1
|
Yin H, Shan Y, Zhu Q, Yuan L, Ju F, Shi Y, Han Y, Wu R, Xia T, Zhang K, You Y, You B. Improved VPS4B O-GlcNAc modification triggers lipid droplets transferring from adipocytes to nasopharyngeal carcinoma cells. Cancer Metab 2025; 13:24. [PMID: 40410860 PMCID: PMC12100974 DOI: 10.1186/s40170-025-00393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 05/05/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND The tumor microenvironment (TME) supplies critical metabolites that support cancer cell survival and progression. Adipocytes support tumor progression by secreting free fatty acids (FFAs) and adipokines; however, the role and mechanisms underlying lipid droplet (LD) release from adipocytes remain elusive. METHODS Using two nasopharyngeal carcinoma (NPC) cell lines and primary human pre-adipocytes (HPA), we evaluate the effect of LDs on cell growth, proliferation, colony formation, and migration. We also assess the roles of LD on the tumor progression in vivo. Using RNA-seq analysis, we elucidate the effect of hypoxic NPC cell-derived exosomes (H-exo) on the gene expression profile of adipocytes. By co-culture system, we investigated the effect of vacuolar protein sorting 4 homolog B (VPS4B)-annexin A5 (ANXA5) interaction on adipocyte LD maturity and release. RESULTS Herein, we report that LDs, rather than FFAs, are the primary lipid form transferred from adipocytes to NPC cells, enhancing cancer progression. NPC cells internalize LDs directly via macropinocytosis, while H-exo induces oxidative stress and membrane fluidity in adipocytes, leading to LD release. Transcriptomic and proteomic analyses reveal that VPS4B triggers LD release by interacting with ANXA5, and low LKB1 in H-exo enhances VPS4B O-linked N-acetylglucosamine (O-GlcNAc) modification through the inhibition of serine/threonine kinase 11 (STK11/LKB1)-AMP-activated protein kinase (AMPK) pathway and activation of the hexosamine biosynthesis pathway (HBP) flux. CONCLUSIONS This study uncovers critical mechanisms of LD transfer in the TME, suggesting new therapeutic avenues in NPC.
Collapse
Affiliation(s)
- Haimeng Yin
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ying Shan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qin Zhu
- Operating Room, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ling Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Feng Ju
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yu Shi
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yumo Han
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rui Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Tian Xia
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Kaiwen Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Wu CJ, Liu H, Tu LJ, Hu JY. Peroxisome proliferator-activated receptor gamma mutation in familial partial lipodystrophy type three: A case report and review of literature. World J Diabetes 2024; 15:2360-2369. [PMID: 39676812 PMCID: PMC11580599 DOI: 10.4239/wjd.v15.i12.2360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/22/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Familial partial lipodystrophy disease (FPLD) is a collection of rare genetic diseases featuring partial loss of adipose tissue. However, metabolic difficulties, such as severe insulin resistance, diabetes, hypertriglyceridemia, and hypertension frequently occur alongside adipose tissue loss, making it susceptible to misdiagnosis and delaying effective treatment. Numerous genes are implicated in the occurrence of FPLD, and genetic testing has been for conditions linked to single gene mutation related to FPLD. Reviewing recent reports, treatment of the disease is limited to preventing and improving complications in patients. CASE SUMMARY In 2017, a 31-year-old woman with diabetes, hypertension and hypertriglyceridemia was hospitalized. We identified a mutation in her peroxisome proliferator-activated receptor gamma (PPARG) gene, Y151C (p.Tyr151Cys), which results in a nucleotide substitution residue 452 in the DNA-binding domain (DBD) of PPARG. The unaffected family member did not carry this mutation. Pioglitazone, a PPARG agonist, improved the patient's responsiveness to hypoglycemic and antihypertensive therapy. After one year of treatment in our hospital, the fasting blood glucose and glycosylated hemoglobin of the patient were close to normal. CONCLUSION We report a rare PPARG mutation, Y151C, which is located in the DBD of PPARG and leads to FPLD, and the preferred agent is PPARG agonists. We then summarized clinical phenotypic characteristics of FPLD3 caused by PPARG gene mutations, and clarified the relationship between different mutations of PPARG gene and the clinical manifestations of this type of FPLD. Additionally, current treatments for FPLD caused by PPARG mutations are reviewed.
Collapse
Affiliation(s)
- Chao-Jun Wu
- Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Hao Liu
- Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Li-Juan Tu
- Department of Endocrinology, Rare Disease Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Jiong-Yu Hu
- Department of Endocrinology, Rare Disease Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| |
Collapse
|
3
|
Rayl ML, Nemetchek MD, Voss AH, Hughes TS. Agonists of the Nuclear Receptor PPARγ Can Produce Biased Signaling. Mol Pharmacol 2024; 106:309-318. [PMID: 39443155 PMCID: PMC11585255 DOI: 10.1124/molpharm.124.000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Biased signaling and ligand bias, often termed functional selectivity or selective nuclear receptor modulation, have been reported for nuclear receptor partial agonists over the past 20 years. Whether signaling differences produced by partial agonists result from less intense modulation, off-target effects, or biased signaling remains unclear. A commonly postulated mechanism for biased signaling is coactivator favoritism, where agonists induce different coactivator recruitment profiles. We find that both GW1929 (full agonist) and MRL24 (partial agonist) favor recruitment of 100 to 300 residue regions from S-motif coactivators compared with a reference full agonist (rosiglitazone), yielding 95% bias value confidence intervals of 0.05-0.17 and 0.29-0.38, respectively. Calculations based on these data indicate that GW1929 and MRL24 would induce 30% to 60% higher S-motif coactivator occupancy at the receptor compared with rosiglitazone. We compare the transcriptional effects of these same three ligands on human adipocytes using RNA sequencing and exploratory Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Only 50% (rosiglitazone) and 77% (GW1929) of all gene expression changes are shared between these full agonists after 3 hours of exposure. After 24 hours of exposure, 13/98 KEGG pathways appear more intensely modulated by rosiglitazone than GW1929 (e.g., 95% confidence interval of bias in the regulation of lipolysis in adipocytes pathway is 0.03-0.09), despite similar signaling for the remaining 85 affected pathways. Similarly, rosiglitazone has an unusually large effect on several lipid metabolism-related pathways compared with the partial agonist MRL24. These data indicate that nuclear receptor full and partial agonists can induce biased signaling, likely through differences in coactivator recruitment. SIGNIFICANCE STATEMENT: Many nuclear receptor partial agonists cause fewer adverse effects and similar efficacy compared with full agonists, potentially by inducing biased agonism. Our data support the idea that partial agonists, and a full agonist, of the nuclear receptor Peroxisome proliferator-activated receptor gamma (PPARγ) are biased agonists, causing different signaling by inducing PPARγ to favor different coactivators. These data indicate that biased agonism can occur in nuclear receptors and should be considered in efforts to develop improved nuclear receptor-targeted drugs.
Collapse
Affiliation(s)
- Mariah L Rayl
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| | - Michelle D Nemetchek
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| | - Andrew H Voss
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| | - Travis S Hughes
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| |
Collapse
|
4
|
Soares RMV, da Silva MA, Campos JTADM, Lima JG. Familial partial lipodystrophy resulting from loss-of-function PPARγ pathogenic variants: phenotypic, clinical, and genetic features. Front Endocrinol (Lausanne) 2024; 15:1394102. [PMID: 39398333 PMCID: PMC11466747 DOI: 10.3389/fendo.2024.1394102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
The PPARG gene encodes a member of a nuclear receptor superfamily known as peroxisome proliferator-activated gamma (PPARγ). PPARγ plays an essential role in adipogenesis, stimulating the differentiation of preadipocytes into adipocytes. Loss-of-function pathogenic variants in PPARG reduce the activity of the PPARγ receptor and can lead to severe metabolic consequences associated with familial partial lipodystrophy type 3 (FPLD3). This review focuses on recent scientific data related to FPLD3, including the role of PPARγ in adipose tissue metabolism and the phenotypic and clinical consequences of loss-of-function variants in the PPARG gene. The clinical features of 41 PPARG pathogenic variants associated with FPLD3 patients were reviewed, highlighting the genetic and clinical heterogeneity observed among 91 patients. Most of them were female, and the average age at the onset and diagnosis of lipoatrophy was 21 years and 33 years, respectively. Considering the metabolic profile, hypertriglyceridemia (91.9% of cases), diabetes (77%), hypertension (59.5%), polycystic ovary syndrome (58.2% of women), and metabolic-dysfunction-associated fatty liver disease (87,5%). We also discuss the current treatment for FPLD3. This review provides new data concerning the genetic and clinical heterogeneity in FPLD3 and highlights the importance of further understanding the genetics of this rare disease.
Collapse
Affiliation(s)
- Reivla Marques Vasconcelos Soares
- Department of Clinical Medicine, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Monique Alvares da Silva
- Molecular Biology and Genomics Laboratory, Federal University of Rio Grande do Norte
(UFRN), Natal, RN, Brazil
| | - Julliane Tamara Araújo de Melo Campos
- Molecular Biology and Genomics Laboratory, Federal University of Rio Grande do Norte
(UFRN), Natal, RN, Brazil
- Department of Morphology (DMOR), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Josivan Gomes Lima
- Department of Clinical Medicine, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
5
|
da Silva MA, Soares RMV, de Oliveira Filho AF, Campos LRS, de Lima JG, de Melo Campos JTA. Case report: two novel PPARG pathogenic variants associated with type 3 familial partial lipodystrophy in Brazil. Diabetol Metab Syndr 2024; 16:145. [PMID: 38951919 PMCID: PMC11218129 DOI: 10.1186/s13098-024-01387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
INTRODUCTION AND AIM Type 3 Familial Partial Lipodystrophy (FPLD3) is a rare metabolic disease related to pathogenic PPARG gene variants. FPLD3 is characterized by a loss of fatty tissue in the upper and lower limbs, hips, and face. FPLD3 pathophysiology is usually associated with metabolic comorbidities such as type 2 diabetes, insulin resistance, hypertriglyceridemia, and liver dysfunction. Here, we clinically and molecularly characterized FPLD3 patients harboring novel PPARG pathogenic variants. MATERIALS AND METHODS Lipodystrophy-suspected patients were recruited by clinicians from an Endocrinology Reference Center. Clinical evaluation was performed, biological samples were collected for biochemical analysis, and DNA sequencing was performed to define the pathogenic variants associated with the lipodystrophic phenotype found in our clinically diagnosed FPLD subjects. Bioinformatics predictions were conducted to characterize the novel mutated PPARγ proteins. RESULTS We clinically described FPLD patients harboring two novel heterozygous PPARG variants in Brazil. Case 1 had the c.533T > C variant, which promotes the substitution of leucine to proline in position 178 (p.Leu178Pro), and cases 2 and 3 had the c.641 C > T variant, which results in the substitution of proline to leucine in the position 214 (p.Pro214Leu) at the PPARγ2 protein. These variants result in substantial conformational changes in the PPARγ2 protein. CONCLUSION Two novel PPARG pathogenic variants related to FPLD3 were identified in a Brazilian FPLD cohort. These data will provide new epidemiologic data concerning FPLD3 and help understand the genotype-phenotype relationships related to the PPARG gene.
Collapse
Affiliation(s)
- Monique Alvares da Silva
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Campus Universitário, Lagoa Nova, Natal, RN, 59072-970, Brazil
| | - Reivla Marques Vasconcelos Soares
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | | | - Leonardo René Santos Campos
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Josivan Gomes de Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Julliane Tamara Araújo de Melo Campos
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Campus Universitário, Lagoa Nova, Natal, RN, 59072-970, Brazil.
| |
Collapse
|
6
|
Dube N, Khan SH, Sasse R, Okafor CD. Identification of an Evolutionarily Conserved Allosteric Network in Steroid Receptors. J Chem Inf Model 2023; 63:571-582. [PMID: 36594606 PMCID: PMC9875803 DOI: 10.1021/acs.jcim.2c01096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/04/2023]
Abstract
Allosteric pathways in proteins describe networks comprising amino acid residues which may facilitate the propagation of signals between distant sites. Through inter-residue interactions, dynamic and conformational changes can be transmitted from the site of perturbation to an allosteric site. While sophisticated computational methods have been developed to characterize such allosteric pathways linking specific sites on proteins, few attempts have been made to apply these approaches toward identifying new allosteric sites. Here, we use molecular dynamics simulations and suboptimal path analysis to discover new allosteric networks in steroid receptors with a focus on evolutionarily conserved pathways. Using modern receptors and a reconstructed ancestral receptor, we identify networks connecting several sites to the activation function surface 2 (AF-2), the site of coregulator recruitment. One of these networks is conserved across the entire family, connecting a predicted allosteric site located between helices 9 and 10 of the ligand-binding domain. We investigate the basis of this conserved network as well as the importance of this site, discovering that the site lies in a region of the ligand-binding domain characterized by conserved inter-residue contacts. This study suggests an evolutionarily importance of the helix 9-helix 10 site in steroid receptors and identifies an approach that may be applied to discover previously unknown allosteric sites in proteins.
Collapse
Affiliation(s)
- Namita Dube
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
| | - Sabab Hasan Khan
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
| | - Riley Sasse
- Department
of Chemistry, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - C. Denise Okafor
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
- Department
of Chemistry, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Abstract
Efforts to decrease the adverse effects of nuclear receptor (NR) drugs have yielded experimental agonists that produce better outcomes in mice. Some of these agonists have been shown to cause different, not just less intense, on-target transcriptomic effects; however, a structural explanation for such agonist-specific effects remains unknown. Here, we show that partial agonists of the NR peroxisome proliferator-associated receptor γ (PPARγ), which induce better outcomes in mice compared to clinically utilized type II diabetes PPARγ-binding drugs thiazolidinediones (TZDs), also favor a different group of coactivator peptides than the TZDs. We find that PPARγ full agonists can also be biased relative to each other in terms of coactivator peptide binding. We find differences in coactivator-PPARγ bonding between the coactivator subgroups which allow agonists to favor one group of coactivator peptides over another, including differential bonding to a C-terminal residue of helix 4. Analysis of all available NR-coactivator structures indicates that such differential helix 4 bonding persists across other NR-coactivator complexes, providing a general structural mechanism of biased agonism for many NRs. Further work will be necessary to determine if such bias translates into altered coactivator occupancy and physiology in cells.
Collapse
|
8
|
PPARγ lipodystrophy mutants reveal intermolecular interactions required for enhancer activation. Nat Commun 2022; 13:7090. [PMID: 36402763 PMCID: PMC9675755 DOI: 10.1038/s41467-022-34766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipocyte differentiation, and mutations that interfere with its function cause lipodystrophy. PPARγ is a highly modular protein, and structural studies indicate that PPARγ domains engage in several intra- and inter-molecular interactions. How these interactions modulate PPARγ's ability to activate target genes in a cellular context is currently poorly understood. Here we take advantage of two previously uncharacterized lipodystrophy mutations, R212Q and E379K, that are predicted to interfere with the interaction of the hinge of PPARγ with DNA and with the interaction of PPARγ ligand binding domain (LBD) with the DNA-binding domain (DBD) of the retinoid X receptor, respectively. Using biochemical and genome-wide approaches we show that these mutations impair PPARγ function on an overlapping subset of target enhancers. The hinge region-DNA interaction appears mostly important for binding and remodelling of target enhancers in inaccessible chromatin, whereas the PPARγ-LBD:RXR-DBD interface stabilizes the PPARγ:RXR:DNA ternary complex. Our data demonstrate how in-depth analyses of lipodystrophy mutants can unravel molecular mechanisms of PPARγ function.
Collapse
|
9
|
Chen X, Ma Z, Chen P, Song X, Li W, Yu X, Xie J. Case Report: A New Peroxisome Proliferator-Activated Receptor Gamma Mutation Causes Familial Partial Lipodystrophy Type 3 in a Chinese Patient. Front Endocrinol (Lausanne) 2022; 13:830708. [PMID: 35422762 PMCID: PMC9001891 DOI: 10.3389/fendo.2022.830708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Familial partial lipodystrophy type 3 (FPLD3) is an autosomal dominant disease. Patients typically present with loss of adipose tissue and metabolic complications. Here, we reported a Chinese FPLD3 patient with a novel PPARG gene mutation. METHODS A 16-year-old female patient and her relatives were assessed by detailed clinical and biochemical examinations. Sequencing was performed by using the extracted DNA. Moreover, we identified FPLD3 patients from previous studies, and according to the protein region affected by the gene mutation. We divided the patients into the DNA-binding domain (DBD) group or the ligand-binding domain (LBD) group, and compared the clinical features between the two groups. RESULTS We identified a novel gene mutation affecting the LBD of PPARγ c.929T > C (p.F310S). This mutation leads to the substitution of a phenylalanine by a serine. In our case, subcutaneous fat was significantly diminished in her face, hips and limbs. The patient was also presented with insulin resistance, diabetes mellitus, hypertriglyceridemia, fatty liver, liver dysfunction, albuminuria and diabetic peripheral neuropathy. After literature review, a total of 58 FPLD3 patients were identified and we found no difference in clinical features between the DBD group and LBD group (all P > 0.05). CONCLUSIONS A Chinese FPLD3 patient with a novel PPARG gene mutation is described. Our case emphasized the importance of physical examination and genetic testing in young patients with severe metabolic syndromes.
Collapse
Affiliation(s)
- Xi Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Internal Medicine, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Zhiqiang Ma
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Chen
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| | - Xiuli Song
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| | - Weihua Li
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Internal Medicine, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Junhui Xie
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Internal Medicine, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
- *Correspondence: Junhui Xie,
| |
Collapse
|
10
|
Liu C, Zhang W, Xing W, Li H, Si T, Mu H. RETRACTED: MicroRNA-498 disturbs the occurrence and aggression of colon cancer through targeting MDM2 to mediate PPARγ ubiquitination. Life Sci 2021; 277:119225. [PMID: 33617858 DOI: 10.1016/j.lfs.2021.119225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/30/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of this article that shares several characteristics with other articles in the eyebrow family of publications, tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). In addition, Fig. 5A appears to show a digital composition of xenografted tumors. The journal requested the corresponding author comment on these concerns and provide the raw data. However the authors were not able to satisfactorily fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Changfu Liu
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weihao Zhang
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenge Xing
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Huikai Li
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Hepatobiliary Surgery, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tongguo Si
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Han Mu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Hepatobiliary Surgery, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
11
|
Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Front Endocrinol (Lausanne) 2021; 12:624112. [PMID: 33716977 PMCID: PMC7953066 DOI: 10.3389/fendo.2021.624112] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is one of the most extensively studied ligand-inducible transcription factors. Since its identification in the early 1990s, PPARγ is best known for its critical role in adipocyte differentiation, maintenance, and function. Emerging evidence indicates that PPARγ is also important for the maturation and function of various immune system-related cell types, such as monocytes/macrophages, dendritic cells, and lymphocytes. Furthermore, PPARγ controls cell proliferation in various other tissues and organs, including colon, breast, prostate, and bladder, and dysregulation of PPARγ signaling is linked to tumor development in these organs. Recent studies have shed new light on PPARγ (dys)function in these three biological settings, showing unified and diverse mechanisms of action. Classical transactivation-where PPARγ activates genes upon binding to PPAR response elements as a heterodimer with RXRα-is important in all three settings, as underscored by natural loss-of-function mutations in FPLD3 and loss- and gain-of-function mutations in tumors. Transrepression-where PPARγ alters gene expression independent of DNA binding-is particularly relevant in immune cells. Interestingly, gene translocations resulting in fusion of PPARγ with other gene products, which are unique to specific carcinomas, present a third mode of action, as they potentially alter PPARγ's target gene profile. Improved understanding of the molecular mechanism underlying PPARγ activity in the complex regulatory networks in metabolism, cancer, and inflammation may help to define novel potential therapeutic strategies for prevention and treatment of obesity, diabetes, or cancer.
Collapse
Affiliation(s)
- Miguel Hernandez-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marjoleine F. Broekema
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Eric Kalkhoven,
| |
Collapse
|
12
|
Differential Effects of Cancer-Associated Mutations Enriched in Helix H3 of PPARγ. Cancers (Basel) 2020; 12:cancers12123580. [PMID: 33266062 PMCID: PMC7761077 DOI: 10.3390/cancers12123580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been revealed to regulate tumor microenvironments. In particular, genetic alterations of PPARγ found in various cancers have been reported to play important roles in tumorigenesis by affecting PPARγ transactivation. In this study, we found that helix H3 of the PPARγ ligand-binding domain (LBD) has a number of sites that are mutated in cancers. To uncover underlying molecular mechanisms between helix H3 mutations and tumorigenesis, we performed structure‒function studies on the PPARγ LBDs containing helix H3 mutations found in cancers. Interestingly, PPARγ Q286E found in bladder cancer induces a constitutively active conformation of PPARγ LBD and thus abnormal activation of PPARγ/RXRα pathway, which suggests tumorigenic roles of PPARγ in bladder cancer. In contrast, other helix H3 mutations found in various cancers impair ligand binding essential for transcriptional activity of PPARγ. These data indicate that cancer-associated mutations clustered in helix H3 of PPARγ LBD exhibit differential effects in PPARγ-mediated tumorigenesis and provide a basis for the development of new biomarkers targeting tumor microenvironments.
Collapse
|
13
|
Shoaito H, Chauveau S, Gosseaume C, Bourguet W, Vigouroux C, Vatier C, Pienkowski C, Fournier T, Degrelle SA. Peroxisome proliferator-activated receptor gamma-ligand-binding domain mutations associated with familial partial lipodystrophy type 3 disrupt human trophoblast fusion and fibroblast migration. J Cell Mol Med 2020; 24:7660-7669. [PMID: 32519441 PMCID: PMC7339198 DOI: 10.1111/jcmm.15401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
The transcription factor peroxisome proliferator‐activated receptor gamma (PPARG) is essential for placental development, and alterations in its expression and/or activity are associated with human placental pathologies such as pre‐eclampsia or IUGR. However, the molecular regulation of PPARG in cytotrophoblast differentiation and in the underlying mesenchyme remains poorly understood. Our main goal was to study the impact of mutations in the ligand‐binding domain (LBD) of the PPARG gene on cytotrophoblast fusion (PPARGE352Q) and on fibroblast cell migration (PPARGR262G/PPARGL319X). Our results showed that, compared to cells with reconstituted PPARGWT, transfection with PPARGE352Q led to significantly lower PPARG activity and lower restoration of trophoblast fusion. Likewise, compared to PPARGWT fibroblasts, PPARGR262G/PPARGL319X fibroblasts demonstrated significantly inhibited cell migration. In conclusion, we report that single missense or nonsense mutations in the LBD of PPARG significantly inhibit cell fusion and migration processes.
Collapse
Affiliation(s)
- Hussein Shoaito
- INSERM, UMR-S1139 (3PHM), Université de Paris, Paris, France
| | - Sabine Chauveau
- INSERM, UMR-S1139 (3PHM), Université de Paris, Paris, France.,Laboratoire ICARE, Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Camille Gosseaume
- Inserm UMR-S938, Department of Endocrinology, Diabetology and Reproductive Endocrinology, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition (ICAN), AP-HP, Saint-Antoine Hospital, National Reference Centre of Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Sorbonne Université, Paris, France
| | - William Bourguet
- INSERM, CNRS, Centre de Biochimie Structurale (CBS), Université de Montpellier, Montpellier, France
| | - Corinne Vigouroux
- Inserm UMR-S938, Department of Endocrinology, Diabetology and Reproductive Endocrinology, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition (ICAN), AP-HP, Saint-Antoine Hospital, National Reference Centre of Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Sorbonne Université, Paris, France.,Department of Molecular Biology and Genetics, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Camille Vatier
- Inserm UMR-S938, Department of Endocrinology, Diabetology and Reproductive Endocrinology, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition (ICAN), AP-HP, Saint-Antoine Hospital, National Reference Centre of Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Sorbonne Université, Paris, France
| | - Catherine Pienkowski
- Endocrinology Unit, Reference Centre for Rare Gynecologic Diseases, Toulouse, France
| | - Thierry Fournier
- INSERM, UMR-S1139 (3PHM), Université de Paris, Paris, France.,PremUp Foundation, Paris, France
| | - Séverine A Degrelle
- INSERM, UMR-S1139 (3PHM), Université de Paris, Paris, France.,PremUp Foundation, Paris, France.,Inovarion, Paris, France
| |
Collapse
|
14
|
Abstract
Lipodystrophies are the result of a range of inherited and acquired causes, but all are characterized by perturbations in white adipose tissue function and, in many instances, its mass or distribution. Though patients are often nonobese, they typically manifest a severe form of the metabolic syndrome, highlighting the importance of white fat in the "safe" storage of surplus energy. Understanding the molecular pathophysiology of congenital lipodystrophies has yielded useful insights into the biology of adipocytes and informed therapeutic strategies. More recently, genome-wide association studies focused on insulin resistance have linked common variants to genes implicated in adipose biology and suggested that subtle forms of lipodystrophy contribute to cardiometabolic disease risk at a population level. These observations underpin the use of aligned treatment strategies in insulin-resistant obese and lipodystrophic patients, the major goal being to alleviate the energetic burden on adipose tissue.
Collapse
|