1
|
Jiang Q, Zhao L, Lei J, Geng X, Zhong X, Zhang B. Interaction between energy level and starch:fat ratio on intestinal energy metabolism of layer pullets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:211-225. [PMID: 39967696 PMCID: PMC11833784 DOI: 10.1016/j.aninu.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 02/20/2025]
Abstract
During the growing period, the gastrointestinal tract of layer pullets is not yet well developed and may be susceptible to dietary energy level. The energy level and composition might impact the intestinal energy metabolism of layer pullets. To test this hypothesis, a total of 480 "Jing Tint 6" layer pullets were used in an 8-week study and allocated to 4 groups, each consisting of 8 replicates, with 15 birds per replicate. Pullets were treated with low or high starch:fat ratios (LS, 10:1; HS, 20:1) in a 2 × 2 factorial arrangement with regular energy (RE, 11.85 and 11.68 MJ/kg for birds from 6 to 10 weeks of age and 11-14 weeks of age, respectively) or low energy (LE, 0.55 MJ/kg lower than RE) levels. A significant interaction (P < 0.05) showed that HS increased glandular stomach weight and the jejunal villus length to crypt depth ratio (VCR) in LE diets, but decreased these parameters in RE diets. Dietary energy reduction impaired energy metabolism in the ileum (P < 0.05) mainly via decreasing the gene expression of enzymes involved in the tricarboxylic acid (TCA) cycle (α-ketoglutarate dehydrogenase complex [α-KGDH]; isocitrate dehydrogenase (NAD (+) [IDH] catalytic; citrate synthase [CS]) and adenosine triphosphate (ATP) synthesis, reducing contents of phosphoenolpyruvate (PEP) and adenylate energy charges (AEC) and down-regulating the adenosine monophosphate-activated protein kinase (AMPK) pathway. HS stimulated AMPKα phosphorylation, increased protein abundance of peroxisome proliferator activated-receptor gamma coactivator 1α (PGC1α) and improved contents of amino acids (aspartate, glutamate, glutamine, alanine and threonine) and malate in the ileum regardless of energy levels (P < 0.05). By an interaction (P < 0.05), the transition from LS to HS diets up-regulated ileal gene expression of AMPKα1 and decreased content of adenosine monophosphate (AMP), accompanied by higher AEC but only in birds fed with LE diets. Collectively, these results suggest that low energy feeding may not be enough for maintaining intestinal energy homeostasis in layer pullets and emphasizes the importance of a relatively high starch:fat ratio in restoring energy metabolism in the ileum.
Collapse
Affiliation(s)
- Qiuyu Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihua Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangfei Geng
- Beijing Lab Animal Science Technology Development Co., Ltd., Beijing 100094, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Mansouri RA, Aboubakr EM, Alshaibi HF, Ahmed AM. L-arginine administration exacerbates myocardial injury in diabetics via prooxidant and proinflammatory mechanisms along with myocardial structural disruption. World J Diabetes 2025; 16:100395. [PMID: 39959273 PMCID: PMC11718468 DOI: 10.4239/wjd.v16.i2.100395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 11/25/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND L-arginine (L-Arg) is one of the most widely used amino acids in dietary and pharmacological products. However, the evidence on its usefulness and dose limitations, especially in diabetics is still controversial. AIM To investigate the effects of chronic administration of different doses of L-Arg on the cardiac muscle of type 2 diabetic rats. METHODS Of 96 male rats were divided into 8 groups as follows (n = 12): Control, 0.5 g/kg L-Arg, 1 g/kg L-Arg, 1.5 g/kg L-Arg, diabetic, diabetic + 0.5 g/kg L-Arg, diabetic + 1 g/kg L-Arg, and diabetic + 1.5 g/kg L-Arg; whereas L-Arg was orally administered for 3 months to all treated groups. RESULTS L-Arg produced a moderate upregulation of blood glucose levels to normal rats, but when given to diabetics a significant upregulation was observed, associated with increased nitric oxide, inflammatory cytokines, and malonaldehyde levels in diabetic rats treated with 1 g/kg L-Arg and 1.5 g/kg L-Arg. A substantial decrease in the antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione concentrations, and Nrf-2 tissue depletion were observed at 1 g/kg and 1.5 g/kg L-Arg diabetic treated groups, associated with myocardial injury, fibrosis, α-smooth muscle actin upregulation, and disruption of desmin cardiac myofilaments, and these effects were not noticeable at normal treated groups. On the other hand, L-Arg could significantly improve the lipid profile of diabetic rats and decrease their body weights. CONCLUSION L-Arg dose of 1 g/kg or more can exacerbates the diabetes injurious effects on the myocardium, while 0.5 g/kg dose can improve the lipid profile and decrease the body weight.
Collapse
Affiliation(s)
- Rasha A Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 22254, Jeddah, Saudi Arabia
- College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Esam M Aboubakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy-South Valley University, Qena 83523, Egypt
| | - Huda F Alshaibi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 22254, Jeddah, Saudi Arabia
- Stem Cell Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel M Ahmed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
3
|
Fang T, Tian G, Chen D, He J, Zheng P, Mao X, Yan H, Yu B. Endoplasmic Reticulum Stress Contributes to Intestinal Injury in Intrauterine Growth Restriction Newborn Piglets. Animals (Basel) 2024; 14:2677. [PMID: 39335266 PMCID: PMC11429086 DOI: 10.3390/ani14182677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Intrauterine growth retardation (IUGR) in piglets is associated with a high rate of morbidity and mortality after birth due to gut dysfunction, and the underlying mechanisms remain poorly understood. This study selected six pairs of IUGR newborn male piglets and normal birth weight newborn piglets (Large White × Landrace) to investigate differences in intestinal structure and digestive functions, intestinal ERS and apoptosis, intestinal barrier function, and inflammatory response. The results showed that IUGR significantly reduced the jejunal villi height (p < 0.05) and the ratio of villus-height-to-crypt-depth (p = 0.05) in neonatal piglets. Additionally, the microvilli in the jejunum of IUGR neonatal piglets were shorter than those in normal-weight piglets, and swelling of the mitochondria and expansion of the endoplasmic reticulum were observed. IUGR also significantly reduced serum glucose and lactase levels (p < 0.05) while significantly increasing mRNA levels of jejunal IRE1α, EIF2α, CHOP, Bax, Caspase9, Mucin2, Claudin-1, Occludin, ZO-1, Bcl-2, IL-6, and IFN-γ (p < 0.05), as well as GRP78 protein levels in neonatal piglets (p < 0.05). These findings suggest that IUGR impairs intestinal structure and barrier function in newborn piglets by enhancing intestinal inflammatory responses, activating intestinal ERS and the signaling pathways related to the unfolded protein response, thereby inducing ERS-related apoptosis.
Collapse
Affiliation(s)
- Tingting Fang
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
McCoard SA, Pacheco D. The significance of N-carbamoylglutamate in ruminant production. J Anim Sci Biotechnol 2023; 14:48. [PMID: 37046347 PMCID: PMC10100185 DOI: 10.1186/s40104-023-00854-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/12/2023] [Indexed: 04/14/2023] Open
Abstract
Improving the efficiency and production of grazing ruminants to support food and fiber production, while reducing the environmental footprint and meeting the welfare needs of the animals, is important for sustainable livestock production systems. Development of new technologies that can improve the efficiency of nitrogen (N) utilization in ruminants, and that are effective and safe, has important implications for ruminant livestock production. N-carbomoylglutamate (NCG) is a functional micronutrient that stimulates endogenous synthesis of arginine, which can improve survival, growth, lactation, reproductive performance, and feed efficiency in mammals. There is a growing body of evidence to support the potential of dietary NCG supplementation to improve the productive capacity and N utilization efficiency of ruminants. This review summarizes the current literature on the effects of dietary supplementation with NCG in ruminants and impacts on production and potential to reduce the environmental footprint of farmed ruminant livestock. The current literature highlights the potential for commercial application in ruminant livestock to improve productivity and N utilization efficiency.
Collapse
Affiliation(s)
- Susan A McCoard
- AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand.
| | - David Pacheco
- AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand
| |
Collapse
|
5
|
Feng D, Yang Z, Li M. Dietary N-carbamylglutamate supplementation improves ammonia tolerance of juvenile yellow catfish Pelteobagrus fulvidraco. Front Physiol 2023; 14:1191468. [PMID: 37168229 PMCID: PMC10164998 DOI: 10.3389/fphys.2023.1191468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Ammonia has been of concern for its high toxicity to animals. N-carbamylglutamate (NCG) can reduce blood ammonia levels in mammals, but studies on ammonia tolerance in fish are insufficient. Methods: Juvenile yellow catfish were fed two levels of NCG (0.00% and 0.05%) for 84 days under three ammonia levels (0.00, 0.08, and 0.16 mg/L NH3). Results and Discussion: The results showed that survival rate (SUR), final body weight (FBW), weight gain (WG), and serum total protein (TP), triglycerides (TG), glucose (Glu), ornithine (Orn), citrulline (Cit) contents, and liver superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), arginase (ARG), ornithine transcarbamylase (OTC) activities decreased with the increase of ammonia levels, on the contrary, feed conversion ratio (FCR), hepatosomatic index (HSI), and serum ammonia, urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamine (Gln), arginine (Arg) contents, and liver malondialdehyde (MDA), tumor necrosis factor (TNF), interleukin (IL) 1, IL 8 contents, and mRNA expressions of cu/zn sod, cat, gpx, gr, tnf ɑ, il 1, and il 8 were significantly increased. Dietary 0.05% NCG supplementation had higher SUR, FBW, WG, feed intake (FI), whole-body protein, and serum TP, total cholesterol (TC), Glu, citrulline (Cit) contents, and liver SOD, GPx, argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL), inducible nitric oxide synthase (iNOS) activities compared to 0.00% NCG group, but had lower serum ammonia, urea, ALT, AST, Gln, Arg contents, and liver MDA, TNF, IL 1, IL 8 contents, and neuronal nitric oxide synthase activity. At the end of bacterial challenge, cumulative mortality (CM) increased with ammonia levels increased, but serum antibody titer (AT), lysozyme (LYZ) activity, 50% hemolytic complement, immunoglobulin (Ig) contents, respiratory burst (RB), phagocytic indices decreased with ammonia levels increased. CM in 0.05% NCG group was lower than that in 0.00% NCG group, but serum AT, LYZ activity, Ig content, RB in 0.05% NCG group were significantly higher. The correlation analysis found that iNOS was positively correlated with ASS activity. This study indicates that dietary NCG supplementation can improve the ammonia tolerance of yellow catfish, and ASS may also be the target of NCG to activate the urea cycle.
Collapse
Affiliation(s)
- Dexiang Feng
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhiguo Yang
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, China
- *Correspondence: Ming Li,
| |
Collapse
|
6
|
Jia W, Wang X, Shi L. Endogenous benzoic acid interferes with the signatures of amino acids and thiol compounds through perturbing N-methyltransferase, glutamate-cysteine ligase, and glutathione S-transferase activity in dairy products. Food Res Int 2022; 161:111857. [DOI: 10.1016/j.foodres.2022.111857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/04/2022] [Accepted: 08/21/2022] [Indexed: 12/29/2022]
|
7
|
Zhou J, Yue S, Du J, Xue B, Wang L, Peng Q, Zou H, Hu R, Jiang Y, Wang Z, Xue B. Integration of transcriptomic and metabolomic analysis of the mechanism of dietary N-carbamoylglutamate in promoting follicle development in yaks. Front Vet Sci 2022; 9:946893. [PMID: 36105003 PMCID: PMC9464987 DOI: 10.3389/fvets.2022.946893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Yak is the main livestock in the highlands of China. The low reproductive rate of yaks is a serious constraint on their production and utility. N-carbamylglutamate (NCG) can increase arginine synthesis in mammals and has been shown to improve reproductive performance. Twelve multiparous and simutaneous anoestrous female yaks were randomly divided into two groups, one of which was fed the basal diet (Control, n = 6), and the other was fed the basal diet supplemented with NCG at 6 g/day/yak (NCG, n = 6). All yaks were slaughtered on the 32nd day (the time predicted for the selection of the last wave of dominant follicles), and their ovarian tissues were collected and follicles were classified. NCG supplementation increased the number of large ovarian follicles (diameter > 10 mm), as well as caused significant changes in the transcriptional and metabolic levels in yak ovaries which due to the differential expression of 889 genes and 94 metabolites. Integrated analysis of the transcriptomics and metabolomics data revealed that the differentially expressed genes and differential metabolites were primarily involved in the process of energy metabolism, amino acid metabolic pathways, carbohydrate metabolic pathways, and lipid metabolic pathways. The highlighted changes were associated with amino acid synthesis and metabolism, ovarian steroid hormone synthesis, the pentose phosphate pathway, and the tricarboxylic acid cycle, suggesting that NCG supplementation may promote estrogen synthesis and help regulate follicular development by altering the pathways associated with glucose catabolism. The results present important clues for understanding the mechanisms by which NCG supplementation promotes follicular development in yaks. The findings of this study provide a basis for the development and application of NCG in optimizing animal reproduction, including yak reproductive performance, which may help optimize livestock management and uplift the pastoral economy.
Collapse
Affiliation(s)
- Jia Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Shuangming Yue
- Department of Bioengineering, Sichuan Water Conservancy College, Chengdu, China
| | - Jingjing Du
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Benchu Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Rui Hu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yahui Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Bai Xue
| |
Collapse
|