1
|
Wu D, Liu J, Guo Z, Wang L, Yao Z, Wu Q, Lu Y, Lv W. Natural bioactive compounds reprogram bile acid metabolism in MAFLD: Multi-target mechanisms and therapeutic implications. Int Immunopharmacol 2025; 157:114708. [PMID: 40306110 DOI: 10.1016/j.intimp.2025.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/20/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has become an increasingly prevalent liver disorder worldwide, being closely associated with obesity, metabolic syndrome, and insulin resistance. Bile acids (BAs), beyond their traditional role in lipid digestion, play a pivotal part in regulating lipid and glucose metabolism as well as inflammatory responses. Recent investigations have recognized BAs as key factors in the onset and progression of MAFLD, mainly via their interactions with nuclear receptors such as the farnesoid X receptor (FXR) and the G protein-coupled bile acid receptor (TGR5). Additionally, active compounds derived from traditional Chinese medicine (TCM) have shown promising potential in the treatment of MAFLD. This study systematically reviews and analyzes the molecular mechanisms and recent progress in the application of TCM active ingredients for MAFLD treatment, with a focus on their regulation of BAs. These active ingredients, including saponins, flavonoids, polysaccharides, and sterols, exert therapeutic effects through diverse mechanisms, such as modulating BA synthesis and mediating receptor-signaling pathways, and are expected to restore metabolic homeostasis.
Collapse
Affiliation(s)
- Dongjie Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jing Liu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ziwei Guo
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Liang Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Ziang Yao
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Qingjuan Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yanping Lu
- Department of Hepatology, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen 518100, China.
| | - Wenliang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
2
|
Hu Y, Sang N, Wu A, Pu J, Yan H, Luo J, Zheng P, Luo Y, Yu J, He J, Yu B, Chen D. Different types of bile acids exhibit opposite regulatory effects on lipid metabolism in finishing pigs through bile acid receptors. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 21:25-36. [PMID: 40135169 PMCID: PMC11930731 DOI: 10.1016/j.aninu.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 03/27/2025]
Abstract
The purpose of this research was to investigate how different bile acids impact lipid metabolism and carcass characteristics in finishing pigs, along with the potential mechanisms involved. Twenty-one finishing pigs (Duroc×Landrace×Yorkshire [DLY]; average BW = 144.38 ± 8.92 kg) were assigned to three dietary treatments, with each treatment containing seven replicates, each consisting of one pig. The three dietary treatments included: a basic diet, a basic diet supplemented with 500 mg/kg of hyodeoxycholic acid (HDCA), and a basic diet supplemented with 500 mg/kg of lithocholic acid (LCA). The trial lasted for 28 d. Hyodeoxycholic acid was used in the in vitro experiments and added to mature 3T3-L1 adipocytes for 4 d to elucidate the mechanism by which bile acids regulate lipid metabolism. The results suggested that HDCA tended to decrease backfat thickness in finishing pigs (P = 0.094) and reduced the size of lipid droplets in 3T3-L1 adipocytes (P = 0.012), whereas LCA increased backfat thickness (P = 0.016) and induced larger lipid droplets in the abdominal adipose tissue (P = 0.003). Furthermore, HDCA enhanced the expression of Takeda G-protein-coupled receptor 5 protein and hormone-sensitive lipase (HSL) gene in backfat of pigs (P < 0.05) and increased the protein expression of phosphorylated HSL (p-HSL) in vitro (P = 0.093). Compared to HDCA, LCA addition increased the gene and protein expression of peroxisome proliferator activated receptor gamma in backfat of pigs (P < 0.05) and enhanced the expression of hepatic genes sterol regulatory element-binding protein-1c and fatty acid synthase (P < 0.05). In conclusion, HDCA enhanced lipolysis and partially decreased backfat thickness in finishing pigs, while LCA promoted lipid synthesis and increased backfat thickness of pigs. The variations in the effects of various bile acids on bile acid receptors could explain these functional differences.
Collapse
Affiliation(s)
- Yaolian Hu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Ni Sang
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Aimin Wu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junning Pu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Hui Yan
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
3
|
He Y, Shaoyong W, Chen Y, Li M, Gan Y, Sun L, Liu Y, Wang Y, Jin M. The functions of gut microbiota-mediated bile acid metabolism in intestinal immunity. J Adv Res 2025:S2090-1232(25)00307-8. [PMID: 40354934 DOI: 10.1016/j.jare.2025.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/19/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Bile acids, derived from cholesterol in the liver, consist a steroidal core. Primary bile acids and secondary bile acids metabolized by the gut microbiota make up the bile acid pool, which modulate nuclear hormone receptors to regulate immunity. Disruptions in the crosstalk between bile acids and the gut flora are intimately associated with the development and course of gastrointestinal inflammation. AIM OF REVIEW This review provides an extensive summary of bile acid production, transport and metabolism. It also delves into the impact of bile acid metabolism on the body and explores the involvement of bile acid-microbiota interactions in various disease states. Furthermore, the potential of targeting bile acid signaling as a means to prevent and treat inflammatory bowel disease is proposed. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we primarily address the functions of bile acid-microbiota crosstalk in diseases. Firstly, we summarize bile acid signalling and the factors influencing bile acid metabolism, with highlighting the immune function of microbially conjugated bile acids and the unique roles of different receptors. Subsequently, we emphasize the vital role of bile acids in maintaining a healthy gut microbiota and regulating the intestinal barrier function, energy metabolism and immunity. Finally, we explore differences of bile acid metabolism in different disease states, offering new perspectives on restoring the host's health and the gastrointestinal ecosystem by targeting the gut microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Yanmin He
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Weike Shaoyong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Yanli Chen
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Menglin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yujie Gan
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Lu Sun
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Yalin Liu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Mingliang Jin
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China.
| |
Collapse
|
4
|
Tao D, Dong Y, Che D, Wang Z, Zheng Y, Han R, Jiang H. Acanthopanax senticosus polysaccharide alleviates LPS-induced intestinal inflammation in piglets by gut microbiota and hyodeoxycholic acid regulation. Int J Biol Macromol 2025; 307:141467. [PMID: 40010458 DOI: 10.1016/j.ijbiomac.2025.141467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
The purpose of this study is to investigate the effects and mechanisms of Acanthopanax senticosus polysaccharides (ASPS) on lipopolysaccharide (LPS)-induced intestinal injury and growth performance in piglets. Our results indicated that ASPS improved the growth performance in LPS-challenged piglets, including the increase in average daily gain (ADG), average daily feed intake (ADFI), and the feed to gain ratio (F/G). ASPS alleviated LPS-induced intestinal inflammation in piglets, accompanied by the increase in the villus height to crypt depth ratio (VCR) and the decreased in the expression levels of IL-1β, IL-6, and TNF-α. 16S rRNA sequencing results showed that ASPS improved gut microbiota dysbiosis and increased Lactobacillus_sp._L_YJ abundance. The combined analysis of untargeted metabolomics of intestinal contents and serum showed that ASPS significantly increased the levels of hyodeoxycholic acid (HDCA), DHA ethyl ester, and alanylalanine, and the level of HDCA is the highest among all metabolites, suggesting that ASPS regulated the metabolites of intestinal contents and serum to alleviate LPS-induced intestinal inflammation in piglets, and HDCA might play a significant role during this process. Furthermore, we investigated the effects of HDCA on growth performance and intestinal inflammation in LPS-challenged piglets. The results indicated that HDCA alleviated LPS-induced intestinal inflammation and improved the growth performance in piglets. In conclusion, ASPS could alleviate LPS-induced intestinal inflammation in piglets by gut microbiota and hyodeoxycholic acid regulation. These findings might provide strong evidence for ASPS as a feed additive to improve piglet diarrhea, and reveal the therapeutic potential of hyodeoxycholic acid in preventing intestinal inflammation in piglets.
Collapse
Affiliation(s)
- Dapeng Tao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118
| | - Yangyunyi Dong
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China 132109
| | - Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118
| | - Zhongshen Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118
| | - Yingying Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118
| | - Rui Han
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118.
| | - Hailong Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118.
| |
Collapse
|
5
|
Du R, Yan S, Yao W, Zhang H, Xue Y, Zhao Y, Cao G, Liu J, Zhang Y, Li X, Bao S, Song Y. Discrepancies in the rumen microbiome, metabolome, and serum metabolome among Hu sheep, East Friesian sheep, and East Friesian × Hu crossbred sheep. Front Microbiol 2025; 16:1498050. [PMID: 40356639 PMCID: PMC12066648 DOI: 10.3389/fmicb.2025.1498050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/21/2025] [Indexed: 05/15/2025] Open
Abstract
Crossbreeding has emerged as a strategy to combine desirable traits from different sheep breeds, with the goal of enhancing productivity, disease resistance, and growth rates. This study compares the immune responses, rumen microbiomes, and serum metabolites of Hu sheep, East Friesian (EF) sheep, and crossbred Hu × EF (DH) sheep to explore the effects of crossbreeding on productivity and disease resistance. Hu sheep exhibited significantly higher lymphocyte counts (p < 0.05) and white blood cell (WBC) counts (p < 0.05) compared to EF and DH sheep, indicating stronger basal immune responses. DH sheep showed superior immune responses, with a higher cluster of differentiation 4+/cluster of differentiation 8+ (CD4+/CD8+) T cell ratio (p < 0.05) compared to EF sheep. Rumen microbiome analysis revealed distinct microbial profiles; DH sheep exhibited higher relative abundances of Prevotella (p < 0.05), which is associated with improved growth and disease resistance. Metabolomic analysis revealed significant differences in bile acid profiles: DH sheep exhibited higher levels of 6-keto lithocholic acid (6-ketoLCA), cholic acid and chenodeoxycholic acid (CDCA), and 3β-hyodeoxycholic acid (3β-HDCA) (p < 0.05), which is associated with improved immune function and gut health. These results indicate that crossbreeding improves immune resilience and metabolic efficiency, which has implications for breeding strategies designed to enhance livestock productivity and disease resistance.
Collapse
Affiliation(s)
- Ruilin Du
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shuo Yan
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wenna Yao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Huimin Zhang
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yue Xue
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yulong Zhao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guifang Cao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jun Liu
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Siqin Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
6
|
Liu X, Sun H, Han Q, Wang Z, Zeng J, Liu J, Ou S, Jin K, Shao Y, Li D, Gao Z, Wang F. Gut microbiota-derived UDCA enhanced by metformin inhibits FXR to activate autophagy against MCD diet-induced NAFLD in mice. Int Immunopharmacol 2025; 153:114471. [PMID: 40121741 DOI: 10.1016/j.intimp.2025.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/19/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a prevalent chronic liver disease, poses a substantial global health burden. Metformin is known for its protective effects in NAFLD, but the role of gut microbiota in the underlying mechanisms remains unclear. In this study, metformin was found to mitigate methionine-choline deficient (MCD) -diet induced NAFLD through reshaping the gut microbiota to increase ursodeoxycholic acid (UDCA) level, thereby inhibiting farnesoid X receptor (FXR) accompanied with activated autophagy. Specifically, using dirty cage experiments and 16S rRNA sequencing, it identified that metformin could reshape microbiota to release liver injury as confirmed by the results of histopathology and biochemical index detection. Furthermore, the bile acids were found to be altered by metformin, in which, the UDCA, a FXR natural inhibitor, was observed a significantly increase. Meanwhile, the inhibited FXR and activated autophagy in metformin-treated mice were captured using western blot, qRT-PCR and immunofluorescence analysis. In addition, the benefit of UDCA against NAFLD was demonstrated in UDCA treated mice. Further investigation with FXR siRNA introduced to HepG2 cells revealed that inhibiting FXR can reduce oleic acids induced cell injury with the autophagy activation. In conclusion, this study highlights metformin's potential to ameliorate NAFLD by reshaping gut microbiota, thereby upregulating UDCA in the liver and restoring cholesterol synthesis capacity, possibly via inhibiting FXR to activate autophagy.
Collapse
Affiliation(s)
- Xiujie Liu
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, Zhejiang, China
| | - Hongxia Sun
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiannian Han
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Zekai Wang
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingjing Zeng
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianwei Liu
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Shining Ou
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Keke Jin
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yuanyuan Shao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, Zhejiang, China
| | - Dongbing Li
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, Zhejiang, China
| | - Zhuowei Gao
- Oncology Department, Shunde Hospital of Guangzhou University of Chinese Medicine, Guangdong 528300, China; Research Center of Translational Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Guangdong 528300, China.
| | - Fangyan Wang
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Duarte L, Magne F, Gotteland M. Gut microbiota in patients with metabolic, dysfunction-associated steatotic liver disease. Curr Opin Clin Nutr Metab Care 2025:00075197-990000000-00217. [PMID: 40294087 DOI: 10.1097/mco.0000000000001128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
PURPOSE OF REVIEW Metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent condition that can progress to fibrosis, steatohepatitis, and hepatocellular carcinoma. This review examines recent advances concerning the role of gut microbiota in MASLD and microbiota-focused interventions to positively impact disease outcome. RECENT FINDINGS Dysbiotic microbiota and a compromised gut barrier facilitate the translocation of microbial-associated molecular patterns and harmful metabolites into the portal circulation and liver, where they exacerbate inflammatory and fibrogenic processes. Conversely, other bacterial metabolites have protective effects in the liver. Therefore, microbiota homeostasis is essential for maintaining liver health. SUMMARY Levels of harmful bacterial metabolites including ethanol, NH3, trimethylamine-L-oxide, 2-oleylglycerol, and litocholic acid are often increased in patients with MASLD. Conversely, short-chain fatty acids, indole derivatives, histidine, and the acids taurodeoxycholic, 3-succinylcholic, and hyodeoxycholic are decreased. The main aim of current interventions/treatments is to reduce harmful metabolites and increase beneficial ones. These interventions include drugs (pemafibrate, metformin, obeticholic acid), natural compounds (silymarin, lupeol, dietary fiber, peptides), exogenous bacteria (probiotics, gut symbionts), special diets (Mediterranean diet, time-restricted feeding), as well as microbiota transplantation, and phage therapy. Most improve gut permeability, liver inflammation, and fibrosis through microbiota regulation, and are promising alternatives for MASLFD management. However, most results come from animal studies, while clinical trials in MASLD patients are lacking. Further research is therefore needed in this area.
Collapse
Affiliation(s)
| | - Fabien Magne
- Microbiology and Mycology Program, ICBM, Faculty of Medicine
| | - Martin Gotteland
- Department of Nutrition
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Li O, Zhou Y, Kim D, Xu H, Bao Z, Yang F. Lactococcus petauri LZys1 modulates gut microbiota, diminishes ileal FXR-FGF15 signaling, and regulates hepatic function. Microbiol Spectr 2025:e0171624. [PMID: 40243350 DOI: 10.1128/spectrum.01716-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
Recent studies have indicated that Lactococcus petauri LZys1 (L. petauri LZys1), isolated from healthy human feces, exhibits a promising probiotic profile in vitro. However, its impact on the physiological status of the host in vivo remains uncertain. The objective of our study was to investigate the effects and mechanisms of orally administering L. petauri LZys1 on gut microbiota and liver function in mice. We administered L. petauri LZys1 through daily oral gavage to C57BL/6 male mice. Subsequently, we analyzed changes in gut microbiota composition using 16S rRNA sequencing and quantified alterations in hepatic-intestinal bile acid (BA) profile. Serum biochemical parameters were assessed to evaluate liver function. Our findings revealed that L. petauri LZys1 led to an increase in body weight, liver mass, and serum aminotransferase levels. Oral administration altered the gut microbiota composition, resulting in reduced diversity and abundance of intestinal bacteria. Additionally, the profiles of BAs were suppressed across organs, associated with the downregulation of the ileum's farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF15) signaling pathway. The decrease in circulating FGF15 mediated the downregulation of hepatic fibroblast growth factor receptor 4 (FGFR4)/FXR, disrupting BA metabolism and fatty acid oxidation. Our findings suggest that L. petauri LZys1 may impact liver function by influencing the gut microbiota-mediated ileal FXR-FGF15 axis and inhibiting hepatic bile acid metabolism. IMPORTANCE This work elucidated the impact of L. petauri LZys1 on host gut microbiota metabolism and hepatic physiological metabolism. We observed that L. petauri LZys1 administration induced liver weight gain and biochemical parameters changes, in addition to a altered gut microbiota and suppressed bile acid (BA) profiles. Furthermore, we propose that changes in liver status are related to the enterohepatic farnesoid X receptor-fibroblast growth factor axis, which alters bile acid metabolism and disrupts liver function. The above findings suggest that attention should be paid to the effect of probiotics on liver function.
Collapse
Affiliation(s)
- Ouyang Li
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Digestive Endoscopy Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, Sichuan, China
| | - Dayoung Kim
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Department of Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| | - Han Xu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Department of Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Department of Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| | - Fan Yang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Department of Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Chen M, Bie L. Intratumoral microbiota for hepatocellular carcinoma: from preclinical mechanisms to clinical cancer treatment. Cancer Cell Int 2025; 25:152. [PMID: 40247312 PMCID: PMC12007317 DOI: 10.1186/s12935-025-03745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Intratumoral microbiota has been found to be a crucial component of hepatocellular carcinoma (HCC). Due to insufficient recognition, technical limitations, and low biomass of intratumoral microbiota, it is poorly understood. Intratumoral microbiota exhibit significant diversity in HCC tissues. It is involved in the development of HCC through several mechanisms, such as remodeling the immunosuppressive microenvironment, metabolic reprogramming, and genetic alterations. Moreover, intratumoral microbiota is associated with the metastasis of HCC cells. Herein, we reviewed the history of intratumoral microbiota, applied biotechnology to depict the signatures of intratumoral microbiota, investigated the potential sources of intratumoral microbiota, and assessed their functions, mechanisms, and heterogeneity. Furthermore, in this review, we summarized the development of therapeutics that can be used in the treatment of HCC and proposed future perspectives for research in this field.
Collapse
Affiliation(s)
- Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Wuhan, 430030, Hubei, China
| |
Collapse
|
10
|
Wang Y, Zhang B, Feng L, Cao C, Fei X. A study of correlation of the dietary index for gut microbiota with non-alcoholic fatty liver disease based on 2007-2018 National Health and Nutrition Examination Survey. Front Nutr 2025; 12:1573249. [PMID: 40276530 PMCID: PMC12018250 DOI: 10.3389/fnut.2025.1573249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Objective To explore the correlation of dietary index for gut microbiota (DI-GM) with non-alcoholic fatty liver disease (NAFLD). Methods Data of 6,711 participants were extracted from the National Health and Nutrition Examination Survey (NHANES) during 2007-2018. A weighted logistic regression analysis was employed for assessment of the correlation of DI-GM with NAFLD, and a restricted cubic spline (RCS) analysis was implemented to examine potential non-linear associations. Subgroup analyses were conducted to identify particularly susceptible groups. Additionally, the synergistic effects of different DI-GM components on NAFLD risk was assessed by weighted quantile sum (WQS) regression. Results The DI-GM exhibited statistically significant correlation with NAFLD [OR (95%CI):0.91 (0.85, 0.98), p = 0.015]. The results of the RCS analysis indicated a linear correlation of DI-GM and NAFLD (p = 0.810 for non-linearity). Further stratified analyses indicated that the negative correlation of DI-GM with NAFLD were significant and consistent for all subgroups. The results of WQS regression revealed that soybean (27%), refined grains (17%), coffee (16%), and red meat (9%) had the highest contribution weights to NAFLD. Conclusion As an important tool for assessment of the influences of diet on gut microbiota, DI-GM is negatively correlated with NAFLD risk factors. Soybean, refined grains, coffee, and red meat are key factors influencing NAFLD. The direct correlation of DI-GM with NAFLD shall be explored and the effectiveness of prevention and treatment of NAFLD shall be evaluated by improving DI-GM scores via dietary interventions.
Collapse
Affiliation(s)
- Yinda Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Binzhong Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lianzhong Feng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Chenxi Cao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoliang Fei
- Department of Radiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
11
|
Liu C, Zheng X, Ji J, Zhu X, Liu X, Liu H, Guo L, Ye K, Zhang S, Xu YJ, Sun X, Zhou W, Wong HLX, Tian Y, Qian H. The carotenoid torularhodin alleviates NAFLD by promoting Akkermanisa muniniphila-mediated adenosylcobalamin metabolism. Nat Commun 2025; 16:3338. [PMID: 40199868 PMCID: PMC11978934 DOI: 10.1038/s41467-025-58500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Torularhodin, a unique carotenoid, confers beneficial effects on nonalcoholic fatty liver disease (NAFLD). However, the precise mechanism underlying its therapeutic effects remains unknown. Here, we report that torularhodin alleviates NAFLD in male mice by modulating the gut microbiota. Additionally, transplanting fecal microbiota from torularhodin-treated mice to germ-free mice also improves NAFLD. Mechanistically, torularhodin specifically enriches the abundance of Akkermansia muciniphila, which alleviates NAFLD by promoting the synthesis of adenosylcobalamin. Utilizing a human gastrointestinal system and a colonic organoid model, we further demonstrate that adenosylcobalamin confers protective effects against NAFLD through reducing ceramides, a well-known liver damaging compound, and this effect is mediated by inhibition of the hypoxia-inducible factor 2α pathway. Notably, we construct electrospun microsphere-encapsulated torularhodin, which facilitates the slow release of torularhodin in the colon. Together, our findings indicate the therapeutic potential of microbial utilization of carotenoids, such as torularhodin, for treating NAFLD.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Xiaoning Liu
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 138673, Singapore
| | - He Liu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lichun Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Kun Ye
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Shuang Zhang
- Analysis and Testing Center, Jiangnan University, Wuxi, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | | | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- Analysis and Testing Center, Jiangnan University, Wuxi, China.
| | - He Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
12
|
Cadena Sandoval M, Haeusler RA. Bile acid metabolism in type 2 diabetes mellitus. Nat Rev Endocrinol 2025; 21:203-213. [PMID: 39757322 PMCID: PMC12053743 DOI: 10.1038/s41574-024-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/07/2025]
Abstract
Type 2 diabetes mellitus is a complex disorder associated with insulin resistance and hyperinsulinaemia that is insufficient to maintain normal glucose metabolism. Changes in insulin signalling and insulin levels are thought to directly explain many of the metabolic abnormalities that occur in diabetes mellitus, such as impaired glucose disposal. However, molecules that are directly affected by abnormal insulin signalling might subsequently go on to cause secondary metabolic effects that contribute to the pathology of type 2 diabetes mellitus. In the past several years, evidence has linked insulin resistance with the concentration, composition and distribution of bile acids. As bile acids are known to regulate glucose metabolism, lipid metabolism and energy balance, these findings suggest that bile acids are potential mediators of metabolic distress in type 2 diabetes mellitus. In this Review, we highlight advances in our understanding of the complex regulation of bile acids during insulin resistance, as well as how bile acids contribute to metabolic control.
Collapse
Affiliation(s)
- Marti Cadena Sandoval
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
- Columbia Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Columbia Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Zhao Y, Gao L, Chen J, Wei J, Lin G, Hu K, Zhao W, Wei W, Huang W, Gao L, Yuan A, Qian K, Chen AF, Pu J. Remote limb ischemic conditioning alleviates steatohepatitis via extracellular vesicle-mediated muscle-liver crosstalk. Cell Metab 2025; 37:886-902.e7. [PMID: 40118054 DOI: 10.1016/j.cmet.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/30/2024] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is an advanced form of liver disease with adverse outcomes. Manipulating interorgan communication is considered a promising strategy for managing metabolic disease, including steatohepatitis. Here, we report that remote limb ischemic conditioning (RIC), a clinically validated therapy for distant organ protection by transient muscle ischemia, significantly alleviated steatohepatitis in different mouse models. The beneficial effect of limb ischemic conditioning was mediated by muscle-to-liver transfer of small extracellular vesicles (sEVs) and their cargo microRNAs, leading to elevation of miR-181d-5p in the liver. Hepatic miR-181d-5p overexpression faithfully mirrored the molecular and histological benefits of limb ischemic conditioning by suppressing nuclear receptor 4A3 (NR4A3). Furthermore, circulating EVs from human volunteers undergoing limb ischemic conditioning improved steatohepatitis and transcriptomic perturbations in primary human hepatocytes and animal models. Our data underscore the translational potential of limb ischemic conditioning for steatohepatitis management and extend our understanding of muscle-liver crosstalk.
Collapse
Affiliation(s)
- Yichao Zhao
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Gao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Jianqing Chen
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Jingze Wei
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Guanqiao Lin
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kewei Hu
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Wubin Zhao
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Huang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingchen Gao
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ancai Yuan
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Qian
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering, Institute of Medical Robotics and Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Graduate School of Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
14
|
Zhou Z, Xu D, Huang L, Cui Y, Chen H, Tang J. Farnesoid X Receptor Regulated Sepsis-Induced Abnormal Bile Acid Metabolism via the Fibroblast Growth Factor 15/Fibroblast Growth Factor Receptor 4 Pathway. Immun Inflamm Dis 2025; 13:e70155. [PMID: 40192065 PMCID: PMC11973727 DOI: 10.1002/iid3.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE The study aims to investigate the mechanism of Farnesoid X receptor (FXR) activation in sepsis-induced abnormal bile acid metabolism and the metabolism status of each bile acid type. METHODS The sepsis mouse model was developed via lipopolysaccharide intraperitoneal injection and confirmed via hematoxylin and eosin (H&E) staining. FXR agonist activated the FXR/fibroblast growth factor (FGF)15/FGFR pathway via quantitative real-time polymerase chain reaction and Western blot. Consequently, metabolomics and bioinformatics analysis were conducted to identify the alterations in each kind of bile acid content following FXR agonist/inhibitor intervention. RESULTS The H&E staining indicated that FXR activation alleviates the liver injury of the sepsis mouse model. The increased FGF15 and FXFR expression levels and decreased CYP7A1 demonstrated FXR/FGF15/FGFR pathway activation following FXR agonist treatment. Furthermore, total bile acid, interleukin (IL)-6, and tumor necrosis factor-α concentrations were downregulated after FXR activation, whereas IL-10 concentration was upregulated, indicating the alleviated effect of FXR agonist in sepsis. Consequently, metabolomics and bioinformatics analysis determined that T-a-MCA were downregulated in both FXR agonist and inhibitor groups, whereas six bile acid types were altered in the control group. CONCLUSION FXR activation was crucial in alleviating sepsis-induced hepatic injury and cholestasis through the FGF15/FGFR signaling pathway, and FXR may act as a potential preventive and intervention target of sepsis.
Collapse
Affiliation(s)
- Ziyang Zhou
- Trauma‐Emergency & Critical Care Medicine CenterShanghai Fifth People's Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Dan Xu
- Trauma‐Emergency & Critical Care Medicine CenterShanghai Fifth People's Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Liou Huang
- Trauma‐Emergency & Critical Care Medicine CenterShanghai Fifth People's Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Yuhui Cui
- Trauma‐Emergency & Critical Care Medicine CenterShanghai Fifth People's Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Hui Chen
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life ScienceEast China Normal UniversityShanghaiChina
| | - Jianguo Tang
- Trauma‐Emergency & Critical Care Medicine CenterShanghai Fifth People's Hospital Affiliated to Fudan UniversityShanghaiChina
| |
Collapse
|
15
|
Yang X, Wang J, Qi X, Hou M, Liu M, Xiao Y, Liu S, Zhou J, Yu J, Wang Y, Chen G, Yu L, Batchuluun K, Batsaikhan B, Damba T, Liang Y, Liang X, Ma J, Liang Y, Li Y, Zhou L. HLF and PPARα axis regulates metabolic-associated fatty liver disease through extracellular vesicles derived from the intestinal microbiota. IMETA 2025; 4:e70022. [PMID: 40236774 PMCID: PMC11995174 DOI: 10.1002/imt2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has become increasingly widespread. The intestine is the primary site of lipid absorption and is important for the homeostasis of lipid metabolism. However, the mechanism underlying the participation of the intestinal tract in the development of MAFLD requires additional investigation. In this study, analysis of the single-cell transcriptome of intestinal tissue from cynomolgus monkeys found that hepatic leukemia factor (HLF) participated in the genetic regulation of intestinal lipid absorption. Results obtained from normal and intestine-specific Hlf-knockout mice confirmed that HLF alleviated intestinal barrier disorders by inhibiting peroxisome proliferator-activated receptor alpha (PPARα) expression. The HLF/PPARα axis alleviated MAFLD by mediating gut microbiota-derived extracellular vesicles (fEVs), thereby inhibiting hepatocyte ferroptosis. Lipidomics and functional experiments verified that taurochenodeoxycholic acid (TCDCA), a conjugated bile acid contained in the fEVs, had a key role in the process. In conclusion, intestinal HLF activity was mediated by fEVs and identified as a novel therapeutic target for MAFLD.
Collapse
Affiliation(s)
- Xingzhen Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Jiale Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Xinyu Qi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Menglong Hou
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Mengkuan Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Yang Xiao
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Siqi Liu
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jinfeng Zhou
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Jingsu Yu
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yang Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Guo Chen
- Wincon TheraCells Biotechnologies Co., Ltd.NanningChina
| | - Lin Yu
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Khongorzul Batchuluun
- Center for Research and Development of Institute of Biomedical SciencesMongolian National University of Medical SciencesUlaanbaatarMongolia
- Department of Health Research, Graduate SchoolMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Batbold Batsaikhan
- Department of Health Research, Graduate SchoolMongolian National University of Medical SciencesUlaanbaatarMongolia
- Department of Internal Medicine, Institute of Medical SciencesMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Turtushikh Damba
- School of PharmacyMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Yuehui Liang
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Xue Liang
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jie Ma
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Yunxiao Liang
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yixing Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Lei Zhou
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| |
Collapse
|
16
|
Xiao L, Liu J, Qin L, Deng S, Mo G, Zhang D, Huang B. Multi-omics reveal the effects and regulatory mechanism of dietary echinocystic acid supplementation on abdominal fat and liver steatosis in broiler chickens. Poult Sci 2025; 104:104981. [PMID: 40068576 PMCID: PMC11932685 DOI: 10.1016/j.psj.2025.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
The accumulation of abdominal fat and the metabolic dysfunction-associated fatty liver disease (MAFLD) are prevalent problems in the poultry industry, and seriously compromise broiler health and reduce economic benefits. Echinocystic acid (EA), a natural product with anti-inflammatory and antioxidant effects, has been demonstrated to reduce abdominal fat deposition and improve intestinal inflammation in mice. However, it has not been reported in poultry research. In this study, we employed chicken hepatocytes (Leghorn male hepatoma cells, LMHs) to construct an oleic acid and palmitic acid (OA/PA)-induced MAFLD model in vitro and 60 male K90 chickens were induced MAFLD by a high-fat diet (HFD) to examine the impact of EA on liver-lipid metabolism and abdominal fat deposition. Moreover, metabolomic analysis, 16S rDNA gene sequencing, and transcriptomic profiling were performed to determine the mechanism of EA. The results showed that EA (10 μM) significantly reduced triglyceride (TG) and total cholesterol (TC) levels in vitro. Moreover, EA reduced abdominal fat deposition without affecting growth performance. EA significantly decreased TC, TG, and low-density lipoprotein-cholesterol (LDL-C) levels, and increased high-density lipoprotein-cholesterol (HDL-C) levels in the blood. Additionally, EA supplementation altered the composition of the intestinal microbiota, particularly by decreasing the ratio of Firmicutes to Bacteroidetes. Furthermore, liver metabolomics analysis revealed that EA increased the abundance of metabolites related to arginine metabolism and mitochondrial oxidation pathways, and these metabolites were predicted to be positively correlated with the gut genera enriched by EA. EA also altered the expression patterns of genes related to liver lipid metabolism and inflammation, particularly CYP7A1, CYP7B1, CYP3A5, and ACAT, which are enriched in the PPAR signaling pathway and steroid hormone metabolism. Moreover, correlation analysis revealed that there was a close correlation between differential gut microbiota, metabolites, and gene expression profiles. Collectively, the results indicated that EA may alleviate MAFLD by regulating steroid hormone metabolism and modulating the gut microbiota. EA may be a candidate feed additive to prevent abdominal fat deposition and MAFLD in the broiler industry.
Collapse
Affiliation(s)
- Lianggui Xiao
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiazhe Liu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Liangshan Qin
- Guangxi Vocational University of Agricultural, Nanning, 530007, China
| | - Shan Deng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Guodong Mo
- Guangxi Vocational University of Agricultural, Nanning, 530007, China
| | - Dandan Zhang
- Guangxi Key Laboratory of Eye Health, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Ben Huang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Eye Health, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China.
| |
Collapse
|
17
|
Wen Y, Li J, Mukama O, Huang R, Deng S, Li Z. New insights on mesenchymal stem cells therapy from the perspective of the pathogenesis of nonalcoholic fatty liver disease. Dig Liver Dis 2025:S1590-8658(25)00286-5. [PMID: 40158892 DOI: 10.1016/j.dld.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) manifests as chronic hepatic steatosis, occurring variably across people due to racial and genetic diversity. It represents a stage in the development of chronic liver disease, marked by fat accumulation, inflammatory responses, oxidative stress in the endoplasmic reticulum, and fibrosis as primary concerns. Understanding its underlying mechanisms remains a challenging and pivotal area of study. In the past, acute liver injury-related diseases were commonly treated with methods such as liver transplantation. However, the emergence of artificial liver has shifted focus to stem cell therapies. Unlike conventional drugs, stem cell therapies are continuously evolving. Despite being classified as drugs, stem cells demonstrated significant efficacy after multiple injections. Mesenchymal stem cells, unlike other types of stem cells, do not have the risk of tumor formation and low immunogenicity, reducing the hypersensitivity reactions associated with liver transplantation. Increasingly, studies suggest that mesenchymal stem cells hold promise in the treatment of chronic liver injury diseases. This review focuses on investigating the role of mesenchymal stem cells in chronic metabolic liver diseases, such as non-alcoholic fatty liver disease, and delves into their specific functions.
Collapse
Affiliation(s)
- Yanxuan Wen
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jiaxing Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Omar Mukama
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China
| | - Sihao Deng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China.
| |
Collapse
|
18
|
Li Z, Chen Y, Shi T, Cao H, Chen G, Yu L. Potential of queen bee larvae as a dietary supplement for obesity management: modulating the gut microbiota and promoting liver lipid metabolism. Food Funct 2025. [PMID: 40131738 DOI: 10.1039/d5fo00166h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Queen bee larvae (QBL) have been consumed as both a traditional food and medicine in China for thousands of years; however, their specific benefits for human health, particularly their potential anti-obesity property, remain underexplored. This study investigated the anti-obesity effect of QBL freeze-dried powder (QBLF) on high-fat diet (HFD) induced obesity in mice and explored the underlying mechanisms. Our findings showed that QBLF effectively reduced body weight, fasting blood glucose levels, lipid accumulation, and inflammation in HFD mice. 16S rRNA sequencing revealed that QBLF significantly modulated the gut microbiota disrupted by an HFD, notably increasing the relative abundance of beneficial microbes such as Ileibacterium, Clostridium sensu stricto 1, Incertae sedis, Streptococcus, Lactococcus, Clostridia UCG-014, and Lachnospiraceae UCG-006, which were inversely associated with obesity-related phenotypes in the mice. RNA sequencing analysis further demonstrated that QBLF intervention upregulated the expression of genes involved in liver lipid metabolism, including Pck1, Cyp4a10, Cyp4a14, and G6pc, while downregulating genes associated with the inflammatory response, such as Cxcl10, Ccl2, Traf1, Mapk15, Lcn2, and Fosb. These results suggested that QBLF can ameliorate HFD-induced obesity through regulating the gut microbiota, promoting liver lipid metabolism, and reducing inflammatory response.
Collapse
Affiliation(s)
- Zhuang Li
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China.
- Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Biotechnology Center of Anhui Agriculture University, Hefei 230031, China
| | - Yiang Chen
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, School of Tea Science, Anhui Agricultural University, Hefei, 230036, China.
| | - Tengfei Shi
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China.
- Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Biotechnology Center of Anhui Agriculture University, Hefei 230031, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China.
- Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Biotechnology Center of Anhui Agriculture University, Hefei 230031, China
| | - Guijie Chen
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, School of Tea Science, Anhui Agricultural University, Hefei, 230036, China.
| | - Linsheng Yu
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China.
- Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Biotechnology Center of Anhui Agriculture University, Hefei 230031, China
| |
Collapse
|
19
|
Pang L, Liu Y, Yuan C, Ju Y, Wu J, Cheng M, Jin S, Fan Y, Zhang H, Wang Y, Min D. Yi Mai Granule Improves High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice by Regulating Gut Microbiota and Metabolites. Int J Microbiol 2025; 2025:2273986. [PMID: 40166691 PMCID: PMC11955292 DOI: 10.1155/ijm/2273986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/24/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Yi Mai granule (YMG) is a traditional Chinese medicine (TCM) herbal decoction consisting of two TCM formulas: Gua-Lou-Ban-Xia decoction and Si-Jun-Zi decoction. YMG has shown clinical benefit in the treatment of nonalcoholic fatty liver disease (NAFLD), which may be due to its regulatory effects on lipid metabolism. Previous studies have highlighted the importance of the gut microbiota and its metabolites in the use of TCM. However, the effect of YMG on the gut microbiota in the treatment of NAFLD remains unclear. In this study, we established an NAFLD model in ApoE-/- mice and treated them with YMG. High-performance liquid chromatography was adopted to identify the chemical components of YMG. By mapping the candidate targets using network pharmacology, we found that the targets of the main components of YMG were significantly enriched in NAFLD-related pathways. Moreover, 16S rRNA gene sequencing revealed that YMG affected the constitution and metabolism of the gut microbiota in NAFLD model mice, including lipid and carbohydrate metabolism. Similarly, metabolites related to lipid and carbohydrate metabolism in mouse serum were significantly altered by YMG. The correlation heat map and network analyses showed that the gut microbiota and metabolites affected by YMG were closely related to the blood lipid content. Collectively, YMG may exert therapeutic effects by affecting the metabolism of gut microbiota, thus regulating lipid and carbohydrate metabolism. These findings offer novel insight into the pharmacological mechanism of YMG in the treatment of NAFLD and provide theoretical bases for its clinical applications.
Collapse
Affiliation(s)
- Linlin Pang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
- Department of Cardiovascular Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yongming Liu
- Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Changbin Yuan
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yetao Ju
- Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Junpeng Wu
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Meijia Cheng
- Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Sian Jin
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Ying Fan
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Huiyong Zhang
- Department of Traditional Chinese Medicine, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Dongyu Min
- Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Li Y, Zhang Z, Han Q, Liu G, Yin Y, Yin J. Lactobacillus johnsonii-derived leucic acid promotes fatty acid absorption and deposition by targeting CD36. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2794-4. [PMID: 40120026 DOI: 10.1007/s11427-024-2794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 03/25/2025]
Abstract
Lactobacillus johnsonii is a microbial biomarker associated with lipid deposition, but the mechanism by which it accelerates fatty acid absorption and deposition remains unclear. In this study, we isolated a strain of L. johnsonii MS0621 from the feces of Ningxiang pigs, an obese animal model, and evaluated its probiotic properties with high resistance to temperature and intestinal fluids. Colonization by L. johnsonii MS0621 increased the abundance of gut Lactobacillus in lean DLY pigs, concomitant with increases in fatty acid absorption in the intestine and lipid depositions in the fat and muscle tissues. The lipid absorption-promoting effect was further detected in IPEC-J2 cells treated with live L. johnsonii MS0621 and the bacteria-free supernatants, as evidenced by high triglyceride synthesis and the expression of CD36, a key lipid transporter. Metabolomics analysis showed that (R)-leucic acid is a potential metabolite targeting CD36 expression to guarantee lipid absorption and deposition. The mechanism might involve direct interaction with CD36, as molecular docking and inhibition of CD36 blocked L. johnsonii MS0621 or derived metabolite-mediated lipid absorption. In conclusion, we uncovered an important role of L. johnsonii MS0621 derived (R)-leucic acid in regulating the absorption and deposition of intestinal fatty acids via regulation of CD36 expression.
Collapse
Affiliation(s)
- Yunxia Li
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Zhiming Zhang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Qi Han
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Gang Liu
- Yuelushan Laboratory, Changsha, 410128, China
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, 410128, China
| | - Yulong Yin
- Yuelushan Laboratory, Changsha, 410128, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
- Yuelushan Laboratory, Changsha, 410128, China.
| |
Collapse
|
21
|
Deng J, Hu Y, Zhu P, Yu Y, Chen Q, Wu H, Zha Z, Wang H, Ma Y. Probiotic Delivery for Editing of the Gut Microbiota to Mitigate Colitis and Maintain Hepatic Homeostasis Via Gut-Liver Axis. ACS NANO 2025; 19:10500-10514. [PMID: 40047584 DOI: 10.1021/acsnano.5c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Inflammatory bowel disease (IBD) compromises the intestinal barrier and disrupts gut microbiota, impacting liver function via the gut-liver axis, which in turn influences the intestinal microbiota through lipid metabolites exacerbating IBD. This study introduced a probiotic-based treatment using Lactobacillus acidophilus encapsulated in tungsten ion-loaded mesoporous polydopamine (LA@WMPDA) to ameliorate colitis and balance enterohepatic homeostasis. After oral administration, the encapsulation could protect Lactobacillus acidophilus, scavenge reactive oxygen/nitrogen species, and the released tungsten ions would inhibit abnormal Enterobacteriaceae growth during colitis, consequently restoring the intestinal barrier and regulating the gut microbiota. Nontargeted metabolomics and transcriptomics analyses showed increased short-chain fatty acids and indole derivatives, and decreased hepatic lipid metabolism. Pathways associated with immune response, cell migration and death, and response to bacterium showed significant down-regulation in the colon and liver transcriptome analysis. Thus, this study provided a pioneered paradigm for IBD treatment and highlighted the regulation of liver-related metabolic functions via the gut-liver axis.
Collapse
Affiliation(s)
- Junwei Deng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yaoyu Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Pengfei Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| | - Yi Yu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| | - Qian Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Haitao Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Yan Ma
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
22
|
Hu J, Sun J, Zhong Q, Chen S, Yin W, Wei X, Li L, Li K, Ali M, Sun W, Rajput SA, Abdullah M, Si H, Wu Y. Edgeworthia gardneri (Wall.) Meisn Mitigates CCL4-induced liver injury in mice by modulating gut microbiota, boosting antioxidant defense, and reducing inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118042. [PMID: 40086032 DOI: 10.1016/j.ecoenv.2025.118042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Herbal medicine has become an area of growing global scientific interest. The prime objective of this study was to investigate the protective role of Edgeworthia gardneri (Wall.) Meisn (EGM polysaccharide) against carbon tetrachloride (CCl4)-induced liver injury in mice. Forty-five ICR mice were randomly divided into three groups (n = 15): IC, IM, and IT. The IT group received EGM polysaccharide solution (50 mg/kg) daily, while the IC and IM groups were administered an equivalent volume of normal saline. The IT and IM groups were intraperitoneally injected with a mixture of CCl4 and olive oil at 1:1 (v/v) (2 mL/kg) every 3 days. Our results showed that EGM polysaccharide significantly (p < 0.05) reduced pathological hepatic alterations and an increased liver index caused by CCl4. Moreover, EGM polysaccharide therapy significantly (p < 0.001) increased levels of antioxidant enzymes, such as glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) and reduced malondialdehyde (MDA) content in a dose-dependent manner. Notably, EGM polysaccharide alleviated the inflammatory cascades as evidenced by decreased serum levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor- α (TNF-α) under CCl4 administration. Furthermore, 16 s rRNA gene sequencing results exhibited that EGM polysaccharide increased the abundance of probiotics bacteria, such as Unclassified_Lachnospiraceae, and decreased the abundance of pathogenic bacterial texas like Brevundimonas and Candidatus_Nitrocosmicu. Conclusively, EGM polysaccharide protects against CCl4-induced oxidative stress and inflammation in the liver and alleviates hepatic injury through beneficial gut microbiota modulations. The current study suggests that EGM polysaccharide is an effective agent in counteracting CCl4-induced hepatic damage.
Collapse
Affiliation(s)
- Jiashu Hu
- College of Veterinary Medicine, Yunan Agricultural University, Kunming 650201, PR China; School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266000, PR China
| | - Jitao Sun
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, PR China
| | - Qiu Zhong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Shouhai Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wen Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xi Wei
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, PR China
| | - Linzhen Li
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, PR China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjing Sun
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hongbin Si
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Yi Wu
- College of Veterinary Medicine, Yunan Agricultural University, Kunming 650201, PR China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
23
|
Nie LJ, Cheng Z, He YX, Yan QH, Sun YH, Yang XY, Tian J, Zhu PF, Yu JY, Zhou HP, Zhou XQ. Role of duodenal mucosal resurfacing in controlling diabetes in rats. World J Diabetes 2025; 16:102277. [PMID: 40093272 PMCID: PMC11885968 DOI: 10.4239/wjd.v16.i3.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND The duodenum plays a significant role in metabolic regulation, and thickened mucous membranes are associated with insulin resistance. Duodenal mucosal resurfacing (DMR), a new-style endoscopic procedure using hydrothermal energy to ablate this thickened layer, shows promise for enhancing glucose and lipid metabolism in type 2 diabetes (T2D) patients. However, the mechanisms driving these improvements remain largely unexplored. AIM To investigate the mechanisms by which DMR improves metabolic disorders using a rat model. METHODS Rats with T2D underwent a revised DMR procedure via a gastric incision using a specialized catheter to abrade the duodenal mucosa. The duodenum was evaluated using histology, immunofluorescence, and western blotting. Serum assays measured glucose, lipid profiles, lipopolysaccharide, and intestinal hormones, while the gut microbiota and metabolomics profiles were analyzed through 16S rRNA gene sequencing and ultra performance liquid chromatography-mass spectrum/mass spectrum, severally. RESULTS DMR significantly improved glucose and lipid metabolic disorders in T2D rats. It increased the serum levels of cholecystokinin, gastric inhibitory peptide, and glucagon-like peptide 1, and reduced the length and depth of duodenal villi and crypts. DMR also enhanced the intestinal barrier integrity and reduced lipopolysaccharide translocation. Additionally, DMR modified the gut microbiome and metabolome, particularly affecting the Blautia genus. Correlation analysis revealed significant links between the gut microbiota, metabolites, and T2D phenotypes. CONCLUSION This study illustrates that DMR addresses metabolic dysfunctions in T2D through multifaceted mechanisms, highlighting the potential role of the Blautia genus on T2D pathogenesis and DMR's therapeutic impact.
Collapse
Affiliation(s)
- Li-Juan Nie
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhe Cheng
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yi-Xian He
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Qian-Hua Yan
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yao-Huan Sun
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Xin-Yi Yang
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Jie Tian
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Peng-Fei Zhu
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Jiang-Yi Yu
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Hui-Ping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Xi-Qiao Zhou
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
24
|
Kakiyama G, Bai-Kamara N, Rodriguez-Agudo D, Takei H, Minowa K, Fuchs M, Biddinger S, Windle JJ, Subler MA, Murai T, Suzuki M, Nittono H, Sanyal A, Pandak WM. Liver specific transgenic expression of CYP7B1 attenuates early western diet-induced MASLD progression. J Lipid Res 2025; 66:100757. [PMID: 39952566 PMCID: PMC11954105 DOI: 10.1016/j.jlr.2025.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Effect of liver specific oxysterol 7α-hydroxylase (CYP7B1) overexpression on the Western diet (WD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD) progression was studied in mice. Among various hepatic genes impacted during MASLD development, CYP7B1 is consistently suppressed in multiple MASLD mouse models and in human MASLD cohorts. CYP7B1 enzyme suppression leads to accumulations of bioactive oxysterols such as (25R)26-hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). We challenged liver specific CYP7B1 transgenic (CYP7B1hep.tg) overexpressing mice with ad libitum WD feeding. Unlike their WT counterparts, WD-fed CYP7B1hep.tg mice developed no significant hepatotoxicity as evidenced by liver histology, lipid quantifications, and serum biomarker analyses. Hepatic 26HC and 25HC levels were maintained at the basal levels. The comparative gene expression/lipidomic analyses between WT and CYP7B1hep.tg mice revealed that chronically accumulated 26HC initiates LXR/PPAR-mediated hepatic fatty acid uptake and lipogenesis which surpasses fatty acid metabolism and export; compromising metabolic functions. In addition, major pathways related to oxidative stress, inflammation, and immune system including retinol metabolism, arachidonic acid metabolism, and linoleic acid metabolism were significantly impacted in the WD-fed WT mice. All pathways were unaltered in CYP7B1hep.tg mice liver. Furthermore, the nucleus of WT mouse liver but not of CYP7B1hep.tg mouse liver accumulated 26HC and 25HC in response to WD. These data strongly suggested that these two oxysterols are specifically important in nuclear transcriptional regulation for the described cytotoxic pathways. In conclusion, this study represents a "proof-of-concept" that maintaining normal mitochondrial cholesterol metabolism with hepatic CYP7B1 expression prevents oxysterol-driven liver toxicity; thus attenuating MASLD progression.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA.
| | - Nanah Bai-Kamara
- Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo, Japan
| | - Kei Minowa
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA; Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | - Arun Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| |
Collapse
|
25
|
Guo M, Jiang X, Ouyang H, Zhang X, Zhang S, Wang P, Bi G, Wu T, Zhou W, Liang F, Yang X, Fan S, Fang JH, Chen P, Bi H. Parabacteroides distasonis promotes liver regeneration by increasing β-hydroxybutyric acid (BHB) production and BHB-driven STAT3 signals. Acta Pharm Sin B 2025; 15:1430-1446. [PMID: 40370533 PMCID: PMC12069244 DOI: 10.1016/j.apsb.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 05/16/2025] Open
Abstract
The liver regenerative capacity is crucial for patients with end-stage liver disease following partial hepatectomy (PHx). The specific bacteria and mechanisms regulating liver regeneration post-PHx remain unclear. This study demonstrated dynamic changes in the abundance of Parabacteroides distasonis (P. distasonis) post-PHx, correlating with hepatocyte proliferation. Treatment with live P. distasonis significantly promoted hepatocyte proliferation and liver regeneration after PHx. Targeted metabolomics revealed a significant positive correlation between P. distasonis and β-hydroxybutyric acid (BHB), as well as hyodeoxycholic acid and 3-hydroxyphenylacetic acid in the gut after PHx. Notably, treatment with BHB, but not hyodeoxycholic acid or 3-hydroxyphenylacetic acid, significantly promoted hepatocyte proliferation and liver regeneration in mice after PHx. Moreover, STAT3 inhibitor Stattic attenuated the promotive effects of BHB on cell proliferation and liver regeneration both in vitro and in vivo. Mechanistically, P. distasonis upregulated the expression of fatty acid oxidation-related proteins, and increased BHB levels in the liver, and then BHB activated the STAT3 signaling pathway to promote liver regeneration. This study, for the first time, identifies the involvement of P. distasonis and its associated metabolite BHB in promoting liver regeneration after PHx, providing new insights for considering P. distasonis and BHB as potential strategies for promoting hepatic regeneration.
Collapse
Affiliation(s)
- Manlan Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaowen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuaishuai Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guofang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengting Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
26
|
Deng J, Ma J, Zhang X, Wang K, Wang Y, Gao N, Feng D, Jia X, Liu X, Dang S, Shi J. Effect of time-restricted feeding and caloric restriction in metabolic associated fatty liver disease in male rats. Nutr Metab (Lond) 2025; 22:14. [PMID: 39972306 PMCID: PMC11841360 DOI: 10.1186/s12986-025-00906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The prevalence of metabolic associated fatty liver disease (MAFLD) is high. However, there are few studies on the effects of time-restricted feeding (TRF) and caloric restriction (CR) in MAFLD. OBJECTIVES To investigate the efficacy and mechanism of 4 h TRF and 60% CR in MAFLD. METHODS Twelve male Sprague-Dawley rats were randomly assigned to the Normal group (normal diet, 10 kcal% fat), while the remaining 38 rats were assigned to the MAFLD group (high-fat diet, 60 kcal% fat). 10 weeks later, the MAFLD group was randomly divided into the 4 h TRF, 60% CR, 4 h TRF + 60% CR, and Model groups; all rats were then given normal diet. After 4 weeks, weight, blood lipid, and other indicators were detected. RESULTS After the high-fat diet was discontinued, the liver lipid levels in the rat with MAFLD significantly reduced, while the body weight was not significantly changed. The rats in the Model group were heavier than those in the other four groups (p < 0.01). The triglyceride levels were higher in the TRF + CR group compared with the Model group (p < 0.01). Compared with the Model group, 110 metabolites were decreased in the TRF + CR group, and 83 metabolites were elevated in liver. Kyoto Encyclopedia of Genes and Genomes revealed that the mechanism involved the proliferator-activated receptor alpha signaling pathway, metabolic pathway, and so on. We observed differences in silent information regulator transcript 1 (SIRT1) mRNA levels in all five groups (p = 0.003). CONCLUSIONS 4 h TRF and 60% CR significantly reduced body weight and liver lipid in rats with MAFLD. 4 h TRF can improve MAFLD, and there is no need to excessively restrict food intake.
Collapse
Affiliation(s)
- Jiang Deng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhang
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kairuo Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yikai Wang
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ning Gao
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Dandan Feng
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaoli Jia
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiongtao Liu
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuangsuo Dang
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Juanjuan Shi
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
27
|
Igudesman D, Yu G, Dutta T, Carnero EA, Krajmalnik-Brown R, Smith SR, Corbin KD. Global metabolite profiling in feces, serum, and urine yields insights into energy balance phenotypes induced by diet-driven microbiome remodeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.05.25321733. [PMID: 39974023 PMCID: PMC11838622 DOI: 10.1101/2025.02.05.25321733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background Preclinical literature and behavioral human data suggest that diet profoundly impacts the human gut microbiome and energy absorption-a key determinant of energy balance. To determine whether these associations are causal, domiciled controlled feeding studies with precise measurements of dietary intake and energy balance are needed. Metabolomics-a functional readout of microbiome modulation-can help identify putative mechanisms mediating these effects. We previously demonstrated that a high-fiber, minimally processed Microbiome Enhancer Diet (MBD) fed at energy balance decreased energy absorption and increased microbial biomass relative to a calorie-matched fiber-poor, highly processed Western Diet (WD). Objective To identify metabolic signatures distinguishing MBD from WD feeding and potential metabolomic mechanisms mediating the MBD-induced negative energy balance. Methods We deployed global metabolomics in feces, serum, and urine using samples collected at the end of a randomized crossover controlled feeding trial delivering 22 days of an MBD and a WD to 17 persons without obesity. Samples were collected while participants were domiciled on a metabolic ward and analyzed using Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy. Linear mixed effects models tested metabolite changes by diet. Weighted gene network correlation analysis identified metabolite modules correlated with energy balance phenotypes. Results Numerous metabolites consistently altered in the feces, fasting serum, and/or urine may serve as putative dietary biomarkers of MBD feeding. Fecal diet-microbiota co-metabolites decreased by an MBD correlated with reduced energy absorption and increased microbial biomass. An MBD shifted the urinary metabolome from sugar degradation to ketogenesis-evidence of negative energy balance. Conclusions Precisely controlled diets disparate in microbiota-accessible substrates led to distinct metabolomic signatures in feces, fasting serum, and/or urine. These diet-microbiota co-metabolites may be biomarkers of a "fed" (MBD) or "starved" (WD) gut microbiota associated with energy balance. These findings lay the foundation for unveiling causal pathways linking diet-microbiota co-metabolism to energy absorption.
Collapse
|
28
|
Xue X, Liu R, Cai Y, Gong L, Fan G, Wu J, Li X, Li X. Hyodeoxycholic acid ameliorates cholestatic liver fibrosis by facilitating m 6A-regulated expression of a novel anti-fibrotic target ETV4. J Hepatol 2025:S0168-8278(25)00055-8. [PMID: 39914744 DOI: 10.1016/j.jhep.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND & AIMS Cholestatic liver fibrosis is a common pathological feature of various biliary tract diseases. The underlying pathological mechanisms are not fully understood, posing significant obstacles to the discovery of new drug targets. The aims of the current study were to evaluate protective effects of hyodeoxycholic acid (HDCA) against cholestatic liver fibrosis and to ascertain whether ETV4 is a novel anti-fibrotic target involved in the therapeutic effects of HDCA. METHODS The therapeutic effect of HDCA was verified using bile duct ligation and Abcb4-/- mouse models. Etv4-/- mice were subjected to bile duct ligation to investigate the role of ETV4 in liver fibrogenesis and the therapeutic effects of HDCA. The N6-methyladenosine (m6A) modification was investigated using methylated m6A RNA immunoprecipitation-qPCR and immunofluorescence/fluorescence in situ hybridization techniques. RESULTS HDCA levels were decreased in both cholestatic patients and mice, while HDCA supplementation significantly ameliorated cholestatic liver fibrosis. By inducing ETV4 expression in cholangiocytes, HDCA induced MMP9 secretion, facilitating extracellular matrix degradation. Findings in patients with cholestatic fibrosis and Etv4-/- mice further revealed a promising role of ETV4 in improving liver fibrosis and in mediating the therapeutic effects of HDCA. Mechanistically, HDCA promoted m6A modification of ETV4 mRNA, which thereby promotes IGF2BP1 recognition and PABPC1 recruitment to inhibit ETV4 mRNA deadenylation, leading to increased mRNA stability, storage in P-bodies, and prolonged translation. Mutation of the m6A site on ETV4 mRNA or knockdown of critical genes involved in m6A modification significantly abolished the therapeutic effects of HDCA. CONCLUSIONS The present study underscores ETV4 as a novel anti-fibrotic target and demonstrates that HDCA remodels extracellular matrix by facilitating m6A-regulated ETV4 expression, offering potential therapeutic approaches for cholestatic liver fibrosis. IMPACT AND IMPLICATIONS This study delves into the underlying mechanisms of cholestatic liver fibrosis and reveals potential therapeutic targets. The research highlights ETV4 as a novel anti-fibrotic target that is essential for the therapeutic effects of hyodeoxycholic acid against cholestatic liver fibrosis. These findings are important for both the scientific community and patients with cholestatic liver diseases, offering valuable insights for future therapeutic strategies that focus on regulating m6A-dependent epigenetic modifications of anti-fibrotic targets like ETV4 and developing new interventions utilizing hyodeoxycholic acid.
Collapse
Affiliation(s)
- Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Liping Gong
- The Second Hospital of Shandong University, Shan Dong University, 247 Bei Yuan Da Jie, Jinan, 250033, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
29
|
Won TH, Arifuzzaman M, Parkhurst CN, Miranda IC, Zhang B, Hu E, Kashyap S, Letourneau J, Jin WB, Fu Y, Guzior DV, Quinn RA, Guo CJ, David LA, Artis D, Schroeder FC. Host metabolism balances microbial regulation of bile acid signalling. Nature 2025; 638:216-224. [PMID: 39779854 PMCID: PMC11886927 DOI: 10.1038/s41586-024-08379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development1, metabolism2-4, immune responses5-7 and cognitive function8. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear9,10. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues. This host-dependent MCY conjugation inverts BA function in the hepatobiliary system. Whereas microbiota-derived free BAs function as agonists of the farnesoid X receptor (FXR) and negatively regulate BA production, BA-MCYs act as potent antagonists of FXR and promote expression of BA biosynthesis genes in vivo. Supplementation with stable-isotope-labelled BA-MCY increased BA production in an FXR-dependent manner, and BA-MCY supplementation in a mouse model of hypercholesteraemia decreased lipid accumulation in the liver, consistent with BA-MCYs acting as intestinal FXR antagonists. The levels of BA-MCY were reduced in microbiota-deficient mice and restored by transplantation of human faecal microbiota. Dietary intervention with inulin fibre further increased levels of both free BAs and BA-MCY levels, indicating that BA-MCY production by the host is regulated by levels of microbiota-derived free BAs. We further show that diverse BA-MCYs are also present in human serum. Together, our results indicate that BA-MCY conjugation by the host balances host-dependent and microbiota-dependent metabolic pathways that regulate FXR-dependent physiology.
Collapse
Affiliation(s)
- Tae Hyung Won
- Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Republic of Korea
| | - Mohammad Arifuzzaman
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher N Parkhurst
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Isabella C Miranda
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Bingsen Zhang
- Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Elin Hu
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sanchita Kashyap
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Wen-Bing Jin
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yousi Fu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Douglas V Guzior
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Chun-Jun Guo
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - David Artis
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Frank C Schroeder
- Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
30
|
Li J, Lian X, Li B, Ma Q, Yang L, Gao G, Yin T, Fu X, Deng Y, Yang Z, Yang X. Pharmacodynamic material basis of licorice and mechanisms of modulating bile acid metabolism and gut microbiota in cisplatin-induced liver injury based on LC-MS and network pharmacology analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119293. [PMID: 39736346 DOI: 10.1016/j.jep.2024.119293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cisplatin (CP), a widely used antineoplastic agent, is a leading cause of drug-induced liver injury (DILI) due to its hepatotoxic effects. Licorice (GC), an established remedy in traditional Chinese medicine (TCM), has shown promise in addressing liver diseases and DILI. Nonetheless, the specific active components and underlying mechanisms of GC in mitigating CP-induced liver injury remain inadequately investigated. AIM OF THE STUDY This study examined the active components and efficacy of GC in addressing CP-induced hepatotoxicity, focusing on its mechanisms related to bile acid metabolism and gut microbiota regulation. MATERIALS AND METHODS Utilizing a CP-induced rat liver injury model, this study evaluated changes in liver coefficient, liver function indices, and pathological morphology while assessing the efficacy of GC for both prevention and treatment of CP-induced liver injury. Subsequently, UPLC-Q-TOF-MS qualitatively analyzed GC's blood-entering components, elucidating its pharmacodynamic material basis. Network pharmacology analysis identified potential pathways and targets of GC's blood components in relation to CP-induced liver injury. Furthermore, metabolomics and 16S rRNA sequencing were employed to clarify the pharmacodynamic mechanisms of GC in modulating bile acid metabolism and gut microbiota, offering insights into its preventive and therapeutic roles. RESULTS The pharmacodynamic results revealed that GC significantly reduced liver function biomarkers and improved pathological changes in liver tissue. UPLC-Q-TOF-MS analysis identified 16 blood-entering components as potential pharmacodynamic agents of GC for preventing and treating CP-induced liver injury. Network pharmacology analysis suggested a link between GC's efficacy and the bile acid metabolic pathway. Furthermore, metabolomics analysis, immunoblotting, and 16S rRNA sequencing demonstrated that GC regulated bile acid metabolites in both liver and feces, enhanced FXR and BSEP expressions in the liver, and decreased CYP27A1 expression. Additionally, GC mitigated CP-induced intestinal dysbiosis by altering the abundance of gut microbiota. CONCLUSIONS UPLC-Q-TOF-MS performed a qualitative analysis of 16 blood-entering components linked to GC, providing a basis for further exploration of the pharmacodynamic material underpinning GC. The protective role of GC in CP-induced liver injury appears connected to enhanced bile acid metabolism and restoration of gut microbiota balance.
Collapse
Affiliation(s)
- Jie Li
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Xiaolong Lian
- Medical Faculty of Qinghai University, Xining, 810016, China
| | - Baojian Li
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Quhuan Ma
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Lingling Yang
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Guangmiao Gao
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Tingmei Yin
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Xiaoyan Fu
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Yi Deng
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China.
| | - Zhijun Yang
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China.
| | - Xiujuan Yang
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China.
| |
Collapse
|
31
|
Fan YH, Zhang S, Wang Y, Wang H, Li H, Bai L. Inter-organ metabolic interaction networks in non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2025; 15:1494560. [PMID: 39850476 PMCID: PMC11754069 DOI: 10.3389/fendo.2024.1494560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multisystem metabolic disorder, marked by abnormal lipid accumulation and intricate inter-organ interactions, which contribute to systemic metabolic imbalances. NAFLD may progress through several stages, including simple steatosis (NAFL), non-alcoholic steatohepatitis (NASH), cirrhosis, and potentially liver cancer. This disease is closely associated with metabolic disorders driven by overnutrition, with key pathological processes including lipid dysregulation, impaired lipid autophagy, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and local inflammation. While hepatic lipid metabolism in NAFLD is well-documented, further research into inter-organ communication mechanisms is crucial for a deeper understanding of NAFLD progression. This review delves into intrahepatic networks and tissue-specific signaling mediators involved in NAFLD pathogenesis, emphasizing their impact on distal organs.
Collapse
Affiliation(s)
- Yu-Hong Fan
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Siyao Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Ye Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Hongni Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Bai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
32
|
Wang LJ, Sun JG, Chen SC, Sun YL, Zheng Y, Feng JC. The role of intestinal flora in metabolic dysfunction-associated steatotic liver disease and treatment strategies. Front Med (Lausanne) 2025; 11:1490929. [PMID: 39839647 PMCID: PMC11746088 DOI: 10.3389/fmed.2024.1490929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 01/23/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common multi-factorial liver disease, and its incidence is gradually increasing worldwide. Many reports have revealed that intestinal flora plays a crucial role for the occurrence and development of MASLD, through mechanisms such as flora translocation, endogenous ethanol production, dysregulation of choline metabolism and bile acid, and endotoxemia. Here, we review the relationship between intestinal flora and MASLD, as well as interventions for MASLD, such as prebiotics, probiotics, synbiotics, and intestinal flora transplantation. Intervention strategies targeting the intestinal flora along with its metabolites may be new targets for preventing and treating MASLD.
Collapse
Affiliation(s)
- Li Jun Wang
- Department of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Jian Guang Sun
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shu Cheng Chen
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yu Li Sun
- Department of Hepatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Zheng
- Department of Acupuncture and Moxibustion, Zibo Hospital, Zibo, China
| | - Jian Chao Feng
- Department of Acupuncture and Moxibustion, Zibo Hospital, Zibo, China
| |
Collapse
|
33
|
Pang Q, Huang S, Li X, Cao J. Hyodeoxycholic acid inhibits colorectal cancer proliferation through the FXR/EREG/EGFR axis. Front Cell Dev Biol 2025; 12:1480998. [PMID: 39834394 PMCID: PMC11743714 DOI: 10.3389/fcell.2024.1480998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Background The high morbidity and mortality rates of colorectal cancer (CRC) have been a public health concern globally, and the search for additional therapeutic options is imminent. Hyodeoxycholic acid (HDCA) has been receiving attention in recent years and has demonstrated potent efficacy in several diseases. Nonetheless, the antitumor effects and molecular pathways of HDCA in CRC remain largely unexplored. Methods In this study, we investigated how HDCA influences the growth potential of CRC cells using techniques such as flow cytometry, Edu assay, CCK-8, colony formation assay, Western blot analysis, and animal experiments. Results It was found that HDCA treatment of CRC cells was able to significantly inhibit the proliferative capacity of the cells. Furthermore, it was discovered that HDCA primarily stimulated Farnesoid X Receptor (FXR) rather than Takeda G protein coupled receptor 5 (TGR5) to suppress CRC growth. It was also confirmed that HDCA inhibited the Epiregulin (EREG)/Epidermal Growth Factor Receptor (EGFR) pathway by activating FXR, and a negative correlation between FXR and EREG was analyzed in CRC tissue samples. Finally, in vivo animal studies confirmed that HDCA inhibited CRC proliferation without hepatotoxicity. Conclusion Our findings indicate that HDCA suppresses the EREG/EGFR signaling route by activating FXR, thereby hindering the growth of CRC cells and demonstrating a tumor-inhibiting effect in CRC. This study may provide a new therapeutic strategy to improve the prognosis of CRC.
Collapse
Affiliation(s)
| | | | | | - Jiaqing Cao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Chen WY, Zhang JH, Chen LL, Byrne CD, Targher G, Luo L, Ni Y, Zheng MH, Sun DQ. Bioactive metabolites: A clue to the link between MASLD and CKD? Clin Mol Hepatol 2025; 31:56-73. [PMID: 39428978 PMCID: PMC11791555 DOI: 10.3350/cmh.2024.0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024] Open
Abstract
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
Collapse
Affiliation(s)
- Wen-Ying Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Hui Zhang
- Department of Pediatric Laboratory, Affiliated Children’s Hospital of Jiangnan University, Wuxi Children’s Hospital, Wuxi, Jiangsu, China
| | - Li-Li Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Liang Luo
- Intensive Care Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Yan Ni
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Dan-Qin Sun
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- Department of Nephrology, Wuxi No.2 People’s Hospital, Wuxi, China
| |
Collapse
|
35
|
Jia W, Chan JC, Wong TY, Fisher EB. Diabetes in China: epidemiology, pathophysiology and multi-omics. Nat Metab 2025; 7:16-34. [PMID: 39809974 DOI: 10.1038/s42255-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Although diabetes is now a global epidemic, China has the highest number of affected people, presenting profound public health and socioeconomic challenges. In China, rapid ecological and lifestyle shifts have dramatically altered diabetes epidemiology and risk factors. In this Review, we summarize the epidemiological trends and the impact of traditional and emerging risk factors on Chinese diabetes prevalence. We also explore recent genetic, metagenomic and metabolomic studies of diabetes in Chinese, highlighting their role in pathogenesis and clinical management. Although heterogeneity across these multidimensional areas poses major analytic challenges in classifying patterns or features, they have also provided an opportunity to increase the accuracy and specificity of diagnosis for personalized treatment and prevention. National strategies and ongoing research are essential for improving diabetes detection, prevention and control, and for personalizing care to alleviate societal impacts and maintain quality of life.
Collapse
Affiliation(s)
- Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute for Proactive Healthcare, Shanghai Jiao Tong University, Shanghai, China.
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences and Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Tien Y Wong
- Tsinghua Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Singapore National Eye Center, SingHealth, Singapore, Singapore
| | - Edwin B Fisher
- Peers for Progress, Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
36
|
Wang J, Wang X, Zhuo E, Chen B, Chan S. Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Mol Med Rep 2025; 31:10. [PMID: 39450549 PMCID: PMC11541166 DOI: 10.3892/mmr.2024.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 10/26/2024] Open
Abstract
Incidence of a number of liver diseases has increased. Gut microbiota serves a role in the pathogenesis of hepatitis, cirrhosis and liver cancer. Gut microbiota is considered 'a new virtual metabolic organ'. The interaction between the gut microbiota and liver is termed the gut‑liver axis. The gut‑liver axis provides a novel research direction for mechanism of liver disease development. The present review discusses the role of the gut‑liver axis and how this can be targeted by novel treatments for common liver diseases.
Collapse
Affiliation(s)
- Jianpeng Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Clinical Medicine, The First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
37
|
Shang X, Fu Y, Wang Y, Yan S. Ramulus Mori (Sangzhi) alkaloids ameliorate high-fat diet induced obesity in rats by modulating gut microbiota and bile acid metabolism. Front Endocrinol (Lausanne) 2024; 15:1506430. [PMID: 39758340 PMCID: PMC11695234 DOI: 10.3389/fendo.2024.1506430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Objective The objective of this study is to investigate the ability of Ramulus Mori (Sangzhi) alkaloid tablets (SZ-A) to ameliorate obesity and lipid metabolism disorders in rats subjected to a high-fat diet (HFD) through metagenomics, untargeted lipidomics, targeted metabolism of bile acid (BA), and BA pathways, providing a novel perspective on the management of metabolic disorders. Methods In this research, HFD-fed rats were concurrently administered SZ-A orally. We measured changes in body weight (BW), blood lipid profiles, and liver function to assess therapeutic effects. Liver lipid status was visualized through H&E and Oil Red O. Gut microbiota composition was elucidated using metagenomics. The LC-MS-targeted metabolomics approach was utilized to define the fecal BA profiles. Furthermore, the lipid metabolomics of adipose tissue samples was investigated using an LC-MS analysis platform. The expression levels of the BA receptor were determined by western blotting. Additionally, serum insulin (INS), glucagon-like peptide-1 (GLP-1), and inflammatory cytokines were quantified using an ELISA kit. The integrity of the colonic epithelial barrier was assessed using immunofluorescence. Results SZ-A notably decreased BW and blood lipid levels in obese rats while also alleviating liver injury. Additionally, SZ-A reduced the serum levels of leptin (LEP), INS, and GLP-1, indicating its potential to modulate key metabolic hormones. Most notably, SZ-A substantially improved gut microbiota composition. Specifically, it reshaped the gut microbiota structure in HFD-fed rats by increasing the relative abundance of beneficial bacteria, such as Bacteroides, while decreasing the populations of potentially harmful bacteria, such as Dorea and Blautia. At the BA level, SZ-A decreased the levels of harmful BAs, including hyodeoxycholic acid (HDCA), deoxycholic acid (DCA), 12-keto lithocholic acid (12-KLCA), lithocholic acid (LCA), and muricholic acid (MDCA). Between the model group and SZ-A, 258 differentially abundant metabolites were detected, with 72 upregulated and 186 downregulated. Furthermore, these BAs are implicated in the activation of the FXR-FGF15 and TGR5-GLP-1 pathways in the intestine. This activation helps to alleviate HFD-fed intestinal inflammation and restore intestinal barrier damage by modulating inflammatory cytokines and bolstering the intestinal barrier's capabilities. Conclusions Our findings indicate that SZ-A effectively modulates BW, serum lipid profiles, and liver function in HFD-fed rats. Moreover, SZ-A exerts a positive influence on inflammatory cytokines, thereby mitigating inflammation and promoting the restoration of the intestinal barrier. Significantly, our research indicates that adjusting the gut microbiome and BA levels could serve as an effective approach for both preventing and treating obesity and related metabolic dyslipidemia.
Collapse
Affiliation(s)
- Xin Shang
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- School of First Clinical, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu Fu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Wang
- Department of Geriatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuxun Yan
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
38
|
Tan EY, Muthiah MD, Sanyal AJ. Metabolomics at the cutting edge of risk prediction of MASLD. Cell Rep Med 2024; 5:101853. [PMID: 39657668 PMCID: PMC11722125 DOI: 10.1016/j.xcrm.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health threat globally. Management of patients afflicted with MASLD and research in this domain are limited by the lack of robust well-established non-invasive biomarkers for diagnosis, prognostication, and monitoring. The circulating metabolome reflects both the systemic metabo-inflammatory milieu and changes in the liver in affected individuals. In this review we summarize the available literature on changes in the different components of the metabolome in MASLD with a focus on changes that are linked to the presence of underlying steatohepatitis, severity of disease activity, and fibrosis stage. We further summarize the existing literature around biomarker panels that are derived from interrogation of the metabolome. Their relevance to disease biology and utility in practice are also discussed. We further highlight potential direction for future studies particularly to ensure they are fit for purpose and suitable for widespread use.
Collapse
Affiliation(s)
- En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
39
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
40
|
Chen J, Yang H, Qin Y, Zhou X, Ma Q. Tryptophan Ameliorates Metabolic Syndrome by Inhibiting Intestinal Farnesoid X Receptor Signaling: The Role of Gut Microbiota-Bile Acid Crosstalk. RESEARCH (WASHINGTON, D.C.) 2024; 7:0515. [PMID: 39679283 PMCID: PMC11638488 DOI: 10.34133/research.0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 12/17/2024]
Abstract
Background and Aims: Metabolic syndrome (MS) is a progressive metabolic disease characterized by obesity and multiple metabolic disorders. Tryptophan (Trp) is an essential amino acid, and its metabolism is linked to numerous physiological functions and diseases. However, the mechanisms by which Trp affects MS are not fully understood. Methods and Results: In this study, experiments involving a high-fat diet (HFD) and fecal microbiota transplantation (FMT) were conducted to investigate the role of Trp in regulating metabolic disorders. In a mouse model, Trp supplementation inhibited intestinal farnesoid X receptor (FXR) signaling and promoted hepatic bile acid (BA) synthesis and excretion, accompanied by elevated levels of conjugated BAs and the ratio of non-12-OH to 12-OH BAs in hepatic and fecal BA profiles. As Trp alters the gut microbiota and the abundance of bile salt hydrolase (BSH)-enriched microbes, we collected fresh feces from Trp-supplemented mice and performed FMT and sterile fecal filtrate (SFF) inoculations in HFD-treated mice. FMT and SFF not only displayed lipid-lowering properties but also inhibited intestinal FXR signaling and increased hepatic BA synthesis. This suggests that the gut microbiota play a beneficial role in improving BA metabolism through Trp. Furthermore, fexaramine (a gut-specific FXR agonist) reversed the therapeutic effects of Trp, suggesting that Trp acts through the FXR signaling pathway. Finally, validation in a finishing pig model revealed that Trp improved lipid metabolism, enlarged the hepatic BA pool, and altered numerous glycerophospholipid molecules in the hepatic lipid profile. Conclusion: Our studies suggest that Trp inhibits intestinal FXR signaling mediated by the gut microbiota-BA crosstalk, which in turn promotes hepatic BA synthesis, thereby ameliorating MS.
Collapse
Affiliation(s)
| | | | | | | | - Qingquan Ma
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
41
|
Xu L, Qiu B, Ba F, Zhang S, Han S, Chen H, Wu Y, Gao W, Xie S, Chen Y, Jiang S, Zhang J, Li Y, Berglund B, Yao M, Li L. Synergistic effects of Ligilactobacillus salivarius Li01 and psyllium husk prevent mice from developing loperamide-induced constipation. Food Funct 2024; 15:11934-11948. [PMID: 39545778 DOI: 10.1039/d4fo04444d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Constipation is a gastrointestinal (GI) condition marked by difficulty in defecation, abdominal pain and distension, significantly impacting both physical and mental health. Ligilactobacillus salivarius Li01 (Li01) is a probiotic known to prevent constipation in mice, while psyllium husk (PSH) is a dietary fiber with high water retention, acting as an intestinal lubricant. This study investigates the effects of a combined treatment of Li01 and PSH on mice with loperamide-induced constipation. The combination treatment improved GI transit rates, increased the water content of feces, and regulated serum concentrations of GI hormones more effectively than either Li01 or PSH alone. The beneficial effects were linked to higher levels of butyric acid and a greater proportion of non-12-OH bile acids (BAs) in the GI tract. These protective effects were not influenced by changes in gut microbiota. Additionally, Li01 produced butyric acid and fermented PSH in vitro. Our findings suggest that the probiotic Li01 and the prebiotic PSH synergistically protect against constipation in mice, highlighting their potential as functional food components.
Collapse
Affiliation(s)
- Lvwan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences and Peking Union Medical College, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Furong Ba
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Shengyi Han
- Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Wang Gao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Siyuan Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Jingyi Zhang
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences and Peking Union Medical College, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Björn Berglund
- Department of Cell and Molecular Biology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences and Peking Union Medical College, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences and Peking Union Medical College, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
42
|
Xiao Y, Lu J, Xu S, Wu Z, Wang W, Ji R, Guo T, Qi Z, Tong H, Wang Y, Zhao C. Metabolic Differences among Patients with Cirrhosis Using Q Exactive Hybrid Quadrupole Orbitrap Mass Spectrometry Technology. J Proteome Res 2024; 23:5352-5359. [PMID: 39485280 DOI: 10.1021/acs.jproteome.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The hospitalization and mortality rates of patients gradually increase following the onset and progression of liver cirrhosis (LC). We aimed to help define clinical stage and better target interventions by detecting the expression of specific metabolites in patients with different stages of LC via Q Exactive hybrid quadrupole orbitrap mass spectrometry (UPLC-Q-Exactive) technology. This noninterventional observation case-control study involved 139 patients with LC or acute-on-chronic liver failure (ACLF) in a Chinese hospital between October 2022 and April 2023. Serum specimens were analyzed for multiple metabolite levels using UPLC-Q-Exactive. Data were processed to screen for differentially accumulated metabolites (DAMs). Short time-series expression miner (STEM) analysis and enrichment analysis were performed to assess cirrhosis progression biomarkers. Following univariate and multivariate analyses, a Venn diagram indicated nine significant DAMs in common among groups. STEM analysis showed 8'-hydroxyabscisic acid, HDCA, pyruvate-3-phosphate, indospicine, eplerenone, and DEHP as significant; their levels first peaked [Child-Turcotte-Pugh (CTP) class B peaked] and then decreased with CTP grade aggravation. Significant differences among 8'-hydroxyabscisic acid, eplerenone, and DEHP were observed among LC comorbidities and between subgroups. Therefore, serum levels of six DAMs may characterize metabolomic changes, determine the severity of LC, and predict the development of ACLF.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Infectious Diseases, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Jie Lu
- Department of Clinical Laboratory, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Suyan Xu
- Department of Infectious Diseases, Affiliated Hospital of Hebei Engineering University, Handan 056038, China
| | - Zhinian Wu
- Department of Infectious Diseases, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Wei Wang
- Department of Infectious Diseases, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Ru Ji
- Department of Infectious Diseases, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Tingyu Guo
- Department of Infectious Diseases, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Zeqiang Qi
- Department of Infectious Diseases, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Hua Tong
- Department of Infectious Diseases, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Yadong Wang
- Department of Infectious Diseases, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Caiyan Zhao
- Department of Infectious Diseases, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| |
Collapse
|
43
|
Yue H, Jia M, Li B, Zong A, Du F, Xu T. Medium chain triglycerides alleviate non-alcoholic fatty liver disease through bile acid-mediated FXR signaling pathway: A comparative study with common vegetable edible oils. J Food Sci 2024; 89:10171-10180. [PMID: 39668111 DOI: 10.1111/1750-3841.17565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
With the global epidemic trend of obesity, non-alcoholic fatty liver disease (NAFLD) has become a significant cause of chronic liver disease, seriously affecting human health. Medium-chain triglycerides (MCT) with a fatty acid chain length varying between 6 and 10 carbon atoms (most sources from coconut and palm kernel oils), which exhibited activities to improve lipid metabolism, prevent cardiovascular diseases, and enhance immunity. However, the efficacy differences and potential mechanisms between MCT and traditional long-chain vegetable oils (palm oil, PA; high oleic peanut oil, OA) in obesity-induced NAFLD were still unclear. The present study treated obesity-induced NAFLD mice with different dietary lipids for 16 weeks. The results showed that MCT supplements significantly improved abnormal elevation of weight gain and blood lipids and reduced hepatic lipid accumulation to a greater extent than PA and OA. Furthermore, bile acid profiling results indicated that MCT significantly changed the composition of bile acids in the liver, reduced the concentrations of cholic acid (CA), deoxycholic acid (DCA), β-muricholic acid (β-MCA), and ursodeoxycholic acid (UDCA) and increased the concentrations of chenodeoxycholic Acid (CDCA), taurochenodeoxycholic acid (TCDCA), hyodeoxycholic acid (HDCA), and taurohyodeoxycholic acid (THDCA). Mechanistically, MCT supplement upregulated FXR signal and inhibited the expression of key genes for triglyceride synthesis in the liver, thereby reducing hepatic lipid accumulation. In summary, MCT exerted a superior effect on PA and OA in improving obesity-induced NAFLD. These results provided new evidence for the application of MCT in treating NAFLD.
Collapse
Affiliation(s)
- Hao Yue
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Shandong, P. R. China
| | - Min Jia
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Shandong, P. R. China
| | - Baorui Li
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Shandong, P. R. China
| | - Aizhen Zong
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Shandong, P. R. China
| | - Fangling Du
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Shandong, P. R. China
| | - Tongcheng Xu
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Shandong, P. R. China
| |
Collapse
|
44
|
Li Y, Han Q, Liu Y, Yin J, Ma J. Role of the histone deacetylase family in lipid metabolism: Structural specificity and functional diversity. Pharmacol Res 2024; 210:107493. [PMID: 39491635 DOI: 10.1016/j.phrs.2024.107493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Lipids play crucial roles in signal transduction. Lipid metabolism is associated with several transcriptional regulators, including peroxisome proliferator activated receptor γ, sterol regulatory element-binding protein 1, and acetyl-CoA carboxylase. In recent years, increasing evidence has suggested that members of the histone deacetylase (HDAC) family play key roles in lipid metabolism. However, the mechanisms by which each member of this family regulates lipid metabolism remain unclear. This review discusses the latest research on the roles played by HDACs in fat metabolism. The role of HDACs in obesity, diabetes, and atherosclerosis has also been discussed. In addition, the interaction of HDACs with the gut microbiome and circadian rhythm has been reviewed, and the future development trend in HDACs has been predicted, which may potentiate therapeutic application of targeted HDACs in related metabolic diseases.
Collapse
Affiliation(s)
- Yunxia Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Qi Han
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Yuxin Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China.
| | - Jie Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
45
|
Duan J, Li Q, Cheng Y, Zhu W, Liu H, Li F. Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease. MedComm (Beijing) 2024; 5:e70017. [PMID: 39687780 PMCID: PMC11647740 DOI: 10.1002/mco2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing evidences indicate that the gut microbiota is involved in the development and therapy of gastrointestinal and hepatic disease. Imbalance of gut microbiota occurs in the early stages of diseases, and maintaining the balance of the gut microbiota provides a new strategy for the treatment of diseases. It has been reported that Parabacteroides distasonis is associated with multiple diseases. As the next-generation probiotics, several studies have demonstrated its positive regulation on the gastrointestinal and hepatic disease, including inflammatory bowel disease, colorectal cancer, hepatic fibrosis, and fatty liver. The function of P. distasonis and its metabolites mainly affect host immune system, intestinal barrier function, and metabolic networks. Manipulation of P. distasonis with natural components lead to the protective effect on enterohepatic disease. In this review, the metabolic pathways regulated by P. distasonis are summarized to illustrate its active metabolites and their impact on host metabolism, the role and action mechanism in gastrointestinal and hepatic disease are discussed. More importantly, the natural components can be used to manipulate P. distasonis as treatment strategies, and the challenges and perspectives of P. distasonis in clinical applications are discussed.
Collapse
Affiliation(s)
- Jinyi Duan
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Qinmei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yan Cheng
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Weifeng Zhu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Hongning Liu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Fei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Gastroenterology & Hepatology, Huaxi Joint Centre for Gastrointestinal CancerState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
46
|
Zha A, Qi M, Deng Y, Li H, Wang N, Wang C, Liao S, Wan D, Xiong X, Liao P, Wang J, Yin Y, Tan B. Gut Bifidobacterium pseudocatenulatum protects against fat deposition by enhancing secondary bile acid biosynthesis. IMETA 2024; 3:e261. [PMID: 39742294 PMCID: PMC11683477 DOI: 10.1002/imt2.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
Gut microbiome is crucial for lipid metabolism in humans and animals. However, how specific gut microbiota and their associated metabolites impact fat deposition remains unclear. In this study, we demonstrated that the colonic microbiome of lean and obese pigs differentially contributes to fat deposition, as evidenced by colonic microbiota transplantation experiments. Notably, the higher abundance of Bifidobacterium pseudocatenulatum was significantly associated with lower backfat thickness in lean pigs. Microbial-derived lithocholic acid (LCA) species were also significantly enriched in lean pigs and positively correlated with the abundance of B. pseudocatenulatum. In a high-fat diet (HFD)-fed mice model, administration of live B. pseudocatenulatum decreased fat deposition and enhances colonic secondary bile acid biosynthesis. Importantly, pharmacological inhibition of the bile salt hydrolase (BSH), which mediates secondary bile acid biosynthesis, impaired the anti-fat deposition effect of B. pseudocatenulatum in antibiotic-pretreated, HFD-fed mice. Furthermore, dietary LCA also decreased fat deposition in HFD-fed rats and obese pig models. These findings provide mechanistic insights into the anti-fat deposition role of B. pseudocatenulatum and identify BSH as a potential target for preventing excessive fat deposition in humans and animals.
Collapse
Affiliation(s)
- Andong Zha
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
- School of Basic Medical Science, Central South UniversityChangshaChina
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Yuankun Deng
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Hao Li
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Nan Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Chengming Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Simeng Liao
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Jing Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Yulong Yin
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Bi'e Tan
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| |
Collapse
|
47
|
Zhao L, Jiang Q, Lei J, Cui J, Pan X, Yue Y, Zhang B. Bile acid disorders and intestinal barrier dysfunction are involved in the development of fatty liver in laying hens. Poult Sci 2024; 103:104422. [PMID: 39418789 PMCID: PMC11532484 DOI: 10.1016/j.psj.2024.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of fatty liver is highly intricate. The role of the gut-liver axis in the development of fatty liver has gained increasing recognition in recent years. This study was conducted to explore the role of bile acid signaling and gut barrier in the pathogenesis of fatty liver. A total of 100 "Jing Tint 6" laying hens, 56-week-old, were used and fed basal diets until 60 weeks of age. At the end of the experiment, thirty individuals were selected based on the degree of hepatic steatosis. The hens with minimal hepatic steatosis (< 5 %) were chosen as healthy controls, while those with severe steatosis (> 33 %) in the liver were classified as the fatty liver group. Laying hens with fatty liver and healthy controls showed significant differences in body weight, liver index, abdominal fat ratio, feed conversion ratio (FCR), albumin height, Haugh unit, and biochemical indexes. The results of bile acid metabolomics revealed a clear separation in hepatic bile acid profiles between the fatty liver group and healthy controls, and multiple secondary bile acids were decreased in the fatty liver group, indicating disordered bile acid metabolism. Additionally, the mRNA levels of farnesoid X receptor (FXR) and genes related to bile acid transport were significantly decreased in both the liver and terminal ileum of hens with fatty liver. Moreover, the laying hens with fatty liver exhibited significant decreases in ileal crypt depth, the number of goblet cells, and the mRNA expression of tight junction-related proteins, alongside a significant increase in ileal permeability. Collectively, these findings suggest that disordered bile acids, suppressed FXR-mediated signaling, and impaired intestinal barrier function are potential factors promoting the development of fatty liver. These insights indicate that regulating bile acids and enhancing intestinal barrier function may become new preventive and therapeutic strategies for fatty liver in the near future.
Collapse
Affiliation(s)
- Lihua Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xianjie Pan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuan Yue
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
48
|
Huang L, Rao Q, Wang C, Mou Y, Zheng X, Hu E, Zheng J, Li Y, Liu L. Multi-omics joint analysis reveals that the Miao medicine Yindanxinnaotong formula attenuates non-alcoholic fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156026. [PMID: 39388921 DOI: 10.1016/j.phymed.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/04/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUD Non-alcoholic fatty liver disease (NAFLD) is a growing chronic liver disease worldwide, and no effective agent is approved yet for this condition. Traditional Chinese Medicine (TCM), which has been practiced for thousands of years in China and other Asian countries, is considered an important source for identifying novel medicines for various diseases. Miao medicine Yindanxinnaotong formula (YDX) is a classical TCM for the treatment of hyperlipidemia disease by reducing blood lipid content, while the role of YDX have not been clarified in NAFLD. PURPOSE To investigate the protective effect of YDX on NAFLD in mice induced by high fat diet (HFD) and clarify the potential mechanism. METHODS NAFLD mice model was constructed by receiving HFD for 10-week period with or without YDX administration. Lipid profiles, biochemical indicators, and histopathological staining were performed to evaluate the extent of hepatic lipid accumulation and hepatic steatosis. 16S rRNA sequencing was used to determine the gut microbial composition. Serum metabolomics was further used to investigate the changes in plasma biomarkers for NAFLD-associated by UPLC-Q-TOF/MS analysis. Subsequently, liver transcriptomics was employed to identify differentially expressed genes and explore regulatory pathways. Then, lipid metabolism-related proteins and inflammation factors were examined by Western blot and ELISA. RESULTS YDX reduced body weight gain, liver index and inflammatory cytokines levels, along with improved hepatic steatosis, serum lipid profile, sensitivity to insulin and also tolerance to glucose, and enhanced oxidative defense system in HFD-induced mice. Also, YDX remarkedly affected gut microbiota diversity and community richness and decreased the ratio of Firmicutes/Bacteroidetes. Meanwhile, YDX also reduced the production of harmful lipid metabolites in the sera of NAFLD mice, such as LPC(18:0), LPC(18:1) and carnitine. Notably, consistent with liver transcriptomics results, YDX downregulated the expression of proteins implicated in de novo lipid synthesis (Srebp-1c, Acaca, Fasn, Scd-1, and Cd36) and pro-inflammatory cytokines (IL-6 and TNF-α), and increased the expression of proteins-related fatty acid β-oxidation (Ampkα, Ppar-α, and Cpt-1) in the liver by activating Ampk pathway. CONCLUSION YDX is promisingly an effective therapy for preventing NAFLD by modulating the Ampk pathway, inhibiting gut microbiota disorder, and reducing the production of harmful lipid metabolites.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Qing Rao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Chaoyan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Yu Mou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Xiuyan Zheng
- Guizhou Institute of Integrated Agriculture Development, Guiyang 550006, China
| | - Enming Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Yanmei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Lin Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
49
|
Wang Y, Chen X, Huws SA, Xu G, Li J, Ren J, Xu J, Guan LL, Yao J, Wu S. Ileal microbial microbiome and its secondary bile acids modulate susceptibility to nonalcoholic steatohepatitis in dairy goats. MICROBIOME 2024; 12:247. [PMID: 39578870 PMCID: PMC11585128 DOI: 10.1186/s40168-024-01964-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/02/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Liver damage from nonalcoholic steatohepatitis (NASH) presents a significant challenge to the health and productivity of ruminants. However, the regulatory mechanisms behind variations in NASH susceptibility remain unclear. The gut‒liver axis, particularly the enterohepatic circulation of bile acids (BAs), plays a crucial role in regulating the liver diseases. Since the ileum is the primary site for BAs reabsorption and return to the liver, we analysed the ileal metagenome and metabolome, liver and serum metabolome, and liver single-nuclei transcriptome of NASH-resistant and susceptible goats together with a mice validation model to explore how ileal microbial BAs metabolism affects liver metabolism and immunity, uncovering the key mechanisms behind varied NASH pathogenesis in dairy goats. RESULTS In NASH goats, increased total cholesterol (TC), triglyceride (TG), and primary BAs and decreased secondary BAs in the liver and serum promoted hepatic fat accumulation. Increased ileal Escherichia coli, Erysipelotrichaceae bacterium and Streptococcus pneumoniae as well as proinflammatory compounds damaged ileal histological morphology, and increased ileal permeability contributes to liver inflammation. In NASH-tolerance (NASH-T) goats, increased ursodeoxycholic acid (UDCA), isodeoxycholic acid (isoDCA) and isolithocholic acid (isoLCA) in the liver, serum and ileal contents were attributed to ileal secondary BAs-producing bacteria (Clostridium, Bifidobacterium and Lactobacillus) and key microbial genes encoding enzymes. Meanwhile, decreased T-helper 17 (TH17) cells and increased regulatory T (Treg) cells proportion were identified in both liver and ileum of NASH-T goats. To further validate whether these key BAs affected the progression of NASH by regulating the proliferation of TH17 and Treg cells, the oral administration of bacterial UDCA, isoDCA and isoLCA to a high-fat diet-induced NASH mouse model confirmed the amelioration of NASH through the TH17 cell differentiation/IL-17 signalling/PPAR signalling pathway by these bacterial secondary BAs. CONCLUSION This study revealed the roles of ileal microbiome and its secondary BAs in resilience and susceptibility to NASH by affecting the hepatic Treg and TH17 cells proportion in dairy goats. Bacterial UDCA, isoDCA and isoLCA were demonstrated to alleviate NASH and could be novel postbiotics to modulate and improve the liver health in ruminants. Video Abstract.
Collapse
Affiliation(s)
- Yue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Sharon A Huws
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - Guanghao Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianrong Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingyi Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Le Luo Guan
- Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
50
|
Liu P, Jin M, Hu P, Sun W, Tang Y, Wu J, Zhang D, Yang L, He H, Xu X. Gut microbiota and bile acids: Metabolic interactions and impacts on diabetic kidney disease. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100315. [PMID: 39726973 PMCID: PMC11670419 DOI: 10.1016/j.crmicr.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
The intestinal microbiota comprises approximately 1013-1014 species of bacteria and plays a crucial role in host metabolism by facilitating various chemical reactions. Secondary bile acids (BAs) are key metabolites produced by gut microbiota.Initially synthesized by the liver, BA undergoes structural modifications through the activity of various intestinal microbiota enzymes, including eukaryotic, bacterial, and archaeal enzymes. These modified BA then activate specific receptors that regulate multiple metabolic pathways in the host, such as lipid and glucose metabolism, energy balance, inflammatory response, and cell proliferation and death. Recent attention has been given to intestinal flora disorders in diabetic kidney disease (DKD), where activation of BA receptors has shown promise in alleviating diabetic kidney damage by modulating renal lipid metabolism and mitochondrial production. Imbalances in the intestinal flora can influence the progression of DKD through the regulation of bile acid and its receptor pathways. This review aims to propose a mechanism involving the gut-BA-diabetes and nephropathy axes with the goal of optimizing new strategies for treating DKD.
Collapse
Affiliation(s)
| | | | - Ping Hu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Weiqian Sun
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuyan Tang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiajun Wu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Dongliang Zhang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Licai Yang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Haidong He
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xudong Xu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|