1
|
Wang X, Liu C, Liang R, Zhou Y, Kong X, Wang W, Wang H, Zhao L, Niu W, Yi C, Jiang F. Elucidating the beneficial impact of exercise on chronic obstructive pulmonary disease and its comorbidities: Integrating proteomic and immunological insights. Br J Pharmacol 2024; 181:5133-5150. [PMID: 39317434 DOI: 10.1111/bph.17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND AND PURPOSE Physical activity is an effective therapeutic protocol for treating chronic obstructive pulmonary disease (COPD). However, the mechanisms underlying the benefits of physical activity in COPD are not fully elucidated. EXPERIMENTAL APPROACH In a mouse model of COPD, analysis of biological markers and lung proteomics identified the molecular pathways through which exercise ameliorates COPD. KEY RESULTS Exercise improved pulmonary function, emphysema, small airway disease, pulmonary inflammation, glucose metabolic dysregulation, and insulin resistance in COPD mice. Proteomic analysis revealed 430 differentially expressed proteins (DEPs) between the COPD and COPD + Exercise (COPD + Ex) groups. GO analysis indicated that the enriched pathways were predominantly related to the immune response, inflammatory processes, insulin secretion, and glucose metabolic processes. GO analysis revealed IL-33 as a crucial target for the exercise-related amelioration of COPD. KEGG analysis showed that DEPs were significantly enriched in primary immunodeficiency, the intestinal immune network for IgA production, and the NF-κB signalling pathway. Exercise inhibited NF-κB activation by suppressing the CD14/TLR4/MyD88 and TNF-α/TNF-R1/TRAF2/5 pathways in COPD mice. Exercise inhibited expression of BCR, IgM, IgD, IgG, IgE, and IgA by suppressing B-cell receptor signalling. Exercise attenuated glucose metabolic dysregulation and insulin resistance through the suppression of proinflammatory mediators, including MHC I, MHC II, TNF-α, IFN-γ, and IL-1β, while concurrently increasing insulin expression. The qRT-PCR results were consistent with the proteomic results. CONCLUSION AND IMPLICATIONS In a mouse model, exercise improved COPD and its metabolic comorbidities through immune system regulation and inflammation suppression, offering insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Xishuai Wang
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
- College of Education for the Future, Beijing Normal University, Zhuhai, China
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Liu
- College of Education for the Future, Beijing Normal University, Zhuhai, China
| | - Ruining Liang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuehui Zhou
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Xiliang Kong
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Weichao Wang
- Graduate School of Sports Coaching, Kyungil University, Gyeongsan-si, Gyeongsangbuk-do, South Korea
| | - Hongwei Wang
- College of Physical Education, Northwest Normal University, Lanzhou, Gansu, China
| | - Lunan Zhao
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Weina Niu
- Basic Department, Qilu Institute of Technology, Qufu, Shandong, China
| | - Chao Yi
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Fugao Jiang
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
2
|
Barrett JS, Crozier A, Cuthbertson DJ, Strauss JA, Wagenmakers AJM, Shepherd SO. A free-living, walking-based, exercise programme, with exercise timed relative to breakfast, to improve metabolic health in people living with overweight and obesity: A feasibility study. PLoS One 2024; 19:e0307582. [PMID: 39570874 PMCID: PMC11581328 DOI: 10.1371/journal.pone.0307582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/08/2024] [Indexed: 11/24/2024] Open
Abstract
Optimising the timing of food intake relative to exercise may maximise the effectiveness of free-living exercise programmes on improvements in glycaemic control and cardio-metabolic health. This study aimed to assess the feasibility of a free-living, walking-based exercise programme and determine whether undertaking each exercise session before or after breakfast would most benefit longer-term metabolic health. Thirty-four people living with obesity (43±12 y, BMI 35.1±5.1 kg.m-2) undertook a 12-week walking-based programme, consisting of two continuous (30-60 min at 50% HRmax) and two interval exercise sessions per week (30-60 min, alternating 3 min at 85% HRmax and 3 min at 50% HRmax). Participants were allocated to exercise before (FASTED) or after (FED) breakfast (n = 17 per group). Feasibility (acceptability, adherence and compliance) to the exercise intervention were assessed, as well as changes in anthropometric variables, 24-hour continuous glucose monitoring, serum biochemistry including HbA1c, lipid profile and liver transaminases. Exercise adherence (FASTED: 93±4%, FED: 95±5%) and compliance (FASTED: 85±10%, FED: 88±10%) was high in both groups, and participants described exercise monitoring, programme structure and support as facilitators to this. Body mass, BMI, waist-to-hip ratio and HbA1c decreased similarly between groups (all P<0.01). However, serum ALT concentrations decreased after FASTED (-16± -14%; P = 0.001), but not FED training (-2 ± -4%; P = 0.720). We demonstrate that a free-living walking-based exercise programme, with exercise timed relative to breakfast can achieve high adherence and compliance and improve some anthropometric variables and HbA1c. Whether FASTED exercise can elicit greater improvements in liver health requires further investigation.
Collapse
Affiliation(s)
- Jennifer S. Barrett
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Anthony Crozier
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel J. Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, United Kingdom
- Metabolism & Nutrition Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool, Merseyside, United Kingdom
| | - Juliette A. Strauss
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Anton J. M. Wagenmakers
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Sam O. Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
3
|
Luo W, Zhou Y, Wang LY, Ai L. Interactions between myoblasts and macrophages under high glucose milieus result in inflammatory response and impaired insulin sensitivity. World J Diabetes 2024; 15:1589-1602. [PMID: 39099815 PMCID: PMC11292338 DOI: 10.4239/wjd.v15.i7.1589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance (IR). Many studies have confirmed the interactions between macrophages and skeletal muscle regulated the inflammation and regeneration of skeletal muscle. However, despite of the decades of research, whether macrophages infiltration and polarization in skeletal muscle under high glucose (HG) milieus results in the development of IR is yet to be elucidated. C2C12 myoblasts are well-established and excellent model to study myogenic regulation and its responses to stimulation. Further exploration of macrophages' role in myoblasts IR and the dynamics of their infiltration and polarization is warranted. AIM To evaluate interactions between myoblasts and macrophages under HG, and its effects on inflammation and IR in skeletal muscle. METHODS We detected the polarization status of macrophages infiltrated to skeletal muscles of IR mice by hematoxylin and eosin and immunohistochemical staining. Then, we developed an in vitro co-culture system to study the interactions between myoblasts and macrophages under HG milieus. The effects of myoblasts on macrophages were explored through morphological observation, CCK-8 assay, Flow Cytometry, and enzyme-linked immunosorbent assay. The mediation of macrophages to myogenesis and insulin sensitivity were detected by morphological observation, CCK-8 assay, Immunofluorescence, and 2-NBDG assay. RESULTS The F4/80 and co-localization of F4/80 and CD86 increased, and the myofiber size decreased in IR group (P < 0.01, g = 6.26). Compared to Mc group, F4/80+CD86+CD206- cells, tumor necrosis factor-α (TNFα), inerleukin-1β (IL-1β) and IL-6 decreased, and IL-10 increased in McM group (P < 0.01, g > 0.8). In McM + HG group, F4/80+CD86+CD206- cells, monocyte chemoattractant protein 1, TNFα, IL-1β and IL-6 were increased, and F4/80+CD206+CD86- cells and IL-10 were decreased compared with Mc + HG group and McM group (P < 0.01, g > 0.8). Compered to M group, myotube area, myotube number and E-MHC were increased in MMc group (P < 0.01, g > 0.8). In MMc + HG group, myotube area, myotube number, E-MHC, GLUT4 and glucose uptake were decreased compared with M + HG group and MMc group (P < 0.01, g > 0.8). CONCLUSION Interactions between myoblasts and macrophages under HG milieus results in inflammation and IR, which support that the macrophage may serve as a promising therapeutic target for skeletal muscle atrophy and IR.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports and Health Sciences, Nanjing Sport Institute, Nanjing 210014, Jiangsu Province, China
| | - Yue Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Li-Ying Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Lei Ai
- Department of Sports Physiology Research, Jiangsu Research Institute of Sports Science, Nanjing 210033, Jiangsu Province, China
| |
Collapse
|
4
|
Lopez-Pedrosa JM, Camprubi-Robles M, Guzman-Rolo G, Lopez-Gonzalez A, Garcia-Almeida JM, Sanz-Paris A, Rueda R. The Vicious Cycle of Type 2 Diabetes Mellitus and Skeletal Muscle Atrophy: Clinical, Biochemical, and Nutritional Bases. Nutrients 2024; 16:172. [PMID: 38202001 PMCID: PMC10780454 DOI: 10.3390/nu16010172] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Today, type 2 diabetes mellitus (T2DM) and skeletal muscle atrophy (SMA) have become increasingly common occurrences. Whether the onset of T2DM increases the risk of SMA or vice versa has long been under investigation. Both conditions are associated with negative changes in skeletal muscle health, which can, in turn, lead to impaired physical function, a lowered quality of life, and an increased risk of mortality. Poor nutrition can exacerbate both T2DM and SMA. T2DM and SMA are linked by a vicious cycle of events that reinforce and worsen each other. Muscle insulin resistance appears to be the pathophysiological link between T2DM and SMA. To explore this association, our review (i) compiles evidence on the clinical association between T2DM and SMA, (ii) reviews mechanisms underlying biochemical changes in the muscles of people with or at risk of T2DM and SMA, and (iii) examines how nutritional therapy and increased physical activity as muscle-targeted treatments benefit this population. Based on the evidence, we conclude that effective treatment of patients with T2DM-SMA depends on the restoration and maintenance of muscle mass. We thus propose that regular intake of key functional nutrients, along with guidance for physical activity, can help maintain euglycemia and improve muscle status in all patients with T2DM and SMA.
Collapse
Affiliation(s)
| | | | | | | | - Jose Manuel Garcia-Almeida
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain;
| | - Alejandro Sanz-Paris
- Nutrition Unit, Universitary Hospital Miguel Servet, Isabel the Catholic 1-3, 50009 Zaragoza, Spain;
| | - Ricardo Rueda
- Abbott Nutrition R&D, 18004 Granada, Spain; (M.C.-R.); (A.L.-G.); (R.R.)
| |
Collapse
|
5
|
Mestre Font M, Busquets-Cortés C, Ramírez-Manent JI, Tomás-Gil P, Paublini H, López-González ÁA. Influence of Sociodemographic Variables and Healthy Habits on the Values of Insulin Resistance Indicators in 386,924 Spanish Workers. Nutrients 2023; 15:5122. [PMID: 38140381 PMCID: PMC10746000 DOI: 10.3390/nu15245122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) is an alteration of the action of insulin in cells, which do not respond adequately to this action, leading to an increase in blood glucose levels. IR produces a very diverse clinical picture and increases the cardiometabolic risk of the population that suffers from it. Among the factors that influence IR are genetics, unhealthy lifestyle habits, overweight, and obesity. The objective of this work was to determine how different sociodemographic variables and healthy habits influence the values of different scales that assess the risk of presenting IR in a group of Spanish workers. METHODS An observational, cross-sectional, descriptive study was carried out in 386,924 workers from different Spanish regions. Different sociodemographic variables and lifestyle habits were studied (age, social class, educational level, smoking, Mediterranean diet, physical exercise) along with their association with four scales to evaluate the risk of insulin resistance (TyG index, TyG-BMI, METS-IR, TG/HDL-c). To analyse the quantitative variables, Student's t test was used, while the Chi-squared test was used for the qualitative variables. A multinomial logistic regression analysis was performed, calculating the odds ratio with its 95% confidence intervals. The accepted level of statistical significance was set at p < 0.05. RESULTS In the multivariate analysis, all variables, except educational level, increased the risk of presenting high values on the IR risk scales, especially a sedentary lifestyle and low adherence to the Mediterranean diet. CONCLUSIONS Our results demonstrate an association between the practice of regular physical exercise and a reduction in the risk of IR; a strong role of the Mediterranean diet as a protective factor for IR; an association between aging and increased IR, which has also been suggested in other studies; and, finally, a relationship between a low socioeconomic level and an increase in IR.
Collapse
Affiliation(s)
- Miguel Mestre Font
- ADEMA-Health Group, Instituto Universitario en Ciencias de la Salud, University of Balearic Islands, 07122 Palma, Spain; (M.M.F.); (C.B.-C.); (P.T.-G.); (H.P.); (Á.A.L.-G.)
| | - Carla Busquets-Cortés
- ADEMA-Health Group, Instituto Universitario en Ciencias de la Salud, University of Balearic Islands, 07122 Palma, Spain; (M.M.F.); (C.B.-C.); (P.T.-G.); (H.P.); (Á.A.L.-G.)
| | - José Ignacio Ramírez-Manent
- ADEMA-Health Group, Instituto Universitario en Ciencias de la Salud, University of Balearic Islands, 07122 Palma, Spain; (M.M.F.); (C.B.-C.); (P.T.-G.); (H.P.); (Á.A.L.-G.)
- Familiy Medicine, Balearic Islands Health Service, 07003 Palma, Spain
| | - Pilar Tomás-Gil
- ADEMA-Health Group, Instituto Universitario en Ciencias de la Salud, University of Balearic Islands, 07122 Palma, Spain; (M.M.F.); (C.B.-C.); (P.T.-G.); (H.P.); (Á.A.L.-G.)
| | - Hernán Paublini
- ADEMA-Health Group, Instituto Universitario en Ciencias de la Salud, University of Balearic Islands, 07122 Palma, Spain; (M.M.F.); (C.B.-C.); (P.T.-G.); (H.P.); (Á.A.L.-G.)
| | - Ángel Arturo López-González
- ADEMA-Health Group, Instituto Universitario en Ciencias de la Salud, University of Balearic Islands, 07122 Palma, Spain; (M.M.F.); (C.B.-C.); (P.T.-G.); (H.P.); (Á.A.L.-G.)
| |
Collapse
|
6
|
Di Murro E, Di Giuseppe G, Soldovieri L, Moffa S, Improta I, Capece U, Nista EC, Cinti F, Ciccarelli G, Brunetti M, Gasbarrini A, Pontecorvi A, Giaccari A, Mezza T. Physical Activity and Type 2 Diabetes: In Search of a Personalized Approach to Improving β-Cell Function. Nutrients 2023; 15:4202. [PMID: 37836486 PMCID: PMC10574038 DOI: 10.3390/nu15194202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most widespread diseases worldwide. Lifestyle interventions, including diet and physical activity (PA), are fundamental non-pharmacological components of T2DM therapy. Exercise interventions are strongly recommended for people with or at risk of developing or already with overt diabetes, but adherence to PA guidelines in this population is still challenging. Furthermore, the heterogeneity of T2DM patients, driven by differing residual β-cell functionality, as well as the possibility of practicing different types and intensities of PA, has led to the need to develop tailored exercise and training plans. Investigations on blood glucose variation in response to exercise could help to clarify why individuals do not respond in the same way to PA, and to guide the prescription of personalized treatments. The aim of this review is to offer an updated overview of the current evidence on the effects of different regimens and modalities of PA regarding glucose sensing and β-cell secretory dynamics in individuals with prediabetes or T2DM, with a special focus on β-cell function.
Collapse
Affiliation(s)
- Emanuela Di Murro
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Laura Soldovieri
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Simona Moffa
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Ilaria Improta
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Enrico Celestino Nista
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Michela Brunetti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
7
|
KIM SUJIN, PARK DONGHO, LEE SANGHYUN, KWAK HYOBUM, KANG JUHEE. Contribution of High-Intensity Interval Exercise in the Fasted State to Fat Browning: Potential Roles of Lactate and β-Hydroxybutyrate. Med Sci Sports Exerc 2023; 55:1160-1171. [PMID: 36790381 PMCID: PMC10242519 DOI: 10.1249/mss.0000000000003136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE Fat browning contributes to energy consumption and may have metabolic benefits against obesity; however, the potential roles of lactate and β-hydroxybutyrate (β-HB) in fat browning remain unclear. We investigated the roles of a single bout of aerobic exercise that increases lactate and β-HB levels in the fasted state on the regulation of fat browning in rats and humans. METHODS Male Sprague-Dawley rats were exposed to 24-h fasting and/or a single bout moderate-intensity aerobic exercise (40 min): sedentary (CON), exercise (ND-EX), fasting (FAST), and exercise + fasting (F-EX). Adult men ( n = 13) were randomly assigned into control with food intake (CON), exercise with intensity at onset of blood lactate accumulation in the fasted state (F-OBLA), and high-intensity interval exercise in the fasted state (F-HIIE) until each participant expended 350 kcal of energy. For evaluating the effects of exercise intensity in rats, we conducted another set of animal experiment, including groups of sedentary fed control, fasting control, and exercise with moderate-intensity or HIIE for 40 min after a 24-h fasting. RESULTS Regardless of fasting, single bout of exercise increases the concentration of lactate and β-HB in rats, but the exercise in the fasted state increases the β-HB level more significantly in rats and humans. F-EX-activated fat browning (AMPK-SirT1-PGC1α pathway and PRDM16) and thermogenic factor (UCP1) in white fat of rats. In rats and humans, exercise in the fasted state increased the blood levels of fat browning-related adipomyokines. In particular, compared with F-OBLA, F-HIIE more efficiently increases free fatty acid as well as blood levels of fat browning adipomyokines in humans, which was correlated with blood levels of lactate and β-HB. In rats that performed exercise with different intensity, the higher plasma lactate and β-HB levels, and higher expression of p-AMPK, UCP1, and PRDM16 in white adipose tissue of HIIE group than those of moderate-intensity group, were observed. CONCLUSIONS A single bout of aerobic exercise in the fasted state significantly induced fat browning-related pathways, free fatty acid, and adipomyokines, particularly F-HIIE in human. Although further evidence for supporting our results is required in humans, aerobic exercise in the fasted state with high intensity that increase lactate and β-HB may be a modality of fat browning.
Collapse
Affiliation(s)
- SUJIN KIM
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, REPUBLIC OF KOREA
| | - DONG-HO PARK
- Department of Kinesiology, Inha University, Incheon, REPUBLIC OF KOREA
- Program in Biomedical Science and Engineering, Inha University, Incheon, REPUBLIC OF KOREA
| | - SANG-HYUN LEE
- Department of Kinesiology, Inha University, Incheon, REPUBLIC OF KOREA
| | - HYO-BUM KWAK
- Department of Kinesiology, Inha University, Incheon, REPUBLIC OF KOREA
- Program in Biomedical Science and Engineering, Inha University, Incheon, REPUBLIC OF KOREA
| | - JU-HEE KANG
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, REPUBLIC OF KOREA
- Program in Biomedical Science and Engineering, Inha University, Incheon, REPUBLIC OF KOREA
| |
Collapse
|
8
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, López-Mora C, Yáñez-Sepúlveda R, Tornero-Aguilera JF. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int J Mol Sci 2023; 24:10672. [PMID: 37445852 DOI: 10.3390/ijms241310672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Endocrine homeostasis and metabolic diseases have been the subject of extensive research in recent years. The development of new techniques and insights has led to a deeper understanding of the mechanisms underlying these conditions and opened up new avenues for diagnosis and treatment. In this review, we discussed the rise of metabolic diseases, especially in Western countries, the genetical, psychological, and behavioral basis of metabolic diseases, the role of nutrition and physical activity in the development of metabolic diseases, the role of single-cell transcriptomics, gut microbiota, epigenetics, advanced imaging techniques, and cell-based therapies in metabolic diseases. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Villaviciosa de Odon, Spain
| | - Clara López-Mora
- Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Valencia, Pg. de l'Albereda, 7, 46010 València, Spain
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
9
|
Engeroff T, Groneberg DA, Wilke J. After Dinner Rest a While, After Supper Walk a Mile? A Systematic Review with Meta-analysis on the Acute Postprandial Glycemic Response to Exercise Before and After Meal Ingestion in Healthy Subjects and Patients with Impaired Glucose Tolerance. Sports Med 2023; 53:849-869. [PMID: 36715875 PMCID: PMC10036272 DOI: 10.1007/s40279-022-01808-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND The most effective way to cope with high blood sugar spikes is to engage in physical activity in temporal proximity to food intake. However, so far, it is unclear as to whether there is an optimal time for physical activity around food intake. OBJECTIVES We aimed to identify the impact of pre- and post-meal exercise on postprandial glucose excursions in humans with and without type 2 diabetes mellitus. METHODS We conducted a systematic review with meta-analysis, PROSPERO registration number: CRD42022324070. We screened MEDLINE/PubMed, Cochrane/CINAHL/EMBASE, and Web of Knowledge until 1 May, 2022. We used the risk of bias rating with the crossover extension of the Cochrane risk of bias assessment tool II. Standardized mean differences (SMDs, Hedges' g) with 95% confidence intervals (CIs) were calculated as pooled effect estimates of a random-effects meta-analysis. Eligibility criteria included three-armed randomized controlled trials comparing the acute effects of pre- and post-meal exercise to a no-exercise control in humans. RESULTS Eight randomized controlled trials (crossover trials, high risk of bias) with 30 interventions in 116 participants (47 diagnosed with type 2 diabetes, 69 without type 2 diabetes) were eligible. Exercise after meal ingestion (real food or meal replacement drinks) led to a reduction in postprandial glucose excursions compared with exercise before eating (15 effect sizes; SMD = 0.47 [95% CI 0.23, 0.70]) and an inactive control condition (15 effect sizes; SMD = 0.55 [95% CI 0.34, 0.75]. Pre-meal exercise did not lead to significantly lower postprandial glucose compared to an inactive control (15 effect sizes; SMD = - 0.13 [95% CI - 0.42, 0.17]). The time between meal and exercise (estimate = - 0.0151; standard error = 0.00473; Z = - 3.19; p = 0.001; 95% CI - 0.024, - 0.006) had a moderating influence on postprandial glucose excursions. CONCLUSIONS Exercise, i.e., walking, has a greater acute beneficial impact on postprandial hyperglycemia when undertaken as soon as possible after a meal rather than after a longer interval or before eating. CLINICAL TRIAL REGISTRATION The review was pre-registered in the PROSPERO database (CRD42022324070). The date of submission was 07.04.2022, with the registration on 08.05.2022.
Collapse
Affiliation(s)
- Tobias Engeroff
- Division Health and Performance, Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Building 9B, 60590, Frankfurt am Main, Germany.
| | - David A Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Jan Wilke
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
10
|
Ionita Radu F, Ranetti AE, Vasile TM, Sirbu AM, Axelerad A, Sirbu CA. The Impact of the Hypercaloric Diet versus the Mediterranean Diet on Insulin Sensitivity. ROMANIAN JOURNAL OF MILITARY MEDICINE 2023. [DOI: 10.55453/rjmm.2023.126.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
"Obesity affects the population worldwide. A hypercaloric diet associated with a sedentary life, stress, and genetic background, triggers various metabolic disorders, such as metabolic syndrome, diabetes mellitus, cancer, cardiovascular diseases, non-alcoholic fatty liver disease, and cognitive impairment. A healthy diet correlated with physical activity, not smoking, and moderate alcohol consumption reduces the risk of developing metabolic diseases. The Mediterranean diet contains antioxidants, fiber, polyunsaturated fats, and compounds with anti-inflammatory, anti-oxidant, anti-cancer, and anti-obesity properties. In a wide variety of species including humans, the reduction of calories between 20-40% significantly improves health, increaseslongevity, and delaysthe development of various pathologies. The main aim of this review is to present the comparative effects of the Mediterranean diet versus the hypercaloric diet on insulin sensitivity. "
Collapse
Affiliation(s)
- Florentina Ionita Radu
- Gastroenterology Clinic, “Carol Davila” Central Military Emergency University Hospital, Bucharest, Romania
| | - Aurelian E Ranetti
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Titus M Vasile
- Clinical Neurosciences Department, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Any Axelerad
- Department of Neurology, General Medicine Faculty, “Ovidius”’ University, Constanta, Romania
| | - Carmen A Sirbu
- Neurology Clinic, “Dr. Carol Davila” Central Military Emergency University Hospital, Bucharest, Romania
| |
Collapse
|
11
|
Liu X, He M, Gan X, Yang Y, Hou Q, Hu R. The Effects of Six Weeks of Fasted Aerobic Exercise on Body Shape and Blood Biochemical Index in Overweight and Obese Young Adult Males. J Exerc Sci Fit 2023; 21:95-103. [PMID: 36447628 PMCID: PMC9674552 DOI: 10.1016/j.jesf.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND/OBJECTIVE The effects of fasted aerobic exercise on body composition and whether it causes adverse effects remain controversial. This study was to compare the effects of fasted and non-fasted aerobic exercise on body shape and blood biochemical indexes in overweight and obese young adult males, and observe whether FAE triggers adverse reactions. METHODS Thirty overweight and obese young adult males were randomly divided into fasted aerobic exercise (FAE) group, non-fasted aerobic exercise (NFAE) group, and control group. They were subjected to indoor treadmill intervention five days a week combined with diet control for six weeks. The FAE group had breakfast 0.5 h after exercise, and the NFAE group exercised 1 h after breakfast. Both groups filled out adverse reaction questionnaires during exercise, and the control group did not have any intervention. Height, weight, body mass index (BMI), and body fat percentage of the three groups of subjects before and after the experiment were measured by the GAIA KIKO bio-resistance antibody composition analyzer in Korea; waist circumference (WC), hip circumference (HC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) were measured by the tape measure method; fasting plasma glucose (FPG), fasting insulin (FINs), total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), very low density lipoprotein (VLDL), and HDL-C/LDL-C were measured by Roche C8000 automatic biochemical analysis instrument. RESULTS Weight, BMI, body fat percentage, WC, HC, WHR, WHtR, TG, TC, LDL-C and VLDL decreased very significantly (P < 0.01) in the FAE and NFAE groups after the 6-week experiment. The decrease in FINS was significant in the FAE group (P < 0.05) and the decrease in HDL-C was very significant in the NFAE group (P < 0.01). There was no significant difference in the frequency of adverse reactions between two groups (P > 0.05). CONCLUSION Six-week FAE and NFAE significantly improved body shape in overweight and obese young adult males, while FAE significantly reduced fasting insulin levels and increased tissue cell sensitivity to insulin. And compared to NFAE, 30 min of FAE in the morning did not increase adverse effects.
Collapse
Affiliation(s)
- Xiaolong Liu
- Sports Medicine Laboratory, Guangxi Normal University, Guilin, 541006, Guangxi, China
- Rehabilitation Institute, Guilin Life and Health Career Technical College, Guilin, 541100, Guangxi, China
| | - Mengxiao He
- Key Laboratory of Human Sports Science, Xinjiang Normal University, Urumqi, 830054, Xinjiang, China
- Department of Physical Education and Health, Guilin College, Guilin, 541006, Guangxi, China
| | - Xiaoli Gan
- College of Foreign Studies, Guangxi Normal University, Guilin, 541006, Guangxi, China
| | - Yang Yang
- Department of Sports Science, Shanghai Institute of Physical Education, Shanghai, 200438, China
| | - Qin Hou
- Department of Gastroenterology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Rongbo Hu
- Chair of Building Realization and Robotics, Technical University of Munich, Munich, 80333, Germany
- Corresponding author. Chair of Building Realization and Robotics, Technical University of Munich, Munich, 80333, Germany.
| |
Collapse
|
12
|
Glucose Uptake Is Increased by Estradiol Dipropionate in L6 Skeletal Muscle Cells. Pharmaceuticals (Basel) 2022; 16:ph16010025. [PMID: 36678522 PMCID: PMC9866800 DOI: 10.3390/ph16010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
GLUT4 is an important glucose transporter, which is closely related to insulin resistance and type 2 diabetes. In this study, we investigated the mechanism of Estradiol Dipropionate (EDP) on uptake of glucose in L6 skeletal muscle cells. In our study, we confirmed that EDP promoted uptake of glucose in L6 skeletal muscle cells in both normal and insulin resistant models. Western blot indicated that EDP accelerated GLUT4 expression and significantly activated AMPK and PKC phosphorylation; the expression of GLUT4 was significantly inhibited by AMPK inhibitor compound C and PKC inhibitor Gö6983, but not by Wortmannin (Akt inhibitor). Meanwhile, EDP boosted GLUT4 expression, and also increased intracellular Ca2+ levels. In the presence of 2 mM, 0 mM extracellular Ca2+ and 0 mM extracellular Ca2+ + BAPTA-AM, the involvement of intracellular Ca2+ levels contribute to EDP-induced GLUT4 expression and fusion with plasma membrane. Therefore, this study investigated whether EDP promoted GLUT4 expression through AMPK and PKC signaling pathways, thereby enhancing GLUT4 uptake of glucose and fusion into plasma membrane in L6 skeletal muscle cells. In addition, both EDP induced GLUT4 translocation and uptake of glucose were Ca2+ dependent. These findings suggested that EDP may be potential drug for the treatment of type 2 diabetes.
Collapse
|
13
|
Sherafati-Moghadam M, Pahlavani HA, Daryanoosh F, Salesi M. The effect of high-intensity interval training (HIIT) on protein expression in Flexor Hallucis Longus (FHL) and soleus (SOL) in rats with type 2 diabetes. J Diabetes Metab Disord 2022; 21:1499-1508. [PMID: 36404870 PMCID: PMC9672293 DOI: 10.1007/s40200-022-01091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE In people with diabetes, one of the problems for patients is muscle wasting and inhibition of the protein synthesis pathway. This study aimed to evaluate the effects of HIIT on protein expression in two skeletal muscles, flexor hallucis longus (FHL) and soleus (SOL) in rats with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS Diabetes initially was induced by streptozotocin (STZ) and nicotinamide. Rats with type 2 diabetes were randomly and equally divided into control (n = 6) and HIIT groups (n = 6). After 8 weeks of training, the content of total and phosphorylated proteins of serine/threonine-protein kinases (AKT1), mammalian target of rapamycin (mTOR), P70 ribosomal protein S6 kinase 1 (P70S6K1), and 4E (eIF4E)-binding protein 1 (4E-BP1) in FHL and SOL muscles were measured by Western blotting. While body weight and blood glucose were also controlled. RESULTS In the HIIT training group, compared to the control group, a significant increase in the content of AKT1 (0.003) and mTOR (0.001) proteins was observed in the FHL muscle. Also, after 8 weeks of HIIT training, protein 4E-BP1 (0.001) was increased in SOL muscle. However, there was no significant change in other proteins in FHL and SOL muscle. CONCLUSIONS In rats with type 2 diabetes appear to HIIT leading to more protein expression of fast-twitch muscles than slow-twitch muscles. thus likely HIIT exercises can be an important approach to increase protein synthesis and prevent muscle atrophy in people with type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Farhad Daryanoosh
- Department of Exercise Physiology, Faculty of Education and Psychology, University of Shiraz, Shiraz, Iran
| | - Mohsen Salesi
- Department of Exercise Physiology, Faculty of Education and Psychology, University of Shiraz, Shiraz, Iran
| |
Collapse
|
14
|
Liu MY, Chen SQ. Effects of Low/Medium-Intensity Exercise on Fat Metabolism after a 6-h Fast. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15502. [PMID: 36497577 PMCID: PMC9736603 DOI: 10.3390/ijerph192315502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The effects of fasting and different exercise intensities on lipid metabolism were investigated in 12 male students aged 19.9 ± 1.4 years, with maximal oxygen consumption (VO2max) of 50.33 ± 4.0 mL/kg/min, using a counterbalanced design. Each participant ran on a treadmill at 45% and 65% VO2max continuously for 20 min, followed by running at 85% VO2max for 20 min (or until exhaustion) under a fed or fasted state (6 h). The respiratory exchange ratio (RER), blood glucose (BGLU), blood lactate (BLA), and blood triglyceride (TG) were analyzed during exercise. The results showed that the intensity of exercise did not significantly affect the BGLU and TG in the fed state. The levels of both RER and BLA increased as the intensity of exercise increased from low to high (45, 65, and 85% VO2max), and more energy was converted from fat into glucose at a high intensity of exercise. In the fasted state of 6 h, the BGLU level increased parallel to the intensity of exercise. The RER was close to 1.0 at a high intensity of exercise, indicating that more energy was converted from glycogen. At the intensities of 45 and 65% VO2max, the RER and concentration of TG were both lower in the fasted than in the fed state, showing that a higher percentage of energy comes from fat than in the fed state at 45 and 65% VO2max. When running at 85% VO2max, the BGLU concentration was higher in the fasted than in the fed state, indicating that the liver tissues release more BGLU for energy in the fasted state. Therefore, in the fasted state, running at 45% and 65% of VO2max significantly affects lipid metabolism. On the contrary, the higher RER and BGLU concentrations when running at 85% VO2max revealed no significant difference between the two probes. This study suggests that medium- and low-intensity exercise (45 and 65% VO2max) in the fasted state enhances lipid metabolism.
Collapse
Affiliation(s)
- Ming-Yi Liu
- Department of Senior Welfare and Services, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang District, Tainan 710301, Taiwan
| | - Shung-Quan Chen
- Office of Student Affairs, Tainan City Siaying Elementary School, No. 72, Sect. 2, Jhongshan Rd., Siaying District, Tainan 73541, Taiwan
| |
Collapse
|
15
|
Zhang L, Liu Y, Sun Y, Zhang X. Combined Physical Exercise and Diet: Regulation of Gut Microbiota to Prevent and Treat of Metabolic Disease: A Review. Nutrients 2022; 14:nu14224774. [PMID: 36432462 PMCID: PMC9699229 DOI: 10.3390/nu14224774] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Unhealthy diet and sedentary lifestyle have contributed to the rising incidence of metabolic diseases, which is also accompanied by the shifts of gut microbiota architecture. The gut microbiota is a complicated and volatile ecosystem and can be regulated by diet and physical exercise. Extensive research suggests that diet alongside physical exercise interventions exert beneficial effects on metabolic diseases by regulating gut microbiota, involving in the changes of the energy metabolism, immune regulation, and the microbial-derived metabolites. OBJECTIVE In this review, we present the latest evidence in the modulating role of diet and physical exercise in the gut microbiota and its relevance to metabolic diseases. We also summarize the research from animal and human studies on improving metabolic diseases through diet-plus-exercise interventions, and new targeted therapies that might provide a better understanding of the potential mechanisms. METHODS A systematic and comprehensive literature search was performed in PubMed/Medline and Web of Science in October 2022. The key terms used in the searches included "combined physical exercise and diet", "physical exercise, diet and gut microbiota", "physical exercise, diet and metabolic diseases" and "physical exercise, diet, gut microbiota and metabolic diseases". CONCLUSIONS Combined physical exercise and diet offer a more efficient approach for preventing metabolic diseases via the modification of gut microbiota, abating the burden related to longevity.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Yuan Liu
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
- Correspondence:
| |
Collapse
|
16
|
Andersson-Hall U, Hossein Pour D, Grau S, Börjesson M, Holmäng A. Exercise, aerobic fitness, and muscle strength in relation to glucose tolerance 6 to 10 years after gestational diabetes. Diabetes Res Clin Pract 2022; 191:110078. [PMID: 36099975 DOI: 10.1016/j.diabres.2022.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
Abstract
AIMS We sought to identify self-reported exercise and objectively measured fitness variables associated with glucose tolerance and metabolic health 6-10 years after gestational diabetes (GDM) METHODS: Women (n = 84) underwent oral glucose tolerance testing (OGTT), body composition measurements, and lifestyle questionnaires 6 and 10 years after GDM. In a subset (n = 45), peak oxygen uptake (VO2peak), peak fat oxidation, and maximal isometric strength of five muscle groups were tested. RESULTS At 10 years, 41 women (49%) had impaired glucose metabolism or type 2 diabetes (T2D). VO2peak and muscle strength were lowest in the T2D group. In a regression analysis, VO2peak and all strength measurements were associated negatively with HbA1c and waist-hip ratio and positively with high-density lipoprotein cholesterol. However, only muscle strength was associated with fasting and area-under-the-curve glucose. For changes between the 6- and 10-year follow-ups, only muscle strength was associated with HbA1c change, whereas both VO2peak and strength were associated with high-density lipoprotein level and changes in waist-hip ratio. Peak fat oxidation and self-reported physical activity showed no or weak relationships with glycemic variables. CONCLUSION Objectively measured fitness variables, particularly muscle strength, were strongly associated with glycemic and other metabolic outcomes in a high-risk group after GDM.
Collapse
Affiliation(s)
- Ulrika Andersson-Hall
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Denise Hossein Pour
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Stefan Grau
- Centre for Health and Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Mats Börjesson
- Centre for Health and Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden; Department of Acute and Molecular Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of MGA, Sahlgrenska University Hospital, Region of Västra Götaland, Gothenburg, Sweden
| | - Agneta Holmäng
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
17
|
Blackwood SJ, Horwath O, Moberg M, Pontén M, Apró W, Ekblom MM, Larsen FJ, Katz A. Extreme Variations in Muscle Fiber Composition Enable Detection of Insulin Resistance and Excessive Insulin Secretion. J Clin Endocrinol Metab 2022; 107:e2729-e2737. [PMID: 35405014 DOI: 10.1210/clinem/dgac221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 12/16/2022]
Abstract
CONTEXT Muscle fiber composition is associated with peripheral insulin action. OBJECTIVE We investigated whether extreme differences in muscle fiber composition are associated with alterations in peripheral insulin action and secretion in young, healthy subjects who exhibit normal fasting glycemia and insulinemia. METHODS Relaxation time following a tetanic contraction was used to identify subjects with a high or low expression of type I muscle fibers: group 1 (n = 11), area occupied by type I muscle fibers = 61.0 ± 11.8%, and group 2 (n = 8), type I area = 36.0 ± 4.9% (P < 0.001). Biopsies were obtained from the vastus lateralis muscle and analyzed for mitochondrial respiration on permeabilized fibers, muscle fiber composition, and capillary density. An intravenous glucose tolerance test was performed and indices of glucose tolerance, insulin sensitivity, and secretion were determined. RESULTS Glucose tolerance was similar between groups, whereas whole-body insulin sensitivity was decreased by ~50% in group 2 vs group 1 (P = 0.019). First-phase insulin release (area under the insulin curve during 10 minutes after glucose infusion) was increased by almost 4-fold in group 2 vs group 1 (P = 0.01). Whole-body insulin sensitivity was correlated with percentage area occupied by type I fibers (r = 0.54; P = 0.018) and capillary density in muscle (r = 0.61; P = 0.005) but not with mitochondrial respiration. Insulin release was strongly related to percentage area occupied by type II fibers (r = 0.93; P < 0.001). CONCLUSIONS Assessment of muscle contractile function in young healthy subjects may prove useful in identifying individuals with insulin resistance and enhanced glucose-stimulated insulin secretion prior to onset of clinical manifestations.
Collapse
Affiliation(s)
- Sarah J Blackwood
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Oscar Horwath
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Marcus Moberg
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marjan Pontén
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Maria M Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Filip J Larsen
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Abram Katz
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
18
|
Zainudin SB, Salle DDA, Aziz AR. Walking Football During Ramadan Fasting for Cardiometabolic and Psychological Health Benefits to the Physically Challenged and Aged Populations. Front Nutr 2022; 8:779863. [PMID: 35087855 PMCID: PMC8786710 DOI: 10.3389/fnut.2021.779863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Concurrent exercise and intermittent fasting regimens for long periods have been shown to enhance cardiometabolic health in healthy individuals. As exercise and fasting confer health benefits independently, we propose that Muslims who are fasting, especially those experiencing health and clinical challenges, continually engage in physical activity during the Ramadan month. In this opinion piece, we recommend walking football (WF) as the exercise of choice among Muslims who are fasting. WF can be played by any individual regardless of the level of fitness, skills, and age. WF has been shown to elicit cardiovascular and metabolic stress responses, which are suitable for populations with low fitness levels. Most importantly, WF has the inherent characteristics of being a fun team activity requiring social interactions among participants and, hence, likely to encourage long-term consistent and sustainable participation.
Collapse
Affiliation(s)
- Sueziani Binte Zainudin
- Endocrinology Service, Department of General Medicine, Sengkang General Hospital, Singapore, Singapore
| | - Dee Dee A Salle
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Abdul Rashid Aziz
- Sport Science and Sport Medicine, Singapore Sport Institute, Sport Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Sotorník R, Suissa R, Ardilouze JL. Could Overt Diabetes Be Triggered by Abuse of Selective Androgen Receptor Modulators and Growth Hormone Secretagogues? A Case Report and Review of the Literature. Clin Diabetes 2022; 40:373-379. [PMID: 35983415 PMCID: PMC9331610 DOI: 10.2337/cd21-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Richard Sotorník
- Canadian Medical, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Jean-Luc Ardilouze
- Division of Endocrinology, University Hospital Center, Sherbrooke, Canada
| |
Collapse
|
20
|
Fasting and Exercise in Oncology: Potential Synergism of Combined Interventions. Nutrients 2021; 13:nu13103421. [PMID: 34684421 PMCID: PMC8537603 DOI: 10.3390/nu13103421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Nutrition and exercise interventions are strongly recommended for most cancer patients; however, much debate exists about the best prescription. Combining fasting with exercise is relatively untouched within the oncology setting. Separately, fasting has demonstrated reductions in chemotherapy-related side effects and improved treatment tolerability and effectiveness. Emerging evidence suggests fasting may have a protective effect on healthy cells allowing chemotherapy to exclusively target cancer cells. Exercise is commonly recommended and attenuates treatment- and cancer-related adverse changes to body composition, quality of life, and physical function. Given their independent benefits, in combination, fasting and exercise may induce synergistic effects and further improve cancer-related outcomes. In this narrative review, we provide a critical appraisal of the current evidence of fasting and exercise as independent interventions in the cancer population and discuss the potential benefits and mechanisms of combined fasting and exercise on cardiometabolic, body composition, patient-reported outcomes, and cancer-related outcomes. Our findings suggest that within the non-cancer population combined fasting and exercise is a viable strategy to improve health-related outcomes, however, its safety and efficacy in the oncology setting remain unknown. Therefore, we also provide a discussion on potential safety issues and considerations for future research in the growing cancer population.
Collapse
|
21
|
Effects of Feeding Time on Markers of Muscle Metabolic Flexibility Following Acute Aerobic Exercise in Trained Mice Undergoing Time Restricted Feeding. Nutrients 2021; 13:nu13051717. [PMID: 34069449 PMCID: PMC8159095 DOI: 10.3390/nu13051717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Time-restricted feeding (TRF) is becoming a popular way of eating in physically active populations, despite a lack of research on metabolic and performance outcomes as they relate to the timing of food consumption in relation to the time of exercise. The purpose of this study was to determine if the timing of feeding/fasting after exercise training differently affects muscle metabolic flexibility and response to an acute bout of exercise. Male C57BL/6 mice were randomized to one of three groups for 8 weeks. The control had ad libitum access to food before and after exercise training. TRF-immediate had immediate access to food for 6 h following exercise training and the TRF-delayed group had access to food 5-h post exercise for 6 h. The timing of fasting did not impact performance in a run to fatigue despite TRF groups having lower hindlimb muscle mass. TRF-delayed had lower levels of muscle HSL mRNA expression and lower levels of PGC-1α expression but displayed no changes in electron transport chain enzymes. These results suggest that in young populations consuming a healthy diet and exercising, the timing of fasting may not substantially impact metabolic flexibility and running performance.
Collapse
|
22
|
Boshuizen B, Moreno de Vega CV, De Maré L, de Meeûs C, de Oliveira JE, Hosotani G, Gansemans Y, Deforce D, Van Nieuwerburgh F, Delesalle C. Effects of Aleurone Supplementation on Glucose-Insulin Metabolism and Gut Microbiome in Untrained Healthy Horses. Front Vet Sci 2021; 8:642809. [PMID: 33912605 PMCID: PMC8072273 DOI: 10.3389/fvets.2021.642809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 11/30/2022] Open
Abstract
Aleurone, a layer of the bran fraction, is deemed to be responsible for the positive health effects associated with the consumption of whole-grain products. Studies on rodents, pigs, and humans report beneficial effects of aleurone in five main areas: the reduction of oxidative stress, immunomodulatory effects, modulation of energy management, digestive health, and the storage of vitamins and minerals. Our study is the first aleurone supplementation study performed in horses. The aim of this study was to investigate the effect of an increase in the dose levels of aleurone on the postprandial glucose-insulin metabolism and the gut microbiome in untrained healthy horses. Seven adult Standardbred horses were supplemented with four different dose levels of aleurone (50, 100, 200, and 400 g/day for 1 week) by using a Latin square model with a 1-week wash out in between doses. On day 7 of each supplementation week, postprandial blood glucose-insulin was measured and fecal samples were collected. 16S ribosomal RNA (rRNA) gene sequencing was performed and QIIME2 software was used for microbiome analysis. Microbial community function was assessed by using the predictive metagenome analysis tool Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) and using the Metacyc database of metabolic pathways. The relative abundancies of a pathway were analyzed by using analysis of composition of microbiomes (ANCOM) in R. There was a significant dose-dependent increase in the postprandial time to peak of glucose (p = 0.030), a significant delay in the time to peak of insulin (p = 0.025), and a significant decrease in both the insulin peak level (p = 0.049) and insulin area under the curve (AUC) (p = 0.019) with increasing dose levels of aleurone, with a consideration of 200 g being the lowest significant dose. Alpha diversity and beta diversity of the fecal microbiome showed no significant changes. Aleurone significantly decreased the relative abundance of the genera Roseburia, Shuttleworthia, Anaerostipes, Faecalibacter, and Succinovibrionaceae. The most pronounced changes in the relative abundance at phyla level were seen in Firmicutes and Verrucomicrobia (downregulation) and Bacteroidetes and Spirochaetes (upregulation). The PICRUSt analysis shows that aleurone induces a downregulation of the degradation of L-glutamate and taurine and an upregulation of the three consecutive pathways of the phospholipid membrane synthesis of the Archaea domain. The results of this study suggest a multimodal effect of aleurone on glucose-insulin metabolism, which is most likely to be caused by its effect on feed texture and subsequent digestive processing; and a synergistic effect of individual aleurone components on the glucose-insulin metabolism and microbiome composition and function.
Collapse
Affiliation(s)
- Berit Boshuizen
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Carmen Vidal Moreno de Vega
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lorie De Maré
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Small Animals and Horses, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Constance de Meeûs
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Catherine Delesalle
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
23
|
McGaugh SM, Zaharieva DP, Pooni R, D'Souza NC, Vienneau T, Ly TT, Riddell MC. Carbohydrate Requirements for Prolonged, Fasted Exercise With and Without Basal Rate Reductions in Adults With Type 1 Diabetes on Continuous Subcutaneous Insulin Infusion. Diabetes Care 2021; 44:610-613. [PMID: 33328284 PMCID: PMC7818338 DOI: 10.2337/dc20-1554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/16/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Exercising while fasted with type 1 diabetes facilitates weight loss; however, the best strategy to maintain glucose stability remains unclear. RESEARCH DESIGN AND METHODS Fifteen adults on continuous subcutaneous insulin infusion completed three sessions of fasted walking (120 min at 45% VO2max) in a randomized crossover design: 50% basal rate reduction, set 90 min pre-exercise (-90min50%BRR); usual basal rate with carbohydrate intake of 0.3 g/kg/h (CHO-only); and combined 50% basal rate reduction set at exercise onset with carbohydrate intake of 0.3 g/kg/h (Combo). RESULTS Combo had a smaller change in glucose (5 ± 47 mg/dL) versus CHO-only (-49 ± 61 mg/dL, P = 0.03) or -90min50%BRR (-34 ± 45 mg/dL). The -90min50%BRR strategy produced higher β-hydroxybutyrate levels (0.4 ± 0.3 vs. 0.1 ± 0.1 mmol/L) and greater fat oxidation (0.51 ± 0.2 vs. 0.39 ± 0.1 g/min) than CHO-only (both P < 0.05). CONCLUSIONS All strategies examined produced stable glycemia for fasted exercise, but a 50% basal rate reduction, set 90 min pre-exercise, eliminates carbohydrate needs and enhances fat oxidation better than carbohydrate feeding with or without a basal rate reduction set at exercise onset.
Collapse
Affiliation(s)
- Sarah M McGaugh
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Dessi P Zaharieva
- Department of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, CA
| | - Rubin Pooni
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Ninoschka C D'Souza
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Todd Vienneau
- Insulet Canada Corporation, Oakville, Ontario, Canada
| | | | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada .,LMC Diabetes & Endocrinology, Toronto, Ontario, Canada
| |
Collapse
|
24
|
The Regulation of Fat Metabolism During Aerobic Exercise. Biomolecules 2020; 10:biom10121699. [PMID: 33371437 PMCID: PMC7767423 DOI: 10.3390/biom10121699] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Since the lipid profile is altered by physical activity, the study of lipid metabolism is a remarkable element in understanding if and how physical activity affects the health of both professional athletes and sedentary subjects. Although not fully defined, it has become clear that resistance exercise uses fat as an energy source. The fatty acid oxidation rate is the result of the following processes: (a) triglycerides lipolysis, most abundant in fat adipocytes and intramuscular triacylglycerol (IMTG) stores, (b) fatty acid transport from blood plasma to muscle sarcoplasm, (c) availability and hydrolysis rate of intramuscular triglycerides, and (d) transport of fatty acids through the mitochondrial membrane. In this review, we report some studies concerning the relationship between exercise and the aforementioned processes also in light of hormonal controls and molecular regulations within fat and skeletal muscle cells.
Collapse
|
25
|
Laurens C, de Glisezinski I, Larrouy D, Harant I, Moro C. Influence of Acute and Chronic Exercise on Abdominal Fat Lipolysis: An Update. Front Physiol 2020; 11:575363. [PMID: 33364972 PMCID: PMC7750473 DOI: 10.3389/fphys.2020.575363] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Exercise is a powerful and effective preventive measure against chronic diseases by increasing energy expenditure and substrate mobilization. Long-duration acute exercise favors lipid mobilization from adipose tissue, i.e., lipolysis, as well as lipid oxidation by skeletal muscles, while chronic endurance exercise improves body composition, facilitates diet-induced weight loss and long-term weight maintenance. Several hormones and factors have been shown to stimulate lipolysis in vitro in isolated adipocytes. Our current knowledge supports the view that catecholamines, atrial natriuretic peptide and insulin are the main physiological stimuli of exercise-induced lipolysis in humans. Emerging evidences indicate that contracting skeletal muscle can release substances capable of remote signaling to organs during exercise. This fascinating crosstalk between skeletal muscle and adipose tissue during exercise is currently challenging our classical view of the physiological control of lipolysis, and provides a conceptual framework to better understand the pleotropic benefits of exercise at the whole-body level.
Collapse
Affiliation(s)
- Claire Laurens
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Obesity Research Laboratory, Toulouse, France.,Paul Sabatier University, Toulouse, France
| | - Isabelle de Glisezinski
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Obesity Research Laboratory, Toulouse, France.,Paul Sabatier University, Toulouse, France.,Department of Physiological Functional Explorations, Rangueil University Hospital, Toulouse, France
| | - Dominique Larrouy
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Obesity Research Laboratory, Toulouse, France.,Paul Sabatier University, Toulouse, France
| | - Isabelle Harant
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Obesity Research Laboratory, Toulouse, France.,Paul Sabatier University, Toulouse, France
| | - Cedric Moro
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Obesity Research Laboratory, Toulouse, France.,Paul Sabatier University, Toulouse, France
| |
Collapse
|
26
|
Bogdanet D, O’Shea P, Lyons C, Shafat A, Dunne F. The Oral Glucose Tolerance Test-Is It Time for a Change?-A Literature Review with an Emphasis on Pregnancy. J Clin Med 2020; 9:E3451. [PMID: 33121014 PMCID: PMC7693369 DOI: 10.3390/jcm9113451] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Globally, gestational diabetes (GDM) is increasing at an alarming rate. This increase is linked to the rise in obesity rates among women of reproductive age. GDM poses a major global health problem due to the related micro- and macro-vascular complications of subsequent Type 2 diabetes and the impact on the future health of generations through the long-term impact of GDM on both mothers and their infants. Therefore, correctly identifying subjects as having GDM is of utmost importance. The oral glucose tolerance test (OGTT) has been the mainstay for diagnosing gestational diabetes for decades. However, this test is deeply flawed. In this review, we explore a history of the OGTT, its reproducibility and the many factors that can impact its results with an emphasis on pregnancy.
Collapse
Affiliation(s)
- Delia Bogdanet
- Department of Medicine, School of Medicine, National University of Ireland Galway, H91TK33 Galway, Ireland; (P.O.); (A.S.); (F.D.)
- Department of Diabetes and Endocrinology, Saolta University Health Care Group (SUHCG), University Hospital Galway, H91YR71 Galway, Ireland
| | - Paula O’Shea
- Department of Medicine, School of Medicine, National University of Ireland Galway, H91TK33 Galway, Ireland; (P.O.); (A.S.); (F.D.)
- Department of Clinical Biochemistry, SUHCG, University Hospital Galway, H91YR71 Galway, Ireland;
| | - Claire Lyons
- Department of Clinical Biochemistry, SUHCG, University Hospital Galway, H91YR71 Galway, Ireland;
| | - Amir Shafat
- Department of Medicine, School of Medicine, National University of Ireland Galway, H91TK33 Galway, Ireland; (P.O.); (A.S.); (F.D.)
| | - Fidelma Dunne
- Department of Medicine, School of Medicine, National University of Ireland Galway, H91TK33 Galway, Ireland; (P.O.); (A.S.); (F.D.)
- Department of Diabetes and Endocrinology, Saolta University Health Care Group (SUHCG), University Hospital Galway, H91YR71 Galway, Ireland
| |
Collapse
|
27
|
Does Exercise Timing Affect 24-Hour Glucose Concentrations in Adults With Type 2 Diabetes? A Follow Up to the Exercise-Physical Activity and Diabetes Glucose Monitoring Study. Can J Diabetes 2020; 44:711-718.e1. [PMID: 32878737 DOI: 10.1016/j.jcjd.2020.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVES It is well known that exercise can improve the glycemic profile in individuals with type 2 diabetes (T2D). However, the optimal timing of exercise is often debated. Our aim in this study was to compare the effects of exercise performed at different times of the day and different timing in relation to meals on 24-hour glucose profiles in people with T2D. METHODS Fourteen individuals with T2D were recruited and wore continuous glucose monitors for 12 days. During the 12 days, participants completed 4 conditions according to a randomized, crossover design: i) morning (fasting) exercise (MorEx), ii) afternoon exercise (AftEx), iii) evening exercise (EveEx) and iv) seated control. Exercise consisted of 50 minutes of walking at 5.0 km/h. RESULTS Eight men and 6 women (age, 65±9.0 years; T2D duration, 10.5±6.8 years; mean glycated hemoglobin, 6.7±0.6%) were included in the analysis. Mean 24-hour continuously monitored glucose was 7.4±0.7 mmol/L, 7.3±0.7 mmol/L, 7.5±0.8 mmol/L and 7.5±0.7 mmol/L in the MorEx, AftEx, EveEx and control conditions, respectively, with no significant differences among the 4 conditions (p=0.55). MorEx had a lower respiratory exchange ratio compared with AftEx and EveEx (p<0.01). The decrease in glucose during exercise was less pronounced for MorEx compared with AftEx (p<0.05). CONCLUSIONS Fifty minutes of walking at 3 different times of day and at different timing in relation to meals did not lower 24-hour glucose concentrations in people with T2D. The reasons why exercise was not effective at lowering glucose remain unclear.
Collapse
|
28
|
Muscella A, Stefàno E, Marsigliante S. The effects of exercise training on lipid metabolism and coronary heart disease. Am J Physiol Heart Circ Physiol 2020; 319:H76-H88. [PMID: 32442027 DOI: 10.1152/ajpheart.00708.2019] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Blood lipoproteins are formed by various amounts of cholesterol (C), triglycerides (TGs), phospholipids, and apolipoproteins (Apos). ApoA1 is the major structural protein of high-density lipoprotein (HDL), accounting for ~70% of HDL protein, and mediates many of the antiatherogenic functions of HDL. Conversely, ApoB is the predominant low-density lipoprotein (LDL) Apo and is an indicator of circulating LDL, associated with higher coronary heart disease (CHD) risk. Thus, the ratio of ApoB to ApoA1 (ApoB/ApoA1) is used as a surrogate marker of the risk of CHD related to lipoproteins. Elevated or abnormal levels of lipids and/or lipoproteins in the blood are a significant CHD risk factor, and several studies support the idea that aerobic exercise decreases CHD risk by partially lowering serum TG and LDL-cholesterol (LDL-C) levels and increasing HDL-C levels. Exercise also exerts an effect on HDL-C maturation and composition and on reverse C transport from peripheral cells to the liver to favor its catabolism and excretion. This process prevents atherosclerosis, and several studies showed that exercise training increases heart lipid metabolism and protects against cardiovascular disease. In these and other ways, it more and more appears that regular exercise, nutrition, and strategies to modulate lipid profile should be viewed as an integrated whole. The purpose of this review is to assess the effects of endurance training on the nontraditional lipid biomarkers, including ApoB, ApoA1, and ApoB/ApoA1, in CHD risk.
Collapse
Affiliation(s)
- Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | - Erika Stefàno
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | - Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| |
Collapse
|
29
|
Effects of Exercise on Blood Glucose and Glycemic Variability in Type 2 Diabetic Patients with Dawn Phenomenon. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6408724. [PMID: 32149118 PMCID: PMC7057022 DOI: 10.1155/2020/6408724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 01/04/2023]
Abstract
Background The dawn phenomenon (DP) is the primary cause of difficulty in blood glucose management in type 2 diabetic (T2D) patients, and the use of oral hypoglycemic agents has shown weak efficacy in controlling DP. Thus, this study is aimed at investigating the effect of moderate-intensity aerobic exercise before breakfast on the blood glucose level and glycemic variability in T2D patients with DP. Methods A total of 20 T2D patients with DP confirmed via continuous glucose monitoring (CGM) participated in the current study. After collecting baseline measurements by CGM as a control, CGM was reinstalled and 30 minutes of moderate-intensity aerobic exercise was performed prior to breakfast. Dawn blood glucose increase, blood glucose levels, and glycemic variability were measured before and after exercise. Results Dawn blood glucose increase (ΔGlu, 1.25 ± 0.84vs.2.15 ± 1.07, P = 0.005), highest blood glucose value before breakfast (Gmax, 8.01 ± 1.16vs. 8.78 ± 1.09, P = 0.005), highest blood glucose value before breakfast (Gmax, 8.01 ± 1.16vs. 8.78 ± 1.09, P = 0.005), highest blood glucose value before breakfast (Gmax, 8.01 ± 1.16vs. 8.78 ± 1.09, P = 0.005), highest blood glucose value before breakfast (Gmax, 8.01 ± 1.16vs. 8.78 ± 1.09, P = 0.005), highest blood glucose value before breakfast (Gmax, 8.01 ± 1.16vs.2.15 ± 1.07, P = 0.005), highest blood glucose value before breakfast (Gmax, 8.01 ± 1.16vs.2.15 ± 1.07, P = 0.005), highest blood glucose value before breakfast (Gmax, 8.01 ± 1.16vs.2.15 ± 1.07, P = 0.005), highest blood glucose value before breakfast (Gmax, 8.01 ± 1.16 Conclusions Acute moderate-intensity aerobic exercise before breakfast reduced the morning rise of blood glucose in T2D patients, partially counteracting DP. Furthermore, exercise significantly reduced blood glucose fluctuations and improved blood glucose control throughout the day. We recommend that T2D patients with DP take moderate-intensity aerobic exercise before breakfast to improve DP and glycemic control.
Collapse
|
30
|
Saghebjoo M, Kargar-Akbariyeh N, Mohammadnia-Ahmadi M, Saffari I. How to exercise to increase lipolysis and insulin sensitivity: Fasting or following a single high-protein breakfast. J Sports Med Phys Fitness 2020; 60:625-633. [PMID: 32043347 DOI: 10.23736/s0022-4707.20.10403-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the lipolysis response and insulin sensitivity to high-intensity interval exercise (HIIE) upon fasting (HIIEFAST) and following the intake of a high-protein breakfast (HIIEHPFED). METHODS Overweight men participated in two sessions of HIIE after an overnight fast and post-HPFED with an interval of one week. Metabolic biomarkers were assessed before, immediately after, and 3h postexercise. To evaluate the metabolic effects of HIIE, two-way repeated-measures ANOVA was used. RESULTS Glycerol levels increased immediately after HIIEFAST and HIIEHPFED (P=0.0001) and decreased 3h after exercise in both states (P=0.001). There were no significant changes in free fatty acid (FFA) levels immediately after exercise, but a significant increase was observed 3h after exercise compared to the baseline and immediately after exercise in HIIEFAST and HIIEHPFED (P=0.0001). Insulin sensitivity was increased for 3h after HIIEHPFED compared to the baseline and immediately after exercise (P=0.04). CONCLUSIONS These findings suggest that fasting during exercise is not necessary for the greater stimulation of lipolysis and an increase in insulin sensitivity and that exercise following a high-protein breakfast can have a similar effect in overweight young men.
Collapse
Affiliation(s)
- Marziyeh Saghebjoo
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran -
| | - Nasrin Kargar-Akbariyeh
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | | | - Iman Saffari
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| |
Collapse
|
31
|
VERBOVEN KENNETH, WENS INEZ, VANDENABEELE FRANK, STEVENS AN, CELIE BERT, LAPAUW BRUNO, DENDALE PAUL, VAN LOON LUCJC, CALDERS PATRICK, HANSEN DOMINIQUE. Impact of Exercise–Nutritional State Interactions in Patients with Type 2 Diabetes. Med Sci Sports Exerc 2019; 52:720-728. [DOI: 10.1249/mss.0000000000002165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Brinkmann C, Weh‐Gray O, Brixius K, Bloch W, Predel HG, Kreutz T. Effects of exercising before breakfast on the health of T2DM patients—A randomized controlled trial. Scand J Med Sci Sports 2019; 29:1930-1936. [DOI: 10.1111/sms.13543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Christian Brinkmann
- IST University of Applied Sciences Düsseldorf Germany
- Institute of Cardiovascular Research and Sport Medicine Department of Preventive and Rehabilitative Sport Medicine German Sport University Cologne Cologne Germany
| | - Olivier Weh‐Gray
- Institute of Cardiovascular Research and Sport Medicine Department of Molecular and Cellular Sport Medicine German Sport University Cologne Cologne Germany
| | - Klara Brixius
- Institute of Cardiovascular Research and Sport Medicine Department of Molecular and Cellular Sport Medicine German Sport University Cologne Cologne Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine Department of Molecular and Cellular Sport Medicine German Sport University Cologne Cologne Germany
| | - Hans-Georg Predel
- Institute of Cardiovascular Research and Sport Medicine Department of Preventive and Rehabilitative Sport Medicine German Sport University Cologne Cologne Germany
| | | |
Collapse
|
33
|
Hamer JA, Testani D, Mansur RB, Lee Y, Subramaniapillai M, McIntyre RS. Brain insulin resistance: A treatment target for cognitive impairment and anhedonia in depression. Exp Neurol 2019; 315:1-8. [DOI: 10.1016/j.expneurol.2019.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
|
34
|
Abstract
The objective of this review paper is to evaluate the impact of undertaking aerobic exercise in the overnight-fasted v. fed-state, in the context of optimising the health benefits of regular physical activity. Conducting a single bout of aerobic exercise in the overnight-fasted v. fed-state can differentially modulate the aspects of metabolism and energy balance behaviours. This includes, but is not limited to, increased utilisation of fat as a fuel source, improved plasma lipid profiles, enhanced activation of molecular signalling pathways related to fuel metabolism in skeletal muscle and adipose tissue, and reductions in energy intake over the course of a day. The impact of a single bout of overnight-fasted v. fed-state exercise on short-term glycaemic control is variable, being affected by the experimental conditions, the time frame of measurement and possibly the subject population studied. The health response to undertaking overnight-fasted v. fed-state exercise for a sustained period of time in the form of exercise training is less clear, due to a limited number of studies. From the extant literature, there is evidence that overnight-fasted exercise in young, healthy men can enhance training-induced adaptations in skeletal muscle metabolic profile, and mitigate against the negative consequences of short-term excess energy intake on glucose tolerance compared with exercising in the fed-state. Nonetheless, further long-term studies are required, particularly in populations at-risk or living with cardio-metabolic disease to elucidate if feeding status prior to exercise modulates metabolism or energy balance behaviours to an extent that could impact upon the health or therapeutic benefits of exercise.
Collapse
Affiliation(s)
- Gareth A Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
35
|
Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells. Int J Mol Sci 2019; 20:ijms20030479. [PMID: 30678043 PMCID: PMC6387241 DOI: 10.3390/ijms20030479] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin-resistance is a characteristic feature of type 2 diabetes (T2D) and plays a major role in the pathogenesis of this disease. Skeletal muscles are quantitatively the biggest glucose users in response to insulin and are considered as main targets in development of insulin-resistance. It is now clear that circulating fatty acids (FA), which are highly increased in T2D, play a major role in the development of muscle insulin-resistance. In healthy individuals, excess FA are stored as lipid droplets in adipocytes. In situations like obesity and T2D, FA from lipolysis and food are in excess and eventually accumulate in peripheral tissues. High plasma concentrations of FA are generally associated with increased risk of developing diabetes. Indeed, ectopic fat accumulation is associated with insulin-resistance; this is called lipotoxicity. However, FA themselves are not involved in insulin-resistance, but rather some of their metabolic derivatives, such as ceramides. Ceramides, which are synthetized de novo from saturated FA like palmitate, have been demonstrated to play a critical role in the deterioration of insulin sensitivity in muscle cells. This review describes the latest progress involving ceramides as major players in the development of muscle insulin-resistance through the targeting of selective actors of the insulin signaling pathway.
Collapse
|
36
|
Mi J, He W, Lv J, Zhuang K, Huang H, Quan S. Effect of berberine on the HPA-axis pathway and skeletal muscle GLUT4 in type 2 diabetes mellitus rats. Diabetes Metab Syndr Obes 2019; 12:1717-1725. [PMID: 31564939 PMCID: PMC6731988 DOI: 10.2147/dmso.s211188] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Activation of the hypothalamus-pituitary-adrenal (HPA) axis pathway is closely related to insulin resistance (IR), glucose, and lipid metabolism disorders in type 2 diabetes mellitus (T2DM). Berberine (BBR) has effect on regulating disorder of glucose and lipid metabolism in T2DM. In fact, activation of the HPA axis pathway is closely related to IR, glucose, and lipid metabolism disorders in T2DM. Here, we investigated whether the therapeutic effect of BBR on T2DM rats is acted through the HPA axis pathway. METHODS In this research, we investigated the effects of BBR on the HPA-axis pathway-related indicators and expression of skeletal muscle glucose transporter 4 (GLUT4) in the high-fat diet and streptozotocin-induced T2DM rats, and identify its possible mechanism of improving IR in T2DM. RESULTS BBR significantly reduced fasting blood glucose, total cholesterol, and low-density lipoprotein cholesterol in model rats. It also improved the abnormalities of the high-density lipoprotein cholesterol, the insulin resistance index, the insulin sensitivity index, glucagon, and insulin levels. BBR decreased levels of hypothalamic Orexin-A, the OX2R receptor, the corticotropin-releasing hormone, the pituitary and the plasma adrenocorticotropic hormone, as well as serum and urine corticosterone. At the same time, BBR increased mRNA and protein expressions of GLUT4 in skeletal muscles of model rats as well. CONCLUSION Those results suggested that BBR can exert inhibition on the HPA-axis and increased skeletal muscle expression of GLUT4 proteins, which may be one of the important mechanisms in BBR to improve IR and regulating glucose and lipid metabolism in T2DM rats.
Collapse
Affiliation(s)
- Jia Mi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Wenda He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jiawei Lv
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Kai Zhuang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Heqing Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Correspondence: Heqing Huang; Shijian QuanDepartment of School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 East Wai Huan Road, Guangzhou510006, People’s Republic of ChinaTel +86 1 392 211 9719Email ;
| | - Shijian Quan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
37
|
Multifaceted Interweaving Between Extracellular Matrix, Insulin Resistance, and Skeletal Muscle. Cells 2018; 7:cells7100148. [PMID: 30249008 PMCID: PMC6211053 DOI: 10.3390/cells7100148] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
The skeletal muscle provides movement and support to the skeleton, controls body temperature, and regulates the glucose level within the body. This is the core tissue of insulin-mediated glucose uptake via glucose transporter type 4 (GLUT4). The extracellular matrix (ECM) provides integrity and biochemical signals and plays an important role in myogenesis. In addition, it undergoes remodeling upon injury and/or repair, which is also related to insulin resistance (IR), a major cause of type 2 diabetes (T2DM). Altered signaling of integrin and ECM remodeling in diet-induced obesity is associated with IR. This review highlights the interweaving relationship between the ECM, IR, and skeletal muscle. In addition, the importance of the ECM in muscle integrity as well as cellular functions is explored. IR and skeletal muscle ECM remodeling has been discussed in clinical and nonclinical aspects. Furthermore, this review considers the role of ECM glycation and its effects on skeletal muscle homeostasis, concentrating on advanced glycation end products (AGEs) as an important risk factor for the development of IR. Understanding this complex interplay between the ECM, muscle, and IR may improve knowledge and help develop new ideas for novel therapeutics for several IR-associated myopathies and diabetes.
Collapse
|
38
|
Une nouvelle tendance en nutrition sportive, la périodisation nutritionnelle. ACTUALITES PHARMACEUTIQUES 2018. [DOI: 10.1016/j.actpha.2018.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Francois ME, Gillen JB, Little JP. Carbohydrate-Restriction with High-Intensity Interval Training: An Optimal Combination for Treating Metabolic Diseases? Front Nutr 2017; 4:49. [PMID: 29075629 PMCID: PMC5643422 DOI: 10.3389/fnut.2017.00049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
Lifestyle interventions incorporating both diet and exercise strategies remain cornerstone therapies for treating metabolic disease. Carbohydrate-restriction and high-intensity interval training (HIIT) have independently been shown to improve cardiovascular and metabolic health. Carbohydrate-restriction reduces postprandial hyperglycemia, thereby limiting potential deleterious metabolic and cardiovascular consequences of excessive glucose excursions. Additionally, carbohydrate-restriction has been shown to improve body composition and blood lipids. The benefits of exercise for improving insulin sensitivity are well known. In this regard, HIIT has been shown to rapidly improve glucose control, endothelial function, and cardiorespiratory fitness. Here, we report the available evidence for each strategy and speculate that the combination of carbohydrate-restriction and HIIT will synergistically maximize the benefits of both approaches. We hypothesize that this lifestyle strategy represents an optimal intervention to treat metabolic disease; however, further research is warranted in order to harness the potential benefits of carbohydrate-restriction and HIIT for improving cardiometabolic health.
Collapse
|