1
|
Pal B, Ghosh R, Sarkar RD, Roy GS. The irreversible, towards fatalic neuropathy: from the genesis of diabetes. Acta Diabetol 2025; 62:139-156. [PMID: 39636401 DOI: 10.1007/s00592-024-02429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Diabetic neuropathy is the most prevalent diabetes-associated complication that negatively impacts the quality of life of the patients. The extensive complications of diabetic peoples in the world are the leading cause of neuropathic pain, and over-activation of different biochemical signalling process induces the pathogenic progression and are also corresponding the epidemic painful symptom of diabetic neuropathy. The main prevalent abnormality is neuropathy, which further causing distal symmetric polyneuropathy and focal neuropathy. The exact pathological complication of diabetes associated neuropathic algesia is still unclear, but the alteration in micro-angiopathy associated nerve fibre loss, hyper polyol formation, MAPK signalling, WNT signalling, tau-derived insulin signalling processes are well known. Furthermore, the post-translational modification of different ion channels, oxidative and nitrosative stress, brain plasticity and microvascular changes can contributes the development of neuropathic pain. However, in the current review we discussed about these pathogenic development of neuropathic pain from the genesis of diabetes, and how diabetes affects the physiological and psychological health, and quality of life of the patients. Furthermore, the treatment of diabetic neuropathy with conventional monotherapy and emerging therapy are discussed. In addition, the treatment with phytochemical constituents their mechanisms and clinical evidences are also reported. The future investigation is required on pathological alteration occurs in neuropathic individuals, and on molecular mechanisms as well as the adverse effect of phytochemicals to determine all aspects of neuropathic algesia including effective treatments, which will prevents the sympathetic pain in patients.
Collapse
Affiliation(s)
- Bhaskar Pal
- Department of Pharmacology, Charaktala College of Pharmacy, Charaktala, Mothabari, Malda, West Bengal, India.
| | - Rashmi Ghosh
- Bengal College of Pharmaceutical Science & Research, Durgapur, West Bengal, India
| | - Raktimava Das Sarkar
- Department of Pharmaceutical Technology, Bengal School of Technology, Sugandha, Delhi Road, Chinsurah, Hooghly, West Bengal, India
| | - Gouranga Sundar Roy
- Department of Pharmaceutical Technology, Bengal School of Technology, Sugandha, Delhi Road, Chinsurah, Hooghly, West Bengal, India
| |
Collapse
|
2
|
Palazzo E, Marabese I, Ricciardi F, Guida F, Luongo L, Maione S. The influence of glutamate receptors on insulin release and diabetic neuropathy. Pharmacol Ther 2024; 263:108724. [PMID: 39299577 DOI: 10.1016/j.pharmthera.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Diabetes causes macrovascular and microvascular complications such as peripheral neuropathy. Glutamate regulates insulin secretion in pancreatic β-cells, and its increased activity in the central nervous system is associated with peripheral neuropathy in animal models of diabetes. One strategy to modulate glutamatergic activity consists in the pharmacological manipulation of metabotropic glutamate receptors (mGluRs), which, compared to the ionotropic receptors, allow for a fine-tuning of neurotransmission that is compatible with therapeutic interventions. mGluRs are a family of eight G-protein coupled receptors classified into three groups (I-III) based on sequence homology, transduction mechanisms, and pharmacology. Activation of group II and III or inhibition of group I represents a strategy to counteract the glutamatergic hyperactivity associated with diabetic neuropathy. In this review article, we will discuss the role of glutamate receptors in the release of insulin and the development/treatment of diabetic neuropathy, with particular emphasis on their manipulation to prevent the glutamatergic hyperactivity associated with diabetic neuropathy.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy.
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Federica Ricciardi
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
3
|
Finamor F, Scarabelot VL, Medeiros LF, Stein DJ, da Silva MD, Callai E, Caumo W, de Souza A, Torres ILS. Involvement of GABAergic, glutamatergic, opioidergic, and brain-derived neurotrophic factor systems in the trigeminal neuropathic pain process. Neurosci Lett 2023; 793:136970. [PMID: 36402255 DOI: 10.1016/j.neulet.2022.136970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Trigeminal neuropathic pain (TNP) is an intense pain condition characterized by hyperalgesia and allodynia; however, its neural mechanisms are not completely understood. Its management is complex, and studies that investigate its biochemical mechanisms are important for improving clinical approaches. This study aimed to evaluate the involvement of GABAergic, glutamatergic, and opioidergic systems and brain-derived neurotrophic factor (BDNF) levels in the TNP process in rats. TNP is induced by chronic constriction injury of the infraorbital nerve (CCI-ION). Nociceptive responses were evaluated using the facial von Frey test before and after the administration of GABAergic and opioidergic agonists and glutamatergic antagonists. The rats were divided into vehicle-treated control (C), sham-surgery (SS), and CCI-ION groups, and then subdivided into the vehicle (V)-treated SS-V and CCI-ION-V groups, SS-MK801 and CCI-ION-MK801, treated with the N-methyl-d-aspartate receptor selective antagonist MK801; SS-PB and CCI-ION-PB, treated with phenobarbital; SS-BZD and CCI-ION-BZD, treated with diazepam; SS-MOR and CCI-ION-MOR, treated with morphine. BDNF levels were evaluated in the cerebral cortex, brainstem, trigeminal ganglion, infraorbital branch of the trigeminal nerve, and serum. CCI-ION induced facial mechanical hyperalgesia. Phenobarbital and morphine reversed the hyperalgesia induced by CCI-ION, and the CCI-BZD group had an increased nociceptive threshold until 60 min. CCI-ION-GLU increased the nociceptive threshold at 60 min. Cerebral cortex and brainstem BDNF levels increased in the CCI-ION and SS groups. Only the CCI group presented high levels of BDNF in the trigeminal ganglion. Our data suggest the involvement of GABAergic, glutamatergic, and opioidergic systems and peripheral BDNF in the TNP process.
Collapse
Affiliation(s)
- Fabrício Finamor
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Vanessa Leal Scarabelot
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Liciane Fernandes Medeiros
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil; Universidade La Salle, Canoas, RS, Brazil
| | - Dirson João Stein
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Morgana Duarte da Silva
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Etiane Callai
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Wolnei Caumo
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andressa de Souza
- School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Wu X, Yuan J, Yang Y, Han S, Dai H, Wang L, Li Y. Elevated GABA level in the precuneus and its association with pain intensity in patients with postherpetic neuralgia: An initial proton magnetic resonance spectroscopy study. Eur J Radiol 2022; 157:110568. [DOI: 10.1016/j.ejrad.2022.110568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
|
5
|
Optogenetic Stimulation of the Anterior Cingulate Cortex Modulates the Pain Processing in Neuropathic Pain: A Review. J Mol Neurosci 2021; 72:1-8. [PMID: 34505976 DOI: 10.1007/s12031-021-01898-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is characterized by hypersensitivity, hyperalgesia, and allodynia, which is caused by damage to the somatosensory nervous system. It substantially impairs the quality of life. The management of neuropathic pain is challenging and should comprise alternative therapies. Researchers working on neural modulation methods in the field of optogenetics have recently referred to novel techniques that involve the activation or inhibition of signaling proteins by specific wavelengths of light. The use of optogenetics in neuropathic pain facilitates the investigation of pain pathways involved in chronic pain and has the potential for therapeutic use. Neuropathic pain is often accompanied by negative stimuli involving a broad network of brain regions. In particular, the anterior cingulate cortex (ACC) is a part of the limbic system that has highly interconnected structures involved in processing components of pain. The ACC is a key region for acute pain perception as well as the development of neuropathic pain, characterized by long-term potentiation induced in pain pathways. The exact mechanism for neuropathic pain in the ACC is unclear. Current evidence supports the potential of optogenetics methods to modulate the neuronal activity in the ACC for neuropathic pain. We anticipate the neuronal modulation in the ACC will be used widely to manage neuropathic pain.
Collapse
|
6
|
Correia Rocha IR, Chacur M. Modulatory effects of photobiomodulation in the anterior cingulate cortex of diabetic rats. Photochem Photobiol Sci 2021; 20:781-790. [PMID: 34053000 DOI: 10.1007/s43630-021-00059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Anterior Cingulate Cortex (ACC) has a crucial contribution to higher order pain processing. Photobiomodulation (PBM) has being used as integrative medicine for pain treatment and for a variety of nervous system disorders. This study evaluated the effects of PBM in the ACC of diabetic rats. Type 1 diabetes was induced by a single dose of streptozotocin (85 mg/Kg). A total of ten sessions of PBM (pulsed gallium-arsenide laser, 904 nm, 9500 Hz, 6.23 J/cm2) was applied to the rat peripheral nervous system. Glial fibrillary acidic protein (GFAP), mu-opioid receptor (MOR), glutamate receptor 1 (GluR1), and glutamic acid decarboxylase (GAD65/67) protein level expression were analyzed in the ACC of diabetic rats treated with PBM. Our data revealed that PBM decreased 79.5% of GFAP protein levels in the ACC of STZ rats. Moreover, STZ + PBM rats had protein levels of MOR increased 14.7% in the ACC. Interestingly, STZ + PBM rats had a decrease in 70.7% of GluR1 protein level in the ACC. Additionally, PBM decreased 45.5% of GAD65/67 protein levels in the ACC of STZ rats.
Collapse
Affiliation(s)
- Igor Rafael Correia Rocha
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenue Lineu Prestes 2415, room 007, São Paulo, 05508-900, Brazil
| | - Marucia Chacur
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenue Lineu Prestes 2415, room 007, São Paulo, 05508-900, Brazil.
| |
Collapse
|
7
|
Xiao X, Ding M, Zhang YQ. Role of the Anterior Cingulate Cortex in Translational Pain Research. Neurosci Bull 2021; 37:405-422. [PMID: 33566301 PMCID: PMC7954910 DOI: 10.1007/s12264-020-00615-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
As the most common symptomatic reason to seek medical consultation, pain is a complex experience that has been classified into different categories and stages. In pain processing, noxious stimuli may activate the anterior cingulate cortex (ACC). But the function of ACC in the different pain conditions is not well discussed. In this review, we elaborate the commonalities and differences from accumulated evidence by a variety of pain assays for physiological pain and pathological pain including inflammatory pain, neuropathic pain, and cancer pain in the ACC, and discuss the cellular receptors and signaling molecules from animal studies. We further summarize the ACC as a new central neuromodulation target for invasive and non-invasive stimulation techniques in clinical pain management. The comprehensive understanding of pain processing in the ACC may lead to bridging the gap in translational research between basic and clinical studies and to develop new therapies.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai, 200433, China.
| | - Ming Ding
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai, 200433, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science; Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Chen S, Kadakia F, Davidson S. Group II metabotropic glutamate receptor expressing neurons in anterior cingulate cortex become sensitized after inflammatory and neuropathic pain. Mol Pain 2021; 16:1744806920915339. [PMID: 32326814 PMCID: PMC7227149 DOI: 10.1177/1744806920915339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The anterior cingulate cortex is a limbic region associated with the emotional processing of pain. How neuropathic and inflammatory pain models alter the neurophysiology of specific subsets of neurons in the anterior cingulate cortex remains incompletely understood. Here, we used a GRM2Cre:tdtomato reporter mouse line to identify a population of pyramidal neurons selectively localized to layer II/III of the murine anterior cingulate cortex. GRM2encodes the group II metabotropic glutamate receptor subtype 2 which possesses analgesic properties in mouse and human models, although its function in the anterior cingulate cortex is not known. The majority of GRM2-tdtomato anterior cingulate cortex neurons expressed GRM2gene product in situ but did not overlap with cortical markers of local inhibitory interneurons, parvalbumin or somatostatin. Physiological properties of GRM2-tdtomato anterior cingulate cortex neurons were investigated using whole-cell patch clamp techniques in slice from animals with neuropathic or inflammatory pain, and controls. After hind-paw injection of Complete Freund’s Adjuvant or chronic constriction injury, GRM2-tdtomato anterior cingulate cortex neurons exhibited enhanced excitability as measured by an increase in the number of evoked action potentials and a decreased rheobase. This hyperexcitability was reversed pharmacologically by bath application of the metabotropic glutamate receptor subtype 2 agonist (2R, 4R)-4-Aminopyrrolidine-2,4-dicarboxylate APDC (1 µM) in both inflammatory and neuropathic models. We conclude that layer II/III pyramidal GRM2-tdtomato anterior cingulate cortex neurons express functional group II metabotropic glutamate receptors and undergo changes to membrane biophysical properties under conditions of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Feni Kadakia
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steve Davidson
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
9
|
Abstract
Diabetic retinopathy is now well understood as a neurovascular disease. Significant deficits early in diabetes are found in the inner retina that consists of bipolar cells that receive inputs from rod and cone photoreceptors, ganglion cells that receive inputs from bipolar cells, and amacrine cells that modulate these connections. These functional deficits can be measured in vivo in diabetic humans and animal models using the electroretinogram (ERG) and behavioral visual testing. Early effects of diabetes on both the human and animal model ERGs are changes to the oscillatory potentials that suggest dysfunctional communication between amacrine cells and bipolar cells as well as ERG measures that suggest ganglion cell dysfunction. These are coupled with changes in contrast sensitivity that suggest inner retinal changes. Mechanistic in vitro neuronal studies have suggested that these inner retinal changes are due to decreased inhibition in the retina, potentially due to decreased gamma aminobutyric acid (GABA) release, increased glutamate release, and increased excitation of retinal ganglion cells. Inner retinal deficits in dopamine levels have also been observed that can be reversed to limit inner retinal damage. Inner retinal targets present a promising new avenue for therapies for early-stage diabetic eye disease.
Collapse
|
10
|
Jarrin S, Pandit A, Roche M, Finn DP. Differential Role of Anterior Cingulate Cortical Glutamatergic Neurons in Pain-Related Aversion Learning and Nociceptive Behaviors in Male and Female Rats. Front Behav Neurosci 2020; 14:139. [PMID: 32848657 PMCID: PMC7431632 DOI: 10.3389/fnbeh.2020.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Pain is comprised of both sensory and affective components. The anterior cingulate cortex (ACC) is a key brain region involved in the emotional processing of pain. Specifically, glutamatergic transmission within the ACC has been shown to modulate pain-related aversion. In the present study, we use in vivo optogenetics to activate or silence, using channelrhodopsin (ChR2) and archaerhodopsin (ArchT) respectively, calmodulin-kinase IIα (CaMKIIα)-expressing excitatory glutamatergic neurons of the ACC during a formalin-induced conditioned place aversion (F-CPA) behavioral paradigm in both female and male adult Sprague-Dawley rats. Expression of c-Fos, a marker of neuronal activity, was assessed within the ACC using immunohistochemistry. Optogenetic inhibition of glutamatergic neurons of the ACC abolished F-CPA without affecting formalin-induced nociceptive behavior during conditioning. In male rats, optogenetic activation of ACC glutamatergic neurons decreased formalin-induced nociceptive behavior during conditioning without affecting F-CPA. Interestingly, the opposite effect was seen in females, where optogenetic activation of glutamatergic neurons of the ACC increased formalin-induced nociceptive behavior during conditioning. The abolition of F-CPA following optogenetic inhibition of glutamatergic neurons of the ACC was associated with a reduction in c-Fos immunoreactivity in the ACC in male rats, but not female rats. These results suggest that excitatory glutamatergic neurons of the ACC play differential and sex-dependent roles in the aversion learning and acute sensory components of pain.
Collapse
Affiliation(s)
- Sarah Jarrin
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
| | - Michelle Roche
- Centre for Pain Research, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland.,Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
11
|
Li XH, Chen QY, Zhuo M. Neuronal Adenylyl Cyclase Targeting Central Plasticity for the Treatment of Chronic Pain. Neurotherapeutics 2020; 17:861-873. [PMID: 32935298 PMCID: PMC7609634 DOI: 10.1007/s13311-020-00927-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a major health problem and the effective treatment for chronic pain is still lacking. The recent crisis created by the overuse of opioids for pain treatment has clearly shown the need for non-addictive novel pain medicine. Conventional pain medicines usually inhibit peripheral nociceptive transmission and reduce central transmission, especially pain-related excitatory transmission. For example, both opioids and gabapentin produce analgesic effects by inhibiting the release of excitatory transmitters and reducing neuronal excitability. Here, we will review recent studies of central synaptic plasticity contributing to central sensitization in chronic pain. Neuronal selective adenylyl cyclase subtype 1 (AC1) is proposed to be a key intracellular protein that causes both presynaptic and postsynaptic forms of long-term potentiation (LTP). Inhibiting the activity of AC1 by selective inhibitor NB001 blocks behavioral sensitization and injury-related anxiety in animal models of chronic pain. We propose that inhibiting injury-related LTPs will provide new mechanisms for designing novel medicines for the treatment of chronic pain and its related emotional disorders.
Collapse
Affiliation(s)
- Xu-Hui Li
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Qi-Yu Chen
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Min Zhuo
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| |
Collapse
|
12
|
Electroacupuncture Alleviates Pain-Related Emotion by Upregulating the Expression of NPS and Its Receptor NPSR in the Anterior Cingulate Cortex and Hypothalamus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8630368. [PMID: 32104195 PMCID: PMC7035524 DOI: 10.1155/2020/8630368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Objective Electroacupuncture (EA) is reported effective in alleviating pain-related emotion; however, the underlying mechanism of its effects still needs to be elucidated. The NPS-NPSR system has been validated for the involvement in the modulation of analgesia and emotional behavior. Here, we aimed to investigate the role of the NPS-NPSR system in the anterior cingulate cortex (ACC), hypothalamus, and central amygdala (CeA) in the use of EA to relieve affective pain modeled by complete Freund's adjuvant- (CFA-) evoked conditioned place aversion (C-CPA). Materials and Methods. CFA injection combined with a CPA paradigm was introduced to establish the C-CPA model, and the elevated O-maze (EOM) was used to test the behavioral changes after model establishment. We further explored the expression of NPS and NPSR at the protein and gene levels in the brain regions of interest by immunofluorescence staining and quantitative real-time PCR. Results We observed that EA stimulation delivered to the bilateral Zusanli (ST36) and Kunlun (BL60) acupoints remarkably inhibited sensory pain, pain-evoked place aversion, and anxiety-like behavior. The current study showed that EA significantly enhanced the protein expression of this peptide system in the ACC and hypothalamus, while the elevated expression of NPSR protein alone was just confined to the affected side in the CeA. Moreover, EA remarkably upregulated the mRNA expression of NPS in CeA, ACC, and hypothalamus and NPSR mRNA in the hypothalamus and CeA. Conclusions These data suggest the effectiveness of EA in alleviating affective pain, and these benefits may at least partially be attributable to the upregulation of the NPS-NPSR system in the ACC and hypothalamus.
Collapse
|
13
|
Adedara IA, Fasina OB, Ayeni MF, Ajayi OM, Farombi EO. Protocatechuic acid ameliorates neurobehavioral deficits via suppression of oxidative damage, inflammation, caspase-3 and acetylcholinesterase activities in diabetic rats. Food Chem Toxicol 2019; 125:170-181. [DOI: 10.1016/j.fct.2018.12.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 01/21/2023]
|
14
|
Yang Z, Tan Q, Cheng D, Zhang L, Zhang J, Gu EW, Fang W, Lu X, Liu X. The Changes of Intrinsic Excitability of Pyramidal Neurons in Anterior Cingulate Cortex in Neuropathic Pain. Front Cell Neurosci 2018; 12:436. [PMID: 30519160 PMCID: PMC6258991 DOI: 10.3389/fncel.2018.00436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
To find satisfactory treatment strategies for neuropathic pain syndromes, the cellular mechanisms should be illuminated. Central sensitization is a generator of pain hypersensitivity, and is mainly reflected in neuronal hyperexcitability in pain pathway. Neuronal excitability depends on two components, the synaptic inputs and the intrinsic excitability. Previous studies have focused on the synaptic plasticity in different forms of pain. But little is known about the changes of neuronal intrinsic excitability in neuropathic pain. To address this question, whole-cell patch clamp recordings were performed to study the synaptic transmission and neuronal intrinsic excitability 1 week after spared nerve injury (SNI) or sham operation in male C57BL/6J mice. We found increased spontaneous excitatory postsynaptic currents (sEPSC) frequency in layer II/III pyramidal neurons of anterior cingulate cortex (ACC) from mice with neuropathic pain. Elevated intrinsic excitability of these neurons after nerve injury was also picked up, which was reflected in gain of input-output curve, inter-spike interval (ISI), spike threshold and Refractory period (RP). Besides firing rate related to neuronal intrinsic excitability, spike timing also plays an important role in neural information processing. The precision of spike timing measured by standard deviation of spike timing (SDST) was decreased in neuropathic pain state. The electrophysiological studies revealed the elevated intrinsic excitation in layer II/III pyramidal neurons of ACC in mice with neuropathic pain, which might contribute to central excitation.
Collapse
Affiliation(s)
- Zhilai Yang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Qilian Tan
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Dan Cheng
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jiqian Zhang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Er-Wei Gu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Weiping Fang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xianfu Lu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Driessen AK, McGovern AE, Narula M, Yang SK, Keller JA, Farrell MJ, Mazzone SB. Central mechanisms of airway sensation and cough hypersensitivity. Pulm Pharmacol Ther 2017; 47:9-15. [DOI: 10.1016/j.pupt.2017.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
|
16
|
Zhuo M. Ionotropic glutamate receptors contribute to pain transmission and chronic pain. Neuropharmacology 2017; 112:228-234. [DOI: 10.1016/j.neuropharm.2016.08.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022]
|
17
|
Tsokas P, Hsieh C, Yao Y, Lesburguères E, Wallace EJC, Tcherepanov A, Jothianandan D, Hartley BR, Pan L, Rivard B, Farese RV, Sajan MP, Bergold PJ, Hernández AI, Cottrell JE, Shouval HZ, Fenton AA, Sacktor TC. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice. eLife 2016; 5. [PMID: 27187150 PMCID: PMC4869915 DOI: 10.7554/elife.14846] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/23/2016] [Indexed: 02/07/2023] Open
Abstract
PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice. DOI:http://dx.doi.org/10.7554/eLife.14846.001 How are long-term memories stored in the brain? The formation of memories is believed to depend on the strengthening of connections between neurons. During learning, neurons produce an enzyme called PKMzeta (or PKMζ), which is thought to be responsible for maintaining the newly strengthened connections. Inhibitors of PKMzeta, such as a drug called ZIP, disrupt long-term memories. This suggests that the brain may be like a computer hard disc in that its stored information — its memories — could be erased. However, recent experiments on genetically engineered mice have thrown the role of PKMzeta into question. Knockout mice that lack the gene for PKMzeta can still strengthen connections between neurons and can still learn and remember. Moreover, ZIP still works to reverse the strengthening and to erase long-term memories. This indicates that ZIP can act on something other than the PKMzeta enzyme. These results have led many neuroscientists to doubt that PKMzeta has anything to do with memory. Yet there are two possible explanations for the normal memory in PKMzeta knockout mice. First, PKMzeta is not required for memory, so getting rid of it has no effect. Second, PKMzeta is essential for long-term memory in normal mice. However, knockout mice recruit a back-up mechanism for long-term memory storage, which is also sensitive to the effects of ZIP. To test these possibilities, Tsokas et al. used a modified piece of DNA that prevents neurons with the gene for PKMzeta from producing the enzyme. The DNA blocked memory formation in normal mice, consistent with a role for PKMzeta in memory. However, it had no effect in knockout mice — the DNA had nothing to work on. This suggests that another molecule does indeed act as a back-up for PKMzeta in these animals. Further experiments revealed that an enzyme closely related to PKMzeta, called PKCiota/lambda (PKCι/λ), substitutes for PKMzeta during memory storage in the knockout mice. These findings restore PKMzeta to its early promise. They show that PKMzeta is crucial for long-term memory in normal mice, but that something as important as memory storage has a back-up mechanism should PKMzeta fail. Future work may reveal when and how this back-up becomes engaged. DOI:http://dx.doi.org/10.7554/eLife.14846.002
Collapse
Affiliation(s)
- Panayiotis Tsokas
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, United States.,Department of Anesthesiology, State University of New York Downstate Medical Center, Brooklyn, United States
| | - Changchi Hsieh
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, United States
| | - Yudong Yao
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, United States
| | | | - Emma Jane Claire Wallace
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, United States
| | - Andrew Tcherepanov
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, United States
| | - Desingarao Jothianandan
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, United States
| | - Benjamin Rush Hartley
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, United States
| | - Ling Pan
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, United States
| | - Bruno Rivard
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, United States
| | - Robert V Farese
- Department of Internal Medicine, James A Haley Veterans Hospital, University of South Florida, Tampa, United States
| | - Mini P Sajan
- Department of Internal Medicine, James A Haley Veterans Hospital, University of South Florida, Tampa, United States
| | - Peter John Bergold
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, United States
| | - Alejandro Iván Hernández
- Department of Pathology, State University of New York Downstate Medical Center, Brooklyn, United States
| | - James E Cottrell
- Department of Anesthesiology, State University of New York Downstate Medical Center, Brooklyn, United States
| | - Harel Z Shouval
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, United States
| | - André Antonio Fenton
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, United States.,Center for Neural Science, New York University, New York, United States
| | - Todd Charlton Sacktor
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, United States.,Department of Anesthesiology, State University of New York Downstate Medical Center, Brooklyn, United States.,Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, United States
| |
Collapse
|
18
|
Russo JF, Sheth SA. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain. Neurosurg Focus 2016; 38:E11. [PMID: 26030699 DOI: 10.3171/2015.3.focus1543] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.
Collapse
Affiliation(s)
- Jennifer F Russo
- 1Columbia University College of Physicians and Surgeons and.,2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Sameer A Sheth
- 2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
19
|
Rocher AB, Gubellini P, Merienne N, Boussicault L, Petit F, Gipchtein P, Jan C, Hantraye P, Brouillet E, Bonvento G. Synaptic scaling up in medium spiny neurons of aged BACHD mice: A slow-progression model of Huntington's disease. Neurobiol Dis 2016; 86:131-9. [DOI: 10.1016/j.nbd.2015.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/24/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022] Open
|
20
|
Yu J, Ding CP, Wang J, Wang T, Zhang T, Zeng XY, Wang JY. Red nucleus glutamate facilitates neuropathic allodynia induced by spared nerve injury through non-NMDA and metabotropic glutamate receptors. J Neurosci Res 2015; 93:1839-48. [DOI: 10.1002/jnr.23671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Jing Yu
- Department of Immunology and Pathogenic Biology; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
| | - Cui-Ping Ding
- Department of Immunology and Pathogenic Biology; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
| | - Jing Wang
- Department of Immunology and Pathogenic Biology; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
| | - Ting Wang
- Department of Immunology and Pathogenic Biology; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
- Department of Nuclear Medicine; Ankang City Center Hospital; Ankang Shaanxi People's Republic of China
| | - Tao Zhang
- Department of Immunology and Pathogenic Biology; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
- Department of Nuclear Medicine; Ankang City Center Hospital; Ankang Shaanxi People's Republic of China
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
| | - Jun-Yang Wang
- Department of Immunology and Pathogenic Biology; Xi'an Jiaotong University Health Science Center; Xi'an Shaanxi People's Republic of China
| |
Collapse
|
21
|
Lowén MBO, Mayer E, Tillisch K, Labus J, Naliboff B, Lundberg P, Thorell LH, Ström M, Engström M, Walter S. Deficient habituation to repeated rectal distensions in irritable bowel syndrome patients with visceral hypersensitivity. Neurogastroenterol Motil 2015; 27:646-55. [PMID: 25777251 DOI: 10.1111/nmo.12537] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/03/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) patients show evidence of altered central processing of visceral signals. One of the proposed alterations in sensory processing is an altered engagement of endogenous pain modulation mechanisms. The aim was to test the hypothesis that IBS patients with (IBS-S) and without visceral hypersensitivity (IBS-N) differ in their ability to engage endogenous pain modulation mechanism during habituation to repeated visceral stimuli. METHODS Brain blood oxygen level dependent (BOLD) response was measured during repeated rectal distension and its anticipation in 33 IBS patients with and without visceral hypersensitivity and 18 healthy controls (HCs). BOLD response to early and late phase of the distension series was compared within and between groups. KEY RESULTS While BOLD response was similar during the early phase of the experiment, IBS-S showed greater BOLD response than IBS-N and HCs during the late phase of the distension series. IBS-S showed increasing BOLD response both to the anticipation and delivery of low intensity rectal distensions in brain regions including insula, anterior and mid cingulate cortex. IBS-N showed decreasing BOLD response to repeated rectal distensions in brain regions including insula, prefrontal cortex and amygdala. CONCLUSIONS & INFERENCES These findings are consistent with compromised ability of IBS-S to respond to repeated delivery of rectal stimuli, both in terms of sensitization of sensory pathways and habituation of emotional arousal. The fact that both IBS subgroups met Rome criteria, and did not differ in terms of reported symptom severity demonstrates that similar symptom patterns can result from different underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- M B O Lowén
- Department of Gastroenterology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schreiber AK, Nones CFM, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6:432-444. [PMID: 25897354 PMCID: PMC4398900 DOI: 10.4239/wjd.v6.i3.432] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/26/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Diabetic neuropathy is a common complication of both type 1 and type 2 diabetes, which affects over 90% of the diabetic patients. Although pain is one of the main symptoms of diabetic neuropathy, its pathophysiological mechanisms are not yet fully known. It is widely accepted that the toxic effects of hyperglycemia play an important role in the development of this complication, but several other hypotheses have been postulated. The management of diabetic neuropathic pain consists basically in excluding other causes of painful peripheral neuropathy, improving glycemic control as a prophylactic therapy and using medications to alleviate pain. First line drugs for pain relief include anticonvulsants, such as pregabalin and gabapentin and antidepressants, especially those that act to inhibit the reuptake of serotonin and noradrenaline. In addition, there is experimental and clinical evidence that opioids can be helpful in pain control, mainly if associated with first line drugs. Other agents, including for topical application, such as capsaicin cream and lidocaine patches, have also been proposed to be useful as adjuvants in the control of diabetic neuropathic pain, but the clinical evidence is insufficient to support their use. In conclusion, a better understanding of the mechanisms underlying diabetic neuropathic pain will contribute to the search of new therapies, but also to the improvement of the guidelines to optimize pain control with the drugs currently available.
Collapse
|
23
|
Hubbard CS, Khan SA, Xu S, Cha M, Masri R, Seminowicz DA. Behavioral, metabolic and functional brain changes in a rat model of chronic neuropathic pain: a longitudinal MRI study. Neuroimage 2014; 107:333-344. [PMID: 25524649 DOI: 10.1016/j.neuroimage.2014.12.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/31/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023] Open
Abstract
Peripheral neuropathy often manifests clinically with symptoms of mechanical and cold allodynia. However, the neuroplastic changes associated with peripheral neuropathic pain and the onset and progression of allodynic symptoms remain unclear. Here, we used a chronic neuropathic pain model (spared nerve injury; SNI) to examine functional and metabolic brain changes associated with the development and maintenance of mechanical and cold hypersensitivity, the latter which we assessed both behaviorally and during a novel acetone application paradigm using functional MRI (fMRI). Female Sprague-Dawley rats underwent SNI (n=7) or sham (n=5) surgery to the left hindpaw. Rats were anesthetized and scanned using a 7 T MRI scanner 1 week prior to (pre-injury) and 4 (early/subchronic) and 20 weeks (late/chronic) post-injury. Functional scans were acquired during acetone application to the left hindpaw. (1)H magnetic resonance spectroscopy was also performed to assess SNI-induced metabolic changes in the anterior cingulate cortex (ACC) pre- and 4 weeks post-injury. Mechanical and cold sensitivity, as well as anxiety-like behaviors, were assessed 2 weeks pre-injury, and 2, 5, 9, 14, and 19 weeks post-injury. Stimulus-evoked brain responses (acetone application to the left hindpaw) were analyzed across the pre- and post-injury time points. In response to acetone application during fMRI, SNI rats showed widespread and functionally diverse changes within pain-related brain regions including somatosensory and cingulate cortices and subcortically within the thalamus and the periaqueductal gray. These functional brain changes temporally coincided with early and sustained increases in both mechanical and cold sensitivity. SNI rats also showed increased glutamate within the ACC that correlated with behavioral measures of cold hypersensitivity. Together, our findings suggest that extensive functional reorganization within pain-related brain regions may underlie the development and chronification of allodynic-like behaviors.
Collapse
Affiliation(s)
- Catherine S Hubbard
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, USA
| | - Shariq A Khan
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Core for Translational Research in Imaging @ Maryland, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Myeounghoon Cha
- Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland School of Dentistry, USA
| | - Radi Masri
- Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland School of Dentistry, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
24
|
Lin HC, Huang YH, Chao THH, Lin WY, Sun WZ, Yen CT. Gabapentin reverses central hypersensitivity and suppresses medial prefrontal cortical glucose metabolism in rats with neuropathic pain. Mol Pain 2014; 10:63. [PMID: 25253440 PMCID: PMC4182821 DOI: 10.1186/1744-8069-10-63] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/10/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gabapentin (GBP) is known to suppress neuropathic hypersensitivity of primary afferents and the spinal cord dorsal horn. However, its supra-spinal action sites are unclear. We identify the brain regions where GBP changes the brain glucose metabolic rate at the effective dose that alleviates mechanical allodynia using 18 F-fluorodeoxyglucose-positron emission tomography (FDG-PET) scanning. RESULTS Comparing the PET imaging data before and after the GBP treatment, the spared nerve injury-induced increases of glucose metabolism in the thalamus and cerebellar vermis were reversed, and a significant decrease occurred in glucose metabolism in the medial prefrontal cortex (mPFC), including the anterior cingulate cortex. GBP treatment also reversed post-SNI connectivity increases between limbic cortices and thalamus. CONCLUSIONS Our results indicate that GBP analgesic effect may be mediated by reversing central hypersensitivity, and suppressing mPFC, a crucial part of the cortical representation of pain, in the brain.
Collapse
Affiliation(s)
- Hsiao-Chun Lin
- />Department of Life Science, National Taiwan University, No 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan
| | - Yu-Hsin Huang
- />Department of Anesthesiology, National Taiwan University Hospital, Taipei, 10002 Taiwan
| | - Tzu-Hao Harry Chao
- />Department of Life Science, National Taiwan University, No 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan
| | - Wen-Ying Lin
- />Department of Life Science, National Taiwan University, No 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan
- />Department of Anesthesiology, National Taiwan University Hospital, Taipei, 10002 Taiwan
| | - Wei-Zen Sun
- />Department of Anesthesiology, National Taiwan University Hospital, Taipei, 10002 Taiwan
| | - Chen-Tung Yen
- />Department of Life Science, National Taiwan University, No 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan
| |
Collapse
|