1
|
Zhu L, Zhou S, Huang L, Wang X, Huang Y, Yu J, Wang Z. Paternal bisphenol A exposure alters craniofacial cartilage development in rare minnow (Gobiocypris rarus) descendants. J Environ Sci (China) 2025; 154:691-702. [PMID: 40049908 DOI: 10.1016/j.jes.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 05/13/2025]
Abstract
Bisphenol A (BPA) is a recognized estrogenic endocrine disruptor that poses a threat to the reproductive health of fish. However, it remains unclear whether and how paternal BPA exposure can lead to developmental toxicity in offspring. To explore the potential paternal BPA exposure impacts on craniofacial cartilage growth in offspring, male rare minnows were subjected to BPA and subsequently mated with normal females to produce progeny. Our results demonstrated that paternal BPA exposure resulted in increased malformation and delayed craniofacial cartilage development in the F1 offspring. Furthermore, BPA exposure led to differential expression of 28 miRNAs in paternal sperm in F0 generation (13 upregulated and 15 downregulated), among which 7 miRNAs were involved in the regulation of bone development. BPA also downregulated the expression of bmp2a and Runx1 during F1 embryonic development. The inhibited bmp2a expression might derive from BPA's stimulation of one miRNA, aca-miR-16a-5P, due to bmp2a being one of its target genes. Notably, paternal BPA exposure did not affect craniofacial cartilage development or gonadal development in the F2 generation. Overall, our study sheds light on the molecular mechanisms underlying the impact of paternal BPA exposure on facial chondrogenesis in offspring and provides theoretical support for the ecological protection of fish populations.
Collapse
Affiliation(s)
- Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Shangjie Zhou
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Li Huang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xiaotian Wang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yutong Huang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Jiachen Yu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Rossi A, Chen ZH, Ahmadiankalati M, Campisi SC, Reyna ME, Dempsey K, Jenkins D, O'Connor D, El-Sohemy A, Mandhane PJ, Simons E, Turvey SE, Moraes TJ, Lu Z, Subbarao P, Miliku K. Determining the interplay of prenatal parental BMI in shaping child BMI trajectories: the CHILD Cohort Study. Int J Obes (Lond) 2025:10.1038/s41366-025-01792-8. [PMID: 40355590 DOI: 10.1038/s41366-025-01792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Obesity is a major public health concern affecting millions of people globally. Early identification of individuals susceptible to obesity is crucial for reducing the burden of obesity. Obesity is often defined based on body-mass-index (BMI), and tracking BMI trajectories from early childhood offers a valuable tool for risk stratification. Although the role of mothers in shaping these trajectories is well-recognized, the paternal influence on childhood obesity development remains a knowledge gap. We hypothesize that children of fathers with obesity have higher odds of being in the rapid BMI growth trajectory with stronger estimates when the mother is also with overweight or obesity. METHODS We analyzed data from the Canadian CHILD Cohort Study, a pregnancy cohort in which both parents were enrolled in early pregnancy when BMI was assessed. The child's BMI was repeatedly collected from birth to age five. We used group-based trajectory modeling to identify offspring BMI z-score (BMIz) trajectory groups (age-and-sex standardized) and weighted multinomial logistic regression analysis to determine the associations between prenatal paternal BMI and offspring growth trajectories, stratified by maternal weight categories. RESULTS Among 2 238 participants, the mean prenatal paternal BMI was 27.44 (SD = 4.77), and 22.83% of fathers were with obesity. The four identified offspring BMIz trajectories were: low stable (n = 220, 9.83%), normative (n = 1 356, 60.59%), high stable (n = 572, 25.56%), and rapid BMIz growth trajectory (n = 90, 4.02%). Children of normal-weight mothers and fathers with obesity had 1.86 higher odds (OR: 1.86; 95%CI: 1.22-2.84) of being classified in the rapid growth BMIz trajectory, compared to children of normal-weight fathers. The odds of being in the rapid growth BMIz trajectory were higher when both mothers and fathers were with obesity (OR: 4.35; 95%CI: 2.65-7.14). CONCLUSIONS Children of fathers with obesity had higher odds of being in the rapid BMI growth trajectory, particularly when also the mother was with overweight or obesity. These results support the need for preconception advice and interventions for couples to optimize their offspring's health.
Collapse
Affiliation(s)
- Antonio Rossi
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Zheng Hao Chen
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Susan C Campisi
- Nutrition and Dietetics Program, Clinical Public Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Myrtha E Reyna
- Translational Medicine Program, Department of Pediatrics, The Hospital of Sick Children, Toronto, ON, Canada
| | - Kendra Dempsey
- School of Medicine, University College Dublin, Belfield, Ireland
| | - David Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Deborah O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Theo J Moraes
- Translational Medicine Program, Department of Pediatrics, The Hospital of Sick Children, Toronto, ON, Canada
| | - Zihang Lu
- Department of Public Health Sciences, Queens University, Kingston, ON, Canada
| | - Padmaja Subbarao
- Translational Medicine Program, Department of Pediatrics, The Hospital of Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kozeta Miliku
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2025; 22:294-312. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
4
|
Casciaro C, Hamada H, Bloise E, Matthews SG. The paternal contribution to shaping the health of future generations. Trends Endocrinol Metab 2025; 36:459-471. [PMID: 39562264 DOI: 10.1016/j.tem.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Paternal health and exposure to adverse environments in the period prior to conception have a profound impact on future generations. Adversities such as stress, diet, and toxicants influence offspring health. Emerging evidence indicates that epigenetic mechanisms including noncoding RNA, DNA methylation, and chromatin remodelling mediate these effects. Preclinical studies have contributed to advancing mechanistic understanding in the field; however, human research is limited and primarily observational. Here, we discuss the evidence linking paternal to offspring health and advocate for further research in this area, which may ultimately inform policy and healthcare guidelines to improve paternal preconception health and offspring outcomes.
Collapse
Affiliation(s)
| | - Hirotaka Hamada
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada.
| |
Collapse
|
5
|
Li Y, Liu L, Zhang Y, Bai S, Jiang Y, Lai C, Li X, Bai W. Paternal Cyanidin-3-O-Glucoside Diet Improved High-Fat, High-Fructose Diet-Induced Intergenerational Inheritance in Male Offspring's Susceptibility to High-Fat Diet-Induced Testicular and Sperm Damage. Reprod Sci 2025; 32:1102-1114. [PMID: 39836315 DOI: 10.1007/s43032-024-01780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
High-fructose and high-fat diet (HFHFD) has been associated with impaired spermatogenesis, leading to decreased sperm quality and increased male infertility, with similar effects observed in offspring. Cyanidin-3-O-glucoside (C3G), a recognized food antioxidant, has shown promise in protecting in male reproduction and modulating epigenetic modifications. However, its potential role in ameliorating intergenerational inheritance induced by HFHFD remains underexplored. In this study, we investigated the effects of paternal HFHFD on reproductive injury of offspring and the protective effect of C3G. Paternal mice were subjected to 12 weeks of HFHFD induction and C3G treatment was conducted for 8 weeks. Offspring obtained via in vitro fertilization were fed either a normal diet (ND) or high-fat diet (HFD). Our findings indicate that while the paternal HFHFD did not result in observable reproductive impairments in paternal mice, it did affect offspring testicular function through intergenerational inheritance, rendering them more susceptible to testicular damage and reduced sperm counts when exposed to an HFD. Notably, C3G intervention significantly mitigated these effects, suggesting its potential as a therapeutic compound for alleviating the impact of paternal intergenerational inheritance on male fertility resulting from HFHFD. These results underscore the importance of further exploring the mechanisms underlying intergenerational inheritance and the potential of interventions such as C3G in mitigating its effects, with implications for both basic research and clinical practice.
Collapse
Affiliation(s)
- Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China
| | - Liwang Liu
- The First Clinical Medical College of Jinan University, Guangzhou, 510632, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China
| | - Shun Bai
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China
| | - Caiyong Lai
- The Sixth Affiliated Hospital of Jinan University, Dongguan, 523576, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China.
- The Sixth Affiliated Hospital of Jinan University, Dongguan, 523576, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China.
| |
Collapse
|
6
|
Shi Y, Li W, Yu X, Zhao Y, Zhu D, Song Y, Zhao Z, Gu Y, Wei B, Li L, Yu D, Zhang P, Gao Q, Sun M. Paternal Obesity-Induced H3K27me3 Elevation Leads to MANF-Mediated Transgenerational Metabolic Dysfunction in Female Offspring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415956. [PMID: 40041941 PMCID: PMC12021121 DOI: 10.1002/advs.202415956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/20/2025] [Indexed: 04/26/2025]
Abstract
Paternal lifestyle and environmental exposures can alter epigenetic changes in sperm and play a critical role in the offspring's future health, yet the underlying mechanisms remain elusive. The present study established a model of paternal obesity and found that the increased levels of H3K27me3 in sperm persist into the 8-cell embryo stage, resulting in a transgenerational decrease of Manf, which causes endoplasmic reticulum stress and activates the GRP78-PERK-EIF2α-ATF4-CHOP axis. This consequently leads to impaired glucose metabolism and apoptosis in the liver of female offspring. Based on these findings, the F0 mice are treated with 3-deazaneplanocin A, an EZH2 inhibitor, which successfully prevented metabolic dysfunction in F0 mice of the high-fat diet (HFD) group. Meanwhile, intravenous injection of recombinant human MANF in F1 female offspring can successfully rescue the metabolic dysfunction in the HFD-F1 group. These results demonstrate that paternal obesity triggers transgenerational metabolic dysfunction through sperm H3K27me3-dependent epigenetic regulation. The present study also identifies the H3K27me3-MANF pathway as a potentially preventive and therapeutic strategy for diabetes, although further studies are needed to validate its clinical applicability.
Collapse
Affiliation(s)
- Yajun Shi
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Weisheng Li
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
- Department of GynecologyUniversity of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital)Shandong provinceQingdao266000China
| | - Xi Yu
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Yan Zhao
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Dan Zhu
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Yueyang Song
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Zejun Zhao
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Yannan Gu
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Bin Wei
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Lingjun Li
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal DiagnosisShandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao UniversityShandong provinceJinan250000China
| | - Pengjie Zhang
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Qinqin Gao
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
| | - Miao Sun
- Institute for FetologyFirst Affiliated Hospital of Soochow UniversitySuzhou CityJiangsu215031China
- McKusick‐Zhang Center for Genetic MedicineState Key Laboratory for Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| |
Collapse
|
7
|
Su L, Dreyfuss JM, Ferraz Bannitz R, Wolfs D, Hansbury G, Richardson L, Charmant C, Patel J, Ginsburg ES, Racowsky C, Fore R, Efthymiou V, Desmond J, Goldfine A, Ferguson-Smith A, Pan H, Hivert MF, Isganaitis E, Patti ME. Type 2 diabetes impacts DNA methylation in human sperm. Clin Epigenetics 2025; 17:49. [PMID: 40108650 PMCID: PMC11924665 DOI: 10.1186/s13148-025-01853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
AIMS/HYPOTHESIS Disorders of the reproductive system, including hypogonadism and reduced fertility, are an under-recognized complication of diabetes. Based on experimental data in mice, hyperglycemia and obesity may modify epigenetic marks in sperm and impact health and development of offspring, but data are more limited in humans. Thus, we sought to study the impact of type 2 diabetes and glycemic control on sperm quality and DNA methylation. METHODS In this prospective cohort study, we recruited 40 men with BMI greater than 25 kg/m2 including 18 with type 2 diabetes, 6 with prediabetes, and 16 normoglycemic controls. Assessments were repeated after 3 months in 9 men with type 2 diabetes and 7 controls. We analyzed reproductive hormones, sperm concentration and motility, and sperm DNA methylation (MethylationEPIC BeadChip). RESULTS Men with type 2 diabetes had higher levels of follicle-stimulating hormone (FSH), but similar testosterone levels and sperm quality as controls. Sperm DNA methylation was stable with repeat sampling at 3 months in men with and without type 2 diabetes. We identified differential methylation at 655 of 745,804 CpG sites in men with type 2 diabetes versus controls (FDR < 0.05). Of these, 96.5% showed higher methylation in type 2 diabetes, with a mean difference in DNA methylation (beta value, β) of 0.16 ± 0.004 (16 ± 0.4%). Ontology analysis of differentially methylated loci revealed annotation to genes regulating synaptic signaling, actin, cAMP-dependent pathways, and G protein-coupled receptor pathways. 24% of probes differentially regulated in men with type 2 diabetes versus control overlapped with probes associated with HbA1c, suggesting additional factors beyond glycemic control contributed to diabetes-associated differences in DNA methylation. CONCLUSIONS/INTERPRETATION Men with type 2 diabetes showed higher DNA methylation levels in sperm relative to normoglycemic controls with similar BMI. Whether these differences are reversible with glucose-lowering treatment or may contribute to post-fertilization transcriptional regulation warrants further investigation. TRIAL REGISTRATION NCT03860558.
Collapse
Affiliation(s)
- Lei Su
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Research Division, Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
| | - Rafael Ferraz Bannitz
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Danielle Wolfs
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Georgia Hansbury
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Lauren Richardson
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Charnice Charmant
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Jay Patel
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Elizabeth S Ginsburg
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherine Racowsky
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Ruby Fore
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School , Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Vissarion Efthymiou
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Jessica Desmond
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | - Allison Goldfine
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Hui Pan
- Bioinformatics and Biostatistics Core, Research Division, Harvard Medical School, Joslin Diabetes Center, Boston, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School , Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Elvira Isganaitis
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA.
| | - Mary Elizabeth Patti
- Research Division, Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA.
| |
Collapse
|
8
|
Zhong T, Wu S, Chen G, Zhan S, Wang L, Cao J, Guo J, Li L, Zhang H, Niu L. Integrated analyses of transcriptomes, metabolomes, and proteomes unveil the role of FoXO signaling axis in buck semen cryopreservation. Theriogenology 2025; 235:19-30. [PMID: 39756112 DOI: 10.1016/j.theriogenology.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/03/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Sperm cryopreservation is a complex process involving gene expression, protein synthesis, membrane stability, and metabolic adaptation. However, molecular alterations in sperm cryopreservation and the mechanisms defending against freezing damage remain poorly understood. This study investigates these changes and defense mechanisms using transcriptomics, proteomics, and metabolomics data. During sperm cryopreservation, the expression level of G protein subunit alpha i3 (GNAI3) was significantly downregulated in post-thaw sperm (P < 0.001), while matrix metallopeptidase 9 (MMP9) was upregulated compared to FS groups (P < 0.01). Additionally, interleukin 6 (IL6) expression in the CS group showed an approximate increase (P < 0.05), whereas ribosomal protein S27a (RPS27A) expression decreased markedly (P < 0.05). Other important molecules such as macrophage stimulating 1 receptor (MST1R), hypoxia-inducible factor 1 subunit alpha (HIF1A), fibroblast growth factor 8 (FGF8), CD9 molecule (CD9), peptidase D (PEPD) and terminal nucleotidyltransferase 5B (TENT5B) also exhibited significant changes in expression (P < 0.05). Moreover, the study revealed the regulatory roles of metabolites such as glucose and glutamic acid during sperm cryopreservation. The involvement of catalase (CAT) protein in antioxidant defense was also noted. The interactions among mRNAs, miRNAs, proteins, and metabolites highlight the critical role of the FoxO signaling pathway in modulating responses to freezing. Our study reveals the molecular regulatory mechanisms of sperm during cryopreservation, emphasizing the importance of the FoxO pathway and specific metabolites in response to cryo-injury. These findings provide deeper insights into the complexity of sperm cryobiology and offer practical guidance for optimizing sperm cryopreservation.
Collapse
Affiliation(s)
- Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shun Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guolin Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
9
|
Vaz C, Burton M, Kermack AJ, Tan PF, Huan J, Yoo TPX, Donnelly K, Wellstead SJ, Wang D, Fisk HL, Houghton FD, Lewis S, Chong YS, Gluckman PD, Cheong Y, Macklon NS, Calder PC, Dutta A, Godfrey KM, Kumar P, Lillycrop KA, Karnani N. Short-term diet intervention comprising of olive oil, vitamin D, and omega-3 fatty acids alters the small non-coding RNA (sncRNA) landscape of human sperm. Sci Rep 2025; 15:7790. [PMID: 40044751 PMCID: PMC11882820 DOI: 10.1038/s41598-024-83653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/16/2024] [Indexed: 03/09/2025] Open
Abstract
Offspring health outcomes are often linked with epigenetic alterations triggered by maternal nutrition and intrauterine environment. Strong experimental data also link paternal preconception nutrition with pathophysiology in the offspring, but the mechanism(s) routing effects of paternal exposures remain elusive. Animal experimental models have highlighted small non-coding RNAs (sncRNAs) as potential regulators of paternal effects. Here, we characterised the baseline sncRNA landscape of human sperm and the effect of a 6-week dietary intervention on their expression profile. This study involves sncRNAseq profiling, that was performed on a subset (n = 17) of the participants enrolled in the PREPARE trial: 9 from the control group and 8 from the intervention group. 5'tRFs, miRNAs and piRNAs were the most abundant sncRNA subtypes identified; their expression was associated with age, BMI, and sperm quality. Nutritional intervention with olive oil, vitamin D and omega-3 fatty acids altered expression of 3 tRFs, 15 miRNAs and 112 piRNAs, targeting genes involved in fatty acid metabolism and transposable elements in the sperm genome. PREPARE Trial registration number: ISRCTN50956936, Trial registration date: 10/02/2014.
Collapse
Affiliation(s)
- Candida Vaz
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore.
| | - Mark Burton
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alexandra J Kermack
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Complete Fertility, Princess Anne Hospital, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Pei Fang Tan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Jason Huan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
| | - Tessa P X Yoo
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Kerry Donnelly
- Complete Fertility, Princess Anne Hospital, Southampton, UK
| | - Susan J Wellstead
- Complete Fertility, Princess Anne Hospital, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Dennis Wang
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Helena L Fisk
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Franchesca D Houghton
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sheena Lewis
- Queen's University, Belfast, Northern Ireland, UK
- Examen Lab Ltd, Belfast, Northern Ireland, UK
| | - Yap Seng Chong
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Peter D Gluckman
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Ying Cheong
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Complete Fertility, Princess Anne Hospital, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Nicholas S Macklon
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- London Women's Clinic, London, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Genetics, U. Alabama, Birmingham, AL, 35294, USA
| | - Keith M Godfrey
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Karen A Lillycrop
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Neerja Karnani
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Republic of Singapore.
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01 Matrix, Singapore, 138671, Republic of Singapore.
| |
Collapse
|
10
|
Lin Y, Ni X, Zhu L, Lin Y, Peng C, Lei Z, Wang Y, Wang H, You X, Li J, Shen H, Wei J. Multi-miRNAs-Mediated Hepatic Lepr Axis Suppression: A Pparg-Dicer1 Pathway-Driven Mechanism in Spermatogenesis for the Intergenerational Transmission of Paternal Metabolic Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410831. [PMID: 39792613 PMCID: PMC11884570 DOI: 10.1002/advs.202410831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/14/2024] [Indexed: 01/12/2025]
Abstract
Bisphenol A (BPA) is an "environmental obesogen" and this study aims to investigate the intergenerational impacts of BPA-induced metabolic syndrome (MetS), specifically focusing on unraveling mechanisms. Exposure to BPA induces metabolic disorders in the paternal mice, which are then transmitted to offspring, leading to late-onset MetS. Mechanistically, BPA upregulates Srebf1, which in turn promotes the Pparg-dependent transcription of Dicer1 in spermatocytes, increasing the levels of multiple sperm microRNAs (miRNAs). Several of these miRNAs are highly expressed in a synchronized manner in liver of the offspring. miR149-5p, miR150-5p, and miR700-5p target a specific region in the Lepr 3'UTR, termed "SMITE" ("Several MiRNAs Targeting Elements"), to negatively regulate Lepr. These inherited anti-Lepr miRNAs, also referred to inherited anti-Lepr miRNAs (IAL-miRs), modulate hepatic steatosis, and insulin signaling through the Lepr regulatory Igfbp2, Egfr, and Ampk. Furthermore, IAL-miRs inhibit Ccnd1 not only via binding to "SMITE" but also via Lepr-Igfbp2 axis, which contribute to hepatocyte senescence. These pathological processes interact in a self-reinforcing cycle, worsening MetS in the paternal BPA-exposed offspring. The findings reveal mechanism wherein lipid metabolism reprogramming in spermatocytes-induced perturbations of sperm miRNAs, triggered by BPA, leads to intergenerational inheritance of paternal MetS through suppression of the hepatic Lepr axis in the offspring.
Collapse
Affiliation(s)
- Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry‐Education Integration in Vaccine ResearchSchool of Public HealthXiamen UniversityXiamen361102China
| | - Xiuye Ni
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry‐Education Integration in Vaccine ResearchSchool of Public HealthXiamen UniversityXiamen361102China
| | - Lin Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry‐Education Integration in Vaccine ResearchSchool of Public HealthXiamen UniversityXiamen361102China
| | - Yilong Lin
- Department of Basic Medical SciencesSchool of MedicineXiamen UniversityXiamen361102China
| | - Cai Peng
- Department of Basic Medical SciencesSchool of MedicineXiamen UniversityXiamen361102China
| | - Zhao Lei
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry‐Education Integration in Vaccine ResearchSchool of Public HealthXiamen UniversityXiamen361102China
| | - Yihui Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry‐Education Integration in Vaccine ResearchSchool of Public HealthXiamen UniversityXiamen361102China
| | - Huan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry‐Education Integration in Vaccine ResearchSchool of Public HealthXiamen UniversityXiamen361102China
| | - Xiang You
- Department of Basic Medical SciencesSchool of MedicineXiamen UniversityXiamen361102China
| | - Juan Li
- Department of Basic Medical SciencesSchool of MedicineXiamen UniversityXiamen361102China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry‐Education Integration in Vaccine ResearchSchool of Public HealthXiamen UniversityXiamen361102China
| | - Jie Wei
- Department of Basic Medical SciencesSchool of MedicineXiamen UniversityXiamen361102China
| |
Collapse
|
11
|
Tahiri I, Llana SR, Díaz-Castro F, Claret M, Obri A. AgRP neurons shape the sperm small RNA payload. Sci Rep 2025; 15:7206. [PMID: 40021730 PMCID: PMC11871312 DOI: 10.1038/s41598-025-91391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
Paternal dietary patterns and obesity can affect offspring through epigenetic signals in sperm RNA. By activating hypothalamic Agouti-related peptide (AgRP) neurons in mice to simulate obesity's effects, we observed changes in the small noncoding RNA payload of sperm. These alterations, particularly in transfer RNA-derived small RNAs (tsRNAs), are similar to those induced by short-term high-fat diets, suggesting a common upstream regulatory mechanism involving AgRP neurons that affects metabolic epigenetic inheritance.
Collapse
Affiliation(s)
- Iasim Tahiri
- Neuronal Control of Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló 149-153, 5th floor, Barcelona, 08036, Spain
- Doctoral Program in Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Sergio R Llana
- Neuronal Control of Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló 149-153, 5th floor, Barcelona, 08036, Spain
| | - Francisco Díaz-Castro
- Neuronal Control of Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló 149-153, 5th floor, Barcelona, 08036, Spain
- Physiology Department, Biological Science Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marc Claret
- Neuronal Control of Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló 149-153, 5th floor, Barcelona, 08036, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló 149-153, 5th floor, Barcelona, 08036, Spain.
| |
Collapse
|
12
|
Ribó S, Ramon-Krauel M, Marimon-Escude JM, Busato F, Palmieri F, Mourin-Fernandez M, Palacios-Marin I, Diaz R, Lerin C, Oliva R, Tost J, Jiménez-Chillarón JC. Transgenerational inheritance of hepatic steatosis in mice: sperm methylome is largely reprogrammed and inherited but does not globally influence liver transcriptome. ENVIRONMENTAL EPIGENETICS 2025; 11:dvaf003. [PMID: 40040952 PMCID: PMC11879089 DOI: 10.1093/eep/dvaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 02/14/2025] [Indexed: 03/06/2025]
Abstract
Nutritional challenges and obesity can contribute to the transmission of metabolic diseases through epigenetic mechanisms. Among them, DNA methylation stands out as a potential carrier of information because germline cytosine methylation responds to environmental factors and can be transmitted across generations. Yet, it remains unclear whether inherited DNA methylation plays an active role in the inheritance of metabolic phenotypes or solely influences expression of a few genes that cannot recapitulate the whole metabolic spectrum in the next generation offspring. Previously, we established a mouse model of childhood obesity by reducing litter size at birth. Mice raised in small litters (SL) developed obesity, insulin resistance, and hepatic steatosis. The offspring (SL-F1) and grand-offspring (SL-F2) of SL males also exhibited hepatic steatosis. Here, we aimed to investigate whether germline DNA methylation could serve as a carrier of phenotypic information, hepatic steatosis, between generations. Litter size reduction significantly altered global DNA methylation profile in the sperm of SL-F0 males. Remarkably, 8% of these methylation marks remained altered in the sperm of SL-F1 mice and in the liver of SL-F2 mice. These data suggest that germline DNA methylation is sensitive to environmental challenges and holds significant heritability, either through direct germline transmission and/or through sequential erasure and reestablishment of the marks in the following generations. Yet, DNA methylation did not strongly correlate with the hepatic transcriptome in SL-F2 mice, suggesting that it does not directly drive phenotypes in the F2. As an alternative, germline DNA methylation could potentially influence the phenotype of the next generation by modulating the expression of a reduced number of key transcription factors that, through an amplification cascade, drive phenotypic outcomes in subsequent generations.
Collapse
Affiliation(s)
- Sílvia Ribó
- Institut de Recerca Sant Joan de Déu (IRSJD), Endocrinology, Esplugues 08950, Spain
| | - Marta Ramon-Krauel
- Institut de Recerca Sant Joan de Déu (IRSJD), Endocrinology, Esplugues 08950, Spain
| | | | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris—Saclay, Evry 91000, France
| | - Flavio Palmieri
- Universitat de Barcelona-Facultat Medicina-Bellvitge, L’Hospitalet 08907, Spain
| | - Marta Mourin-Fernandez
- Institut de Recerca Sant Joan de Déu (IRSJD), Endocrinology, Esplugues 08950, Spain
- Universitat de Barcelona-Facultat de Farmàcia, Barcelona 08028, Spain
| | - Ivonne Palacios-Marin
- Institut de Recerca Sant Joan de Déu (IRSJD), Endocrinology, Esplugues 08950, Spain
- Universitat de Barcelona-Facultat de Farmàcia, Barcelona 08028, Spain
| | - Ruben Diaz
- Institut de Recerca Sant Joan de Déu (IRSJD), Endocrinology, Esplugues 08950, Spain
| | - Carles Lerin
- Institut de Recerca Sant Joan de Déu (IRSJD), Endocrinology, Esplugues 08950, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, and Hospital Clinic Barcelona 08036, Spain
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris—Saclay, Evry 91000, France
| | - Josep C Jiménez-Chillarón
- Institut de Recerca Sant Joan de Déu (IRSJD), Endocrinology, Esplugues 08950, Spain
- Universitat de Barcelona-Facultat Medicina-Bellvitge, L’Hospitalet 08907, Spain
| |
Collapse
|
13
|
Chakraborty S, Anand S, Wang X, Bhandari RK. Stable Transmission of DNA Methylation Epimutations from Germlines to the Liver and Their Association with Fatty Liver Disease in Medaka. RESEARCH SQUARE 2025:rs.3.rs-6010210. [PMID: 39989969 PMCID: PMC11844629 DOI: 10.21203/rs.3.rs-6010210/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Environmental stressors can induce heritable traits in organisms across phyla, with distinct epigenetic alterations in gametes and phenotypic outcomes across several generations. However, the mechanisms underlying such intergenerational inheritance, mainly from the germline to the germline and from the germline to the soma, are enigmatic, given that postfertilization embryos and germline cells reprogram the epigenome in each generation to gain their cellular identity. Here, we report stable germline transmission of differential DNA methylation alterations (epimutations) and their associations with nonalcoholic fatty liver disease (NAFLD) in medaka exposed to a model estrogenic chemical but a ubiquitous environmental contaminant, bisphenol A (BPA). Results Ancestral BPA exposure in the F0 generation led to advanced NAFLD in the unexposed grandchildren generation (F2) of medaka. The F2 liver transcriptome and histopathology revealed a severe NAFLD phenotype in females. Whole-genome bisulfite sequencing of the sperm and liver revealed a gradual shift in promoter methylation from F0 sperm (hypomethylated) to F1 sperm (mix of hypo- and hypermethylated) and F2 liver (predominantly hypermethylated). Many differentially methylated promoters (DMPs) overlapped in F0 sperm, F1 sperm, and F2 liver, regardless of sex. In females, stable transmission of 1511 DMPs was found across three generations, which are associated with protein-coding genes, miRNAs, and others and linked to NAFLD and nonalcoholic steatohepatitis (NASH). Among them, 27 canonical genes maintained consistently hypermethylated promoters across three generations, with significant downregulation of their expression and enrichment in NAFLD-related pathways, mainly fat digestion, glycerolipid metabolism, and steroid biosynthesis. Conclusions The present results demonstrate stable inter- and transgenerational germline-to-germline and germline-to-soma transmission of environmentally induced DNA epimutations with F0 and F1 gametic epimutations, predicting the F2 liver phenotype-a clear transgenerational passage of the disease phenotype in medaka.
Collapse
|
14
|
Taylor WW, Korobkova L, Bhinderwala N, Dias BG. Toward Understanding and Halting Legacies of Trauma. Biol Psychiatry 2025:S0006-3223(25)00108-8. [PMID: 39956254 DOI: 10.1016/j.biopsych.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Echoes of natural and anthropogenic stressors not only reverberate within the physiology, biology, and neurobiology of the generation directly exposed to them but also within the biology of future generations. With the intent of understanding this phenomenon, significant efforts have been made to establish how exposure to psychosocial stress, chemicals, over- and undernutrition, and chemosensory experiences exert multigenerational influences. From these studies, we are gaining new appreciation for how negative environmental events experienced by one generation impact future generations. In this review, we first outline the need to operationally define dimensions of negative environmental events in the laboratory and the routes by which the impact of such events are felt through generations. Next, we discuss molecular processes that cause the effects of negative environmental events to be initiated in the exposed generation and then perpetuated across generations. Finally, we discuss how legacies of flourishing can be engineered to halt or reverse multigenerational influences of negative environmental events. In summary, this review synthesizes our current understanding of the concept, causes, and consequences of multigenerational echoes of stress and looks for opportunities to halt them.
Collapse
Affiliation(s)
- William Wesley Taylor
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California; Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, California
| | - Laura Korobkova
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California; Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, California
| | - Nabeel Bhinderwala
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, California
| | - Brian George Dias
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, California; Division of Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, California; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.
| |
Collapse
|
15
|
Jönsson J, Perfilyev A, Kugelberg U, Skog S, Lindström A, Ruhrmann S, Ofori JK, Bacos K, Rönn T, Öst A, Ling C. Impact of excess sugar on the whole genome DNA methylation pattern in human sperm. Epigenomics 2025; 17:89-104. [PMID: 39707713 PMCID: PMC11792836 DOI: 10.1080/17501911.2024.2439782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
AIMS, PATIENTS & METHODS Dietary factors may regulate the epigenome. We aimed to explore whether a diet intervention, including excess sugar, affects the methylome in human sperm, and to describe the sperm methylome. We used Whole Genome Bisulfite Sequencing (WGBS) to analyze DNA methylation in sperm taken at three time points from 15 males during a diet intervention; i) at baseline, ii) after one week on a standardized diet, and iii) after an additional week on a high-sugar diet providing 150% of their estimated total energy expenditure. RESULTS We identified seven nominal diet-associated differentially methylated regions in sperm (p < 0.05). The diet was nominally associated with methylation of 143 sites linked to fertility (e.g. AHRR, GNAS, and HDAC4), 313 sites in imprinted genes (e.g. GLIS3, PEG10, PEG3, and SNURF), and 42 sites in top 1%-expressed genes (e.g. CHD2) (p < 0.05). In sperm, 3'UTRs and introns had the highest levels of methylation, while 5'UTRs and CpG islands had the lowest levels. Non-expressed genes in human sperm were hypomethylated in exons compared with transcribed genes. CONCLUSIONS In human sperm, DNA methylation levels were linked to gene expression, and excess sugar had modest effects on methylation on imprinted and highly expressed genes, and genes affecting fertility.
Collapse
Affiliation(s)
- Josefine Jönsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Axel Lindström
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
16
|
Naveed M, Shen Z, Bao J. Sperm-borne small non-coding RNAs: potential functions and mechanisms as epigenetic carriers. Cell Biosci 2025; 15:5. [PMID: 39825433 PMCID: PMC11740426 DOI: 10.1186/s13578-025-01347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of these sncRNAs in facilitating epigenetic inheritance across generations. However, the exact mechanisms through which these paternally supplied epigenetic carriers operate remain unclear and are under hot debate. This concise review presents the most extensive evidence to date on environmentally-responsive sperm-borne sncRNAs, encompassing brief summary of their origin, dynamics, compartmentalization, characteristics, as well as in-depth elaboration of their functional roles in epigenetic and transgenerational inheritance. Additionally, the review delves into the potential mechanisms by which sperm-delivered sncRNAs may acquire and transmit paternally acquired traits to offspring, modulating zygotic gene expression and influencing early embryonic development.
Collapse
Affiliation(s)
- Muhammad Naveed
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Zhaokang Shen
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Jianqiang Bao
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China.
| |
Collapse
|
17
|
Akhatova A, Jones C, Coward K, Yeste M. How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health. Clin Epigenetics 2025; 17:7. [PMID: 39819375 PMCID: PMC11740528 DOI: 10.1186/s13148-025-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Recent studies support the influence of paternal lifestyle and diet before conception on the health of the offspring via epigenetic inheritance through sperm DNA methylation, histone modification, and small non-coding RNA (sncRNA) expression and regulation. Smoking may induce DNA hypermethylation in genes related to anti-oxidation and insulin resistance. Paternal diet and obesity are associated with greater risks of metabolic dysfunction in offspring via epigenetic alterations in the sperm. Metabolic changes, such as high blood glucose levels and increased body weight, are commonly observed in the offspring of fathers subjected to chronic stress, in addition to an enhanced risk of depressive-like behaviour and increased sensitivity to stress in both the F0 and F1 generations. DNA methylation is correlated with alterations in sperm quality and the ability to fertilise oocytes, possibly via a differentially regulated MAKP81IP3 signalling pathway. Paternal exposure to toxic endocrine-disrupting chemicals (EDCs) is also linked to the transgenerational transmission of increased predisposition to disease, infertility, testicular disorders, obesity, and polycystic ovarian syndrome (PCOS) in females through epigenetic changes during gametogenesis. As the success of assisted reproductive technology (ART) is also affected by paternal diet, BMI, and alcohol consumption, its outcomes could be improved by modifying factors that are dependent on male lifestyle choices and environmental factors. This review discusses the importance of epigenetic signatures in sperm-including DNA methylation, histone retention, and sncRNA-for sperm functionality, early embryo development, and offspring health. We also discuss the mechanisms by which paternal lifestyle and environmental factors (obesity, smoking, EDCs, and stress) may impact the sperm epigenome.
Collapse
Affiliation(s)
- Ayazhan Akhatova
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- School of Medicine, Nazarbayev University, Zhanybek-Kerey Khan Street 5/1, 010000, Astana, Kazakhstan
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
18
|
Patterson RA, Cho NA, Fernandes TS, Tuplin EWN, Lowry DE, Silva GAV, Reimer RA. Effects of a paternal diet high in animal protein (casein) versus plant protein (pea protein with added methionine) on offspring metabolic and gut microbiota outcomes in rats. Appl Physiol Nutr Metab 2025; 50:1-15. [PMID: 39689296 DOI: 10.1139/apnm-2024-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Evidence suggests that paternal diet can influence offspring metabolic health intergenerationally but whether dietary animal and plant proteins differ in their impact on fathers and their offspring is not known. Our objective was to examine the effects of a paternal diet high in casein versus pea protein on fathers and their offspring. Five-week-old male rats were fed: (1) control, (2) high animal protein (AP, 36.1% of energy as casein), or (3) high plant protein (PP, 36.1% of energy as pea protein with added methionine) diets for 8-11 weeks before being mated. Offspring were challenged with a high fat/sucrose diet (HFD) from 10 to 16 weeks of age. Metabolic and microbial outcomes were assessed in both generations. In fathers fed PP diet, enhanced insulin sensitivity and lower liver triglycerides were seen alongside altered hepatic microRNA expression and gut microbial profiles. Few changes were seen in their offspring. In contrast, the paternal AP diet influenced adult offspring hepatic microRNA expression and programmed a latent increase in adiposity, dysregulated satiety hormones, and modified gut microbial composition in their adult offspring that occurred following the HFD. Overall, a diet high in pea protein with added methionine demonstrated protective effects on biomarkers of metabolic health in the fathers but led to minimal effects on the offspring while a paternal diet high in casein led to evidence of an increase in characteristics of metabolic dysfunction in their adult offspring when unmasked by exposure to a HFD for 6 weeks.
Collapse
Affiliation(s)
- Riley A Patterson
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Nicole A Cho
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Tyra S Fernandes
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Erin W Noye Tuplin
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Dana E Lowry
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Gabriel A Venegas Silva
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
19
|
Santillán JAG, Mezo-González CE, Gourdel M, Croyal M, Bolaños-Jiménez F. Diet-Induced Obesity in the Rat Impairs Sphingolipid Metabolism in the Brain and This Metabolic Dysfunction Is Transmitted to the Offspring via Both the Maternal and the Paternal Lineage. J Neurochem 2025; 169:e16307. [PMID: 39831759 DOI: 10.1111/jnc.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Obesity leads to a number of health problems, including learning and memory deficits that can be passed on to the offspring via a developmental programming process. However, the mechanisms involved in the deleterious effects of obesity on cognition remain largely unknown. This study aimed to assess the impact of obesity on the production of sphingolipids (ceramides and sphingomyelins) in the brain and its relationship with the learning deficits displayed by obese individuals. We also sought to determine whether the effects of obesity on brain sphingolipid synthesis could be passed on to the offspring. Learning abilities and brain concentration of sphingolipids in male and female control and obese founder rats (F0) and their offspring (F1) were evaluated, respectively, by the novel object recognition test and by ultra-performance liquid chromatography tandem mass spectrometry. In addition, a global lipidome profiling of the cerebral cortex and hippocampus was performed. Both male and female F0 rats showed impaired learning and increased concentrations of ceramides and sphingomyelins in the hippocampus and frontal cortex compared to their control counterparts. However, the overall lipidome profile of these brain regions did not change with obesity. Remarkably, the alterations in brain sphingolipid synthesis, as well as the cognitive impairment induced by obesity, were also present in adult F1 male rats born to obese mothers or sired by obese fathers and were associated with enhanced expression of mRNAs coding for enzymes involved in the de novo synthesis of ceramides. These results show that the cognitive deficits and impaired sphingolipid metabolism induced by obesity can be transmitted to the offspring through both the maternal and paternal lineages and suggest that an increase in the brain concentration of sphingolipids could play a causal role in the cognitive deficits associated with obesity.
Collapse
Affiliation(s)
| | | | - Mathilde Gourdel
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Mikaël Croyal
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | | |
Collapse
|
20
|
Dahlen CR, Ramírez-Zamudio GD, Bochantin-Winders KA, Hurlbert JL, Crouse MS, McLean KJ, Diniz WJS, Amat S, Snider AP, Caton JS, Reynolds LP. International Symposium on Ruminant Physiology: Paternal Nutrient Supply: Impacts on Physiological and Whole Animal Outcomes in Offspring. J Dairy Sci 2024:S0022-0302(24)01425-5. [PMID: 39710267 DOI: 10.3168/jds.2024-25800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
Recent evidence suggests that environmental factors experienced by sires can be transmitted through the ejaculate (seminal plasma + sperm) into the female reproductive tract, influencing fertilization, embryo development, and postnatal offspring outcomes. This concept is termed paternal programming. In rodents, sire nutrition was shown to directly alter offspring outcomes through sperm epigenetic signatures, DNA damage/oxidative stress, cytokine profiles, and/or the seminal microbiome. Response variables impacted in rodent models, including adiposity, muscle mass, metabolic responses, and reproductive performance, could have major productivity and financial implications for producers if these paternal programming responses are also present in ruminant species. However, a paucity of data exist regarding paternal programming in ruminants. The limited data in the literature mainly point to alterations in sperm epigenome as a result of sire diet or environment. Global nutrition has been implicated in ruminant models to alter seminal cytokine profiles, which could subsequently alter the uterine environment and immune response to mating. Several reports indicate that embryo development and epigenetic signatures can be impacted by sire plane of nutrition and inclusion of specific feed ingredients into diets (polyunsaturated fatty acids, folic acid, and rumen protected methionine). Models of sheep nutrition indicate that addition of rumen protected methionine can impact DNA methylation and offspring performance characteristics extending to the F3 generation, and that divergent planes of sire nutrition can cause altered hormone profiles and insulin/glucose metabolism in offspring. There are almost unlimited opportunities for discovery in this area, but researchers are encouraged to target critical questions such as whether and the extent to which paternal programming effects are present in common management scenarios, the mechanisms by which paternal programming is inherited in ruminants, and whether the effects of paternal nutrition interact with those of maternal nutrition to influence offspring physiology, whole animal outcomes, and herd or flock productivity.
Collapse
Affiliation(s)
| | - Germán D Ramírez-Zamudio
- North Dakota State University, Fargo, ND, USA; University of São Paulo, Pirassununga, SP, Brazil
| | | | | | | | | | | | - Samat Amat
- North Dakota State University, Fargo, ND, USA
| | | | | | | |
Collapse
|
21
|
Kampmann U, Suder LB, Nygaard M, Geiker NRW, Nielsen HS, Almstrup K, Bruun JM, Magkos F, Ovesen P, Catalano P. Prepregnancy and Gestational Interventions to Prevent Childhood Obesity. J Clin Endocrinol Metab 2024; 110:e8-e18. [PMID: 39401333 DOI: 10.1210/clinem/dgae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 12/19/2024]
Abstract
Childhood obesity is a significant global health issue with complex and multifactorial origins, often beginning before conception and influenced by both maternal and paternal health. The increased prevalence of prepregnancy obesity and gestational diabetes mellitus in women of reproductive age contributes to a heightened risk of metabolic dysfunction in offspring. Current clinical practices often implement lifestyle interventions after the first trimester and have limited success, implying that they miss a critical window for effective metabolic adjustments. This review examines the limitations of lifestyle interventions during pregnancy in improving perinatal outcomes and highlights the importance of initiating such interventions before conception to positively impact parental health and fetal development. A re-evaluation of strategies is needed to enhance the metabolic health of prospective parents as a preventive measure against childhood obesity.
Collapse
Affiliation(s)
- Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
| | - Louise Birk Suder
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
| | - Malene Nygaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, DK-1958, Denmark
| | | | - Henriette Svarre Nielsen
- Department of Gynecology and Obstetrics, Copenhagen University Hospital Hvidovre, Hvidovre, DK 2650, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Kristian Almstrup
- Department of Growth and reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, DK-2100, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Jens Meldgaard Bruun
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, DK-1958, Denmark
| | - Per Ovesen
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
| | - Patrick Catalano
- Division of Reproductive Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
22
|
Jahan-Mihan A, Leftwich J, Berg K, Labyak C, Nodarse RR, Allen S, Griggs J. The Impact of Parental Preconception Nutrition, Body Weight, and Exercise Habits on Offspring Health Outcomes: A Narrative Review. Nutrients 2024; 16:4276. [PMID: 39770898 PMCID: PMC11678361 DOI: 10.3390/nu16244276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
An increasing number of studies highlight the critical role of both maternal and paternal nutrition and body weight before conception in shaping offspring health. Traditionally, research has focused on maternal factors, particularly in utero exposures, as key determinants of chronic disease development. However, emerging evidence underscores the significant influence of paternal preconception health on offspring metabolic outcomes. While maternal health remains vital, with preconception nutrition playing a pivotal role in fetal development, paternal obesity and poor nutrition are linked to increased risks of metabolic disorders, including type 2 diabetes and cardiovascular disease in children. This narrative review aims to synthesize recent findings on the effects of both maternal and paternal preconception health, emphasizing the need for integrated early interventions. The literature search utilized PubMed, UNF One Search, and Google Scholar, focusing on RCTs; cohort, retrospective, and animal studies; and systematic reviews, excluding non-English and non-peer-reviewed articles. The findings of this review indicate that paternal effects are mediated by epigenetic changes in sperm, such as DNA methylation and non-coding RNA, which influence gene expression in offspring. Nutrient imbalances during preconception in both parents can lead to low birth weight and increased metabolic disease risk, while deficiencies in folic acid, iron, iodine, and vitamin D are linked to developmental disorders. Additionally, maternal obesity elevates the risk of chronic diseases in children. Future research should prioritize human studies to explore the influence of parental nutrition, body weight, and lifestyle on offspring health, ensuring findings are applicable across diverse populations. By addressing both maternal and paternal factors, healthcare providers can better reduce the prevalence of metabolic syndrome and its associated risks in future generations.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Jamisha Leftwich
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Kristin Berg
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Corinne Labyak
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Reniel R. Nodarse
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Sarah Allen
- Greenleaf Behavioral Health, 2209 Pineview Dr., Valdosta, GA 31602, USA;
| | | |
Collapse
|
23
|
Champroux A, Tang Y, Dickson DA, Meng A, Harrington A, Liaw L, Marzi M, Nicassio F, Schlaeger TM, Feig LA. Transmission of reduced levels of miR-34/449 from sperm to preimplantation embryos is a key step in the transgenerational epigenetic inheritance of the effects of paternal chronic social instability stress. Epigenetics 2024; 19:2346694. [PMID: 38739481 PMCID: PMC11093028 DOI: 10.1080/15592294.2024.2346694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
The transgenerational effects of exposing male mice to chronic social instability (CSI) stress are associated with decreased sperm levels of multiple members of the miR-34/449 family that persist after their mating through preimplantation embryo (PIE) development. Here we demonstrate the importance of these miRNA changes by showing that restoring miR-34c levels in PIEs derived from CSI stressed males prevents elevated anxiety and defective sociability normally found specifically in their adult female offspring. It also restores, at least partially, levels of sperm miR-34/449 normally reduced in their male offspring who transmit these sex-specific traits to their offspring. Strikingly, these experiments also revealed that inducing miR-34c levels in PIEs enhances the expression of its own gene and that of miR-449 in these cells. The same induction of embryo miR-34/449 gene expression likely occurs after sperm-derived miR-34c is introduced into oocytes upon fertilization. Thus, suppression of this miRNA amplification system when sperm miR-34c levels are reduced in CSI stressed mice can explain how a comparable fold-suppression of miR-34/449 levels can be found in PIEs derived from them, despite sperm containing ~50-fold lower levels of these miRNAs than those already present in PIEs. We previously found that men exposed to early life trauma also display reduced sperm levels of miR-34/449. And here we show that miR-34c can also increase the expression of its own gene, and that of miR-449 in human embryonic stem cells, suggesting that human PIEs derived from men with low sperm miR-34/449 levels may also contain this potentially harmful defect.
Collapse
Affiliation(s)
- Alexandre Champroux
- Development, Molecular & Chemical Biology/Medical, Tufts University, Boston, MA, USA
| | - Yang Tang
- Stem Cell Program, Boston Children’s Hospital, Boston, MA, USA
| | - David A. Dickson
- Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Alice Meng
- Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Anne Harrington
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Lucy Liaw
- Center for Genomic Studies, Instituto Italiano di Tecnologia Institution, Milan, Italy
| | - Matteo Marzi
- Center for Genomic Studies, Instituto Italiano di Tecnologia Institution, Milan, Italy
| | - Francesco Nicassio
- Center for Genomic Studies, Instituto Italiano di Tecnologia Institution, Milan, Italy
| | | | - Larry A. Feig
- Development, Molecular & Chemical Biology/Medical, Tufts University, Boston, MA, USA
- Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
24
|
Pepin AS, Jazwiec PA, Dumeaux V, Sloboda DM, Kimmins S. Determining the effects of paternal obesity on sperm chromatin at histone H3 lysine 4 tri-methylation in relation to the placental transcriptome and cellular composition. eLife 2024; 13:e83288. [PMID: 39612469 PMCID: PMC11717366 DOI: 10.7554/elife.83288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2024] [Indexed: 12/01/2024] Open
Abstract
Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.
Collapse
Affiliation(s)
- Anne-Sophie Pepin
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
| | - Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
| | - Vanessa Dumeaux
- Departments of Anatomy & Cell Biology and Oncology, Western UniversityLondonCanada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research Institute, McMaster University HamiltonHamiltonCanada
- Departments of Obstetrics and Gynecology, and Pediatrics, McMaster UniversityHamiltonCanada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
- Department of Pathology and Molecular Biology, University of Montreal, University of Montreal Hospital Research CenterMontrealCanada
| |
Collapse
|
25
|
Shang Q, Wu H, Wang K, Zhang M, Dou Y, Jiang X, Zhao Y, Zhao H, Chen ZJ, Wang J, Bian Y. Exposure to polystyrene microplastics during lactational period alters immune status in both male mice and their offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175371. [PMID: 39137849 DOI: 10.1016/j.scitotenv.2024.175371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The widespread use of microplastics and their harmful effects on the environment have emerged as serious concerns. However, the effect of microplastics on the immune system of mammals, particularly their offspring, has received little attention. In this study, polystyrene microplastics (PS-MPs) were orally administered to male mice during lactation. Flow cytometry was used to assess the immune cells in the spleens of both adult male mice and their offspring. The results showed that mice exposed to PS-MPs exhibited an increase in spleen weight and an elevated number of B and regulatory T cells (Tregs), irrespective of dosage. Furthermore, the F1 male offspring of the PS-MPs-exposed group had enlarged spleens; an increased number of B cells, T helper cells (Th cells), and Tregs; and an elevated ratio of T helper cells 17 (Th17 cells) to Tregs and T helper cells 1 (Th1 cells) to T helper cells 2 (Th2 cells). These results suggested a pro-inflammatory state in the spleen. In contrast, in the F1 female offspring exposed to PS-MPs, the changes in splenic immune cells were less pronounced. In the F2 generation of mice with exposed to PS-MPs, minimal alterations were observed in spleen immune cells and morphology. In conclusion, our study demonstrated that exposure to real human doses of PS-MPs during lactation in male mice altered the immune status, which can be passed on to F1 offspring but is not inherited across generations.
Collapse
Affiliation(s)
- Qian Shang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Han Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Ke Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Mengge Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Yunde Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China.
| | - Xiaohong Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Yueran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China.
| | - Yuehong Bian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China.
| |
Collapse
|
26
|
Huo M, Yu X, Yuan X, Guo J, Wei B, Shi Y, Gu Y, Zhang X, Sun M. The P300-ARRDC3 axis participates in maternal subclinical hypothyroidism and is involved in abnormal hepatic insulin sensitivity in adult offspring. Heliyon 2024; 10:e39259. [PMID: 39568856 PMCID: PMC11577204 DOI: 10.1016/j.heliyon.2024.e39259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Numerous studies have suggested potential associations between maternal subclinical hypothyroidism (SCH) and adverse metabolic outcomes in offspring, however, the underlying mechanism remains unclear. In this study, we generated a maternal SCH mouse model by administering 50 ppm 6-propyl-2-thiouracil (PTU) in the drinking water of pregnant mice until delivery. This model was used to investigate the mechanisms influencing glucose metabolism in offspring. RNA sequencing (RNA-seq) revealed a substantial increase in ARRDC3 expression in the livers of the offspring of the SCH model mice, which may contribute to insulin resistance. Additionally, the phosphorylation levels of key proteins in the insulin signalling pathway, such as protein kinase B (Akt), glycogen synthase kinase 3 beta (GSK-3β), and Forkhead box protein O1 (FoxO1), were correspondingly reduced in the SCH offspring. Moreover, overexpression of ARRDC3 in Hepa1‒6 cells suppressed the Akt/GSK-3β/FoxO1 signalling pathway and increased the expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), which was consistent with the molecular changes observed in SCH offspring. Our results also indicated that the upregulation of ARRDC3 in SCH offspring may result from increased H3K27 acetylation of the ARRDC3 promoter region, driven by elevated expression of P300. Importantly, adequate L-T4 supplementation during pregnancy improved insulin sensitivity and reversed the molecular alterations in the insulin signalling pathway observed in SCH offspring. In conclusion, exposure to intrauterine SCH resulted in altering the P300-ARRDC3 axis in offspring and impaired insulin sensitivity by disrupting the Akt/GSK-3β/FoxO1 signalling pathway. Timely L-T4 supplementation during pregnancy is an effective strategy to prevent insulin resistance in offspring of SCH mothers. This study elucidates potential molecular mechanisms behind insulin resistance in SCH offspring and suggests novel therapeutic targets for treating metabolic disorders related to maternal SCH.
Collapse
Affiliation(s)
- Ming Huo
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou City, 730000, Gansu, China
| | - Xi Yu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Xianbin Yuan
- The first people's hospital of Lanzhou City, Lanzhou City, 730000, Gansu, China
| | - Jun Guo
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yannan Gu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Xuehong Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou City, 730000, Gansu, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
- Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
27
|
Champroux A, Sadat-Shirazi M, Chen X, Hacker J, Yang Y, Feig LA. Astrocyte-Derived Exosomes Regulate Sperm miR-34c Levels to Mediate the Transgenerational Effects of Paternal Chronic Social Instability Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.21.537854. [PMID: 37786715 PMCID: PMC10541588 DOI: 10.1101/2023.04.21.537854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The effects of chronically stressing male mice can be transmitted across generations by stress-specific changes in their sperm miRNA content that induce stress-specific phenotypes in their offspring. But how each stress paradigm alters the levels of distinct sets of sperm miRNAs is not known. We showed previously that exposure of male mice to chronic social instability (CSI) stress results in elevated anxiety and reduced sociability specifically in their female offspring across multiple generations because it reduces miR-34c levels in sperm of stressed males and their unstressed male offspring. Here we describe evidence that a strocyte-derived exos omes ( A-Exos ) carrying miR-34c mediate how CSI stress has this transgenerational effect on sperm. We found that CSI stress decreases miR-34c carried by A-Exos in the prefrontal cortex and amygdala, as well as in the blood of males. Importantly, miR-34c A-Exos levels are also reduced in these tissues in their F1 male offspring, who despite not being exposed to stress exhibit reduced sperm miR-34c levels and transmit the same stress-associated traits to their male and female offspring. Furthermore, restoring A-Exos miR-34c content in the blood of CSI-stressed males by intravenous injection of miR-34c-containing A-Exos restores miR-34c levels in their sperm. These findings reveal an unexpected role for A-Exos in maintaining sperm miR-34c levels by a process that when suppressed by CSI stress mediates this example of transgenerational epigenetic inheritance.
Collapse
|
28
|
Concha Celume F, Pérez-Bravo F, Gotteland M. Sucralose and stevia consumption leads to intergenerational alterations in body weight and intestinal expression of histone deacetylase 3. Nutrition 2024; 125:112465. [PMID: 38823252 DOI: 10.1016/j.nut.2024.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES It is unclear whether parental consumption of non-nutritive sweetener (NNS) can affect subsequent generations. The aim of this study was to determine whether chronic parental consumption of sucralose and stevia in mice affects body weight gain and liver and intestinal expression of histone deacetylase 3 (Hdac3) in these animals and in the subsequent first filial (F1) and second filial (F2) generations. METHODS Male and female mice (n = 47) were divided into three groups to receive water alone or supplemented with sucralose (0.1 mg/mL) or stevia (0.1 mg/mL) for 16 wk (parental [F0] generation). F0 mice were bred to produce the F1 generation; then, F1 mice were bred to produce the F2 generation. F1 and F2 animals did not receive NNSs. After euthanasia, hepatic and intestinal expression of Hdac3 was determined by quantitative reverse transcription polymerase chain reaction. RESULTS Body weight gain did not differ between the three groups in the F0 generation, but it was greater in the F1 sucralose and stevia groups than in the control group. Consumption of both NNSs in the F0 generation was associated with lower Hdac3 expression in the liver and higher in the intestine. Hepatic Hdac3 expression was normalized to the control values in the F1 and F2 animals of the sucralose and stevia groups. Intestinal expression was still higher in the F1 generations of the sucralose and stevia groups but was partially normalized in the F2 generation of these groups, compared with control. CONCLUSIONS NNS consumption differentially affects hepatic and intestinal Hdac3 expression. Changes in hepatic expression are not transmitted to the F1 and F2 generations whereas those in intestinal expression are enhanced in the F1 and attenuated in the F2 generations.
Collapse
Affiliation(s)
| | - Francisco Pérez-Bravo
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile; Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Martin Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile; Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile.
| |
Collapse
|
29
|
Haberman M, Menashe T, Cohen N, Kisliouk T, Yadid T, Marco A, Meiri N, Weller A. Paternal high-fat diet affects weight and DNA methylation of their offspring. Sci Rep 2024; 14:19874. [PMID: 39191806 DOI: 10.1038/s41598-024-70438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Obesity poses a public health threat, reaching epidemic proportions. Our hypothesis suggests that some of this epidemic stems from its transmission across generations via paternal epigenetic mechanisms. To investigate this possibility, we focused on examining the paternal transmission of CpG methylation. First-generation male Wistar rats were fed either a high-fat diet (HF) or chow and were mated with females fed chow. We collected sperm from these males. The resulting offspring were raised on a chow diet until day 35, after which they underwent a dietary challenge. Diet-induced obese (DIO) male rats passed on the obesogenic trait to both male and female offspring. We observed significant hypermethylation of the Pomc promoter in the sperm of HF-treated males and in the hypothalamic arcuate nucleus (Arc) of their offspring at weaning. However, these differences in Arc methylation decreased later in life. This hypermethylation is correlated with increased expression of DNMT3B. Further investigating genes in the Arc that might be involved in obesogenic transgenerational transmission, using reduced representation bisulfite sequencing (RRBS) we identified 77 differentially methylated regions (DMRs), highlighting pathways associated with neuronal development. These findings support paternal CpG methylation as a mechanism for transmitting obesogenic traits across generations.
Collapse
Affiliation(s)
- Michal Haberman
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tzlil Menashe
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Nir Cohen
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tam Yadid
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
30
|
Saengmearnuparp T, Pintana H, Apaijai N, Chunchai T, Thonusin C, Kongkaew A, Lojanapiwat B, Chattipakorn N, Chattipakorn SC. Long-term Treatment with a 5-Alpha-Reductase Inhibitor Alleviates Depression-like Behavior in Obese Male Rats. Behav Brain Res 2024; 472:115155. [PMID: 39032869 DOI: 10.1016/j.bbr.2024.115155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Several studies have reported side effects of finasteride (FIN), such as anxiety/depression in young men. Obesity is also positively associated with anxiety/depression symptoms; however, the impacts of long-term FIN treatment and FIN withdrawal in young obese individuals are still elusive. The present study aimed to investigate the effect of long-term treatment and its withdrawal on anxiety/depression and brain pathologies in lean and obese adult male rats. Forty-eight male Wistar rats were equally divided into two groups and fed either a normal or high-fat diet. At age 13 weeks, rats in each dietary group were divided into three subgroups: 1) the control group receiving drinking water, 2) the long-term treatment group receiving FIN orally at 5 mg/kg/day for 6 weeks, and 3) the withdrawal group receiving FIN orally at 5 mg/kg/day for 2 weeks followed by a 4-week withdrawal period. Anxiety/depression-like behaviors, biochemical analysis, brain inflammation, oxidative stress, neuroactive steroids, brain metabolites, and microglial complexity were tested. The result showed that lean rats treated with long-term FIN and its withdrawal exhibited metabolic disturbances, depressive-like behavior, and both groups showed increased neurotoxic metabolites and reduced microglial complexity. Obesity itself led to metabolic disturbances and brain pathologies, including increased inflammation, oxidative stress, and quinolinic acid, as well as reduced microglial complexity, resulting in increased anxiety- and depression-like behaviors. Interestingly, the long-term FIN treatment group in obese rats showed attenuation of depressive-like behaviors, brain inflammation, and oxidative stress, along with increased brain antioxidants, suggesting the possible benefits of FIN in obese conditions.
Collapse
Affiliation(s)
- Thiraphat Saengmearnuparp
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Urology division, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hiranya Pintana
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanisa Thonusin
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bannakij Lojanapiwat
- Urology division, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
31
|
Carrageta DF, Pereira SC, Ferreira R, Monteiro MP, Oliveira PF, Alves MG. Signatures of metabolic diseases on spermatogenesis and testicular metabolism. Nat Rev Urol 2024; 21:477-494. [PMID: 38528255 DOI: 10.1038/s41585-024-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Diets leading to caloric overload are linked to metabolic disorders and reproductive function impairment. Metabolic and hormonal abnormalities stand out as defining features of metabolic disorders, and substantially affect the functionality of the testis. Metabolic disorders induce testicular metabolic dysfunction, chronic inflammation and oxidative stress. The disruption of gastrointestinal, pancreatic, adipose tissue and testicular hormonal regulation induced by metabolic disorders can also contribute to a state of compromised fertility. In this Review, we will delve into the effects of high-fat diets and metabolic disorders on testicular metabolism and spermatogenesis, which are crucial elements for male reproductive function. Moreover, metabolic disorders have been shown to influence the epigenome of male gametes and might have a potential role in transmitting phenotype traits across generations. However, the existing evidence strongly underscores the unmet need to understand the mechanisms responsible for transgenerational paternal inheritance of male reproductive function impairment related to metabolic disorders. This knowledge could be useful for developing targeted interventions to prevent, counteract, and most of all break the perpetuation chain of male reproductive dysfunction associated with metabolic disorders across generations.
Collapse
Affiliation(s)
- David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Sara C Pereira
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus de Santiago Agra do Crasto, Aveiro, Portugal.
| |
Collapse
|
32
|
Tahiri I, Llana SR, Fos-Domènech J, Milà-Guash M, Toledo M, Haddad-Tóvolli R, Claret M, Obri A. Paternal obesity induces changes in sperm chromatin accessibility and has a mild effect on offspring metabolic health. Heliyon 2024; 10:e34043. [PMID: 39100496 PMCID: PMC11296027 DOI: 10.1016/j.heliyon.2024.e34043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
The increasing global burden of metabolic disorders including obesity and diabetes necessitates a comprehensive understanding of their etiology, which not only encompasses genetic and environmental factors but also parental influence. Recent evidence has unveiled paternal obesity as a contributing factor to offspring's metabolic health via sperm epigenetic modifications. In this study, we investigated the impact of a Western diet-induced obesity in C57BL/6 male mice on sperm chromatin accessibility and the subsequent metabolic health of their progeny. Utilizing Assay for Transposase-Accessible Chromatin with sequencing, we discovered 450 regions with differential accessibility in sperm from obese fathers, implicating key developmental and metabolic pathways. Contrary to expectations, these epigenetic alterations in sperm were not predictive of long-term metabolic disorders in offspring, who exhibited only mild transient metabolic changes early in life. Both male and female F1 progeny showed no enduring predisposition to obesity or diabetes. These results underscore the biological resilience of offspring to paternal epigenetic inheritance, suggesting a complex interplay between inherited epigenetic modifications and the offspring's own developmental compensatory mechanisms. This study calls for further research into the biological processes that confer this resilience, which could inform interventional strategies to combat the heritability of metabolic diseases.
Collapse
Affiliation(s)
- Iasim Tahiri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sergio R. Llana
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Júlia Fos-Domènech
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Maria Milà-Guash
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Miriam Toledo
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
33
|
Gül M, Russo GI, Kandil H, Boitrelle F, Saleh R, Chung E, Kavoussi P, Mostafa T, Shah R, Agarwal A. Male Infertility: New Developments, Current Challenges, and Future Directions. World J Mens Health 2024; 42:502-517. [PMID: 38164030 PMCID: PMC11216957 DOI: 10.5534/wjmh.230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 01/03/2024] Open
Abstract
There have been many significant scientific advances in the diagnostics and treatment modalities in the field of male infertility in recent decades. Examples of these include assisted reproductive technologies, sperm selection techniques for intracytoplasmic sperm injection, surgical procedures for sperm retrieval, and novel tests of sperm function. However, there is certainly a need for new developments in this field. In this review, we discuss advances in the management of male infertility, such as seminal oxidative stress testing, sperm DNA fragmentation testing, genetic and epigenetic tests, genetic manipulations, artificial intelligence, personalized medicine, and telemedicine. The role of the reproductive urologist will continue to expand in future years to address different topzics related to diverse questions and controversies of pathophysiology, diagnosis, and therapy of male infertility, training researchers and physicians in medical and scientific research in reproductive urology/andrology, and further development of andrology as an independent specialty.
Collapse
Affiliation(s)
- Murat Gül
- Department of Urology, Selcuk University School of Medicine, Konya, Turkey
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Giorgio Ivan Russo
- Urology Section, University of Catania, Catania, Italy
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Hussein Kandil
- Fakih IVF Fertility Center, Abu Dhabi, UAE
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Parviz Kavoussi
- Department of Reproductive Urology, Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Taymour Mostafa
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
- Well Women's Centre, Sir HN Reliance Foundation Hospital, Mumbai, India
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA
- Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
34
|
Ravi H, Das S, Devi Rajeswari V, Venkatraman G, Choudhury AA, Chakraborty S, Ramanathan G. Hormonal regulation in diabetes: Special emphasis on sex hormones and metabolic traits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:257-291. [PMID: 39059988 DOI: 10.1016/bs.apcsb.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Diabetes constitutes a significant global public health challenge that is rapidly reaching epidemic proportions. Among the non-communicable diseases, the incidence of diabetes is rising at an alarming rate. The International Diabetes Federation has documented a 9.09% prevalence of diabetes among individuals aged between 20 and 79 years. The interplay of gonadal hormones and gender differences is critical in regulating insulin sensitivity and glucose tolerance, and this dynamic is particularly crucial because of the escalating incidence of diabetes. Variations in insulin sensitivity are observed across genders, levels of adiposity, and age groups. Both estrogen and testosterone are seen to influence glucose metabolism and insulin sensitivity. This chapter surveys the present knowledge of sex differences, sex hormones, and chromosomes on insulin imbalance and diabetes development. It further highlights the influence of metabolic traits in diabetes and changes in sex hormones during diabetic pregnancy. Notably, even stressful lifestyles have been acknowledged to induce hormonal imbalances. Furthermore, it discusses the potential of hormonal therapy to help stabilize sex hormones in diabetic individuals and focuses on the most recent research investigating the correlation between sex hormones and diabetes.
Collapse
Affiliation(s)
- Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Abbas Alam Choudhury
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
35
|
Hosseini M, Khalafiyan A, Zare M, Karimzadeh H, Bahrami B, Hammami B, Kazemi M. Sperm epigenetics and male infertility: unraveling the molecular puzzle. Hum Genomics 2024; 18:57. [PMID: 38835100 PMCID: PMC11149391 DOI: 10.1186/s40246-024-00626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The prevalence of infertility among couples is estimated to range from 8 to 12%. A paradigm shift has occurred in understanding of infertility, challenging the notion that it predominantly affects women. It is now acknowledged that a significant proportion, if not the majority, of infertility cases can be attributed to male-related factors. Various elements contribute to male reproductive impairments, including aberrant sperm production caused by pituitary malfunction, testicular malignancies, aplastic germ cells, varicocele, and environmental factors. MAIN BODY The epigenetic profile of mammalian sperm is distinctive and specialized. Various epigenetic factors regulate genes across different levels in sperm, thereby affecting its function. Changes in sperm epigenetics, potentially influenced by factors such as environmental exposures, could contribute to the development of male infertility. CONCLUSION In conclusion, this review investigates the latest studies pertaining to the mechanisms of epigenetic changes that occur in sperm cells and their association with male reproductive issues.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anis Khalafiyan
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Zare
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniye Karimzadeh
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Basireh Bahrami
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Hammami
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
36
|
Cannarella R, Crafa A, Curto R, Condorelli RA, La Vignera S, Calogero AE. Obesity and male fertility disorders. Mol Aspects Med 2024; 97:101273. [PMID: 38593513 DOI: 10.1016/j.mam.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Often associated with obesity, male infertility represents a widespread condition that challenges the wellbeing of the couple. In this article, we provide a comprehensive and critical analysis of studies exploring the association between obesity and male reproductive function, to evaluate the frequency of this association, and establish the effects of increased body weight on conventional and biofunctional sperm parameters and infertility. In an attempt to find possible molecular markers of infertility in obese male patients, the numerous mechanisms responsible for infertility in overweight/obese patients are reviewed in depth. These include obesity-related functional hypogonadism, insulin resistance, hyperinsulinemia, chronic inflammation, adipokines, irisin, gut hormones, gut microbiome, and sperm transcriptome. According to meta-analytic evidence, excessive body weight negatively influences male reproductive health. This can occurr through a broad array of molecular mechanisms. Some of these are not yet fully understood and need to be further elucidated in the future. A better understanding of the effects of metabolic disorders on spermatogenesis and sperm fertilizing capacity is very useful for identifying new diagnostic markers and designing therapeutic strategies for better clinical management of male infertility.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
37
|
Wu D, Zhang K, Guan K, Khan FA, Pandupuspitasari NS, Negara W, Sun F, Huang C. Future in the past: paternal reprogramming of offspring phenotype and the epigenetic mechanisms. Arch Toxicol 2024; 98:1685-1703. [PMID: 38460001 DOI: 10.1007/s00204-024-03713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
That certain preconceptual paternal exposures reprogram the developmental phenotypic plasticity in future generation(s) has conceptualized the "paternal programming of offspring health" hypothesis. This transgenerational effect is transmitted primarily through sperm epigenetic mechanisms-DNA methylation, non-coding RNAs (ncRNAs) and associated RNA modifications, and histone modifications-and potentially through non-sperm-specific mechanisms-seminal plasma and circulating factors-that create 'imprinted' memory of ancestral information. The epigenetic landscape in sperm is highly responsive to environmental cues, due to, in part, the soma-to-germline communication mediated by epididymosomes. While human epidemiological studies and experimental animal studies have provided solid evidences in support of transgenerational epigenetic inheritance, how ancestral information is memorized as epigenetic codes for germline transmission is poorly understood. Particular elusive is what the downstream effector pathways that decode those epigenetic codes into persistent phenotypes. In this review, we discuss the paternal reprogramming of offspring phenotype and the possible underlying epigenetic mechanisms. Cracking these epigenetic mechanisms will lead to a better appreciation of "Paternal Origins of Health and Disease" and guide innovation of intervention algorithms to achieve 'healthier' outcomes in future generations. All this will revolutionize our understanding of human disease etiology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
38
|
Freire T, Pulpitel T, Clark X, Mackay F, Raubenheimer D, Simpson SJ, Solon-Biet SM, Crean AJ. The effects of paternal dietary fat versus sugar on offspring body composition and anxiety-related behavior. Physiol Behav 2024; 279:114533. [PMID: 38552707 DOI: 10.1016/j.physbeh.2024.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/26/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Increasing evidence suggests that the pre-conception parental environment has long-term consequences for offspring health and disease susceptibility. Though much of the work in this field concentrates on maternal influences, there is growing understanding that fathers also play a significant role in affecting offspring phenotypes. In this study, we investigate effects of altering the proportion of dietary fats and carbohydrates on paternal and offspring body composition and anxiety-related behavior in C57Bl/6-JArc mice. We show that in an isocaloric context, greater dietary fat increased body fat and reduced anxiety-like behavior of studs, whereas increased dietary sucrose had no significant effect. These dietary effects were not reflected in offspring traits, rather, we found sex-specific effects that differed between offspring body composition and behavioral traits. This finding is consistent with past paternal effect studies, where transgenerational effects have been shown to be more prominent in one sex over the other. Here, male offspring of fathers fed high-fat diets were heavier at 10 weeks of age due to increased lean body mass, whereas paternal diet had no significant effect on female offspring body fat or lean mass. In contrast, paternal dietary sugar appeared to have the strongest effects on male offspring behavior, with male offspring of high-sucrose fathers spending less time in the closed arms of the elevated plus maze. Both high-fat and high-sugar paternal diets were found to reduce anxiety-like behavior of female offspring, although this effect was only evident when offspring were fed a control diet. This study provides new understanding of the ways in which diet can shape the behavior of fathers and their offspring and contribute to the development of dietary guidelines to improve obesity and mental health conditions, such as anxiety.
Collapse
Affiliation(s)
- Therese Freire
- Charles Perkins Centre, The University of Sydney NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney NSW, Australia.
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney NSW, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney NSW, Australia
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney NSW, Australia
| | - Flora Mackay
- Charles Perkins Centre, The University of Sydney NSW, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney NSW, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney NSW, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney NSW, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney NSW, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney NSW, Australia
| | - Angela J Crean
- Charles Perkins Centre, The University of Sydney NSW, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney NSW, Australia
| |
Collapse
|
39
|
Shao Z, Hu J, Jandura A, Wilk R, Jachimowicz M, Ma L, Hu C, Sundquist A, Das I, Samuel-Larbi P, Brill JA, Krause HM. Spatially revealed roles for lncRNAs in Drosophila spermatogenesis, Y chromosome function and evolution. Nat Commun 2024; 15:3806. [PMID: 38714658 PMCID: PMC11076287 DOI: 10.1038/s41467-024-47346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/25/2024] [Indexed: 05/10/2024] Open
Abstract
Unlike coding genes, the number of lncRNA genes in organism genomes is relatively proportional to organism complexity. From plants to humans, the tissues with highest numbers and levels of lncRNA gene expression are the male reproductive organs. To learn why, we initiated a genome-wide analysis of Drosophila lncRNA spatial expression patterns in these tissues. The numbers of genes and levels of expression observed greatly exceed those previously reported, due largely to a preponderance of non-polyadenylated transcripts. In stark contrast to coding genes, the highest numbers of lncRNAs expressed are in post-meiotic spermatids. Correlations between expression levels, localization and previously performed genetic analyses indicate high levels of function and requirement. More focused analyses indicate that lncRNAs play major roles in evolution by controlling transposable element activities, Y chromosome gene expression and sperm construction. A new type of lncRNA-based particle found in seminal fluid may also contribute to reproductive outcomes.
Collapse
Affiliation(s)
- Zhantao Shao
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
| | - Jack Hu
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
| | - Allison Jandura
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ronit Wilk
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
| | - Matthew Jachimowicz
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lingfeng Ma
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chun Hu
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
| | - Abby Sundquist
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
| | - Indrani Das
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
| | | | - Julie A Brill
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Henry M Krause
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Crean AJ, Senior AM, Freire T, Clark TD, Mackay F, Austin G, Pulpitel TJ, Nobrega MA, Barrès R, Simpson SJ. Paternal dietary macronutrient balance and energy intake drive metabolic and behavioral differences among offspring. Nat Commun 2024; 15:2982. [PMID: 38582785 PMCID: PMC10998877 DOI: 10.1038/s41467-024-46782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/11/2024] [Indexed: 04/08/2024] Open
Abstract
Paternal diet can influence the phenotype of the next generation, yet, the dietary components inducing specific responses in the offspring are not identified. Here, we use the Nutritional Geometry Framework to determine the effects of pre-conception paternal dietary macronutrient balance on offspring metabolic and behavioral traits in mice. Ten isocaloric diets varying in the relative proportion of protein, fats, and carbohydrates are fed to male mice prior to mating. Dams and offspring are fed standard chow and never exposed to treatment diets. Body fat in female offspring is positively associated with the paternal consumption of fat, while in male offspring, an anxiety-like phenotype is associated to paternal diets low in protein and high in carbohydrates. Our study uncovers that the nature and the magnitude of paternal effects are driven by interactions between macronutrient balance and energy intake and are not solely the result of over- or undernutrition.
Collapse
Affiliation(s)
- Angela Jane Crean
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alistair McNair Senior
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Therese Freire
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Daniel Clark
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Flora Mackay
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gracie Austin
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tamara Jayne Pulpitel
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DK, 2200, Denmark.
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France.
| | - Stephen James Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
41
|
Maxwell DL, Oluwayiose OA, Houle E, Roth K, Nowak K, Sawant S, Paskavitz AL, Liu W, Gurdziel K, Petriello MC, Pilsner JR. Mixtures of per- and polyfluoroalkyl substances (PFAS) alter sperm methylation and long-term reprogramming of offspring liver and fat transcriptome. ENVIRONMENT INTERNATIONAL 2024; 186:108577. [PMID: 38521043 DOI: 10.1016/j.envint.2024.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Male fertility has been declining worldwide especially in countries with high levels of endocrine disrupting chemicals (EDCs). Per- and polyfluorinated alkyl Substances (PFAS) have been classified as EDCs and have been linked to adverse male reproductive health. The mechanisms of these associations and their implications on offspring health remain unknown. The aims of the current study were to assess the effect of PFAS mixtures on the sperm methylome and transcriptional changes in offspring metabolic tissues (i.e., liver and fat). C57BL/6 male mice were exposed to a mixture of PFAS (PFOS, PFOA, PFNA, PFHxS, Genx; 20 µg/L each) for 18-weeks or water as a control. Genome-wide methylation was assessed on F0 epidydimal sperm using reduced representation bisulfite sequencing (RRBS) and Illumina mouse methylation array, while gene expression was assessed by bulk RNA sequencing in 8-week-old offspring derived from unexposed females. PFAS mixtures resulted in 2,861 (RRBS) and 83 (Illumina) sperm DMRs (q < 0.05). Functional enrichment revealed that PFAS-induced sperm DMRs were associated with behavior and developmental pathways in RRBS, while Illumina DMRs were related to lipid metabolism and cell signaling. Additionally, PFAS mixtures resulted in 40 and 53 differentially expressed genes (DEGs) in the liver and fat of males, and 9 and 31 DEGs in females, respectively. Functional enrichment of DEGs revealed alterations in cholesterol metabolism and mitotic cell cycle regulation in the liver and myeloid leukocyte migration in fat of male offspring, while in female offspring, erythrocyte development and carbohydrate catabolism were affected in fat. Our results demonstrate that exposure to a mixture of legacy and newly emerging PFAS chemicals in adult male mice result in aberrant sperm methylation and altered gene expression of offspring liver and fat in a sex-specific manner. These data indicate that preconception PFAS exposure in males can be transmitted to affect phenotype in the next generation.
Collapse
Affiliation(s)
- DruAnne L Maxwell
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America; Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Oladele A Oluwayiose
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Emily Houle
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America
| | - Karolina Nowak
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Savni Sawant
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America; Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Amanda L Paskavitz
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America; Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America; Department of Pharmacology, School of Medicine, Wayne State University, Detroit 48201, MI, the United States of America; Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America; Department of Pharmacology, School of Medicine, Wayne State University, Detroit 48201, MI, the United States of America
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America; Department of Pharmacology, School of Medicine, Wayne State University, Detroit 48201, MI, the United States of America
| | - J Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America.
| |
Collapse
|
42
|
Yan S, Sun W, Tian S, Meng Z, Diao J, Zhou Z, Li L, Zhu W. Pre-mating nitenpyram exposure in male mice leads to depression-like behavior in offspring by affecting tryptophan metabolism in gut microbiota. J Environ Sci (China) 2024; 137:120-130. [PMID: 37980001 DOI: 10.1016/j.jes.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 11/20/2023]
Abstract
Several studies have confirmed that the health status of the paternal affects the health of the offspring, however, it remains unknown whether paternal exposure to pesticides affect the offspring health. Here, we used untargeted metabolomics and 16S rRNA sequencing technology, combined with tail suspension test and RT-qPCR to explore the effects of paternal exposure to nitenpyram on the neurotoxicity of offspring. Our results found that the paternal exposure to nitenpyram led to the offspring's depressive-like behaviors, accompanied by the reduction of tryptophan content and the disorder of microbial abundance in the gut of the offspring. Further, we determined the expression of tryptophan metabolism-related genes tryptophanase (tnaA) and tryptophan hydroxylase 1 (TpH1) in gut bacteria and colonic tissues. We found that tryptophan is metabolized to indoles rather than being absorbed into colonocytes, which coursed the reduce of tryptophan availability after nitenpyram exposure. In conclusion, our study deepens our understanding of the intergenerational toxic effects of pesticides.
Collapse
Affiliation(s)
- Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- College of Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
43
|
Mehta P, Singh R. Small RNAs: an ideal choice as sperm quality biomarkers. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1329760. [PMID: 38406667 PMCID: PMC10884189 DOI: 10.3389/frph.2024.1329760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Spermatozoa were classically known as vehicles for the delivery of the paternal genome to the oocyte. However, in 1962, spermatozoa were discovered to carry significant amounts of RNA in them, which raised questions about the significance of these molecules in such a highly specialized cell. Scientific research in the last six decades has investigated the biological significance of sperm RNAs by various means. Irrespective of what sperm RNAs do, their presence in spermatozoa has attracted attention for their exploitation as biomarkers of fertility. Research in this direction started in the year 2000 and is still underway. A major hurdle in this research is the definition of the standard human sperm RNAome. Only a few normozoospermic samples have been analyzed to define the normal sperm RNAome. In this article, we provide a perspective on the suitability of sperm RNAs as biomarkers of fertility and the importance of defining the normal sperm RNAome before we can succeed in identifying RNA-based biomarkers of sperm quality and fertility. The identification of sperm RNA biomarkers of fertility can be exploited for quality screening of donor sperm samples, explain infertility in idiopathic cases, and RNA therapeutics for the treatment of male infertility.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
- Division of Endocrinology, Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, India
| | - Rajender Singh
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
- Division of Endocrinology, Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, India
| |
Collapse
|
44
|
Lu L, Cheng Y, Wu W, Wang L, Li S, Li Q, Chen L, Zhang J, Chen R, Tan X, Hong Y, Yang L, Song Y. Paternal p,p'-DDE exposure and pre-pubertal high-fat diet increases the susceptibility to fertility impairment and sperm Igf2 DMR2 hypo-methylation in male offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115999. [PMID: 38262096 DOI: 10.1016/j.ecoenv.2024.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The hypothesis of paternal origins of health and disease (POHaD) indicates that paternal exposure to adverse environment could alter the epigenetic modification in germ line, increasing the disease susceptibility in offspring or even in subsequent generations. p,p'-Dichlorodiphenyldichloroethylene (p,p'-DDE) is an anti-androgenic chemical and male reproductive toxicant. Gestational p,p'-DDE exposure could impair reproductive development and fertility in male offspring. However, the effect of paternal p,p'-DDE exposure on fertility in male offspring remains uncovered. From postnatal day (PND) 35 to 119, male rats (F0) were given 10 mg/body weight (b.w.) p,p'-DDE or corn oil by gavage. Male rats were then mated with the control females to generate male offspring. On PND35, the male offspring were divided into 4 groups according whether to be given the high-fat diet (HF): corn oil treatment with control diet (C-C), p,p'-DDE treatment with control diet (DDE-C), corn oil treatment with high-fat diet (C-HF) or p,p'-DDE treatment with high-fat diet (DDE-HF) for 35 days. Our results indicated that paternal p,p'-DDE exposure did not affect the male fertility of male offspring directly, but decreased sperm quality and induced testicular apoptosis after the high-fat diet treatment. Further analysis demonstrated that paternal exposure to p,p'-DDE and pre-pubertal high-fat diet decreased sperm Igf2 DMR2 methylation and gene expression in male offspring. Hence, paternal exposure to p,p'-DDE and pre-pubertal high-fat diet increases the susceptibility to male fertility impairment and sperm Igf2 DMR2 hypo-methylation in male offspring, posing a significant implication in the disease etiology.
Collapse
Affiliation(s)
- Liping Lu
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Yuzhou Cheng
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Wei Wu
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Lijun Wang
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Shuqi Li
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Qianyu Li
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Liangjing Chen
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Jianyun Zhang
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Yang Song
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China.
| |
Collapse
|
45
|
Kimmins S, Anderson RA, Barratt CLR, Behre HM, Catford SR, De Jonge CJ, Delbes G, Eisenberg ML, Garrido N, Houston BJ, Jørgensen N, Krausz C, Lismer A, McLachlan RI, Minhas S, Moss T, Pacey A, Priskorn L, Schlatt S, Trasler J, Trasande L, Tüttelmann F, Vazquez-Levin MH, Veltman JA, Zhang F, O'Bryan MK. Frequency, morbidity and equity - the case for increased research on male fertility. Nat Rev Urol 2024; 21:102-124. [PMID: 37828407 DOI: 10.1038/s41585-023-00820-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
Currently, most men with infertility cannot be given an aetiology, which reflects a lack of knowledge around gamete production and how it is affected by genetics and the environment. A failure to recognize the burden of male infertility and its potential as a biomarker for systemic illness exists. The absence of such knowledge results in patients generally being treated as a uniform group, for whom the strategy is to bypass the causality using medically assisted reproduction (MAR) techniques. In doing so, opportunities to prevent co-morbidity are missed and the burden of MAR is shifted to the woman. To advance understanding of men's reproductive health, longitudinal and multi-national centres for data and sample collection are essential. Such programmes must enable an integrated view of the consequences of genetics, epigenetics and environmental factors on fertility and offspring health. Definition and possible amelioration of the consequences of MAR for conceived children are needed. Inherent in this statement is the necessity to promote fertility restoration and/or use the least invasive MAR strategy available. To achieve this aim, protocols must be rigorously tested and the move towards personalized medicine encouraged. Equally, education of the public, governments and clinicians on the frequency and consequences of infertility is needed. Health options, including male contraceptives, must be expanded, and the opportunities encompassed in such investment understood. The pressing questions related to male reproductive health, spanning the spectrum of andrology are identified in the Expert Recommendation.
Collapse
Affiliation(s)
- Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- The Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- The Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Christopher L R Barratt
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, University Hospital, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sarah R Catford
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Melbourne, Victoria, Australia
| | | | - Geraldine Delbes
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Sante Biotechnologie, Laval, Quebec, Canada
| | - Michael L Eisenberg
- Department of Urology and Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Nicolas Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Brendan J Houston
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia
| | - Niels Jørgensen
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences, 'Mario Serio', University of Florence, University Hospital of Careggi Florence, Florence, Italy
| | - Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert I McLachlan
- Hudson Institute of Medical Research and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
- Monash IVF Group, Richmond, Victoria, Australia
| | - Suks Minhas
- Department of Surgery and Cancer Imperial, London, UK
| | - Tim Moss
- Healthy Male and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Allan Pacey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lærke Priskorn
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stefan Schlatt
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jacquetta Trasler
- Departments of Paediatrics, Human Genetics and Pharmacology & Therapeutics, McGill University and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Leonardo Trasande
- Center for the Investigation of Environmental Hazards, Department of Paediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Mónica Hebe Vazquez-Levin
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Fundación IBYME, Buenos Aires, Argentina
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
46
|
Meng B, He J, Cao W, Zhang Y, Qi J, Luo S, Shen C, Zhao J, Xue Y, Qu P, Liu E. Paternal high-fat diet altered H3K36me3 pattern of pre-implantation embryos. ZYGOTE 2024; 32:1-6. [PMID: 38018398 DOI: 10.1017/s0967199423000448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The global transition towards diets high in calories has contributed to 2.1 billion people becoming overweight, or obese, which damages male reproduction and harms offspring. Recently, more and more studies have shown that paternal exposure to stress closely affects the health of offspring in an intergenerational and transgenerational way. SET Domain Containing 2 (SETD2), a key epigenetic gene, is highly conserved among species, is a crucial methyltransferase for converting histone 3 lysine 36 dimethylation (H3K36me2) into histone 3 lysine 36 trimethylation (H3K36me3), and plays an important regulator in the response to stress. In this study, we compared patterns of SETD2 expression and the H3K36me3 pattern in pre-implantation embryos derived from normal or obese mice induced by high diet. The results showed that SETD2 mRNA was significantly higher in the high-fat diet (HFD) group than the control diet (CD) group at the 2-cell, 4-cell, 8-cell, and 16-cell stages, and at the morula and blastocyst stages. The relative levels of H3K36me3 in the HFD group at the 2-cell, 4-cell, 8-cell, 16-cell, morula stage, and blastocyst stage were significantly higher than in the CD group. These results indicated that dietary changes in parental generation (F0) male mice fed a HFD were traceable in SETD2/H3K36me3 in embryos, and that a paternal high-fat diet brings about adverse effects for offspring that might be related to SETD2/H3K36me3, which throws new light on the effect of paternal obesity on offspring from an epigenetic perspective.
Collapse
Affiliation(s)
- Bin Meng
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- The Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Jiahui He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, China
| | - Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, China
| | - Jia Qi
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, China
| | - Shiwei Luo
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Chong Shen
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Juan Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Xue
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, China
| |
Collapse
|
47
|
Gladwell LR, Ahiarah C, Rasheed S, Rahman SM, Choudhury M. Traditional Therapeutics and Potential Epidrugs for CVD: Why Not Both? Life (Basel) 2023; 14:23. [PMID: 38255639 PMCID: PMC10820772 DOI: 10.3390/life14010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. In addition to the high mortality rate, people suffering from CVD often endure difficulties with physical activities and productivity that significantly affect their quality of life. The high prevalence of debilitating risk factors such as obesity, type 2 diabetes mellitus, smoking, hypertension, and hyperlipidemia only predicts a bleak future. Current traditional CVD interventions offer temporary respite; however, they compound the severe economic strain of health-related expenditures. Furthermore, these therapeutics can be prescribed indefinitely. Recent advances in the field of epigenetics have generated new treatment options by confronting CVD at an epigenetic level. This involves modulating gene expression by altering the organization of our genome rather than altering the DNA sequence itself. Epigenetic changes are heritable, reversible, and influenced by environmental factors such as medications. As CVD is physiologically and pathologically diverse in nature, epigenetic interventions can offer a ray of hope to replace or be combined with traditional therapeutics to provide the prospect of addressing more than just the symptoms of CVD. This review discusses various risk factors contributing to CVD, perspectives of current traditional medications in practice, and a focus on potential epigenetic therapeutics to be used as alternatives.
Collapse
Affiliation(s)
- Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Chidinma Ahiarah
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Shireen Rasheed
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa 616, Oman
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| |
Collapse
|
48
|
Karahan G, Martel J, Rahimi S, Farag M, Matias F, MacFarlane AJ, Chan D, Trasler J. Higher incidence of embryonic defects in mouse offspring conceived with assisted reproduction from fathers with sperm epimutations. Hum Mol Genet 2023; 33:48-63. [PMID: 37740387 PMCID: PMC10729866 DOI: 10.1093/hmg/ddad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Assisted reproductive technologies (ART) account for 1-6% of births in developed countries. While most children conceived are healthy, increases in birth and genomic imprinting defects have been reported; such abnormal outcomes have been attributed to underlying parental infertility and/or the ART used. Here, we assessed whether paternal genetic and lifestyle factors, that are associated with male infertility and affect the sperm epigenome, can influence ART outcomes. We examined how paternal factors, haploinsufficiency for Dnmt3L, an important co-factor for DNA methylation reactions, and/or diet-induced obesity, in combination with ART (superovulation, in vitro fertilization, embryo culture and embryo transfer), could adversely influence embryo development and DNA methylation patterning in mice. While male mice fed high-fat diets (HFD) gained weight and showed perturbed metabolic health, their sperm DNA methylation was minimally affected by the diet. In contrast, Dnmt3L haploinsufficiency induced a marked loss of DNA methylation in sperm; notably, regions affected were associated with neurodevelopmental pathways and enriched in young retrotransposons, sequences that can have functional consequences in the next generation. Following ART, placental imprinted gene methylation and growth parameters were impacted by one or both paternal factors. For embryos conceived by natural conception, abnormality rates were similar for WT and Dnmt3L+/- fathers. In contrast, paternal Dnmt3L+/- genotype, as compared to WT fathers, resulted in a 3-fold increase in the incidence of morphological abnormalities in embryos generated by ART. Together, the results indicate that embryonic morphological and epigenetic defects associated with ART may be exacerbated in offspring conceived by fathers with sperm epimutations.
Collapse
Affiliation(s)
- Gurbet Karahan
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Josée Martel
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Sophia Rahimi
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Mena Farag
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Fernando Matias
- Nutrition Research Division, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | | | - Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jacquetta Trasler
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Pediatrics, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
49
|
Fallet M, Wilson R, Sarkies P. Cisplatin exposure alters tRNA-derived small RNAs but does not affect epimutations in C. elegans. BMC Biol 2023; 21:276. [PMID: 38031056 PMCID: PMC10688063 DOI: 10.1186/s12915-023-01767-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The individual lifestyle and environment of an organism can influence its phenotype and potentially the phenotype of its offspring. The different genetic and non-genetic components of the inheritance system and their mutual interactions are key mechanisms to generate inherited phenotypic changes. Epigenetic changes can be transmitted between generations independently from changes in DNA sequence. In Caenorhabditis elegans, epigenetic differences, i.e. epimutations, mediated by small non-coding RNAs, particularly 22G-RNAs, as well as chromatin have been identified, and their average persistence is three to five generations. In addition, previous research showed that some epimutations had a longer duration and concerned genes that were enriched for multiple components of xenobiotic response pathways. These results raise the possibility that environmental stresses might change the rate at which epimutations occur, with potential significance for adaptation. RESULTS In this work, we explore this question by propagating C. elegans lines either in control conditions or in moderate or high doses of cisplatin, which introduces genotoxic stress by damaging DNA. Our results show that cisplatin has a limited effect on global small non-coding RNA epimutations and epimutations in gene expression levels. However, cisplatin exposure leads to increased fluctuations in the levels of small non-coding RNAs derived from tRNA cleavage. We show that changes in tRNA-derived small RNAs may be associated with gene expression changes. CONCLUSIONS Our work shows that epimutations are not substantially altered by cisplatin exposure but identifies transient changes in tRNA-derived small RNAs as a potential source of variation induced by genotoxic stress.
Collapse
Affiliation(s)
- Manon Fallet
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182, Örebro, Sweden.
| | - Rachel Wilson
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Peter Sarkies
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
| |
Collapse
|
50
|
Ma Z, Li J, Fu L, Fu R, Tang N, Quan Y, Xin Z, Ding Z, Liu Y. Epididymal RNase T2 contributes to astheno-teratozoospermia and intergenerational metabolic disorder through epididymosome-sperm interaction. BMC Med 2023; 21:453. [PMID: 37993934 PMCID: PMC10664275 DOI: 10.1186/s12916-023-03158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The epididymis is crucial for post-testicular sperm development which is termed sperm maturation. During this process, fertilizing ability is acquired through the epididymis-sperm communication via exchange of protein and small non-coding RNAs (sncRNAs). More importantly, epididymal-derived exosomes secreted by the epididymal epithelial cells transfer sncRNAs into maturing sperm. These sncRNAs could mediate intergenerational inheritance which further influences the health of their offspring. Recently, the linkage and mechanism involved in regulating sperm function and sncRNAs during epididymal sperm maturation are increasingly gaining more and more attention. METHODS An epididymal-specific ribonuclease T2 (RNase T2) knock-in (KI) mouse model was constructed to investigate its role in developing sperm fertilizing capability. The sperm parameters of RNase T2 KI males were evaluated and the metabolic phenotypes of their offspring were characterized. Pandora sequencing technology profiled and sequenced the sperm sncRNA expression pattern to determine the effect of epididymal RNase T2 on the expression levels of sperm sncRNAs. Furthermore, the expression levels of RNase T2 in the epididymal epithelial cells in response to environmental stress were confirmed both in vitro and in vivo. RESULTS Overexpression of RNase T2 caused severe subfertility associated with astheno-teratozoospermia in mice caput epididymis, and furthermore contributed to the acquired metabolic disorders in the offspring, including hyperglycemia, hyperlipidemia, and hyperinsulinemia. Pandora sequencing showed altered profiles of sncRNAs especially rRNA-derived small RNAs (rsRNAs) and tRNA-derived small RNAs (tsRNAs) in RNase T2 KI sperm compared to control sperm. Moreover, environmental stress upregulated RNase T2 in the caput epididymis. CONCLUSIONS The importance was demonstrated of epididymal RNase T2 in inducing sperm maturation and intergenerational inheritance. Overexpressed RNase T2 in the caput epididymis leads to astheno-teratozoospermia and metabolic disorder in the offspring.
Collapse
Affiliation(s)
- Zhuoyao Ma
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Jinyu Li
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Li Fu
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Fu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningyuan Tang
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Yanmei Quan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Zhixiang Xin
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, No. 415, Fengyang Road, Shanghai, 200003, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China.
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China.
| |
Collapse
|