1
|
Waghode P, Quadir SS, Choudhary D, Sharma S, Joshi G. Small interfering RNA (siRNA) as a potential gene silencing strategy for diabetes and associated complications: challenges and future perspectives. J Diabetes Metab Disord 2024; 23:365-383. [PMID: 38932822 PMCID: PMC11196550 DOI: 10.1007/s40200-024-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/17/2024] [Indexed: 06/28/2024]
Abstract
Objective This article critically reviews the recent search on the use of Small Interfering RNA (siRNA) in the process of gene regulation that has been harnessed to silence specific genes in various cell types, including those involved in diabetes complications. Significance Diabetes, a prevalent and severe condition, poses life-threatening risks due to elevated blood glucose levels. It results from inadequate insulin production by the pancreas or ineffective insulin utilization by the body. Recent research suggests siRNA could hold promise in addressing diabetes complications. Methods In this review, we discussed several subjects, including diabetes; its function, and common treatment options. An in-depth analysis of gene silencing method for siRNA and role of siRNA in diabetes, focusing on its impact on glucose homeostasis, diabetic retinopathy, wound healing, diabetic nephropathy and peripheral neuropathy, diabetic foot ulcers, diabetic atherosclerosis, and diabetic cardiomyopathy. Result siRNA-based treatment has the potential to target specific genes without disrupting several other endogenous pathways, which decreases the risk of off-target effects. In addition, siRNA has the capability to provide long-term efficacy with a single dose which will reduce treatment options and enhance patient compliance. Conclusion In the context of diabetic complications, siRNA has been explored as a potential therapeutic tool to modulate the expression of genes involved in various processes associated with diabetes-related issues such as Diabetic Retinopathy, Neuropathy, Nephropathy, wound healing. The use of siRNA in these contexts is still largely experimental, and challenges such as delivery to specific tissues, potential off-target effects, and long-term safety need to be addressed. Additionally, the development of siRNA-based therapies for clinical use in diabetic complications is an active area of research. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01405-7.
Collapse
Affiliation(s)
- Pranali Waghode
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, deemed to be University, Vile Parle West, 400056 Mumbai, Maharashtra India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, deemed to be University, Vile Parle West, 400056 Mumbai, Maharashtra India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| |
Collapse
|
2
|
Li M, Peng Y, Pang L, Wang L, Li J. Single-Cell RNA Sequencing Reveals Transcriptional Signatures and Cell-Cell Communication in Diabetic Retinopathy. Endocr Metab Immune Disord Drug Targets 2024; 24:1651-1663. [PMID: 38988068 DOI: 10.2174/0118715303286652240214110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of vision loss in workingage individuals worldwide. Cell-to-cell communication between retinal cells and retinal pigment epithelial cells (RPEs) in DR is still unclear, so this study aimed to generate a single-cell atlas and identify receptor‒ligand communication between retinal cells and RPEs. METHODS A mouse single-cell RNA sequencing (scRNA-seq) dataset was retrieved from the GEO database (GSE178121) and was further analyzed with the R package Seurat. Cell cluster annotation was performed to further analyze cell‒cell communication. The differentially expressed genes (DEGs) in RPEs were explored through pathway enrichment analysis and the protein‒ protein interaction (PPI) network. Core genes in the PPI were verified by quantitative PCR in ARPE-19 cells. RESULTS We observed an increased proportion of RPEs in STZ mice. Although some overall intercellular communication pathways did not differ significantly in the STZ and control groups, RPEs relayed significantly more signals in the STZ group. In addition, THBS1, ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 were found to be the core DEGs of the PPI network in RPEs. qPCR results showed that the expression of ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 was higher and consistent with scRNA-seq results in ARPE-19 cells under hyperglycemic conditions. CONCLUSION Our study, for the first time, investigated how signals that RPEs relay to and from other cells underly the progression of DR based on scRNA-seq. These signaling pathways and hub genes may provide new insights into DR mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Muye Li
- Department of Vitreoretinopathy, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Yueling Peng
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, 030012, China
| | - Lin Pang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Lin Wang
- Department of Vitreoretinopathy, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Junhong Li
- Department of Strabismus and Pediatric, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| |
Collapse
|
3
|
Neurovascular Impairment and Therapeutic Strategies in Diabetic Retinopathy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010439. [PMID: 35010703 PMCID: PMC8744686 DOI: 10.3390/ijerph19010439] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy has recently been defined as a highly specific neurovascular complication of diabetes. The chronic progression of the impairment of the interdependence of neurovascular units (NVUs) is associated with the pathogenesis of diabetic retinopathy. The NVUs consist of neurons, glial cells, and vascular cells, and the interdependent relationships between these cells are disturbed under diabetic conditions. Clinicians should understand and update the current knowledge of the neurovascular impairments in diabetic retinopathy. Above all, neuronal cell death is an irreversible change, and it is directly related to vision loss in patients with diabetic retinopathy. Thus, neuroprotective and vasoprotective therapies for diabetic retinopathy must be established. Understanding the physiological and pathological interdependence of the NVUs is helpful in establishing neuroprotective and vasoprotective therapies for diabetic retinopathy. This review focuses on the pathogenesis of the neurovascular impairments and introduces possible neurovascular protective therapies for diabetic retinopathy.
Collapse
|
4
|
Bódi N, Mezei D, Chakraborty P, Szalai Z, Barta BP, Balázs J, Rázga Z, Hermesz E, Bagyánszki M. Diabetes-related intestinal region-specific thickening of ganglionic basement membrane and regionally decreased matrix metalloproteinase 9 expression in myenteric ganglia. World J Diabetes 2021; 12:658-672. [PMID: 33995853 PMCID: PMC8107976 DOI: 10.4239/wjd.v12.i5.658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The importance of the neuronal microenvironment has been recently highlighted in gut region-specific diabetic enteric neuropathy. Regionally distinct thickening of endothelial basement membrane (BM) of intestinal capillaries supplying the myenteric ganglia coincide with neuronal damage in different intestinal segments. Accelerated synthesis of matrix molecules and reduced degradation of matrix components may also contribute to the imbalance of extracellular matrix dynamics resulting in BM thickening. Among the matrix degrading proteinases, matrix metalloproteinase 9 (MMP9) and its tissue inhibitor (TIMP1) are essential in regulating extracellular matrix remodelling.
AIM To evaluate the intestinal segment-specific effects of diabetes and insulin replacement on ganglionic BM thickness, MMP9 and TIMP1 expression.
METHODS Ten weeks after the onset of hyperglycaemia gut segments were taken from the duodenum and ileum of streptozotocin-induced diabetic, insulin-treated diabetic and sex- and age-matched control rats. The thickness of BM surrounding myenteric ganglia was measured by electron microscopic morphometry. Whole-mount preparations of myenteric plexus were prepared from the different gut regions for MMP9/TIMP1 double-labelling fluorescent immunohistochemistry. Post-embedding immunogold electron microscopy was applied on ultrathin sections to evaluate the MMP9 and TIMP1 expression in myenteric ganglia and their microenvironment from different gut segments and conditions. The MMP9 and TIMP1 messenger ribonucleic acid (mRNA) level was measured by quantitative polymerase chain reaction.
RESULTS Ten weeks after the onset of hyperglycaemia, the ganglionic BM was significantly thickened in the diabetic ileum, while it remained intact in the duodenum. The immediate insulin treatment prevented the diabetes-related thickening of the BM surrounding the ileal myenteric ganglia. Quantification of particle density showed an increasing tendency for MMP9 and a decreasing tendency for TIMP1 from the proximal to the distal small intestine under control conditions. In the diabetic ileum, the number of MMP9-indicating gold particles decreased in myenteric ganglia, endothelial cells of capillaries and intestinal smooth muscle cells, however, it remained unchanged in all duodenal compartments. The MMP9/TIMP1 ratio was also decreased in ileal ganglia only. However, a marked segment-specific induction was revealed in MMP9 and TIMP1 at the mRNA levels.
CONCLUSION These findings support that the regional decrease in MMP9 expression in myenteric ganglia and their microenvironment may contribute to extracellular matrix accumulation, resulting in a region-specific thickening of ganglionic BM.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Diána Mezei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Payal Chakraborty
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Bence Pál Barta
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - János Balázs
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Zsolt Rázga
- Department of Pathology, Faculty of Medicine, University of Szeged, Szeged 6720, Hungary
| | - Edit Hermesz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| |
Collapse
|
5
|
Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2020; 82:100903. [PMID: 32950677 DOI: 10.1016/j.preteyeres.2020.100903] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Vascular basement membrane (BM) thickening has been hailed over half a century as the most prominent histological lesion in diabetic microangiopathy, and represents an early ultrastructural change in diabetic retinopathy (DR). Although vascular complications of DR have been clinically well established, specific cellular and molecular mechanisms underlying dysfunction of small vessels are not well understood. In DR, small vessels develop insidiously as BM thickening occurs. Studies examining high resolution imaging data have established BM thickening as one of the foremost structural abnormalities of retinal capillaries. This fundamental structural change develops, at least in part, from excess accumulation of BM components. Although BM thickening is closely associated with the development of DR, its contributory role in the pathogenesis of DR is coming to light recently. DR develops over several years before clinical manifestations appear, and it is during this clinically silent period that hyperglycemia induces excess synthesis of BM components, contributes to vascular BM thickening, and promotes structural and functional lesions including cell death and vascular leakage in the diabetic retina. Studies using animal models show promising results in preventing BM thickening with subsequent beneficial effects. Several gene regulatory approaches are being developed to prevent excess synthesis of vascular BM components in an effort to reduce BM thickening. This review highlights current understanding of capillary BM thickening development, role of BM thickening in retinal vascular lesions, and strategies for preventing vascular BM thickening as a potential therapeutic strategy in alleviating characteristic lesions associated with DR.
Collapse
Affiliation(s)
- Sayon Roy
- Boston University School of Medicine, Boston, MA, USA.
| | - Dongjoon Kim
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Nguyen NH, Kim D, Roy S. High Glucose Increases Binding of Lysyl Oxidase to Extracellular Matrix Proteins: Implications for Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2020; 61:40. [PMID: 32340032 PMCID: PMC7401919 DOI: 10.1167/iovs.61.4.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To determine whether high glucose (HG) compromises internalization of lysyl oxidase (LOX) through excess binding of LOX with extracellular matrix (ECM) proteins. Methods To determine whether HG promotes binding of LOX with ECM proteins, fibronectin (FN) and collagen IV (Coll IV), total or ECM-only proteins from rat retinal endothelial cells grown in normal (N; 5 mM) or HG (30 mM) medium were analyzed by coimmunoprecipitation and Western blot (WB). In parallel, coimmunostaining was performed to determine changes in LOX binding to FN or Coll IV. To determine the effect of HG on extracellular LOX levels, medium in which cells were grown for 1, 3, 5, and 7 days were assessed for LOX levels. Results WB analysis using total protein showed LOX overexpression and elevated levels of LOX bound to Coll IV or FN in HG condition. Similarly, a significant increase in LOX bound to FN or Coll IV was observed in ECM-only protein. These data were supported by Z-stack confocal microscopy images from coimmunostaining. Furthermore, immunostaining performed on ECM layer revealed increased presence of LOX bound to Coll IV or FN. Additionally, when media from cells grown in HG was monitored, a maximal increase in LOX level was observed by day 3, which declined by day 7. Conclusions Findings indicate that HG promotes binding of LOX to FN and Coll IV extracellularly that results in reduced LOX internalization, attenuation of negative feedback, and upregulation of LOX expression associated with diabetic retinopathy.
Collapse
Affiliation(s)
| | | | - Sayon Roy
- , , Massachusetts.,, , Massachusetts
| |
Collapse
|
7
|
Upregulation of Lysyl Oxidase Expression in Vitreous of Diabetic Subjects: Implications for Diabetic Retinopathy. Cells 2019; 8:cells8101122. [PMID: 31546618 PMCID: PMC6829411 DOI: 10.3390/cells8101122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023] Open
Abstract
Animal studies have shown diabetes-induced lysyl oxidase (LOX) upregulation promotes blood-retinal-barrier breakdown and retinal vascular cell loss associated with diabetic retinopathy (DR). However, it is unclear whether changes in LOX expression contribute to the development and progression of DR. To determine if vitreous LOX levels are altered in patients with DR, 31 vitreous specimens from subjects with advanced proliferative DR (PDR), and 27 from non-diabetics were examined. The two groups were age- and gender-matched (57 ± 12 yrs vs. 53 ± 18 yrs; 19 males and 12 females vs. 17 males and 10 females). Vitreous samples obtained during vitrectomy were assessed for LOX levels using ELISA. LOX was detected in a larger number of PDR subjects (58%) than in non-diabetic subjects (15%). Additionally, ELISA measurements showed a significant increase in LOX levels in the diabetic subjects with PDR, compared to those of non-diabetic subjects (68.3 ± 112 ng/mL vs. 2.1 ± 8.2 ng/mL; p < 0.01). No gender difference in vitreous LOX levels was observed in either the diabetic or non-diabetic groups. Findings support previous reports of increased LOX levels in retinas of diabetic animals and in retinal vascular cells in high glucose condition, raising the prospect of targeting LOX overexpression as a potential target for PDR treatment.
Collapse
|
8
|
Abstract
Diabetes is a condition that is not completely treatable but life of a diabetic patient can be smoothed by preventing or delaying the associate conditions like diabetic retinopathy, nephropathy, impaired wound healing process, etc. Apart from conventional methods to regulate diabetic condition, new techniques using siRNA have been emerged to prevent the associated conditions. This paper focuses on how siRNA used as a tool to silence the expression of genes which plays critical role in pathogenesis of these conditions. A marked improvement in wound-healing process of diabetic patients has been observed with siRNA treatment by silencing of Keap1 gene. Glucagon plays critical role in glucose homoeostasis and increases blood glucose level during hypoglycaemia. Glucose homoeostasis is impaired in diabetic patient and suppressing the expression of glucagon secretion with siRNA is used to suppress the progress of diabetes. Similarly, silencing expression of several factors has demonstrated improvement of treatment of diabetic nephropathy, retinopathy and inflammation by the use of siRNA.
Collapse
Affiliation(s)
- Pravin Shende
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , Mumbai , India
| | - Chirag Patel
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , Mumbai , India
| |
Collapse
|
9
|
Yang Z, Zhang XR, Zhao Q, Wang SL, Xiong LL, Zhang P, Yuan B, Zhang ZB, Fan SY, Wang TH, Zhang YH. Knockdown of TNF‑α alleviates acute lung injury in rats with intestinal ischemia and reperfusion injury by upregulating IL‑10 expression. Int J Mol Med 2018; 42:926-934. [PMID: 29767265 PMCID: PMC6034932 DOI: 10.3892/ijmm.2018.3674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/26/2018] [Indexed: 02/05/2023] Open
Abstract
Intestinal ischemia and reperfusion (II/R) injury often triggers severe injury in remote organs, with the lungs being considered the main target. Excessive elevation of proinflammatory cytokines is a major contributor in the occurrence and development of II/R-induced acute lung injury (ALI). Therefore, the present study aimed to investigate whether blocking tumor necrosis factor-α (TNF-α) expression could protect the lungs from injury following II/R, and to explore the possible underlying mechanism involving interleukin-10 (IL-10). Briefly, II/R was induced in rats by 40 min occlusion of the superior mesenteric artery and celiac artery, followed by 8, 16 or 24 h of reperfusion. Subsequently, lentiviral vectors containing TNF-α short hairpin (sh)RNA were injected into the right lung tissues, in order to induce TNF-α knockdown. The severity of ALI was determined according to lung injury scores and lung edema (lung wet/dry weight ratio). The expression levels of TNF-α were analyzed by quantitative polymerase chain reaction (qPCR), western blotting and immunofluorescence (IF) staining. IL-10 expression, in response to TNF-α knockdown, was detected in lung tissues by qPCR and IF. The results detected marked inflammatory responses, and increased levels of lung wet/dry weight ratio and TNF-α expression, in the lungs of II/R rats. Conversely, treatment with TNF-α shRNA significantly alleviated the severity of ALI and upregulated the expression levels of IL-10 in lung tissues. These findings suggested that TNF-α RNA interference may exert a protective effect on II/R-induced ALI via the upregulation of IL-10. Therefore, TNF-α knockdown may be considered a potential strategy for the prevention or treatment of ALI induced by II/R in future clinical trials.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Xue-Rong Zhang
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Qiong Zhao
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Sheng-Lan Wang
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Liu-Lin Xiong
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Piao Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Bing Yuan
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Zi-Bing Zhang
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shu-Yuan Fan
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yun-Hui Zhang
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
10
|
Saraiva SM, Castro-López V, Pañeda C, Alonso MJ. Synthetic nanocarriers for the delivery of polynucleotides to the eye. Eur J Pharm Sci 2017; 103:5-18. [PMID: 28263915 DOI: 10.1016/j.ejps.2017.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
This review is a comprehensive analysis of the progress made so far on the delivery of polynucleotide-based therapeutics to the eye, using synthetic nanocarriers. Attention has been addressed to the capacity of different nanocarriers for the specific delivery of polynucleotides to both, the anterior and posterior segments of the eye, with emphasis on their ability to (i) improve the transport of polynucleotides across the different eye barriers; (ii) promote their intracellular penetration into the target cells; (iii) protect them against degradation and, (iv) deliver them in a long-term fashion way. Overall, the conclusion is that despite the advantages that nanotechnology may offer to the area of ocular polynucleotide-based therapies (especially AS-ODN and siRNA delivery), the knowledge disclosed so far is still limited. This fact underlines the necessity of more fundamental and product-oriented research for making the way of the said nanotherapies towards clinical translation.
Collapse
Affiliation(s)
- Sofia M Saraiva
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Vanessa Castro-López
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Covadonga Pañeda
- Sylentis, R&D Department, c/Santiago Grisolía 2, 28760 Tres Cantos, Madrid, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Kadłubowska J, Malaguarnera L, Wąż P, Zorena K. Neurodegeneration and Neuroinflammation in Diabetic Retinopathy: Potential Approaches to Delay Neuronal Loss. Curr Neuropharmacol 2017; 14:831-839. [PMID: 27306035 PMCID: PMC5333588 DOI: 10.2174/1570159x14666160614095559] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 08/11/2015] [Accepted: 01/01/1970] [Indexed: 02/06/2023] Open
Abstract
In spite of the extensive research the complex pathogenesis of diabetic retinopathy (DR) has not been fully elucidated. For many years it has been thought that diabetic retinopathy manifests only with microangiopathic lesions, which are totally responsible for the loss of vision in diabetic patients. In view of the current knowledge on the microangiopathic changes in the fundus of the eye, diabetic retinopathy is perceived as a neurodegenerative disease. Several clinical tools are available to detect neuronal dysfunction at early stages of diabetes. Many functional changes in the retina can be identified before vascular pathology develops, suggesting that they result from a direct effect of diabetes on the neural retina. In the course of diabetes there is a chronic loss of retinal neurons due to increased frequency of apoptosis. The neuronal apoptosis begins very early in the course of diabetes. This observation has led to suggestions that precautions against DR should be implemented immediately after diabetes is diagnosed. Neurodegeneration cannot be reversed; therefore treatments preventing neuronal cell loss in the retina need to be developed to protect diabetic patients. This review is an attempt to summarize what is currently known about the mechanisms of neuronal apoptosis in the context of diabetic retinopathy and vascular degeneration as well as about potential treatments of DR
Collapse
Affiliation(s)
| | | | | | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| |
Collapse
|
12
|
Roy S, Bae E, Amin S, Kim D. Extracellular matrix, gap junctions, and retinal vascular homeostasis in diabetic retinopathy. Exp Eye Res 2015; 133:58-68. [PMID: 25819455 DOI: 10.1016/j.exer.2014.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
The vascular basement membrane (BM) contains extracellular matrix (ECM) proteins that assemble in a highly organized manner to form a supportive substratum for cell attachment facilitating myriad functions that are vital to cell survival and overall retinal homeostasis. The BM provides a microenvironment in which bidirectional signaling through integrins regulates cell attachment, turnover, and functionality. In diabetic retinopathy, the BM undergoes profound structural and functional changes, and recent studies have brought to light the implications of such changes. Thickened vascular BM in the retinal capillaries actively participate in the development and progression of characteristic changes associated with diabetic retinopathy. High glucose (HG)-induced compromised cell-cell communication via gap junctions (GJ) in retinal vascular cells may disrupt homeostasis in the retinal microenvironment. In this review, the role of altered ECM synthesis, compromised GJ activity, and disturbed retinal homeostasis in the development of retinal vascular lesions in diabetic retinopathy are discussed.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| | - Edward Bae
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Shruti Amin
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
13
|
Liu Z, Gong H, Zeng R, Liang X, Zhang LM, Yang L, Lan Y. Efficient delivery of NF-κB siRNA to human retinal pigment epithelial cells with hyperbranched cationic polysaccharide derivative-based nanoparticles. Int J Nanomedicine 2015; 10:2735-49. [PMID: 25897219 PMCID: PMC4396640 DOI: 10.2147/ijn.s75188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A hyperbranched cationic polysaccharide derivative-mediated small interfering (si)RNA interference strategy was proposed to inhibit nuclear transcription factor-kappa B (NF-κB) activation in human retinal pigment epithelial (hRPE) cells for the gene therapy of diabetic retinopathy. Two hyperbranched cationic polysaccharide derivatives containing the same amount of cationic residues, but with different branching structures and molecular weights, including 3-(dimethylamino)-1-propylamine-conjugated glycogen (DMAPA-Glyp) and amylopectin (DMAPA-Amp) derivatives, were developed for the efficient delivery of NF-κB siRNA into hRPE cells. The DMAPA-Glyp derivative showed lower toxicity against hRPE cells. Furthermore, the DMAPA-Glyp derivative more readily condensed siRNA and then formed the nanoparticles attributed to its higher branching architecture when compared to the DMAPA-Amp derivative. Both DMAPA-Glyp/siRNA and DMAPA-Amp/siRNA nanoparticles were able to protect siRNA from degradation by nuclease in 25% fetal bovine serum. The particle sizes of the DMAPA-Glyp/siRNA nanoparticles (70–120 nm) were smaller than those of the DMAPA-Amp/siRNA nanoparticles (130–180 nm) due to the higher branching architecture and lower molecular weight of the DMAPA-Glyp derivative. In addition, the zeta potentials of the DMAPA-Glyp/siRNA nanoparticles were higher than those of the DMAPA-Glyp/siRNA nanoparticles. As a result, siRNA was much more efficiently transferred into hRPE cells using the DMAPA-Glyp/siRNA nanoparticles rather than the DMAPA-Amp/siRNA nanoparticles. This led to significantly high levels of suppression on the expression levels of NF-κB p65 messenger RNA and protein in the cells transfected with DMAPA-Glyp/siRNA nanoparticles. This work provides a potential approach to promote hyperbranched polysaccharide derivatives as nonviral siRNA vectors for the inhibition of NF-κB activation in hRPE cells.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haijun Gong
- Department of Ophthalmology, Guangdong Provinci Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Rui Zeng
- Department of Ophthalmology, Guangdong Provinci Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuan Liang
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li-Ming Zhang
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liqun Yang
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuqing Lan
- Department of Ophthalmology, Guangdong Provinci Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Vicentini FTMDC, Borgheti-Cardoso LN, Depieri LV, de Macedo Mano D, Abelha TF, Petrilli R, Bentley MVLB. Delivery systems and local administration routes for therapeutic siRNA. Pharm Res 2013; 30:915-31. [PMID: 23344907 PMCID: PMC7088712 DOI: 10.1007/s11095-013-0971-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 01/03/2013] [Indexed: 01/28/2023]
Abstract
With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.
Collapse
|
15
|
Devi TS, Singh LP, Hosoya KI, Terasaki T. GSK-3β/CREB axis mediates IGF-1-induced ECM/adhesion molecule expression, cell cycle progression and monolayer permeability in retinal capillary endothelial cells: Implications for diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1080-8. [PMID: 21549192 DOI: 10.1016/j.bbadis.2011.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 01/11/2023]
Abstract
Various growth factors and cytokines are implicated in endothelial dysfunction and blood-retinal barrier (BRB) breakdown in early diabetic retinopathy (DR). However, cellular and molecular mechanisms that may underlie the pathology of DR are not fully understood yet. We therefore examined the effect of insulin-like growth factor (IGF)-1 on ECM/adhesion molecule expression, cell cycle regulation and monolayer permeability in an endothelial cell line (TR-iBRB2). We investigate whether the action of IGF-1 (1) involves glycogen synthase kinase 3beta (GSK-3β) and cAMP responsive transcription factor (CREB) and (2) alters ECM/adhesion molecule gene expression. Treatment of TR-iBRB2 cell with IGF-1 (100ng/ml for 0-24h) increases phosphorylation of (i) Akt Thr308, and its substrates including GSK-3β at Ser9, which inactivates its kinase function, and (ii) CREB at Ser133 (activation). These phosphorylations correlate positively with enhanced expression of CREB targets such as ECM protein fibronectin and cell cycle progression factor cyclin D1. However, stable transfection of a mutant GSK3β(S9A) or a dominant negative K-CREB in TR-iBRB2 prevents IGF-1-induced fibronectin and cyclin D1 expression. Furthermore, IGF-1 reduces the level of intercellular adherence molecule VE-cadherin and increases monolayer permeability in TR-iBRB2 cells when measured by FITC-dextran leakage. The effect of IGF-1 on VE-cadherin and membrane permeability is absent in TR-iBRB2 cells expressing the GSK-3β(S9A). Similarly, K-CREB reverses IGF-1 down-regulation of VE-cadherin and up-regulation of fibronectin. These results indicate that GSK-3β/CREB axis alters ECM/adhesion molecule expression and cell cycle progression in retinal endothelial cells, and may potentially contribute to endothelial dysfunction and BRB leakage in DR.
Collapse
Affiliation(s)
- Takhellambam S Devi
- Departments of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
16
|
Roy S, Ha J, Trudeau K, Beglova E. Vascular basement membrane thickening in diabetic retinopathy. Curr Eye Res 2010; 35:1045-56. [PMID: 20929292 DOI: 10.3109/02713683.2010.514659] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular basement membrane (BM) thickening is a fundamental structural alteration of small blood vessels in diabetes. Over two decades of research has established hyperglycemia as the primary causal factor mediating this alteration. Various high glucose-induced mechanisms have been investigated and excess synthesis of BM components has been identified as a major contributing factor to BM thickening. Although BM thickening has been long hailed as the histological hallmark of diabetic microangiopathy, the consequences of BM thickening on the functionality of target organs of diabetes remain elusive even today. This review presents an overview of our current understanding of the BM structure and function, and focuses on how capillary BM thickening develops, its effect on retinal vascular function, and potential strategies for preventing the development of BM thickening in diabetic retinopathy.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
17
|
Wang Q, Peng Z, Xiao S, Geng S, Yuan J, Li Z. RNAi-mediated inhibition of COL1A1 and COL3A1 in human skin fibroblasts. Exp Dermatol 2007; 16:611-7. [PMID: 17576241 DOI: 10.1111/j.1600-0625.2007.00574.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Types I and III collagens are the major collagens comprising skin connective tissue. Defects in these collagens lead to diseases of dermal connective tissue and fibre hyperplasia. RNA interference (RNAi) provides a powerful tool to inhibit specific gene expression. In this study, we generated small interfering RNAs (siRNA) expression cassettes (SECs) by polymerase chain reaction (PCR) as a method to quickly screen the efficacy of siRNAs. We then cloned the most efficient SECs into vectors, using a rapid and novel method intrinsic to the design of the SEC, and transfected human skin fibroblasts (HSF) to generate stable lines. We show that the transfection of SECs into HSFs resulted in specific and effective repression of COL1A1 and COL3A1 expression (5.00% and 6.48% of control levels) provided a rapid method for testing candidate siRNA sequences. We report the use of vector-based RNAi to establish stable HSF cell lines with persistent knockdown over at least 30 days (25.21% and 22.12% of control levels). These stably modified HSF cell lines may be used for the study of other types of collagen or proteins of the extracellular matrix (ECM).
Collapse
Affiliation(s)
- Qiong Wang
- Department of Dermatology, Second Hospital of Xi'an Jiaotong University, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
18
|
Tane N, Dhar S, Roy S, Pinheiro A, Ohira A, Roy S. Effect of excess synthesis of extracellular matrix components by trabecular meshwork cells: possible consequence on aqueous outflow. Exp Eye Res 2007; 84:832-42. [PMID: 17350618 DOI: 10.1016/j.exer.2007.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 11/10/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
The extracellular matrix (ECM) of the trabecular meshwork (TM) is an important determinant of its functional properties. This study was performed to investigate whether overexpression of ECM components, laminin (LM) and collagen type IV (Col) by TM cells may play a role in the development of outflow resistance. To determine the effect of excess LM and Col expression on cell monolayer permeability, an in vitro cell culture model was used in which overexpression of the two ECM components, LM and Col, was induced by high glucose (HG) (30 mM) or 0.1 microM dexamethasone (D) in bovine and human trabecular meshwork (BTM and HTM) cells. Western blot analysis and immunofluorescence staining confirmed increased LM and Col synthesis in cells exposed to HG or D. Increased level of LM and Col protein resulted in reduced cell monolayer permeability. Transfection with antisense oligos (AS-oligos) targeted against LM or Col inhibited HG- or D-induced LM and Col gene overexpression in TM cells with concomitant increase in permeability. The AS-oligo strategy was effective in reducing LM or Col level in the TM cells in all conditions tested in this study. These findings suggest that increased LM and Col deposition in the outflow pathway may cause resistance to aqueous outflow and contribute to the development of primary open angle glaucoma (POAG).
Collapse
Affiliation(s)
- Nobuhiro Tane
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
19
|
|