wan-Ting Ran
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
48
|
Markowiak-Kopeć P, Śliżewska K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020; 12:nu12041107. [PMID: 32316181 PMCID: PMC7230973 DOI: 10.3390/nu12041107] [Citation(s) in RCA: 629] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The relationship between diet and the diversity and function of the intestinal microbiome and its importance for human health is currently the subject of many studies. The type and proportion of microorganisms found in the intestines can determine the energy balance of the host. Intestinal microorganisms perform many important functions, one of which is participation in metabolic processes, e.g., in the production of short-chain fatty acids—SCFAs (also called volatile fatty acids). These acids represent the main carbon flow from the diet to the host microbiome. Maintaining intestinal balance is necessary to maintain the host’s normal health and prevent many diseases. The results of many studies confirm the beneficial effect of probiotic microorganisms on the balance of the intestinal microbiome and produced metabolites, including SCFAs. The aim of this review is to summarize what is known on the effects of probiotics on the production of short-chain fatty acids by gut microbes. In addition, the mechanism of formation and properties of these metabolites is discussed and verified test results confirming the effectiveness of probiotics in human nutrition by modulating SCFAs production by intestinal microbiome is presented.
Collapse
|
49
|
Soares JMD, Abreu REF, Costa MMD, Melo NFD, Oliveira HPD. Investigation of Lactobacillus paracasei encapsulation in electrospun fibers of Eudragit® L100. POLIMEROS 2020. [DOI: 10.1590/0104-1428.03020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - Mateus Matiuzzi da Costa
- Universidade Federal Rural de Pernambuco, Brasil; Universidade Federal do Vale do São Francisco, Brasil
| | | | | |
Collapse
|