1
|
Mehdizadeh S, Mamaghani M, Hassanikia S, Pilehvar Y, Ertas YN. Exosome-powered neuropharmaceutics: unlocking the blood-brain barrier for next-gen therapies. J Nanobiotechnology 2025; 23:329. [PMID: 40319325 PMCID: PMC12049023 DOI: 10.1186/s12951-025-03352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) presents a formidable challenge in neuropharmacology, limiting the delivery of therapeutic agents to the brain. Exosomes, nature's nanocarriers, have emerged as a promising solution due to their biocompatibility, low immunogenicity, and innate ability to traverse the BBB. A thorough examination of BBB anatomy and physiology reveals the complexities of neurological drug delivery and underscores the limitations of conventional methods. MAIN BODY This review explores the potential of exosome-powered neuropharmaceutics, highlighting their structural and functional properties, biogenesis, and mechanisms of release. Their intrinsic advantages in drug delivery, including enhanced stability and efficient cellular uptake, are discussed in detail. Exosomes naturally overcome BBB barriers through specific translocation mechanisms, making them a compelling vehicle for targeted brain therapies. Advances in engineering strategies, such as genetic and biochemical modifications, drug loading techniques, and specificity enhancement, further bolster their therapeutic potential. Exosome-based approaches hold immense promise for treating a spectrum of neurological disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), brain tumors, stroke, and psychiatric conditions. CONCLUSION By leveraging their innate properties and engineering innovations, exosomes offer a versatile platform for precision neurotherapeutics. Despite their promise, challenges remain in clinical translation, including large-scale production, standardization, and regulatory considerations. Future research directions in exosome nanobiotechnology aim to refine these therapeutic strategies, unlocking new avenues for treating neurological diseases. This review underscores the transformative impact of exosome-based drug delivery, paving the way for next-generation therapies that can effectively penetrate the BBB and revolutionize neuropharmacology.
Collapse
Affiliation(s)
- Sepehr Mehdizadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mobin Mamaghani
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| |
Collapse
|
2
|
Luo Q, Yang J, Yang M, Wang Y, Liu Y, Liu J, Kalvakolanu DV, Cong X, Zhang J, Zhang L, Guo B, Duo Y. Utilization of nanotechnology to surmount the blood-brain barrier in disorders of the central nervous system. Mater Today Bio 2025; 31:101457. [PMID: 39896289 PMCID: PMC11786670 DOI: 10.1016/j.mtbio.2025.101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/27/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Central nervous system (CNS) diseases are a major cause of disability and death worldwide. Due to the blood-brain barrier (BBB), drug delivery for CNS diseases is extremely challenging. Nano-delivery systems can overcome the limitations of BBB to deliver drugs to the CNS, improve the ability of drugs to target the brain and provide potential therapeutic methods for CNS diseases. At the same time, the choice of different drug delivery methods (bypassing BBB or crossing BBB) can further optimize the therapeutic effect of the nano-drug delivery system. This article reviews the different methods of nano-delivery systems to overcome the way BBB enters the brain. Different kinds of nanoparticles to overcome BBB were discussed in depth.
Collapse
Affiliation(s)
- Qian Luo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiaying Yang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mei Yang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yingtong Wang
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yiran Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Jixuan Liu
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Dhan V. Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, MD, USA
| | - Xianling Cong
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Jinnan Zhang
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Yanhong Duo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
3
|
Bai L, Yu L, Ran M, Zhong X, Sun M, Xu M, Wang Y, Yan X, Lee RJ, Tang Y, Xie J. Harnessing the Potential of Exosomes in Therapeutic Interventions for Brain Disorders. Int J Mol Sci 2025; 26:2491. [PMID: 40141135 PMCID: PMC11942545 DOI: 10.3390/ijms26062491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Exosomes, which are nano-sized natural vesicles secreted by cells, are crucial for intercellular communication and interactions, playing a significant role in various physiological and pathological processes. Their characteristics, such as low toxicity and immunogenicity, high biocompatibility, and remarkable drug delivery capabilities-particularly their capacity to traverse the blood-brain barrier-make exosomes highly promising vehicles for drug administration in the treatment of brain disorders. This review provides a comprehensive overview of exosome biogenesis and isolation techniques, strategies for the drug loading and functionalization of exosomes, and exosome-mediated blood-brain barrier penetration mechanisms, with a particular emphasis on recent advances in exosome-based drug delivery for brain disorders. Finally, we address the opportunities and challenges associated with utilizing exosomes as a drug delivery system for the brain, summarizing the barriers to clinical translation and proposing future research directions.
Collapse
Affiliation(s)
- Lu Bai
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Leijie Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Mengqiong Ran
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Xing Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Meng Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Minhao Xu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Yu Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Xinlei Yan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Robert J. Lee
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Yaqin Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| |
Collapse
|
4
|
Zhao M, Li Q, Chai Y, Rong R, He L, Zhang Y, Cui H, Xu H, Zhang X, Wang Z, Yuan S, Chen M, He C, Zhang H, Qin L, Hu R, Zhang X, Zhuang W, Li B. An anti-CD19-exosome delivery system navigates the blood-brain barrier for targeting of central nervous system lymphoma. J Nanobiotechnology 2025; 23:173. [PMID: 40045315 PMCID: PMC11881385 DOI: 10.1186/s12951-025-03238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND High-dose methotrexate (HD-MTX) serves as the cornerstone of central nervous system lymphoma (CNSL) treatment, but its efficacy is limited due to low blood-brain barrier (BBB) penetration and adverse effects. This study is focused on an exosome-based drug delivery approach aimed at enhancing BBB permeability, thereby reducing the required dosage of methotrexate (MTX) while ensuring specific targeting of CNSL. METHODS Human adipose-derived mesenchymal stem cells (hAMSCs) were modified with a lentiviral vector encoding anti-CD19, incorporated into exosomes characterized by colloidal gold immunoelectron microscopy and Nano flow cytometry. MTX loaded into anti-CD19-Exos via co-incubation, assessed for loading and encapsulation efficiencies using HPLC. In vitro BBB model constructed using hCMEC/D3 and astrocytes to investigate BBB permeability. In vivo efficacy of anti-CD19-Exo-MTX evaluated in intracranial CNSL models using MRI. Biodistribution tracked with DiR-labeled exosomes, drug concentration in CSF measured by HPLC. LC-MS/MS identified and characterized exosomal proteins analyzed using GO Analysis. Neuroprotective effects of exosomal proteins assessed with TUNEL and Nissl staining on hippocampal neurons in CNSL models. Liver and kidney pathology, blood biochemical markers, and complete blood count evaluated exosomal protein effects on organ protection and MTX-induced myelosuppression. RESULTS We generated anti-CD19-Exo derived from hAMSCs. These adapted exosomes effectively encapsulated MTX, enhancing drug accessibility within lymphoma cells and sustained intracellular accumulation over an extended period. Notably, anti-CD19-Exo-MTX interacted with cerebrovascular endothelial cells and astrocytes of the BBB, leading to endocytosis and facilitating the transportation of MTX across the barrier. Anti-CD19-Exo-MTX outperformed free MTX in vitro, exhibiting a more potent lymphoma-suppressive effect (P < 0.05). In intracranial orthotopic CNSL models, anti-CD19-Exo-MTX exhibited a significantly reduced disease burden compared to both the MTX and Exo-MTX groups, along with prolonged overall survival (P < 0.05). CSF drug concentration analysis demonstrated enhanced stability and longer-lasting drug levels for anti-CD19-Exo-MTX. Anti-CD19-Exo-MTX exhibited precise CNSL targeting with no organ toxicity. Notably, our study highlighted the functional potential of reversal effect of hAMSCs-exosomes on MTX-induced neurotoxicity, hepatic and renal impairment, and myelosuppression. CONCLUSIONS We present anti-CD19-Exo-MTX as a promising exosome-based drug delivery platform that enhances BBB permeability and offers specific targeting for effective CNSL treatment with reduced adverse effects.
Collapse
Affiliation(s)
- Meifang Zhao
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Qi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Yali Chai
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China
| | - Rong Rong
- Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lexin He
- Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Yuchen Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Hongxia Cui
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Hao Xu
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Xinyun Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Zhiming Wang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Shushu Yuan
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Menglu Chen
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Chuan He
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Han Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Linlin Qin
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China
| | - Ruijing Hu
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China
| | - Xinyuan Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China.
| | - Bingzong Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China.
| |
Collapse
|
5
|
Schaffer S, Tehrani L, Koechle B, Chandramohan P, Hilburn B, Aoki KC, Jacobs RJ. A Scoping Review of Exosome Delivery Applications in Hair Loss. Cureus 2025; 17:e81152. [PMID: 40276450 PMCID: PMC12020662 DOI: 10.7759/cureus.81152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
The objective of this scoping review was to understand the extent and type of evidence found in the current literature on the delivery mechanisms of exosome therapeutics and how these methods can work synergistically with existing treatments for alopecia. Alopecia is primarily characterized as non-scarring or scarring (cicatricial). In cicatricial alopecia, the hair follicles are irreversibly destroyed, causing permanent hair loss. In non-cicatricial alopecia, the hair follicles are undamaged, allowing for possible hair regeneration. Non-scarring alopecia includes androgenetic alopecia, telogen effluvium, and alopecia areata. Current treatments for non-scarring alopecia include oral minoxidil and spironolactone. Exosome therapeutics are a possible alternative treatment for non-scarring alopecia because of their regenerative properties in hair follicle stimulation, customizable size selection, and the potential to activate and down-regulate specific pathways that enhance hair growth. This review evaluates types and sources of exosome delivery as regenerative treatments for alopecia. A search of literature published in English from 2018 to 2023 was performed using the electronic databases EMBASE, Ovid MEDLINE, and Web of Science. Data from selected studies included specific details about the participants, concept, context, study methods, and key findings relevant to the review questions. Upon completion of the database search that yielded 1,087 citations, after removing 284 duplicates, 803 articles remained for assessment of eligibility. Finally, 16 studies were retained for inclusion. These studies explored one or more exosome delivery techniques, such as intradermal needle injection, microneedle patches, topical application, and topical application with a secondary assistive device. The therapeutic focus of these studies ranged from hair follicle regeneration and wound healing to spinal cord injury repair and collagen regeneration for cosmetic purposes. Most of the studies (14 out of 16) used exosomes derived from mesenchymal stem cells (MSCs), while others isolated exosomes from human adipose stem cells, macrophage cell lines, and dermal fibroblast cells. Of the 16 studies, all but two administered exosomes via microneedle patches. The findings suggest that intradermal microneedle patches are a promising method for delivering exosomes into tissues, particularly for the treatment of non-cicatricial alopecia. Exosome therapy shows strong potential for promoting hair follicle regeneration, supported by its proven efficacy in wound healing, spinal cord injury repair, and cosmetic applications. Among the various delivery methods explored, microneedle patches loaded with exosomes from MSCs emerged as the most effective for targeted delivery into tissues. These findings support exosome-based therapies for non-cicatricial alopecia.
Collapse
Affiliation(s)
- Sarah Schaffer
- Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Lily Tehrani
- Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Braeden Koechle
- Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Prathmica Chandramohan
- Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Brookie Hilburn
- Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Kawaiola Cael Aoki
- Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Robin J Jacobs
- Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| |
Collapse
|
6
|
Mittal A, Jakhmola VR, Baweja S. Bioengineered extracellular vesicles: The path to precision medicine in liver diseases. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:17-28. [PMID: 40206438 PMCID: PMC11977285 DOI: 10.1016/j.livres.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 04/11/2025]
Abstract
Extracellular vesicles (EVs) are membrane-bound entities secreted by each cell, categorized as, exosomes, microvesicles or apoptotic bodies based on their size and biogenesis. They serve as promising vectors for drug delivery due to their capacity to carry diverse molecular signatures reflective of their cell of origin. EV research has significantly advanced since their serendipitous discovery, with recent studies focusing on their roles in various diseases and their potential for targeted therapy. In liver diseases, EVs are particularly promising for precision medicine, providing diagnostic and therapeutic potential in conditions such as metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, hepatocellular carcinoma, alcoholic liver disease, liver fibrosis, and acute liver failure. Despite challenges in isolation and characterization, engineered EVs have shown efficacy in delivering therapeutic agents with improved targeting and reduced side effects. As research progresses, EVs hold great promise to revolutionize precision medicine in liver diseases, offering targeted, efficient, and versatile therapeutic options. In this review, we summarize various techniques for loading EVs with therapeutic cargo including both passive and active methods, and the potential of bioengineered EVs loaded with various molecules, such as miRNAs, proteins, and anti-inflammatory drugs in ameliorating clinical pathologies of liver diseases.
Collapse
Affiliation(s)
| | | | - Sukriti Baweja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
7
|
Farzam OR, Eslami S, Jafarizadeh A, Alamdari SG, Dabbaghipour R, Nobari SA, Baradaran B. The significance of exosomal non-coding RNAs (ncRNAs) in the metastasis of colorectal cancer and development of therapy resistance. Gene 2025; 937:149141. [PMID: 39643147 DOI: 10.1016/j.gene.2024.149141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) represents a common type of carcinoma with significant mortality rates globally. A primary factor contributing to the unfavorable treatment outcomes and reduced survival rates in CRC patients is the occurrence of metastasis. Various intricate molecular mechanisms are implicated in the metastatic process, leading to mortality among individuals with CRC. In the realm of intercellular communication, exosomes, which are a form of extracellular vesicle (EV), play an essential role. These vesicles act as conduits for information exchange between cells and originate from multiple sources. By fostering a microenvironment conducive to CRC progression, exosomes and EVs significantly influence the advancement of the disease. They contain a diverse array of molecules, including messenger RNAs (mRNAs), non-coding RNAs (ncRNAs), proteins, lipids, and transcription factors. Notably, ncRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are prominently featured within exosomes. These ncRNAs have the capacity to regulate various critical molecules or signaling pathways, particularly those associated with tumor metastasis, thereby playing a crucial role in tumorigenesis. Their presence indicates a substantial potential to affect vital aspects of tumor progression, including proliferation, metastasis, and resistance to treatment. This research aims to categorize exosomal ncRNAs and examine their functions in colorectal cancer. Furthermore, it investigates the clinical applicability of novel biomarkers and therapeutic strategies in CRC. Abbreviations: ncRNAs, non-coding RNAs; CRC, Colorectal cancer; EV, extracellular vesicle; mRNAs, messenger RNAs; miRNAs, microRNAs; lncRNAs, long non-coding RNAs; circRNAs, circular RNAs; HOTTIP, HOXA transcript at the distal tip; NSCLC, non-small cell lung cancer; 5-FU, 5-fluorouracil; OX, Oxaliplatin; PDCD4, programmed cell death factor 4; Tregs, regulatory T cells; EMT, epithelial-mesenchymal transition; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; USP2, ubiquitin carboxyl-terminal hydrolase 2; TNM, tumor node metastasis; TAMs, tumor-associated macrophages; RASA1, RAS p21 protein activator 1; PDCD4, programmed cell death 4; ZBTB2, zinc finger and BTB domain containing 2; SOCS1, suppressor of cytokine signaling 1; TUBB3, β-III tubulin; MSCs, mesenchymal stem cells.
Collapse
Affiliation(s)
- Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahand Eslami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-based Medicine, Iranian EBM Center: A Joana-affiliated Group, Tabriz University of Medicine Science, Tabriz, Iran
| | - Sania Ghobadi Alamdari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Alizadeh Nobari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Huang J, Li H, Mei Y, Yi P, Ren Y, Wang Y, Han L, Tang Q, Liu D, Chen W, An Y, Hu C. An Injectable Hydrogel Bioimplant Loaded with Engineered Exosomes and Triple Anti-Tuberculosis Drugs with Potential for Treating Bone and Joint Tuberculosis. Int J Nanomedicine 2025; 20:1285-1302. [PMID: 39911262 PMCID: PMC11794387 DOI: 10.2147/ijn.s480288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/12/2024] [Indexed: 02/07/2025] Open
Abstract
Purpose Treatment for bone and joint tuberculosis (BJTB) is challenging due to its refractory and recurrent nature. This study aimed to develop a bioimplantable scaffold with osteoinductive and antituberculosis characteristics to treat BJTB. Methods This scaffold is built on oxidized hyaluronic acid and carboxymethyl chitosan hydrogel mixed with hydroxyapatite as a bone tissue engineered material. In order to make the scaffold have the biological activity of promoting tissue repair, the engineered exosomes (Exoeng) were added innovatively. In addition, drug-loaded liposomes equipped with an aldehyde group on the surface are cross-linked with the amine group of the hydrogel skeleton to participate in the Schiff base reaction. Results The designed scaffold has characteristics of self-healing and injectability exhibit excellent anti-tuberculosis and promoting bone repair activities. Exoeng strongly stimulates cellular angiogenesis and osteogenic differentiation. The liposomes coated in hydrogel can release three kinds of anti-tuberculosis drugs smoothly and slowly, achieving a long term anti-tuberculosis. Conclusion The composite bio-scaffold shows good tissue repair and long-term anti-tuberculosis abilities, which expected to provide a viable treatment plan for bone-related BJTB.
Collapse
Affiliation(s)
- Jiayan Huang
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Han Li
- Department of Pharmacy, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, People’s Republic of China
| | - Yuting Mei
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Pengcheng Yi
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yunyao Ren
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yunjuan Wang
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Limei Han
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Dongfang Liu
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Wei Chen
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yanli An
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Medical School, Zhong da Hospital, Southeast University, Nanjing, JiangsuPeople’s Republic of China
| | - Chunmei Hu
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
9
|
Cui X, Liu L, Duan C, Mao S, Wang G, Li H, Miao C, Cao Y. A review of the roles of exosomes in salivary gland diseases with an emphasis on primary Sjögren's syndrome. J Dent Sci 2025; 20:1-14. [PMID: 39873057 PMCID: PMC11762945 DOI: 10.1016/j.jds.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/02/2024] [Indexed: 01/30/2025] Open
Abstract
Salivary gland diseases encompass a broad range of conditions, including autoimmune, inflammatory, obstructive, and neoplastic disorders, significantly impacting oral health and overall well-being. Recent research has highlighted the crucial role of exosomes, small extracellular vesicles, in these diseases. Exosomes mediate intercellular communication by transferring bioactive molecules such as proteins, microRNAs, and lipids, positioning them as potential diagnostic biomarkers and therapeutic agents. In primary Sjögren's syndrome (pSS), exosomes derived from Epstein-Barr virus-infected B cells and activated T cells transfer key microRNAs that impair calcium signaling, contributing to glandular dysfunction. Exosome-based biomarkers like Ro/SSA and La/SSB, found in saliva, serum, and tears, offer non-invasive diagnostic tools for early disease detection. Furthermore, mesenchymal stem cell-derived exosomes show promise in treating pSS by modulating immune responses and promoting tissue repair. While exosomes hold promise for the diagnosis and treatment of other salivary gland diseases, such as radiation-induced xerostomia and sialolithiasis, their application remains limited, necessitating further research to unlock their full diagnostic and therapeutic potential. This review focuses on the role of exosomes in salivary gland diseases, with an emphasis on pSS, and highlights the need for future clinical applications and large-scale trials.
Collapse
Affiliation(s)
- Xianzhen Cui
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengchen Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Suning Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanru Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Honglin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Miao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Evidence-Based Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
He X, Chu XY, Chen X, Xiang YL, Li ZL, Gao CY, Luan YY, Yang K, Zhang DL. Dental pulp stem cell‑derived extracellular vesicles loaded with hydrogels promote osteogenesis in rats with alveolar bone defects. Mol Med Rep 2025; 31:29. [PMID: 39540371 PMCID: PMC11582518 DOI: 10.3892/mmr.2024.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Alveolar bone defects caused by inflammation, trauma and tumors adversely affect periodontal health, causing tooth loosening or dentition defects, thus affecting denture or implant repair. Advancements in tissue engineering technology and stem cell biology have significantly improved the regenerative reconstruction of alveolar bone defects. The multiple trophic activities of extracellular vesicles (EVs) produced by mesenchymal stem cells play important roles in exerting their therapeutic effects. Several studies have reported the role of dental pulp stem cells (DPSCs) in bone regeneration, but the regenerative effects of DPSC‑EVs on alveolar bone defects are unclear. In the present study, the osteogenic effects of DPSC‑EVs on Hertwig's epithelial root sheath (HERS) cells in vitro and their osteoinductive effects in an alveolar bone defect rat model were investigated. The results showed that DPSC‑EVs significantly promoted the expression of osteogenic genes, such as runt‑related transcription factor 2 and alkaline phosphatase, and increased the osteogenic differentiation capability of HERS. These findings suggested that transforming growth factor β1 inhibition decreased DPSC‑EV‑induced Smad, MAPK and ERK phosphorylation in HERS. In vivo, DPSC‑EV‑loaded hydrogels were transplanted into the alveolar sockets of Sprague‑Dawley rats and observed for eight weeks. The new bone grew concentrically in the DPSC‑EV or DPSC‑EV‑loaded hydrogel group, with greater bone mass than that in the control group, and the bone volume/total volume increased notably. The results confirmed the osteogenic and osteoinductive effects of DPSC‑EVs and DPSC‑Exo‑loaded hydrogels on alveolar bone defects. Due to their low immunogenicity, high stability, good biocompatibility and osteogenic propensity, DPSC‑EV‑loaded hydrogels are a safe cell‑free therapeutic approach for defective alveolar bone regeneration.
Collapse
Affiliation(s)
- Xin He
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Xiao-Yang Chu
- Department of Stomatology, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100000, P.R. China
| | - Xu Chen
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Yu-Lan Xiang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Ze-Lu Li
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Chun-Yan Gao
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Ying-Yi Luan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Dong-Liang Zhang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| |
Collapse
|
11
|
Shen YJ, Huang YC, Cheng YC. Advancements in Antioxidant-Based Therapeutics for Spinal Cord Injury: A Critical Review of Strategies and Combination Approaches. Antioxidants (Basel) 2024; 14:17. [PMID: 39857350 PMCID: PMC11763222 DOI: 10.3390/antiox14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) initiates a cascade of secondary damage driven by oxidative stress, characterized by the excessive production of reactive oxygen species and other reactive molecules, which exacerbate cellular and tissue damage through the activation of deleterious signaling pathways. This review provides a comprehensive and critical evaluation of recent advancements in antioxidant-based therapeutic strategies for SCI, including natural compounds, RNA-based therapies, stem cell interventions, and biomaterial applications. It emphasizes the limitations of single-regimen approaches, particularly their limited efficacy and suboptimal delivery to injured spinal cord tissue, while highlighting the synergistic potential of combination therapies that integrate multiple modalities to address the multifaceted pathophysiology of SCI. By analyzing emerging trends and current limitations, this review identifies key challenges and proposes future directions, including the refinement of antioxidant delivery systems, the development of multi-targeted approaches, and strategies to overcome the structural complexities of the spinal cord. This work underscores the pressing need for innovative and integrative therapeutic approaches to advance the clinical translation of antioxidant-based interventions and improve outcomes for SCI patients.
Collapse
Affiliation(s)
- Yang-Jin Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Cheng Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
12
|
Elashry MI, Speer J, De Marco I, Klymiuk MC, Wenisch S, Arnhold S. Extracellular Vesicles: A Novel Diagnostic Tool and Potential Therapeutic Approach for Equine Osteoarthritis. Curr Issues Mol Biol 2024; 46:13078-13104. [PMID: 39590374 PMCID: PMC11593097 DOI: 10.3390/cimb46110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive degenerative joint disease that affects a significant portion of the equine population and humans worldwide. Current treatment options for equine OA are limited and incompletely curative. Horses provide an excellent large-animal model for studying human OA. Recent advances in the field of regenerative medicine have led to the exploration of extracellular vesicles (EVs)-cargoes of microRNA, proteins, lipids, and nucleic acids-to evaluate their diagnostic value in terms of disease progression and severity, as well as a potential cell-free therapeutic approach for equine OA. EVs transmit molecular signals that influence various biological processes, including the inflammatory response, apoptosis, proliferation, and cell communication. In the present review, we summarize recent advances in the isolation and identification of EVs, the use of their biologically active components as biomarkers, and the distribution of the gap junction protein connexin 43. Moreover, we highlight the role of mesenchymal stem cell-derived EVs as a potential therapeutic tool for equine musculoskeletal disorders. This review aims to provide a comprehensive overview of the current understanding of the pathogenesis, diagnosis, and treatment strategies for OA. In particular, the roles of EVs as biomarkers in synovial fluid, chondrocytes, and plasma for the early detection of equine OA are discussed.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Julia Speer
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Isabelle De Marco
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Michele C. Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| |
Collapse
|
13
|
Babaei S, Fadaee M, Abbasi-Kenarsari H, Shanehbandi D, Kazemi T. Exosome-based immunotherapy as an innovative therapeutic approach in melanoma. Cell Commun Signal 2024; 22:527. [PMID: 39482766 PMCID: PMC11526674 DOI: 10.1186/s12964-024-01906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
The malignant form of melanoma is one of the deadliest human cancers that accounts for almost all of the skin tumor-related fatalities in its later stages. Achieving an exhaustive understanding of reliable cancer-specific markers and molecular pathways can provide numerous practical techniques and direct the way toward the development of rational curative medicines to increase the lifespan of patients. Immunotherapy has significantly enhanced the treatment of metastatic and late-stage melanoma, resulting in an incredible increase in positive responses to therapy. Despite the increasing occurrence of melanoma, the median survival rate for patients with advanced, inoperable terminal disease has increased from around six months to almost six years. The current knowledge of the tumor microenvironment (TME) and its interaction with the immune system has resulted in the swift growth of innovative immunotherapy treatments. Exosomes are small extracellular vesicles (EVs), ranging from 30 to 150 nm in size, that the majority of cells released them. Exosomes possess natural advantages such as high compatibility with living organisms and low potential for causing immune reactions, making them practical for delivering therapeutic agents like chemotherapy drugs, nucleic acids, and proteins. This review highlights recent advancements in using exosomes as an approach to providing medications for the treatment of melanoma.
Collapse
Affiliation(s)
- Shabnam Babaei
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dariush Shanehbandi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146.
| |
Collapse
|
14
|
Zhang X, Gao X, Zhang X, Yao X, Kang X. Revolutionizing Intervertebral Disc Regeneration: Advances and Future Directions in Three-Dimensional Bioprinting of Hydrogel Scaffolds. Int J Nanomedicine 2024; 19:10661-10684. [PMID: 39464675 PMCID: PMC11505483 DOI: 10.2147/ijn.s469302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/10/2024] [Indexed: 10/29/2024] Open
Abstract
Hydrogels are multifunctional platforms. Through reasonable structure and function design, they use material engineering to adjust their physical and chemical properties, such as pore size, microstructure, degradability, stimulus-response characteristics, etc. and have a variety of biomedical applications. Hydrogel three-dimensional (3D) printing has emerged as a promising technique for the precise deposition of cell-laden biomaterials, enabling the fabrication of intricate 3D structures such as artificial vertebrae and intervertebral discs (IVDs). Despite being in the early stages, 3D printing techniques have shown great potential in the field of regenerative medicine for the fabrication of various transplantable tissues within the human body. Currently, the utilization of engineered hydrogels as carriers or scaffolds for treating intervertebral disc degeneration (IVDD) presents numerous challenges. However, it remains an indispensable multifunctional manufacturing technology that is imperative in addressing the escalating issue of IVDD. Moreover, it holds the potential to serve as a micron-scale platform for a diverse range of applications. This review primarily concentrates on emerging treatment strategies for IVDD, providing an in-depth analysis of their merits and drawbacks, as well as the challenges that need to be addressed. Furthermore, it extensively explores the biological properties of hydrogels and various nanoscale biomaterial inks, compares different prevalent manufacturing processes utilized in 3D printing, and thoroughly examines the potential clinical applications and prospects of integrating 3D printing technology with hydrogels.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xidan Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xuefang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xin Yao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi’an Jiao Tong University, Xi’An, Shaanxi, P.R. China
| |
Collapse
|
15
|
Wu M, Holgado L, Harrower RM, Brown AC. Evaluation of the efficiency of various methods to load fluoroquinolones into Escherichia coli outer membrane vesicles as a novel antibiotic delivery platform. Biochem Eng J 2024; 210:109418. [PMID: 39092080 PMCID: PMC11290469 DOI: 10.1016/j.bej.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The development of novel antibacterial agents that are effective against Gram-negative bacteria is limited primarily by transport issues. This class of bacteria maintains a complex cell envelope consisting of two membrane bilayers, preventing the passage of most antibiotics. These drugs must therefore pass through protein channels called porins; however, many antibiotics are too large to pass through porins, and a common mechanism of acquired resistance is down-regulation of porins. To overcome this transport limitation, we have proposed the use of outer membrane vesicles (OMVs), released by Gram-negative bacteria, which deliver cargo to other bacterial cells in a porin-independent manner. In this work, we systematically studied the ability to load fluoroquinolones into purified Escherichia coli OMVs using in vivo and in vitro passive loading methods, and active loading methods such as electroporation and sonication. We observed limited loading of all of the antibiotics using passive loading techniques; sonication and electroporation significantly increased the loading, with electroporation at low voltages (200 and 400V) resulting in the greatest encapsulation efficiencies. We also demonstrated that imipenem, a carbapenem antibiotic, can be readily loaded into OMVs, and its administration via OMVs increases the effectiveness of the drug against E. coli. Our results demonstrate that small molecule antibiotics can be readily incorporated into OMVs to create novel delivery vehicles to improve antibiotic activity.
Collapse
Affiliation(s)
- Meishan Wu
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton St., Bethlehem, PA, 18015, USA
| | - Lauryn Holgado
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton St., Bethlehem, PA, 18015, USA
| | - Rachael M. Harrower
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Bethlehem, PA, 18015, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton St., Bethlehem, PA, 18015, USA
| |
Collapse
|
16
|
Cunha Silva L, Branco F, Cunha J, Vitorino C, Gomes C, Carrascal MA, Falcão A, Miguel Neves B, Teresa Cruz M. The potential of exosomes as a new therapeutic strategy for glioblastoma. Eur J Pharm Biopharm 2024; 203:114460. [PMID: 39218361 DOI: 10.1016/j.ejpb.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) stands for the most common and aggressive type of brain tumour in adults. It is highly invasive, which explains its short rate of survival. Little is known about its risk factors, and current therapy is still ineffective. Hence, efforts are underway to develop novel and effective treatment approaches against this type of cancer. Exosomes are being explored as a promising strategy for conveying and delivering therapeutic cargo to GBM cells. They can fuse with the GBM cell membrane and, consequently, serve as delivery systems in this context. Due to their nanoscale size, exosomes can cross the blood-brain barrier (BBB), which constitutes a significant hurdle to most chemotherapeutic drugs used against GBM. They can subsequently inhibit oncogenes, activate tumour suppressor genes, induce immune responses, and control cell growth. However, despite representing a promising tool for the treatment of GBM, further research and clinical studies regarding exosome biology, engineering, and clinical applications still need to be completed. Here, we sought to review the application of exosomes in the treatment of GBM through an in-depth analysis of the scientific and clinical studies on the entire process, from the isolation and purification of exosomes to their design and transformation into anti-oncogenic drug delivery systems. Surface modification of exosomes to enhance BBB penetration and GBM-cell targeting is also a topic of discussion.
Collapse
Affiliation(s)
- Leonor Cunha Silva
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3004 535, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra 3000-504, Portugal
| | - Mylène A Carrascal
- Tecnimede Group, Sintra 2710-089, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra 3000-548, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
17
|
Yuan S, Li Q, He C, Bing M, Zhang X, Xu H, Wang Z, Zhao M, Zhang Y, Chai Y, Li B, Zhuang W. Anti-BCMA-engineered exosomes for bortezomib-targeted delivery in multiple myeloma. Blood Adv 2024; 8:4886-4899. [PMID: 38875465 PMCID: PMC11421322 DOI: 10.1182/bloodadvances.2023012464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
ABSTRACT Exosomes have emerged as promising vehicles for delivering therapeutic cargoes to specific cells or tissues, owing to their superior biocompatibility, reduced immunogenicity, and enhanced targeting capabilities compared with conventional drug delivery systems. In this study, we developed a delivery platform using exosomes derived from monocytes, specifically designed for targeted delivery of bortezomib (Btz) to multiple myeloma (MM) cells. Our approach involved the genetic modification of monocytes to express antibodies targeting B-cell maturation antigen (anti-BCMA), because BCMA selectively expresses on myeloma cells. This modified anti-BCMA was then efficiently incorporated into the monocyte-derived exosomes. These adapted exosomes effectively encapsulated Btz, leading to enhanced drug accessibility within MM cells and sustained intracellular accumulation over an extended period. Remarkably, our results demonstrated that anti-BCMA-modified exosome-loaded Btz (anti-BCMA-Exo-Btz) outperformed free Btz in vitro, exhibiting a more potent myeloma-suppressive effect. In orthotopic MM xenograft models, anti-BCMA-Exo-Btz exhibited a significant antitumor effect compared with free Btz. Furthermore, it demonstrated remarkable specificity in targeting Btz to myeloma cells in vivo. Importantly, we observed no significant histological damage in mice treated with anti-BCMA-Exo-Btz and a slight effect on peripheral blood mononuclear cells. In addition, our study highlighted the multifunctional potential of monocyte exosomes, which induced cell apoptosis, mediated immune responses, and enhanced the osteogenic potential of mesenchymal stromal cells. In conclusion, our study suggests that exosomes modified with targeting ligands hold therapeutic promise for delivering Btz to myelomas, offering substantial potential for clinical applications.
Collapse
Affiliation(s)
- Shushu Yuan
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Qi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chuan He
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengli Bing
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyun Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Xu
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiming Wang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Meifang Zhao
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yucheng Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yali Chai
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Bingzong Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
19
|
Gu Y, Feng J, Shi J, Xiao G, Zhang W, Shao S, Liu B, Guo H. Global Research Trends on Exosome in Cardiovascular Diseases: A Bibliometric-Based Visual Analysis. Vasc Health Risk Manag 2024; 20:377-402. [PMID: 39188326 PMCID: PMC11346494 DOI: 10.2147/vhrm.s473520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024] Open
Abstract
Background Exosomes in cardiovascular diseases (CVDs) have attracted huge attention with substantial value and potential. Our bibliometrics is based on literature from the field of cardiovascular exosomes over the past 30 years, which has been visualized to display the development process, research hotspots, and cutting-edge trends of clinical practices, mechanisms, and management strategies related to psych cardiology. Methods We selected articles and reviews on exosomes in CVDs from the core collection of Web of Science, and generated visual charts by using CiteSpace and VOSviewer software. Results Our research included 1613 publications. The number of exosome articles in CVD fluctuates slightly, but overall shows an increasing trend. The main research institutions were Tongji University and Nanjing Medical University. The International Journal of Molecular Sciences has the highest publication volume, while the Journal of Cellular and Molecular Medicine has the highest citation count. Among all the authors, Eduardo Marban ranks first in terms of publication volume and H-index. The most common keywords are exosome, extracellular vesicles, and angiogenesis. Conclusion This is a bibliometric study on the research hotspots and trends of exosomes in CVD. Exosome research in the field of cardiovascular medicine is on the rise. Some exosome treatment methods may become the focus of future research.
Collapse
Affiliation(s)
- Yunxiao Gu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiayi Shi
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Guanyi Xiao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
20
|
Qiu M, Zou J, Yang Z, Yang D, Wang R, Guo H. Strategies for Targeting Peptide-Modified Exosomes and Their Applications in the Lungs. Int J Nanomedicine 2024; 19:8175-8188. [PMID: 39157733 PMCID: PMC11328869 DOI: 10.2147/ijn.s472038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024] Open
Abstract
Exosomes belong to a subgroup of extracellular vesicles secreted by various cells and are involved in intercellular communication and material transfer. In recent years, exosomes have been used as drug delivery carriers because of their natural origin, high stability, low immunogenicity and high engineering ability. However, achieving targeted drug delivery with exosomes remains challenging. In this paper, a phage display technology was used to screen targeted peptides, and different surface modification strategies of targeted peptide exosomes were reviewed. In addition, the application of peptide-targeted exosomes in pulmonary diseases was also summarised.
Collapse
Affiliation(s)
- Min Qiu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, People’s Republic of China
- College of Pharmacy, Baotou Medical College, Baotou, People’s Republic of China
| | - Jinru Zou
- College of Pharmacy, Baotou Medical College, Baotou, People’s Republic of China
| | - Zheng Yang
- The First Affiliated Hospital, Baotou Medical College, Baotou, People’s Republic of China
| | - Dan Yang
- College of Pharmacy, Baotou Medical College, Baotou, People’s Republic of China
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, People’s Republic of China
| | - Haie Guo
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, People’s Republic of China
- Agriculture, Animal Husbandry and Science and Technology Bureau of Liangcheng County, Ulanqab, Inner Mongolia, People’s Republic of China
| |
Collapse
|
21
|
Chen JG, Zhang EC, Wan YY, Huang TY, Wang YC, Jiang HY. Engineered hsa-miR-455-3p-Abundant Extracellular Vesicles Derived from 3D-Cultured Adipose Mesenchymal Stem Cells for Tissue-Engineering Hyaline Cartilage Regeneration. Adv Healthc Mater 2024; 13:e2304194. [PMID: 38508211 DOI: 10.1002/adhm.202304194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Efforts are made to enhance the inherent potential of extracellular vesicles (EVs) by utilizing 3D culture platforms and engineered strategies for functional cargo-loading. Three distinct types of adipose mesenchymal stem cells-derived EVs (ADSCs-EVs) are successfully isolated utilizing 3D culture platforms consisting of porous gelatin methacryloyl (PG), PG combined with sericin methacryloyl (PG/SerMA), or PG combined with chondroitin sulfate methacryloyl (PG/ChSMA). These correspond to PG-EVs, PG/SerMA-EVs, and PG/ChSMA-EVs, respectively. Unique microRNA (miRNA) profiles are observed in each type of ADSCs-EVs. Notably, PG-EVs encapsulate higher levels of hsa-miR-455-3p and deliver more hsa-miR-455-3p to chondrocytes, which results in the activation of the hsa-miR-455-3p/PAK2/Smad2/3 axis and the subsequent hyaline cartilage regeneration. Furthermore, the functionality of PG-EVs is optimized through engineered strategies, including agomir/lentivirus transfection, electroporation, and Exo-Fect transfection. These strategies, referred to as Agomir-EVs, Lentivirus-EVs, Electroporation-EVs, and Exo-Fect-EVs, respectively, are ranked based on their efficacy in encapsulating hsa-miR-455-3p, delivering hsa-miR-455-3p to chondrocytes, and promoting cartilage formation via the hsa-miR-455-3p/PAK2/Smad2/3 axis. Notably, Exo-Fect-EVs exhibit the highest efficiency. Collectively, the 3D culture conditions and engineered strategies have an impact on the miRNA profiles and cartilage regeneration capabilities of ADSCs-EVs. The findings provide valuable insights into the mechanisms underlying the promotion of cartilage regeneration by ADSCs-EVs.
Collapse
Affiliation(s)
- Jian-Guo Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China
| | - En-Chong Zhang
- Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Ying-Ying Wan
- Beijing University of Chinese Medicine, DongFang Hospital, Fengtai District, Beijing, 100078, China
| | - Tian-Yu Huang
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China
| | - Yu-Chen Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China
| | - Hai-Yue Jiang
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China
| |
Collapse
|
22
|
Afridi S, Sharma P, Choudhary F, Rizwan A, Nizam A, Parvez A, Farooqi H. Extracellular Vesicles: A New Approach to Study the Brain's Neural System and Its Diseases. Cell Biochem Biophys 2024; 82:521-534. [PMID: 38727784 DOI: 10.1007/s12013-024-01271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 08/25/2024]
Abstract
In normal and pathophysiological conditions our cells secrete vesicular bodies known as extracellular particles. Extracellular vesicles are lipid-bound extracellular particles. A majority of these extracellular vesicles are linked to cell-to-cell communication. Brain consists of tightly packed neural cells. Neural cell releases extracellular vesicles in cerebrospinal fluid. Extracellular vesicle mediated crosstalk maintains neural homeostasis in the central nervous system via transferring cargos between neural cells. In neurodegenerative diseases, small extracellular vesicle transfer misfolded proteins to healthy cells in the neural microenvironment. They can also cross blood-brain barrier (BBB) and stimulate peripheral immune response inside central nervous system. In today's world different approaches employ extracellular vesicle in various therapeutics. This review gives a brief knowledge about the biological relevance of extracellular vesicles in the central nervous system and relevant advances in the translational application of EV in brain disorders.
Collapse
Affiliation(s)
- Shahid Afridi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Pradakshina Sharma
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Furqan Choudhary
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Amber Rizwan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Anam Nizam
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Humaira Farooqi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
23
|
Menjivar NG, Oropallo J, Gebremedhn S, Souza LA, Gad A, Puttlitz CM, Tesfaye D. MicroRNA Nano-Shuttles: Engineering Extracellular Vesicles as a Cutting-Edge Biotechnology Platform for Clinical Use in Therapeutics. Biol Proced Online 2024; 26:14. [PMID: 38773366 PMCID: PMC11106895 DOI: 10.1186/s12575-024-00241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous transporters of various active biomolecules with inflicting phenotypic capabilities, that are naturally secreted by almost all cells with a promising vantage point as a potential leading drug delivery platform. The intrinsic characteristics of their low toxicity, superior structural stability, and cargo loading capacity continue to fuel a multitude of research avenues dedicated to loading EVs with therapeutic and diagnostic cargos (pharmaceutical compounds, nucleic acids, proteins, and nanomaterials) in attempts to generate superior natural nanoscale delivery systems for clinical application in therapeutics. In addition to their well-known role in intercellular communication, EVs harbor microRNAs (miRNAs), which can alter the translational potential of receiving cells and thus act as important mediators in numerous biological and pathological processes. To leverage this potential, EVs can be structurally engineered to shuttle therapeutic miRNAs to diseased recipient cells as a potential targeted 'treatment' or 'therapy'. Herein, this review focuses on the therapeutic potential of EV-coupled miRNAs; summarizing the biogenesis, contents, and function of EVs, as well as providing both a comprehensive discussion of current EV loading techniques and an update on miRNA-engineered EVs as a next-generation platform piloting benchtop studies to propel potential clinical translation on the forefront of nanomedicine.
Collapse
Affiliation(s)
- Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jaiden Oropallo
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Orthopaedic Research Center (ORC), Translational Medicine Institute (TMI), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- J.R. Simplot Company, 1099 W. Front St, Boise, ID, 83702, USA
| | - Luca A Souza
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, 225 Av. Duque de Caxias Norte, Pirassununga, SP, 13635-900, Brazil
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
24
|
Chen Q, Yang Z, Liu H, Man J, Oladejo AO, Ibrahim S, Wang S, Hao B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024; 16:674. [PMID: 38794336 PMCID: PMC11124876 DOI: 10.3390/pharmaceutics16050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of pharmacy: novel drug delivery systems. These systems are designed to address the limitations of conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility, and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to advance and converge, the development of efficient and safe drug delivery systems, including biopharmaceutical formulations, has garnered significant attention both domestically and internationally. This article presents an overview of the latest advancements in drug delivery systems, categorized into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, based on their main objectives and methodologies. Additionally, it critically analyzes the technological bottlenecks, current research challenges, and future trends in the application of novel drug delivery systems.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Haoyu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Jingyuan Man
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Ayodele Olaolu Oladejo
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora 201003, Nigeria
| | - Sally Ibrahim
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki 12622, Egypt
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| |
Collapse
|
25
|
Sheikhhossein HH, Iommelli F, Di Pietro N, Curia MC, Piattelli A, Palumbo R, Roviello GN, De Rosa V. Exosome-like Systems: From Therapies to Vaccination for Cancer Treatment and Prevention-Exploring the State of the Art. Vaccines (Basel) 2024; 12:519. [PMID: 38793770 PMCID: PMC11125800 DOI: 10.3390/vaccines12050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer remains one of the main causes of death in the world due to its increasing incidence and treatment difficulties. Although significant progress has been made in this field, innovative approaches are needed to reduce tumor incidence, progression, and spread. In particular, the development of cancer vaccines is currently ongoing as both a preventive and therapeutic strategy. This concept is not new, but few vaccines have been approved in oncology. Antigen-based vaccination emerges as a promising strategy, leveraging specific tumor antigens to activate the immune system response. However, challenges persist in finding suitable delivery systems and antigen preparation methods. Exosomes (EXs) are highly heterogeneous bilayer vesicles that carry several molecule types in the extracellular space. The peculiarity is that they may be released from different cells and may be able to induce direct or indirect stimulation of the immune system. In particular, EX-based vaccines may cause an anti-tumor immune attack or produce memory cells recognizing cancer antigens and inhibiting disease development. This review delves into EX composition, biogenesis, and immune-modulating properties, exploring their role as a tool for prevention and therapy in solid tumors. Finally, we describe future research directions to optimize vaccine efficacy and realize the full potential of EX-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hamid Heydari Sheikhhossein
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- Villa Serena Foundation for Research, 65013 Città Sant'Angelo, Italy
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Giovanni N Roviello
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| |
Collapse
|
26
|
Wang R, Shi Y, Lv Y, Xie C, Hu Y. The novel insights of epithelial-derived exosomes in various fibrotic diseases. Biomed Pharmacother 2024; 174:116591. [PMID: 38631144 DOI: 10.1016/j.biopha.2024.116591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The characteristics of fibrosis include the abnormal accumulation of extracellular matrix proteins and abnormal tissue repair caused by injury, infection, and inflammation, leading to a significant increase in organ failure and mortality. Effective and precise treatments are urgently needed to halt and reverse the progression of fibrotic diseases. Exosomes are tiny vesicles derived from endosomes, spanning from 40 to 160 nanometers in diameter, which are expelled into the extracellular matrix environment by various cell types. They play a crucial role in facilitating cell-to-cell communication by transporting a variety of cargoes, including proteins, RNA, and DNA. Epithelial cells serve as the primary barrier against diverse external stimuli that precipitate fibrotic diseases. Numerous research suggests that exosomes from epithelial cells have a significant impact on several fibrotic diseases. An in-depth comprehension of the cellular and molecular mechanisms of epithelial cell-derived exosomes in fibrosis holds promise for advancing the exploration of novel diagnostic biomarkers and clinical drug targets. In this review, we expand upon the pathogenic mechanisms of epithelium-derived exosomes and highlight their role in the fibrotic process by inducing inflammation and activating fibroblasts. In addition, we are particularly interested in the bioactive molecules carried by epithelial-derived exosomes and their potential value in the diagnosis and treatment of fibrosis and delineate the clinical utility of exosomes as an emerging therapeutic modality, highlighting their potential application in addressing various medical conditions.
Collapse
Affiliation(s)
- Rifu Wang
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yuxin Shi
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yonglin Lv
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Changqing Xie
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China.
| | - Yanjia Hu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Dai C, Xu Q, Li L, Liu Y, Qu S. Milk Extracellular Vesicles: Natural Nanoparticles for Enhancing Oral Drug Delivery against Bacterial Infections. ACS Biomater Sci Eng 2024; 10:1988-2000. [PMID: 38529792 DOI: 10.1021/acsbiomaterials.3c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Oral drug delivery is typically preferred as a therapeutic intervention due to the complexities and expenses associated with intravenous administration. However, some drugs are poorly absorbed orally, requiring intravenous administration to bypass the gastrointestinal tract and deliver the drug directly into the bloodstream. Thus, there is an urgent need to develop novel drug delivery platforms to overcome the challenges of oral drug delivery with low solubility, low permeability, oral degradation, and low bioavailability. Advances in extracellular vesicles (EVs) as natural carriers have provided emerging approaches to improve potential therapeutic applications. Milk not only contains traditional nutrients but is also rich in EVs. In this Review, we focus mainly on the purification of milk EVs (mEVs), their safety, and the advantages of mEV-based drug carriers in combatting intestinal infections. Additionally, we summarize several advantages of mEVs over conventional synthetic carriers, such as low immunogenicity, high biocompatibility, and the ability to transfer bioactive molecules between cells. Considering the unmet gaps of mEVs in clinical translation, it is essential to review the cargo loading into mEVs and future perspectives for their use as natural drug carriers for oral delivery. This overview of mEV-based drug carriers for oral delivery sheds light on alternative approaches to treat clinical infections associated with intestinal pathogens and the development of novel oral delivery systems.
Collapse
Affiliation(s)
- Cunchun Dai
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qingjun Xu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
28
|
Cao J, Lv G, Wei F. Engineering exosomes to reshape the immune microenvironment in breast cancer: Molecular insights and therapeutic opportunities. Clin Transl Med 2024; 14:e1645. [PMID: 38572668 PMCID: PMC10993163 DOI: 10.1002/ctm2.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Breast cancer remains a global health challenge, necessitating innovative therapeutic approaches. Immunomodulation and immunotherapy have emerged as promising strategies for breast cancer treatment. Engineered exosomes are the sort of exosomes modified with surface decoration and internal therapeutic molecules. Through suitable modifications, engineered exosomes exhibit the capability to overcome the limitations associated with traditional therapeutic approaches. This ability opens up novel avenues for the development of more effective, personalized, and minimally invasive interventions. MAIN BODY In this comprehensive review, we explore the molecular insights and therapeutic potential of engineered exosomes in breast cancer. We discuss the strategies employed for exosome engineering and delve into their molecular mechanisms in reshaping the immune microenvironment of breast cancer. CONCLUSIONS By elucidating the contribution of engineered exosomes to breast cancer immunomodulation, this review underscores the transformative potential of this emerging field for improving breast cancer therapy. HIGHLIGHTS Surface modification of exosomes can improve the targeting specificity. The engineered exosome-loaded immunomodulatory cargo regulates the tumour immune microenvironment. Engineered exosomes are involved in the immune regulation of breast cancer.
Collapse
Affiliation(s)
- Jilong Cao
- Party Affairs and Administration Officethe Fourth Affiliated Hospital of China Medical UniversityShenyangP. R. China
| | - Gang Lv
- Department of Thyroid and Breast SurgeryChaohu Hospital of Anhui Medical UniversityChaohuP. R. China
| | - Fang Wei
- Department of General Surgerythe Fourth Affiliated Hospital of China Medical UniversityShenyangP. R. China
| |
Collapse
|
29
|
Yang Y, Liu Z, Lu Y, Yu X, Zhu R, Cai X, Lin J, Wang Z, Zha D. Rab3a attenuates spinal cord injury by mediating vesicle release. Brain Res Bull 2024; 208:110884. [PMID: 38253132 DOI: 10.1016/j.brainresbull.2024.110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Rab3a regulates vesicle secretion and transport. Emerging evidences have shown that extracellular vesicles (EVs) can reach target lesions of injured spinal cords and exert a positive effect on these lesions. However, the molecular mechanism by which Rab3a regulates vesicle secretion to ameliorate spinal cord injury (SCI) is not fully understood. METHODS An SCI rat model was established which was used to examine the pathological changes and Rab3a expression in spinal cord tissue. Rab3a was overexpressed in the model rats to demonstrate its effect on SCI repair. Rab3a was also knocked down in neuronal cells to verify its role in vesicle secretion and neuronal cells. The binding protein of Rab3a was identified by Co-IP and mass spectrometry. RESULTS Rab3a was significantly downregulated in SCI rats and Rab3a overexpression promoted SCI repair. Rab3a knockdown inhibited the secretion of neuronal cell-derived EVs. Compared to the EVs from the equal number of control neuronal cells, EVs from Rab3a-knockdown neuronal cells promoted M1 macrophage polarization, which in turn, promoted neuronal cell apoptosis. Mechanistically, STXBP1 was identified as a binding protein of Rab3a, and their interaction promoted the secretion of neuronal cell-derived EVs. Furthermore, METTL2b was significantly downregulated in SCI rats, and METTL2b knockdown significantly reduced Rab3a protein expression. CONCLUSION These results suggest that Rab3a promotes the secretion of neuronal cell-derived EVs by interacting with its binding protein STXBP1. Neuronal cells-derived EVs inhibited the polarization of M1 macrophages in the spinal cord microenvironment, thereby promoting SCI repair. Our findings provide a theoretical basis for the clinical treatment of SCI.
Collapse
Affiliation(s)
- Yuhao Yang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Ziqiao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Yang Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong 510630, China
| | - Xincheng Yu
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Rui Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Xingda Cai
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Jinghua Lin
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Zemin Wang
- Department of Orthopaedics, Chashan Hospital, Dongguan, Guangdong 523000, China
| | - Dingsheng Zha
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China; Department of Orthopedics, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong 528303, China.
| |
Collapse
|
30
|
Wu D, Chen S, Huang D, Huang Z, Zhen N, Zhou Z, Chen J. circ-Amotl1 in extracellular vesicles derived from ADSCs improves wound healing by upregulating SPARC translation. Regen Ther 2024; 25:290-301. [PMID: 38318480 PMCID: PMC10839578 DOI: 10.1016/j.reth.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/26/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Aim This study aims to explore the mechanism of circ- AMOT-like protein 1 (Amotl1) in extracellular vesicles (Evs) derived from adipose-derived stromal cells (ADSCs) regulating SPARC translation in wound healing process. Methods The morphology, wound healing rate of the wounds and Ki67 positive rate in mouse wound healing models were assessed by H&E staining and immunohistochemistry (IHC). The binding of IGF2BP2 and SPARC was verified by RNA pull-down. Adipose-derived stromal cells (ADSCs) were isolated and verified. The Evs from ADSCs (ADSC-Evs) were analyzed. Results Overexpression of SPARC can promote the wound healing process in mouse models. IGF2BP2 can elevate SPARC expression to promote the proliferation and migration of HSFs. circ-Amotl1 in ADSC-Evs can increase SPARC expression by binding IGF2BP2 to promote the proliferation and migration of HSFs. Conclusion ADSC-Evs derived circ-Amotl1 can bind IGF2BP2 to increase SPARC expression and further promote wound healing process.
Collapse
Affiliation(s)
- Dazhou Wu
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Shengyi Chen
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Dongdong Huang
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Zhipeng Huang
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Na Zhen
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Zhenxu Zhou
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Jicai Chen
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| |
Collapse
|
31
|
Yang C, Xue Y, Duan Y, Mao C, Wan M. Extracellular vesicles and their engineering strategies, delivery systems, and biomedical applications. J Control Release 2024; 365:1089-1123. [PMID: 38065416 DOI: 10.1016/j.jconrel.2023.11.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
Extracellular vesicles are nanoscale vesicles that can be secreted by all cell types, are intracellular in origin and have the same composition as their parent cells, play a key role in intercellular communication in organismal health and disease, and are now often used as biomarkers of disease and therapeutic agents in biomedical research. When injected locally or systemically, they have the ability to provide a variety of therapeutic effects, for example, regeneration of skin damage or restoration of cardiac function. However, direct injection of extracellular vesicles may result in their rapid clearance from the injection site.In order to maintain the biological activity of extracellular vesicles and to control the release of effective concentrations for better therapeutic efficacy during long-term disease treatment, the design of an optimized drug delivery system is necessary and different systems for the continuous delivery of extracellular vesicles have been developed. This paper first provides an overview of the biogenesis, composition and physiological function of extracellular vesicles, followed by a review of different strategies for extracellular vesicle isolation and methods for engineering extracellular vesicles. In addition, this paper reviews the latest extracellular vesicle delivery platforms such as micro-nanoparticles, injectable hydrogels, microneedles and scaffold patches. At the same time, the research progress and key cases of extracellular vesicle delivery systems in the field of biomedical therapeutics are described. Finally, the challenges and future trends of extracellular vesicle delivery are discussed.
Collapse
Affiliation(s)
- Chunhao Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu Duan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
32
|
Mehryab F, Rabbani S, Shekari F, Nazari A, Goshtasbi N, Haeri A. Sirolimus-loaded exosomes as a promising vascular delivery system for the prevention of post-angioplasty restenosis. Drug Deliv Transl Res 2024; 14:158-176. [PMID: 37518365 DOI: 10.1007/s13346-023-01390-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Restenosis remains the main reason for treatment failure of arterial disease. Sirolimus (SIR) as a potent anti-proliferative agent is believed to prevent the phenomenon. The application of exosomes provides an extended-release delivery platform for SIR intramural administration. Herein, SIR was loaded into fibroblast-derived exosomes isolated by ultracentrifugation. Different parameters affecting drug loading were optimized, and exosome samples were characterized regarding physicochemical, pharmaceutical, and biological properties. Cytotoxicity, scratch wound assays, and quantitative real-time PCR for inflammation- and migration-associated genes were performed. Restenosis was induced by carotid injury in a rat carotid model and then exosomes were locally administered. After 14 days, animals were investigated by computed tomography (CT) angiography, morphometric, and immunohistochemical analyses. Western blotting confirmed the presence of specific protein markers in exosomes. Characterization of empty and SIR-loaded exosomes verified round and nanoscale structure of vesicles. Among prepared formulations, desired entrapment efficiency (EE) of 76% was achieved by protein:drug proportion of 2:1 and simple incubation for 30 min at 37 °C. Also, the optimal formulation released about 30% of the drug content during the first 24 h, followed by a prolonged release for several days. In vitro studies revealed the uptake and functional efficacy of the optimized formulation. In vivo studies revealed that %restenosis was in the following order: saline > empty exosomes > SIR-loaded exosomes. Furthermore, Ki67, alpha smooth muscle actin (α-SMA), and matrix metalloproteinase (MMP) markers were less expressed in the SIR-exosomes-treated arteries. These findings confirmed that exosomal SIR could be a hopeful strategy for the prevention of restenosis.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, PO Box: 14155-6153, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abdoreza Nazari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, PO Box: 14155-6153, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, PO Box: 14155-6153, Tehran, Iran.
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Zhou X, Jia Y, Mao C, Liu S. Small extracellular vesicles: Non-negligible vesicles in tumor progression, diagnosis, and therapy. Cancer Lett 2024; 580:216481. [PMID: 37972701 DOI: 10.1016/j.canlet.2023.216481] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Small extracellular vesicles (sEVs) such as exosomes are nanoscale membranous particles (<200 nm) that have emerged as crucial targets for liquid biopsy and as promising drug delivery vehicles. They play a significant role in tumor progression as intercellular messengers. They can serve as biomarkers for tumor diagnosis and as drug carriers for cancer treatment. This article reviews recent studies on sEVs in oncology and explores their potential as biomarkers and drug delivery vehicles. Following tumorigenesis, sEVs in the tumor microenvironment (TME) and circulatory system undergo modifications to regulate various events in the TME, including angiogenesis, epithelial-mesenchymal transition (EMT), and tumor immunity, with either pro- or anti-tumor effects. sEVs have been investigated for use as diagnostic and prognostic biomarkers for a variety of tumors, including lung cancer, melanoma, breast cancer, prostate cancer, and hepatocellular carcinoma. sEVs can be used for cancer therapy by packaging drugs or proteins into them through pre- and post-isolation modification techniques. The clinical trials of sEVs as biomarkers and drug carriers are also summarized. Finally, the challenges in the use of sEVs are described and the possible approaches to tackling them are suggested. Overall, sEVs will advance the precision cancer medicine and has shown great potential in clinical applications.
Collapse
Affiliation(s)
- Xinru Zhou
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Yin Jia
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shanrong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
34
|
Lu M, Zhu Y, Li D, Zhou Z, Lin H, Hong H, Shi J, Wu Z. Gb3-Coated Bovine Milk Exosomes as a Practical Neutralizer for Shiga Toxin. ACS APPLIED BIO MATERIALS 2023; 6:5798-5808. [PMID: 37988327 DOI: 10.1021/acsabm.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Shiga toxin (Stx) is associated with foodborne infections of some Shigella spp. and Shiga toxin-producing Escherichia coli (STEC), leading to life-threatening hemolytic uremic syndrome (HUS). Target-specific therapeutics against HUS are currently unavailable in clinical practice. Herein, we reported the construction and in vitro characterization of Gb3-coated bovine milk exosomes (Gb3-mExo) as a multivalent Shiga toxin neutralizer, utilizing the natural advantages of milk exosomes (mExo) in drug delivery and multivalent interactions between Stx and its receptor Gb3. Gb3-mExo constructs were achieved by conjugating mExo with the Gb3 derivatives containing stearic acid-derived lipid tail, which was prepared through an efficient chemoenzymatic approach. The constructs were able to potently neutralize the binding of the B subunit of Stx2 (Stx2B) to receptor Gb3 immobilized on the plate or expressed on model cells. General safety of the constructs was evidenced by the cytotoxicity analysis and hemolysis assay. In addition to the excellent stability under conventional storage and handling conditions, the construct can also retain most of its neutralization potency under gastrointestinal pH extremes, showing the potential for oral administration. Considering the natural availability and excellent biocompatibility of mExo, Gb3-mExo conjugates should prove to be a practical prophylactic and therapeutic for the Shiga toxin-related infections.
Collapse
Affiliation(s)
- Mingming Lu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Yating Zhu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Han Lin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
35
|
Abbasi R, Mesgin RM, Nazari-Khanamiri F, Abdyazdani N, Imani Z, Talatapeh SP, Nourmohammadi A, Nejati V, Rezaie J. Mesenchymal stem cells-derived exosomes: novel carriers for nanoparticle to combat cancer. Eur J Med Res 2023; 28:579. [PMID: 38071346 PMCID: PMC10709841 DOI: 10.1186/s40001-023-01556-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The advancement in novel cancer therapeutics brought a platform combining the properties of exosomes with nanoparticles to precision medicine. The novel therapeutic approach aim is cancer-targeted therapy. Exosomes from mesenchymal stem cells (MSCs-Exo) exhibit unique properties in cancer therapies, which makes them an ideal tool for delivering therapeutic agents into tumor cells. The key role of natural MSCs-Exo is controversial in cancer therapy; however, they can be engineered at their surface or cargo to serve as a smart drug delivery system for cancer-targeted therapy. In the last few years, researchers harnessed nanotechnology to enforce MSCs-Exo for cancer management including, tumor cell tracking, imaging, and tumor cell killing. Different nanoparticles such as gold nanoparticles have particularly been incorporated into MSCs-Exo, which showed an efficient accumulation at the site of tumor with improved anticancer impact. These findings indicate that a hybrid of exosomes-nanoparticles may serve as combination therapy for the effective removal of cancers. SHORT CONCLUSION Although exhibiting impressive potential, the use of nanoparticle-loaded MSCs-Exo as a drug-delivery tool has been troubled by some challenges, therefore, translation to clinic prerequisites further scrutiny. In this review, we focus on nanoparticle-loaded MSCs-Exo as a new cancer therapy and discuss engineered MSC-Exo for target therapy.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | | | - Fereshteh Nazari-Khanamiri
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, Urmia, Iran
| | - Nima Abdyazdani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Imani
- Department of Biology, Urmia University, Urmia, Iran
| | | | - Aidin Nourmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Nejati
- Department of Biology, Urmia University, Urmia, Iran.
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, Urmia, Iran.
| |
Collapse
|
36
|
Shi R, Zhan A, Li X, Kong B, Liang G. Biomimetic extracellular vesicles for the tumor targeted treatment. ENGINEERED REGENERATION 2023; 4:427-437. [DOI: 10.1016/j.engreg.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
37
|
Xie W, Luo T, Ma Z, Xue S, Jia X, Yang T, Song Z. Tumor Necrosis Factor Alpha Preconditioned Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Enhance the Inhibition of Necroptosis of Acinar cells in Severe Acute Pancreatitis. Tissue Eng Part A 2023; 29:607-619. [PMID: 37565286 DOI: 10.1089/ten.tea.2023.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a common abdominal emergency with a high mortality rate and a lack of effective therapeutic options. Although mesenchymal stem cell (MSC) transplantation is a potential treatment for SAP, the mechanism remains unclear. It has been suggested that MSCs may act mainly through paracrine effects; therefore, we aimed to demonstrate the therapeutic efficacy of extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (UCMSCs) for SAP. Na-taurocholate was used to induce a rat SAP model through retrograde injection into the common biliopancreatic duct. After 72 h of EVs transplantation, pancreatic pathological damage was alleviated, along with a decrease in serum amylase activity and pro-inflammatory cytokine levels. Interestingly, when UCMSCs were preconditioned with 10 ng/mL tumor necrosis factor alpha (TNF-α) for 48 h, the obtained EVs (named TNF-α-EVs) performed an enhanced efficacy. Furthermore, both animal and cellular experiments showed that TNF-α-EVs alleviated the necroptosis of acinar cells of SAP through RIPK3/MLKL axis. In conclusion, our study demonstrated that TNF-α-EVs were able to enhance the therapeutic effect on SAP by inhibiting necroptosis compared to normal EVs. This study heralds that TNF-α-EVs may be a promising therapeutic approach for SAP in the future.
Collapse
Affiliation(s)
- Wangcheng Xie
- Department of General Surgery and Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingyi Luo
- Department of General Surgery and Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaobo Xue
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuyang Jia
- Department of Metabolic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery and Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenshun Song
- Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
38
|
Yu X, Dong M, Wang L, Yang Q, Wang L, Han W, Dong J, Liu T, Kong Y, Niu W. Nanotherapy for bone repair: milk-derived small extracellular vesicles delivery of icariin. Drug Deliv 2023; 30:2169414. [PMID: 36714914 PMCID: PMC9888478 DOI: 10.1080/10717544.2023.2169414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Icariin (ICA) played an important role in the treatment of inflammatory bone defects. However, pharmacokinetic studies have shown that its poor bioavailability limited its application. In this context, we isolated bovine milk-derived sEV and prepared sEV-ICA to improve the osteogenic effect of ICA. In this study, we successfully constructed sEV-ICA. sEV-ICA was found to have significantly higher osteogenic efficiency than ICA in cell culture and cranial bone defect models. Mechanistically, bioinformatics analysis predicted that signal transducers and activators of transcription 5 (STAT5a) may bind to the GJA1 promoter, while luciferase activity assays and chromatin immunoprecipitation (ChIP) experiments confirmed that STAT5a directly binded to the GJA1 promoter to promote osteogenesis. We proved that compared with ICA, sEV-ICA showed a better effect of promoting bone repair in vivo and in vitro. In addition, sEV-ICA could promote osteogenesis by promoting the combination of STAT5a and GJA1 promoter. In summary, as a complex drug delivery system, sEV-ICA constituted a rapid and effective method for the treatment of bone defects and could improve the osteogenic activity of ICA.
Collapse
Affiliation(s)
- Xinxin Yu
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Lina Wang
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Qian Yang
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Long Wang
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Wenqing Han
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Juhong Dong
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Tingjiao Liu
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China,Tingjiao Liu Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai200003, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai200003, China
| | - Ying Kong
- Department Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China,Ying Kong Department Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian116044, Liaoning, China;
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China,CONTACT Weidong Niu School of Stomatology, Dalian Medical University, Dalian116044, Liaoning, China;
| |
Collapse
|
39
|
Lee CS, Lee M, Na K, Hwang HS. Stem Cell-Derived Extracellular Vesicles for Cancer Therapy and Tissue Engineering Applications. Mol Pharm 2023; 20:5278-5311. [PMID: 37867343 DOI: 10.1021/acs.molpharmaceut.3c00376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Recently, stem cells and their secretomes have attracted great attention in biomedical applications, particularly extracellular vesicles (EVs). EVs are secretomes of cells for cell-to-cell communication. They play a role as intercellular messengers as they carry proteins, nucleic acids, lipids, and therapeutic agents. They have also been utilized as drug-delivery vehicles due to their biocompatibility, low immunogenicity, stability, targetability, and engineerable properties. The therapeutic potential of EVs can be further enhanced by surface engineering and modification using functional molecules such as aptamers, peptides, and antibodies. As a consequence, EVs hold great promise as effective delivery vehicles for enhancing treatment efficacy while avoiding side effects. Among various cell types that secrete EVs, stem cells are ideal sources of EVs because stem cells have unique properties such as self-renewal and regenerative potential for transplantation into damaged tissues that can facilitate their regeneration. However, challenges such as immune rejection and ethical considerations remain significant hurdles. Stem cell-derived EVs have been extensively explored as a cell-free approach that bypasses many challenges associated with cell-based therapy in cancer therapy and tissue regeneration. In this review, we summarize and discuss the current knowledge of various types of stem cells as a source of EVs, their engineering, and applications of EVs, focusing on cancer therapy and tissue engineering.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
40
|
Lukin I, Erezuma I, Desimone MF, Zhang YS, Dolatshahi-Pirouz A, Orive G. Nanomaterial-based drug delivery of immunomodulatory factors for bone and cartilage tissue engineering. BIOMATERIALS ADVANCES 2023; 154:213637. [PMID: 37778293 DOI: 10.1016/j.bioadv.2023.213637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
As life expectancy continues to increase, so do disorders related to the musculoskeletal system. Orthopedics-related impairments remain a challenge, with nearly 325 thousand and 120 thousand deaths recorded in 2019. Musculoskeletal system, including bone and cartilage tissue, is a living system in which cells constantly interact with the immune system, which plays a key role in the tissue repair process. An alternative to bridge the gap between these two systems is exploiting nanomaterials, as they have proven to serve as delivery agents of an array of molecules, including immunomodulatory agents (anti-inflammatory drugs, cytokines), as well as having the ability to mimic tissue by their nanoscopic structure and promote tissue repair per se. Therefore, this review outlooks nanomaterials and immunomodulatory factors widely employed in the area of bone and cartilage tissue engineering. Emerging developments in nanomaterials for delivery of immunomodulatory agents for bone and cartilage tissue engineering applications have also been discussed. It can be concluded that latest progress in nanotechnology have enabled to design intricate systems with the ability to deliver biologically active agents, promoting tissue repair and regeneration; thus, nanomaterials studied herein have shown great potential to serve as immunomodulatory agents in the area of tissue engineering.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
41
|
Santos MM, Santos AM, Nascimento Júnior JAC, Andrade TDA, Rajkumar G, Frank LA, Serafini MR. The management of osteoarthritis symptomatology through nanotechnology: a patent review. J Microencapsul 2023; 40:475-490. [PMID: 37698545 DOI: 10.1080/02652048.2023.2258955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Osteoarthritis is considered a degenerative joint disease that is characterised by inflammation, chronic pain, and functional limitation. The increasing development of nanotechnology in drug delivery systems has provided new ideas and methods for osteoarthritis therapy. This review aimed to evaluate patents that have developed innovations, therapeutic strategies, and alternatives using nanotechnology in osteoarthritis treatment. The results show patents deposited from 2015 to November 2021 in the online databases European Patent Office and World Intellectual Property Organisation. A total of 651 patents were identified for preliminary assessment and 16 were selected for full reading and discussion. The evaluated patents are focused on the intraarticular route, oral route, and topical route for osteoarthritis treatment. The intraarticular route presented a higher patent number, followed by the oral and topical routes, respectively. The development of new technologies allows us to envision a promising and positive future in osteoarthritis treatment.
Collapse
Affiliation(s)
| | | | | | | | - Gomathi Rajkumar
- Department of Botany, Sri Sarada College for Women (Autonomous), Affiliated to Periyar University, Salem, India
| | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
42
|
Yin T, Liu Y, He B, Gong B, Chu J, Gao C, Liang W, Hao M, Sun W, Zhuang J, Gao J, Yin Y. Cell primitive-based biomimetic nanomaterials for Alzheimer's disease targeting and therapy. Mater Today Bio 2023; 22:100789. [PMID: 37706205 PMCID: PMC10495673 DOI: 10.1016/j.mtbio.2023.100789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, which is not just confined to the older population. Although developments have been made in AD treatment, various limitations remain to be addressed. These are partly contributed by biological hurdles, such as the blood-brain barrier and peripheral side effects, as well as by lack of carriers that can efficiently deliver the therapeutics to the brain while preserving their therapeutic efficacy. The increasing AD prevalence and the unavailability of effective treatments have encouraged researchers to develop improved, convenient, and affordable therapies. Functional materials based on primitive cells and nanotechnology are emerging as attractive therapeutics in AD treatment. Cell primitives possess distinct biological functions, including long-term circulation, lesion site targeting, and immune suppression. This review summarizes the challenges in the delivery of AD drugs and recent advances in cell primitive-based materials for AD treatment. Various cell primitives, such as cells, extracellular vesicles, and cell membranes, are presented together with their distinctive biological functions and construction strategies. Moreover, future research directions are discussed on the basis of foreseeable challenges and perspectives.
Collapse
Affiliation(s)
- Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Clinical pharmacy innovation institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200000, China
| | - Bin He
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghaifor Science and Technology, Shanghai, 200093, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghaifor Science and Technology, Shanghai, 200093, China
| | - Wenjing Sun
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| |
Collapse
|
43
|
Yu Z, Yin J, Tang Z, Hu T, Wang Z, Chen Y, Liu T, Zhang W. Non-coding RNAs are key players and promising therapeutic targets in atherosclerosis. Front Cell Dev Biol 2023; 11:1237941. [PMID: 37719883 PMCID: PMC10502512 DOI: 10.3389/fcell.2023.1237941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Cardiovascular disease (CVD) is the primary cause of death in humans. Atherosclerosis (AS) is the most common CVD and a major cause of many CVD-related fatalities. AS has numerous risk factors and complex pathogenesis, and while it has long been a research focus, most mechanisms underlying its progression remain unknown. Noncoding RNAs (ncRNAs) represent an important focus in epigenetics studies and are critical biological regulators that form a complex network of gene regulation. Abnormal ncRNA expression disrupts the normal function of tissues or cells, leading to disease development. A large body of evidence suggests that ncRNAs are involved in all stages of atherosclerosis, from initiation to progression, and that some are significantly differentially expressed during AS development, suggesting that they may be powerful markers for screening AS or potential treatment targets. Here, we review the role of ncRNAs in AS development and recent developments in the use of ncRNAs for AS-targeted therapy, providing evidence for ncRNAs as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhun Yu
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - JinZhu Yin
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhiTong Tang
- Department of Massage, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Ting Hu
- Internal Medicine of Chinese Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhuoEr Wang
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - Ying Chen
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Tianjia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Wei Zhang
- Orthopedics Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
44
|
Khan NA, Asim M, Biswas KH, Alansari AN, Saman H, Sarwar MZ, Osmonaliev K, Uddin S. Exosome nanovesicles as potential biomarkers and immune checkpoint signaling modulators in lung cancer microenvironment: recent advances and emerging concepts. J Exp Clin Cancer Res 2023; 42:221. [PMID: 37641132 PMCID: PMC10463467 DOI: 10.1186/s13046-023-02753-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/08/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths globally, and the survival rate remains low despite advances in diagnosis and treatment. The progression of lung cancer is a multifaceted and dynamic phenomenon that encompasses interplays among cancerous cells and their microenvironment, which incorporates immune cells. Exosomes, which are small membrane-bound vesicles, are released by numerous cell types in normal and stressful situations to allow communication between cells. Tumor-derived exosomes (TEXs) possess diverse neo-antigens and cargoes such as proteins, RNA, and DNA and have a unique molecular makeup reflecting tumor genetic complexity. TEXs contain both immunosuppressive and immunostimulatory factors and may play a role in immunomodulation by influencing innate and adaptive immune components. Moreover, they transmit signals that contribute to the progression of lung cancer by promoting metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and immunosuppression. This makes them a valuable resource for investigating the immune environment of tumors, which could pave the way for the development of non-invasive biomarkers that could aid in the prognosis, diagnosis, and immunotherapy of lung cancer. While immune checkpoint inhibitor (ICI) immunotherapy has shown promising results in treating initial-stage cancers, most patients eventually develop adaptive resistance over time. Emerging evidence demonstrates that TEXs could serve as a prognostic biomarker for immunotherapeutic response and have a significant impact on both systemic immune suppression and tumor advancement. Therefore, understanding TEXs and their role in lung cancer tumorigenesis and their response to immunotherapies is an exciting research area and needs further investigation. This review highlights the role of TEXs as key contributors to the advancement of lung cancer and their clinical significance in lung immune-oncology, including their possible use as biomarkers for monitoring disease progression and prognosis, as well as emerging shreds of evidence regarding the possibility of using exosomes as targets to improve lung cancer therapy.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar.
- Faculty of Medical Sciences, Ala-Too International University, Bishkek, Kyrgyzstan.
| | - Mohammad Asim
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Amani N Alansari
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Harman Saman
- Department of Medicine, Hazm Maubrairek Hospital, Al-Rayyan, Doha, 3050, Qatar
| | | | | | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India.
| |
Collapse
|
45
|
Cheng WX, Wei SB, Zhou Y, Shao Y, Li MY. Exosomes: potential diagnostic markers and drug carriers for adenomyosis. Front Pharmacol 2023; 14:1216149. [PMID: 37680720 PMCID: PMC10482052 DOI: 10.3389/fphar.2023.1216149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Adenomyosis is a common benign gynecological disorder and an important factor leading to infertility in fertile women. Adenomyosis can cause deep lesions and is persistent and refractory in nature due to its tumor-like biological characteristics, such as the ability to implant, adhere, and invade. The pathogenesis of adenomyosis is currently unclear. Therefore, new therapeutic approaches are urgently required. Exosomes are nanoscale vesicles secreted by cells that carry proteins, genetic materials and other biologically active components. Exosomes play an important role in maintaining tissue homeostasis and regulating immune responses and metabolism. A growing body of work has shown that exosomes and their contents are key to the development and progression of adenomyosis. This review discusses the current research progress, future prospects and challenges in this emerging therapeutic tool by providing an overview of the changes in the adenomyosis uterine microenvironment and the biogenesis and functions of exosomes, with particular emphasis on the role of exosomes and their contents in the regulation of cell migration, proliferation, fibrosis formation, neovascularization, and inflammatory responses in adenomyosis.
Collapse
Affiliation(s)
- Wen-Xiu Cheng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shao-Bin Wei
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yang Zhou
- Trauma Center, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong, China
| | - Yu Shao
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mao-Ya Li
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Park S, Jalaludin I, Hwang H, Ko M, Adelipour M, Hwan M, Cho N, Kim KK, Lubman DM, Kim J. Size-exclusion chromatography for the characterization of urinary extracellular vesicles. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123828. [PMID: 37480686 PMCID: PMC10530618 DOI: 10.1016/j.jchromb.2023.123828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
In recent years, extracellular vesicles (EVs) have gained attention for their potential as biomarkers for the early diagnosis and treatment of various diseases. Traditionally, EV isolation has relied exclusively on ultracentrifugation. However, alternative enrichment methods such as size-exclusion chromatography (SEC) and polyethylene glycol-based precipitation have been introduced. This study utilized SEC as a characterization tool to assess the efficiency of EV isolation. Urinary EVs isolated from human urine using centrifugation (40,000 × g) were analyzed using an SEC column with a pore size of 1000 Å, an inner diameter of 7.8 mm, and a length of 300 mm. The EVs were detected sequentially using UV (280 nm) and fluorescence (λex/em = 550 nm/565 nm); the EVs were observed at approximately 6 min, while the proteins were observed at approximately 12 min. The repeated centrifugation enrichment steps resulted in an increase in EV peaks and a decrease in protein peaks. SEC analysis of the enriched EV samples confirmed that a four-cycle repetition of centrifugation is necessary for successful EV enrichment and removal of non-EV proteins from 40 mL of human urine.
Collapse
Affiliation(s)
- Sanghwi Park
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea; Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor, Malaysia
| | - Hyojin Hwang
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Minjeong Ko
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Maryam Adelipour
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Myung Hwan
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
47
|
Jin Y, Li S, Yu Q, Chen T, Liu D. Application of stem cells in regeneration medicine. MedComm (Beijing) 2023; 4:e291. [PMID: 37337579 PMCID: PMC10276889 DOI: 10.1002/mco2.291] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/21/2023] Open
Abstract
Regeneration is a complex process affected by many elements independent or combined, including inflammation, proliferation, and tissue remodeling. Stem cells is a class of primitive cells with the potentiality of differentiation, regenerate with self-replication, multidirectional differentiation, and immunomodulatory functions. Stem cells and their cytokines not only inextricably linked to the regeneration of ectodermal and skin tissues, but also can be used for the treatment of a variety of chronic wounds. Stem cells can produce exosomes in a paracrine manner. Stem cell exosomes play an important role in tissue regeneration, repair, and accelerated wound healing, the biological properties of which are similar with stem cells, while stem cell exosomes are safer and more effective. Skin and bone tissues are critical organs in the body, which are essential for sustaining life activities. The weak repairing ability leads a pronounced impact on the quality of life of patients, which could be alleviated by stem cell exosomes treatment. However, there are obstacles that stem cells and stem cells exosomes trough skin for improved bioavailability. This paper summarizes the applications and mechanisms of stem cells and stem cells exosomes for skin and bone healing. We also propose new ways of utilizing stem cells and their exosomes through different nanoformulations, liposomes and nanoliposomes, polymer micelles, microspheres, hydrogels, and scaffold microneedles, to improve their use in tissue healing and regeneration.
Collapse
Affiliation(s)
- Ye Jin
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Shuangyang Li
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Qixuan Yu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Tianli Chen
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Da Liu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| |
Collapse
|
48
|
Zhang Y, Dou Y, Liu Y, Di M, Bian H, Sun X, Yang Q. Advances in Therapeutic Applications of Extracellular Vesicles. Int J Nanomedicine 2023; 18:3285-3307. [PMID: 37346366 PMCID: PMC10281276 DOI: 10.2147/ijn.s409588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale bilayer phospholipid membrane vesicles released by cells. Contained large molecules such as nucleic acid, protein, and lipid, EVs are an integral part of cell communication. The contents of EVs vary based on the cell source and play an important role in both pathological and physiological conditions. EVs can be used as drugs or targets in disease treatment, and changes in the contents of EVs can indicate the progression of diseases. In recent years, with the continuous exploration of the structure, characteristics, and functions of EVs, the potential of engineered EVs for drug delivery and therapy being constantly explored. This review provides a brief overview of the structure, characteristics and functions of EVs, summarizes the advanced application of EVs and outlook on the prospect of it. It is our hope that this review will increase understanding of the current development of medical applications of EVs and help us overcome future challenges.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Mingyuan Di
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Hanming Bian
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
49
|
Almeida C, Teixeira AL, Dias F, Morais M, Medeiros R. Extracellular Vesicles as Potential Therapeutic Messengers in Cancer Management. BIOLOGY 2023; 12:biology12050665. [PMID: 37237479 DOI: 10.3390/biology12050665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
A deeper understanding of the communication mechanisms of tumor cells in a tumor microenvironment can improve the development of new therapeutic solutions, leading to a more personalized approach. Recently, the field of extracellular vesicles (EVs) has drawn attention due to their key role in intercellular communication. EVs are nano-sized lipid bilayer vesicles that are secreted by all types of cells and can function as intermediators of intercellular communication with the ability to transfer different cargo (proteins, nucleic acids, sugar…) types among cells. This role of EVs is essential in a cancer context as it can affect tumor promotion and progression and contribute to the pre-metastatic niche establishment. Therefore, scientists from basic, translational, and clinical research areas are currently researching EVs with great expectations due to their potential to be used as clinical biomarkers, which are useful for disease diagnosis, prognosis, patient follow-up, or even as vehicles for drug delivery due to their natural carrier nature. The application of EVs presents numerous advantages as drug delivery vehicles, namely their capacity to overcome natural barriers, their inherent cell-targeting properties, and their stability in the circulation. In this review, we highlight the distinctive features of EVs, their application as efficient drug delivery systems, and their clinical applications.
Collapse
Affiliation(s)
- Cristina Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRNorte), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRNorte), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
50
|
Szpakowski P, Ksiazek-Winiarek D, Czpakowska J, Kaluza M, Milewska-Jedrzejczak M, Glabinski A. Astrocyte-Derived Exosomes Differentially Shape T Cells' Immune Response in MS Patients. Int J Mol Sci 2023; 24:ijms24087470. [PMID: 37108633 PMCID: PMC10138532 DOI: 10.3390/ijms24087470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Astrocytes, the most abundant group of glia cells in the brain, provide support for neurons and indicate multiple various functions in the central nervous system (CNS). Growing data additionally describe their role in the regulation of immune system activity. They exert their function not only by direct contact with other cell types, but also through an indirect method, e.g., by secreting various molecules. One such structure is extracellular vesicles, which are important mediators of crosstalk between cells. In our study, we observed that the impact of exosomes derived from astrocytes with various functional phenotype differently affect the immune response of CD4+ T cells, both from healthy individuals and from patients with multiple sclerosis (MS). Astrocytes, by modulating exosome cargo, impacts the release of IFN-γ, IL-17A and CCL2 in our experimental conditions. Considering the proteins concentration in cell culture supernatants and the cellular percentage of Th phenotypes, it could be stated that human astrocytes, by the release of exosomes, are able to modify the activity of human T cells.
Collapse
Affiliation(s)
- Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland
| | - Dominika Ksiazek-Winiarek
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland
| | - Mateusz Kaluza
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland
| | - Marta Milewska-Jedrzejczak
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland
| |
Collapse
|