1
|
Thakur MR, Tupe RS. l-Arginine: A multifaceted regulator of diabetic cardiomyopathy. Biochem Biophys Res Commun 2025; 761:151720. [PMID: 40186920 DOI: 10.1016/j.bbrc.2025.151720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
In diabetes mellitus, dysregulated glucose and lipid metabolism lead to diabetic cardiomyopathy (DCM) by imparting pathological myocardial remodeling and cellular injury. Accelerated glycation, oxidative stress, and activated inflammatory pathways culminate in cardiac fibrosis and hypertrophy in DCM. The regulatory effects of l-Arginine (L-Arg) have been elucidated in the pathological changes of DCM, including myocardial fibrosis, hypertrophy, and apoptosis, by inhibiting glycation and oxidative stress-induced inflammation. Disturbed L-Arg metabolism and decreased intracellular L-Arg pool are correlated with the progression of DCM; therefore, L-Arg supplementation has been prescribed for various cardiovascular dysfunctions. This review expands the therapeutic potential of L-Arg supplementation in DCM by elucidating its molecular mechanism of action and exploring potential clinical outcomes.
Collapse
Affiliation(s)
- Muskan R Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
2
|
Ren B, Fang Z, Zhang Y, Yang H, Gou L, Yuan M, Wang Y, Gao D. BDH1 reduces apoptosis and alleviates mitochondrial damage of cardiomyocytes under high glucose condition as a downstream target of miR-125b. Biochem Biophys Res Commun 2025; 757:151561. [PMID: 40090116 DOI: 10.1016/j.bbrc.2025.151561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025]
Abstract
Diabetes is a chronic metabolic disease, characterized prominently by a persistent elevation of blood glucose level beyond the normal range. Prolonged hyperglycemia exerts deleterious effects on systems and organs of the body, leading to complications like diabetic cardiomyopathy (DCM). Our study commenced by screening the gene 3-hydroxybutyrate dehydrogenase 1 (BDH1) with low expression in DCM via Gene Expression Omnibus (GEO) analysis (GSE123975). Subsequently, we cultivated AC16 human cardiomyocytes in high glucose (HG) conditions and observed a reduction in BDH1 expression. To further investigate, we constructed plasmids for BDH1 knockdown (sh-BDH1) and overexpression (OE-BDH1). When BDH1 was overexpressed in HG-treated AC16 cells, apoptosis decreased, with reduced Bax/Bcl2 and Cleaved Caspase3/Caspase3 ratios. Additionally, mitochondrial ROS decreased, while expression of mitochondrial fusion protein mitofusin 2 (MFN2) and mitochondrial repair protein folliculin interacting protein 1 (FNIP1) increased. Notably, microRNA-125 b was upregulated in AC16 cells with hyperglycemia, and dual-luciferase reporter assays confirmed its targeting and inhibition of BDH1 mRNA. Inhibition of miR-125 b in HG-treated AC16 cells reversed apoptosis and mitochondrial ROS increase, yet simultaneous inhibition of both miR-125 b and BDH1 abolished this effect. In addition, we overexpressed BDH1 in diabetic mice by tail vein injection, and proved that overexpression of BDH1 could reduce cardiomyocyte apoptosis in vivo. In conclusion, our findings suggested that the miR-125-BDH1 axis could inhibit the production of mitochondrial ROS, promote mitochondrial fusion and repair, and reduce the apoptosis and mitochondrial damage of cardiomyocytes in HG condition.
Collapse
Affiliation(s)
- Bincheng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cardiovascular Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyi Fang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yimin Zhang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huan Yang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lingjuan Gou
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Miao Yuan
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Wang
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dengfeng Gao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Tsai HH, Hsiao FC, Yu AL, Juang JH, Yu J, Chu PH. Empagliflozin Reduces High Glucose-Induced Cardiomyopathy in hiPSC-Derived Cardiomyocytes : Glucose-induced Lipotoxicity in hiPSC-Derived Cardiomyocytes. Stem Cell Rev Rep 2025; 21:849-858. [PMID: 39841369 DOI: 10.1007/s12015-024-10839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Human-induced pluripotent stem cell (hiPSC) technology has been applied in pathogenesis studies, drug screening, tissue engineering, and stem cell therapy, and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) have shown promise in disease modeling, including diabetic cardiomyopathy. High glucose (HG) treatment induces lipotoxicity in hiPSC-CMs, as evidenced by changes in cell size, beating rate, calcium handling, and lipid accumulation. Empagliflozin, an SGLT2 inhibitor, effectively mitigates the hypertrophic changes, abnormal calcium handling, and contractility impairment induced by HG. Glucose concentration influences SGLT2 expression in cardiomyocytes, highlighting its potential role in diabetic cardiomyopathy. These findings support the potential utility of hiPSC-CMs in studying diabetic cardiomyopathy and the efficacy of empagliflozin in ameliorating HG-induced cardiomyocyte dysfunction. Such research may advance developments in precision medicine and therapeutic interventions for patients with diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hsiu-Hui Tsai
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Fu-Chih Hsiao
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Pediatrics, University of California in San Diego, San Diego, CA, USA
| | - Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine and Center for Tissue Engineering, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Pao-Hsien Chu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Safavi K, Abedpoor N, Hajibabaie F, Kaviani E. Mitigating Diabetic Cardiomyopathy: The Synergistic Potential of Sea Buckthorn and Metformin Explored via Bioinformatics and Chemoinformatics. BIOLOGY 2025; 14:361. [PMID: 40282226 PMCID: PMC12024933 DOI: 10.3390/biology14040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Diabetic cardiomyopathy (DCM), a critical complication of type 2 diabetes mellitus (T2DM), is marked by metabolic dysfunction, oxidative stress, and chronic inflammation, ultimately progressing to heart failure. This study investigated the synergistic therapeutic potential of Hippophae rhamnoides L. (sea buckthorn, SBU) extract and metformin in a mouse model of T2DM-induced DCM. T2DM was induced using a 45% high-fat-AGEs-enriched diet, followed by treatment with SBU, metformin, or their combination. Treatment effects were monitored through bioinformatic analysis, chemoinformatic prediction, behavioral testing, biochemical assays, histopathological evaluations and gene expression profiles. Based on bioinformatic analysis, we identified key hub genes involved in the diabetic cardiomyopathy including SERPINE1, NRG1, MYH11, PTH, NR4A2, NRF2, PGC1α, GPX4, ATF1, ASCL2, NOX1, NLRP3, CCK8, COX2, CCL2, PTGS2, EGFR, and oncostatin, which are pivotal in modulating the ferroptosis pathway. Furthermore, the expression of long non-coding RNAs (lncRNAs) NEAT1 and MALAT1, critical regulators of inflammation and cell death, was effectively downregulated, correlating with decreased levels of the pro-inflammatory marker oncostatin. The combined therapy significantly improved glucose regulation, reduced systemic inflammation and protected the heart from oxidative damage. Histopathological analysis revealed notable reductions in cardiac necrosis and fibrosis. Particularly, the combination therapy of SBU and metformin demonstrated a synergistic effect, surpassing the benefits of individual treatments in preventing cardiac damage. These findings highlight the potential of integrating SBU with metformin as a novel therapeutic strategy for managing DCM by targeting both metabolic and ferroptosis-related pathways. This dual intervention opens promising avenues for future clinical applications in diabetic heart disease management, offering a comprehensive approach to mitigating the progression of DCM.
Collapse
Affiliation(s)
- Kamran Safavi
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 8155139998, Iran
| | - Navid Abedpoor
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 8155139998, Iran
| | - Fatemeh Hajibabaie
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord 8813733395, Iran;
| | - Elina Kaviani
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan 8184917354, Iran;
| |
Collapse
|
5
|
Kuo CY, Tsou SH, Kornelius E, Chan KC, Chang KW, Li JC, Huang CN, Lin CL. The protective effects of liraglutide in reducing lipid droplets accumulation and myocardial fibrosis in diabetic cardiomyopathy. Cell Mol Life Sci 2025; 82:39. [PMID: 39779525 PMCID: PMC11711727 DOI: 10.1007/s00018-024-05558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/08/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood. METHODS In this study, we aimed to replicate diabetic glucolipotoxic conditions by treating differentiated H9c2 cells with high glucose and free fatty acids. Additionally, a diabetic cardiomyopathy model was induced in mice through high-fat diets. Both in vitro and in vivo models were used to investigate the protective effects of liraglutide on cardiomyocytes and elucidate its underlying molecular mechanisms. RESULTS Our findings indicate that liraglutide significantly reduces lipid droplet (LD) formation and myocardial fibrosis, as evidenced by decreased expression of fibrosis markers, including TGF-β1 and collagen types I and III. Liraglutide also enhanced AMP-activated protein kinase (AMPK) activation, which improved mitochondrial function, increased antioxidant gene expression, enhanced insulin signaling, and reduced oxidative stress. CONCLUSIONS These results demonstrate the potential therapeutic role of liraglutide in managing diabetes-related cardiac complications, offering a comprehensive approach to improving cardiac outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Chien-Yin Kuo
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Sing-Hua Tsou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Edy Kornelius
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Kuei-Chuan Chan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Kai-Wei Chang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Jung-Chi Li
- Department of Cardiology, Wuri Lin Shin Hospital, Taichung, 414, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan.
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
6
|
Weeldreyer NR, McEntee ML, Martin MP, Lee CD, Marvasti FF, Gaesser GA, Kessler R, Angadi SS. A patient choice-driven lifestyle intervention lowers HbA1c in type 2 diabetes: A feasibility study. Physiol Rep 2025; 13:e70163. [PMID: 39815443 PMCID: PMC11735460 DOI: 10.14814/phy2.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/13/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025] Open
Abstract
Type 2 diabetes (T2D) is a common metabolic disorder in which only 25% of patients meet management targets. While the primary care setting is positioned to provide lifestyle management education, studies are lacking which integrate behavior interventions in this setting utilizing clinic staff. Thus, we evaluated a 90-day lifestyle intervention for management of glycemia at a family practice clinic administered by clinic medical assistants. Twenty patients with non-insulin-dependent T2D completed a 90-day intervention driven by patient choices of nutrition and physical activity. Medical assistants were trained by members of the study team and administered the intervention under nurse practitioner supervision. HbA1c trended toward significant reduction 8.59 ± 0.9% to 8.15 ± 1.2% (p = 0.051, 95% CI: -0.88 to 0.003). Modest reductions were observed for waist circumference (115.5 ± 12.6 vs. 112.5 ± 15.2 cm; p = 0.014, 95% CI: -5.66 to -0.26), body weight (97.7 ± 21.9 vs. 95.6 ± 23.9 kg; p = 0.016. 95% CI: -3.84 to -0.31), and BMI (33.7 ± 7.2 vs. 32.8 ± 7.5 kg/m2; p = 0.028, 95% CI: -1.29 to -0.12). This 90-day, patient choice-intervention was successful at lowering HbA1c in patients with T2D. Our study is limited by a lack of control group, and results should be interpreted as such. These data have implications for team-based care models in clinic settings to improve health outcomes in patients with T2D.
Collapse
Affiliation(s)
- Nathan R. Weeldreyer
- Department of Kinesiology, School of Education and Human DevelopmentUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Mindy L. McEntee
- College of Health SolutionsArizona State UniversityPhoenixArizonaUSA
| | - Matthew P. Martin
- College of Health SolutionsArizona State UniversityPhoenixArizonaUSA
| | - Chong D. Lee
- College of Health SolutionsArizona State UniversityPhoenixArizonaUSA
| | | | - Glenn A. Gaesser
- College of Health SolutionsArizona State UniversityPhoenixArizonaUSA
| | - Rodger Kessler
- Department of Family MedicineUniversity of Colorado School of MedicineDenverColoradoUSA
| | - Siddhartha S. Angadi
- Department of Kinesiology, School of Education and Human DevelopmentUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
7
|
Wu Y, Jiang W, Wang J, Xie G, Sun Y, Yang J. Disruption of BCAA degradation is a critical characteristic of diabetic cardiomyopathy revealed by integrated transcriptome and metabolome analysis. Open Life Sci 2024; 19:20220974. [PMID: 39822378 PMCID: PMC11736389 DOI: 10.1515/biol-2022-0974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 01/19/2025] Open
Abstract
In this study, we integrated transcriptomic and metabolomic analyses to achieve a comprehensive understanding of the underlying mechanisms of diabetic cardiomyopathy (DCM) in a diabetic rat model. Functional and molecular characterizations revealed significant cardiac injury, dysfunction, and ventricular remodeling in DCM. A thorough analysis of global changes in genes and metabolites showed that amino acid metabolism, especially the breakdown of branched-chain amino acids (BCAAs) such as valine, leucine, and isoleucine, is highly dysregulated. Furthermore, the study identified the transcription factor Gata3 as a predicted negative regulator of the gene encoding the key enzyme for BCAA degradation. These findings suggest that the disruption of BCAA degradation is a critical characteristic of diabetic myocardial damage and indicate a potential role for Gata3 in the dysregulation of BCAA metabolism in the context of DCM.
Collapse
Affiliation(s)
- Yanxia Wu
- State/National Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610000, P. R. China
- Sichuan Greentech Bioscience Co., Ltd., Meishan, Sichuan, 620010, P. R. China
| | - Wanxiang Jiang
- Sichuan Greentech Bioscience Co., Ltd., Meishan, Sichuan, 620010, P. R. China
| | - Junlong Wang
- Sichuan Greentech Bioscience Co., Ltd., Meishan, Sichuan, 620010, P. R. China
| | - Guoqing Xie
- Sichuan Greentech Bioscience Co., Ltd., Meishan, Sichuan, 620010, P. R. China
| | - Yan Sun
- Sichuan Greentech Bioscience Co., Ltd., Meishan, Sichuan, 620010, P. R. China
| | - Jinliang Yang
- State/National Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610000, P. R. China
| |
Collapse
|
8
|
Chatham JC, Wende AR. The role of protein O-GlcNAcylation in diabetic cardiomyopathy. Biochem Soc Trans 2024; 52:2343-2358. [PMID: 39601777 DOI: 10.1042/bst20240262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
It is well established that diabetes markedly increases the risk of multiple types of heart disease including heart failure. However, despite substantial improvements in the treatment of heart failure in recent decades the relative increased risk associated with diabetes remains unchanged. There is increasing appreciation of the importance of the post translational modification by O-linked-N-acetylglucosamine (O-GlcNAc) of serine and threonine residues on proteins in regulating cardiomyocyte function and mediating stress responses. In response to diabetes there is a sustained increase in cardiac O-GlcNAc levels, which has been attributed to many of the adverse effects of diabetes on the heart. Here we provide an overview of potential mechanisms by which increased cardiac O-GlcNAcylation contributes to the adverse effects on the heart and highlight some of the key gaps in our knowledge.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
9
|
Lu C, Gao C, Wei J, Dong D, Sun M. SIRT1-FOXOs signaling pathway: A potential target for attenuating cardiomyopathy. Cell Signal 2024; 124:111409. [PMID: 39277092 DOI: 10.1016/j.cellsig.2024.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Cardiomyopathy constitutes a global health burden. It refers to myocardial injury that causes alterations in cardiac structure and function, ultimately leading to heart failure. Currently, there is no definitive treatment for cardiomyopathy. This is because existing treatments primarily focus on drug interventions to attenuate symptoms rather than addressing the underlying causes of the disease. Notably, the cardiomyocyte loss is one of the key risk factors for cardiomyopathy. This loss can occur through various mechanisms such as metabolic disturbances, cardiac stress (e.g., oxidative stress), apoptosis as well as cell death resulting from disorders in autophagic flux, etc. Sirtuins (SIRTs) are categorized as class III histone deacetylases, with their enzyme activity primarily reliant on the substrate nicotinamide adenine dinucleotide (NAD (+)). Among them, Sirtuin 1 (SIRT1) is the most intensively studied in the cardiovascular system. Forkhead O transcription factors (FOXOs) are the downstream effectors of SIRT1. Several reports have shown that SIRT1 can form a signaling pathway with FOXOs in myocardial tissue, and this pathway plays a key regulatory role in cell loss. Thus, this review describes the basic mechanism of SIRT1-FOXOs in inhibiting cardiomyocyte loss and its favorable role in cardiomyopathy. Additionally, we summarized the SIRT1-FOXOs related regulation factor and prospects the SIRT1-FOXOs potential clinical application, which provide reference for the development of cardiomyopathy treatment.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
10
|
Miura T, Kouzu H, Tanno M, Tatekoshi Y, Kuno A. Role of AMP deaminase in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:3195-3211. [PMID: 38386218 DOI: 10.1007/s11010-024-04951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunction caused by this disorder.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda-7, Teine-Ku, Sapporo, 006-8585, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nursing, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Yuki Tatekoshi
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Dhiman S, Dhankhar S, Garg A, Rohilla M, Saini M, Singh TG, Chauhan S, Selim S, Al Jaouni SK, Yasmin S, Begum N, Alshahrani A, Ansari MY. Mechanistic insights and therapeutic potential of astilbin and apigenin in diabetic cardiomyopathy. Heliyon 2024; 10:e39996. [PMID: 39583813 PMCID: PMC11582444 DOI: 10.1016/j.heliyon.2024.e39996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a critical complication of Diabetes mellitus (DM), characterized by structural and functional changes in the myocardium independent of coronary artery disease or hypertension. Emerging evidence highlights the significant roles of phytochemicals, particularly astilbin and apigenin, in modulating key molecular pathways implicated in DCM. This review synthesizes current mechanistic insights and therapeutic potential of these compounds, focusing on their interactions with AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs), O-linked N-acetylglucosamine (O-GlcNAc), sodium-glucose co-transporter 2 (SGLT2), protein kinase C (PKC), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) pathways. Astilbin and apigenin have demonstrated the ability to improve cardiac function, mitigate oxidative stress, and reduce inflammatory responses in diabetic conditions. By activating AMPK and PPARs, these flavonoids enhance glucose uptake and fatty acid oxidation, contributing to improved metabolic homeostasis. Their inhibition of O-GlcNAcylation, SGLT2 activity, and PKC signaling further attenuates hyperglycemia-induced cellular damage. Additionally, suppression of NF-κB, MAPK, and JNK pathways by astilbin and apigenin results in reduced pro-inflammatory cytokine production and apoptotic cell death. Collectively, these interactions position astilbin and apigenin as promising therapeutic agents for ameliorating DCM, offering novel avenues for treatment strategies aimed at modulating multiple pathogenic pathways.
Collapse
Affiliation(s)
- Sachin Dhiman
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Sanchit Dhankhar
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Anjali Garg
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Swami Devi Dyal College of Pharmacy, GolpuraBarwala, Panchkula, Haryana, 134118, India
| | - Manni Rohilla
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab, 140601, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab, 140601, India
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Naseem Begum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| | - Aziza Alshahrani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Yousuf Ansari
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| |
Collapse
|
12
|
Dan X, Li K, Xu J, Yan P. The Potential of Neuregulin 4 as a Novel Biomarker and Therapeutic Agent for Vascular Complications in Type 2 Diabetes Mellitus. J Inflamm Res 2024; 17:8543-8554. [PMID: 39539725 PMCID: PMC11559183 DOI: 10.2147/jir.s492115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Neuregulin 4 (Nrg4), a novel adipokine produced primarily by brown adipose tissue (BAT), has been functionally characterized to exert beneficial effects on modulating energy homeostasis and glucolipid metabolism, and is closely associated with the development and progression of obesity and obesity-associated metabolic diseases, such as type 2 diabetes mellitus (T2DM) and cardiovascular diseases. Recently, there has been a growing focus on the relationship between circulating Nrg4 levels and T2DM-related vascular complications. In this review, we discussed the known and potential roles of Nrg4 in various physiological and pathological processes, and its association with vascular complications in T2DM, in the aim of finding a potential biomarker recommended for the clinical diagnosis, prognosis and follow-up of T2DM patients at high risk of developing vascular complications as well as providing new therapeutic approaches.
Collapse
Affiliation(s)
- Xiaofang Dan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People’s Republic of China
| | - Ke Li
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People’s Republic of China
| | - Jiali Xu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
13
|
Elnahas SM, Mansour HAEH, El-Sawi MR, Abou-El-Naga AM. Therapeutic effect of Momordica charantia on cardiomyopathy in a diabetic maternal rat model. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:977-990. [PMID: 38973290 DOI: 10.1002/jez.2854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Myocardial structural and functional abnormalities are hallmarks of diabetic cardiomyopathy (DCM), a chronic consequence of diabetes mellitus (DM). Maternal DM affects and increases the risk of heart defects in diabetic mothers compared with nondiabetic mothers. Momordica charantia exhibits antidiabetic effects due to various bioactive compounds that are phytochemicals, a broad group that includes phenolic compounds, alkaloids, proteins, steroids, inorganic compounds, and lipids. Pregnant maternal rats were split into four groups: control (C), M. charantia-treated (MC), type 2 diabetes mellitus (T2DM) (DM), and diabetic (MC + DM) groups. Diabetes mothers had increased serum glucose, insulin, total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels and reduced high-density lipoprotein cholesterol levels. Cardiac biomarkers such as cardiac troponin T (cTnT), creatine kinase-myocardial band (CK-MB), and lactate dehydrogenase were increased. Hormone levels of follicle-stimulating hormone, luteinizing hormone, progesterone, and estrogen decreased significantly. Inflammatory markers such as interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and vascular adhesion molecule-1 (VCAM-1) were elevated in diabetic mothers. Oxidative stress markers indicated increased malondialdehyde and nitric oxide levels, while antioxidants such as glutathione, superoxide dismutase, and catalase were decreased in maternal heart tissue. The levels of apoptotic markers such as tumor suppressor 53 (P53) and cysteine aspartic protease-3 (caspase-3) were significantly greater in diabetic maternal heart tissue. Histopathological analysis revealed heart tissue abnormalities in diabetic maternal rats. M. charantia extract improved maternal diabetes-induced changes in inflammation, antioxidant levels, and heart tissue structure.
Collapse
Affiliation(s)
- Shaimaa M Elnahas
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Mamdouh R El-Sawi
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
14
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
15
|
Meng X, Feng B, Yang C, Li Y, Xia C, Guo Y, Wang X, Wang F. Association between the triglyceride-glucose index and left ventricular myocardial work indices in patients with coronary artery disease. Front Endocrinol (Lausanne) 2024; 15:1447984. [PMID: 39525850 PMCID: PMC11544542 DOI: 10.3389/fendo.2024.1447984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background Triglyceride-glucose (TyG) index, as an effective surrogate marker of insulin resistance, has shown predictive value in the risk of heart failure in patients with coronary artery disease (CAD). This study aims to investigate the correlation between TyG index and myocardial work measurements in CAD, and to explore its role in detecting early subclinical cardiac dysfunction. Methods This cross-sectional study included 267 patients diagnosed with CAD and excluding left ventricular myocardial dysfunction in Beijing Hospital. Participants were divided into two groups according to the TyG index level, and myocardial work measurements were compared between groups. The correlation was explored between gradually increased TyG index and subclinical myocardial function in CAD patients. Results We observed that TyG index was significantly correlated with the global waste work (GWW), and the value of GWW increased progressively with the elevation of TyG index. After adjusting for the effects of confounding factors, TyG index was still independently associated with GWW. Conclusion An elevated TyG index was independently correlated with early subclinical myocardial dysfunction in CAD patients. Our study demonstrated that the strict control of TyG index may be conducive to forestall the progression of clinical heart failure in CAD patients.
Collapse
Affiliation(s)
- Xuyang Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Baoyu Feng
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chenguang Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenxi Xia
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Ying Guo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Rubio-Ruíz ME, Plata-Corona JC, Soria-Castro E, Díaz-Juárez JA, Sánchez-Aguilar M. Pleiotropic Effects of Peroxisome Proliferator-Activated Receptor Alpha and Gamma Agonists on Myocardial Damage: Molecular Mechanisms and Clinical Evidence-A Narrative Review. Cells 2024; 13:1488. [PMID: 39273057 PMCID: PMC11394383 DOI: 10.3390/cells13171488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases remain the leading cause of death in the world, and that is why finding an effective and multi-functional treatment alternative to combat these diseases has become more important. Fibrates and thiazolidinediones, peroxisome proliferator-activated receptors alpha and gamma are the pharmacological therapies used to treat dyslipidemia and type 2 diabetes, respectively. New mechanisms of action of these drugs have been found, demonstrating their pleiotropic effects, which contribute to preserving the heart by reducing or even preventing myocardial damage. Here, we review the mechanisms underlying the cardioprotective effects of PPAR agonists and regulating morphological and physiological heart alterations (metabolic flexibility, mitochondrial damage, apoptosis, structural remodeling, and inflammation). Moreover, clinical evidence regarding the cardioprotective effect of PPAR agonists is also addressed.
Collapse
Affiliation(s)
- María Esther Rubio-Ruíz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Juan Carlos Plata-Corona
- Department of Interventional Cardiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Julieta Anabell Díaz-Juárez
- Department of Pharmacology “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - María Sánchez-Aguilar
- Department of Pharmacology “Dr. Rafael Méndez Martínez”, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| |
Collapse
|
17
|
Tu J, Liu Q, Sun H, Gan L. Farrerol Alleviates Diabetic Cardiomyopathy by Regulating AMPK-Mediated Cardiac Lipid Metabolic Pathways in Type 2 Diabetic Rats. Cell Biochem Biophys 2024; 82:2427-2437. [PMID: 38878100 DOI: 10.1007/s12013-024-01353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 10/02/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent complication of diabetes mellitus characterized by cardiac dysfunction and myocardial remodeling. Farrerol (FA), an active ingredient in Rhododendron with various pharmacological activities, has an unclear specific role in DCM. Therefore, this study aims to investigate the effects of FA on DCM rats and elucidate its mechanism. The type 2 diabetes mellitus (T2DM) model was induced in adult male Sprague-Dawley rats by administering a high-fat diet for 8 weeks along with STZ injection. Subsequent to successful modeling, FA and the positive drug Dapagliflozin (Dapa) were orally administered via gavage for an additional 8-week period. After administration, the rats' body weight, fasting blood glucose, fasting insulin, and blood lipid profiles were quantified. Cardiac function was assessed through evaluation of cardiac function parameters, histopathological examination and measurement of myocardial enzyme markers were conducted to assess myocardial injury and fibrosis, Oil red O staining was utilized to evaluate myocardial lipid accumulation, wheat germ agglutinin (WGA) staining was used for assessing cardiomyocyte hypertrophy, and Western blot analysis was used to detect the proteins expression level of AMP-activated protein kinase (AMPK) pathway. The rat cardiomyocyte H9c2 were induced with palmitic acid to establish an in vitro cell model of myocardial lipid toxicity. Subsequently, the cells were subjected to treatment with FA and AMPK inhibitor Compound C, followed by assessment of lipid formation and expression levels of proteins related to the AMPK signaling pathway. The findings demonstrated that both FA and Dapa exhibited efficacy in ameliorating diabetic symptoms, cardiac dysfunction, myocardial fibrosis, cardiomyocyte hypertrophy, and lipid accumulation in T2DM rats. Additionally, they were found to enhance AMPK phosphorylation and PPARα expression while down-regulating CD36. Similarly, FA was observed to inhibit lipid formation in H9c2 and activate the AMPK signaling pathway. However, the improved effect of FA on lipotoxic cardiomyocytes induced by palmitic acid was partially reversed by Compound C. Therefore, the activation of the AMPK signaling pathway by FA may enhance cardiac lipid metabolism, thereby improving cardiac dysfunction and myocardial fibrosis in DCM rats.
Collapse
MESH Headings
- Animals
- Male
- Rats
- AMP-Activated Protein Kinases/metabolism
- Benzhydryl Compounds/pharmacology
- Cell Line
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/complications
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/pathology
- Glucosides/pharmacology
- Glucosides/therapeutic use
- Lipid Metabolism/drug effects
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Jia Tu
- Department of Critical Care Medicine, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437199, China
| | - Qiaoling Liu
- Department of Neonatology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437199, China
| | - Huirong Sun
- Department of Cardiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437199, China
| | - Luzhen Gan
- Department of Pharmacy, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437199, China.
| |
Collapse
|
18
|
Fernandez CJ, Shetty S, Pappachan JM. Diabetic cardiomyopathy: Emerging therapeutic options. World J Diabetes 2024; 15:1677-1682. [PMID: 39192854 PMCID: PMC11346103 DOI: 10.4239/wjd.v15.i8.1677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 07/25/2024] Open
Abstract
Diabetic cardiomyopathy (DbCM) is a common but underrecognized compli-cation of patients with diabetes mellitus (DM). Although the pathobiology of other cardiac complications of diabetes such as ischemic heart disease and cardiac autonomic neuropathy are mostly known with reasonable therapeutic options, the mechanisms and management options for DbCM are still not fully understood. In its early stages, DbCM presents with diastolic dysfunction followed by heart failure (HF) with preserved ejection fraction that can progress to systolic dysfunction and HF with reduced ejection fraction in its advanced stages unless appropriately managed. Apart from prompt control of DM with lifestyle changes and antidiabetic medications, disease-modifying therapy for DbCM includes prompt control of hypertension and dyslipidemia inherent to patients with DM as in other forms of heart diseases and the use of treatments with proven efficacy in HF. A basic study by Zhang et al, in a recent issue of the World Journal of Diabetes elaborates the potential pathophysiological alterations and the therapeutic role of teneligliptin in diabetic mouse models with DbCM. Although this preliminary basic study might help to improve our understanding of DbCM and offer a potential new management option for patients with the disease, the positive results from such animal models might not always translate to clinical practice as the pathobiology of DbCM in humans could be different. However, such experimental studies can encourage more scientific efforts to find a better solution to treat patients with this enigmatic disease.
Collapse
Affiliation(s)
- Cornelius James Fernandez
- Department of Endocrinology & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
19
|
Yan M, Fu H, Zhang X, Xu K, Guo Y, Xu H. More attention needs to focus on the diabetic cardiomyopathy without coronary artery disease. Int J Cardiol 2024; 409:132194. [PMID: 38795971 DOI: 10.1016/j.ijcard.2024.132194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Affiliation(s)
- Mei Yan
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyuan Zhang
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Pan X, Hao E, Zhang F, Wei W, Du Z, Yan G, Wang X, Deng J, Hou X. Diabetes cardiomyopathy: targeted regulation of mitochondrial dysfunction and therapeutic potential of plant secondary metabolites. Front Pharmacol 2024; 15:1401961. [PMID: 39045049 PMCID: PMC11263127 DOI: 10.3389/fphar.2024.1401961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a specific heart condition in diabetic patients, which is a major cause of heart failure and significantly affects quality of life. DCM is manifested as abnormal cardiac structure and function in the absence of ischaemic or hypertensive heart disease in individuals with diabetes. Although the development of DCM involves multiple pathological mechanisms, mitochondrial dysfunction is considered to play a crucial role. The regulatory mechanisms of mitochondrial dysfunction mainly include mitochondrial dynamics, oxidative stress, calcium handling, uncoupling, biogenesis, mitophagy, and insulin signaling. Targeting mitochondrial function in the treatment of DCM has attracted increasing attention. Studies have shown that plant secondary metabolites contribute to improving mitochondrial function and alleviating the development of DCM. This review outlines the role of mitochondrial dysfunction in the pathogenesis of DCM and discusses the regulatory mechanism for mitochondrial dysfunction. In addition, it also summarizes treatment strategies based on plant secondary metabolites. These strategies targeting the treatment of mitochondrial dysfunction may help prevent and treat DCM.
Collapse
Affiliation(s)
- Xianglong Pan
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wei Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Guangli Yan
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xijun Wang
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaotao Hou
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
21
|
Li X, Zou J, Lin A, Chi J, Hao H, Chen H, Liu Z. Oxidative Stress, Endothelial Dysfunction, and N-Acetylcysteine in Type 2 Diabetes Mellitus. Antioxid Redox Signal 2024; 40:968-989. [PMID: 38497734 PMCID: PMC11535463 DOI: 10.1089/ars.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Significance: Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality globally. Endothelial dysfunction is closely associated with the development and progression of CVDs. Patients with diabetes mellitus (DM) especially type 2 DM (T2DM) exhibit a significant endothelial cell (EC) dysfunction with substantially increased risk for CVDs. Recent Advances: Excessive reactive oxygen species (ROS) and oxidative stress are important contributing factors to EC dysfunction and subsequent CVDs. ROS production is significantly increased in DM and is critically involved in the development of endothelial dysfunction in diabetic patients. In this review, efforts are made to discuss the role of excessive ROS and oxidative stress in the pathogenesis of endothelial dysfunction and the mechanisms for excessive ROS production and oxidative stress in T2DM. Critical Issues: Although studies with diabetic animal models have shown that targeting ROS with traditional antioxidant vitamins C and E or other antioxidant supplements provides promising beneficial effects on endothelial function, the cardiovascular outcomes of clinical studies with these antioxidant supplements have been inconsistent in diabetic patients. Future Directions: Preclinical and limited clinical data suggest that N-acetylcysteine (NAC) treatment may improve endothelial function in diabetic patients. However, well-designed clinical studies are needed to determine if NAC supplementation would effectively preserve endothelial function and improve the clinical outcomes of diabetic patients with reduced cardiovascular morbidity and mortality. With better understanding on the mechanisms of ROS generation and ROS-mediated endothelial damages/dysfunction, it is anticipated that new selective ROS-modulating agents and effective personalized strategies will be developed for the management of endothelial dysfunction in DM.
Collapse
Affiliation(s)
- Xin Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China
| | - Junyong Zou
- Department of Respiratory Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Aiping Lin
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Jingshu Chi
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Hao
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Chen
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenguo Liu
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
22
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
23
|
Berezin AE, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AA. Methods to predict heart failure in diabetes patients. Expert Rev Endocrinol Metab 2024; 19:241-256. [PMID: 38622891 DOI: 10.1080/17446651.2024.2342812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is one of the leading causes of cardiovascular disease and powerful predictor for new-onset heart failure (HF). AREAS COVERED We focus on the relevant literature covering evidence of risk stratification based on imaging predictors and circulating biomarkers to optimize approaches to preventing HF in DM patients. EXPERT OPINION Multiple diagnostic algorithms based on echocardiographic parameters of cardiac remodeling including global longitudinal strain/strain rate are likely to be promising approach to justify individuals at higher risk of incident HF. Signature of cardiometabolic status may justify HF risk among T2DM individuals with low levels of natriuretic peptides, which preserve their significance in HF with clinical presentation. However, diagnostic and predictive values of conventional guideline-directed biomarker HF strategy may be non-optimal in patients with obesity and T2DM. Alternative biomarkers affecting cardiac fibrosis, inflammation, myopathy, and adipose tissue dysfunction are plausible tools for improving accuracy natriuretic peptides among T2DM patients at higher HF risk. In summary, risk identification and management of the patients with T2DM with established HF require conventional biomarkers monitoring, while the role of alternative biomarker approach among patients with multiple CV and metabolic risk factors appears to be plausible tool for improving clinical outcomes.
Collapse
Affiliation(s)
- Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Tetiana A Berezina
- VitaCenter, Department of Internal Medicine & Nephrology, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
24
|
Liu B, Wei Y, He J, Feng B, Chen Y, Guo R, Griffin MD, Hynes SO, Shen S, Liu Y, Cui H, Ma J, O'Brien T. Human umbilical cord-derived mesenchymal stromal cells improve myocardial fibrosis and restore miRNA-133a expression in diabetic cardiomyopathy. Stem Cell Res Ther 2024; 15:120. [PMID: 38659015 PMCID: PMC11040946 DOI: 10.1186/s13287-024-03715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development. This study aimed to investigate the therapeutic effects of intravenous administration of hUC-MSCs on DCM following different durations of hyperglycemia in an experimental male model of diabetes and to determine the effects on expression of candidate miRNAs, target mRNA and inflammatory mediators. METHODS A male mouse model of diabetes was induced by multiple low-dose streptozotocin injections. The effects on severity of DCM of intravenous injections of hUC-MSCs and saline two weeks previously were compared at 10 and 18 weeks after diabetes induction. At both time-points, biochemical assays, echocardiography, histopathology, polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to analyze blood glucose, body weight, cardiac structure and function, degree of myocardial fibrosis and expression of fibrosis-related mRNA, miRNA and inflammatory mediators. RESULTS Saline-treated diabetic male mice had impaired cardiac function and increased cardiac fibrosis after 10 and 18 weeks of diabetes. At both time-points, cardiac dysfunction and fibrosis were improved in hUC-MSC-treated mice. Pro-fibrotic indicators (α-SMA, collagen I, collagen III, Smad3, Smad4) were reduced and anti-fibrotic mediators (FGF-1, miRNA-133a) were increased in hearts of diabetic animals receiving hUC-MSCs compared to saline. Increased blood levels of pro-inflammatory cytokines (IL-6, TNF, IL-1β) and increased cardiac expression of IL-6 were also observed in saline-treated mice and were reduced by hUC-MSCs at both time-points, but to a lesser degree at 18 weeks. CONCLUSION Intravenous injection of hUC-MSCs ameliorated key functional and structural features of DCM in male mice with diabetes of shorter and longer duration. Mechanistically, these effects were associated with restoration of intra-myocardial expression of miRNA-133a and its target mRNA COL1AI as well as suppression of systemic and localized inflammatory mediators.
Collapse
Affiliation(s)
- Boxin Liu
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Yan Wei
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Jingjing He
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Baofeng Feng
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Human Anatomy Department, Hebei Medical University, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Yimeng Chen
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Ruiyun Guo
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Matthew D Griffin
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Seán O Hynes
- Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Sanbing Shen
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Yan Liu
- Department of Endocrinology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, 050051, China
| | - Huixian Cui
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China.
- Human Anatomy Department, Hebei Medical University, Hebei Province, 050017, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China.
| | - Jun Ma
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China.
- Human Anatomy Department, Hebei Medical University, Hebei Province, 050017, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China.
| | - Timothy O'Brien
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China.
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland.
| |
Collapse
|
25
|
Arévalo Lorido JC, Carretero Gómez J, Conde Martel A, Aramburu Bodas O, Trullás JC, Carrasco Sánchez FJ, Manzano Espinosa L, Cerqueiro González JM, Moreno García C, Casado Cerrada J, Montero Pérez-Barquero M. The two different profiles in heart failure with preserved ejection fraction and type 2 diabetes mellitus: ischemic and diabetic. Curr Med Res Opin 2024; 40:359-366. [PMID: 38193461 DOI: 10.1080/03007995.2024.2303089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
OBJECTIVE Two profiles of patients with heart failure with preserved ejection fraction (HFpEF) and type 2 diabetes mellitus (T2DM) can be discerned: those with ischemic and those with diabetic cardiomyopathy (DMC). We aim to analyze clinical differences and prognosis between patients of these two profiles. MATERIAL AND METHODS This cohort study analyzes data from the Spanish Heart Failure Registry, a multicenter, prospective registry that enrolled patients admitted for decompensated heart failure and followed them for one year. Three groups were created according to the presence of T2DM and heart disease depending on the etiology (ischemic when coronary artery disease was present, or DMC when no coronary, valvular, or congenital heart disease; no hypertension; nor infiltrative cardiovascular disease observed on an endomyocardial biopsy). The groups and outcomes were compared. RESULTS A total of 466 patients were analyzed. Group 1 (n = 210) included patients with ischemic etiology and T2DM. Group 2 (n = 112) included patients with DMC etiology and T2DM. Group 3 (n = 144), a control group, included patients with ischemic etiology and without T2DM. Group 1 had more hypertension and dyslipidemia; group 2 had more atrial fibrillation (AF) and higher body mass index; group 3 had more chronic kidney disease and were older. In the regression analysis, group 3 had a better prognosis than group 1 (reference group) for cardiovascular mortality and HF readmissions (HR 0.44;95%CI 0.2-1; p = .049). CONCLUSIONS Patients with T2DM and HFpEF, who had the poorest prognosis, were of two different profiles: either ischemic or DMC etiology. The first had a higher burden of cardiovascular disease and inflammation whereas the second had a higher prevalence of obesity and AF. The first had a slightly poorer prognosis than the second, though this finding was not significant.
Collapse
Affiliation(s)
| | | | - Alicia Conde Martel
- Internal Medicine Department, Dr. Negrín University Hospital of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Oscar Aramburu Bodas
- Internal Medicine Department, Virgen Macarena University Hospital, Sevilla, Spain
| | - Joan Carles Trullás
- Internal Medicine Department, Olot and Garrotxa Regional Hospital, Olot, Girona, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), School of Medicine, University of Vic-Central University of Catalonia, Vic, Barcelona, Spain
| | | | | | | | | | - Jesús Casado Cerrada
- Internal Medicine Department, University Hospital of Getafe, Getafe, Madrid, Spain
| | | |
Collapse
|
26
|
Vilariño-García T, Polonio-González ML, Pérez-Pérez A, Ribalta J, Arrieta F, Aguilar M, Obaya JC, Gimeno-Orna JA, Iglesias P, Navarro J, Durán S, Pedro-Botet J, Sánchez-Margalet V. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int J Mol Sci 2024; 25:2338. [PMID: 38397015 PMCID: PMC10888594 DOI: 10.3390/ijms25042338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Diabetes mellitus (DM) is a highly prevalent disease worldwide, estimated to affect 1 in every 11 adults; among them, 90-95% of cases are type 2 diabetes mellitus. This is partly attributed to the surge in the prevalence of obesity, which has reached epidemic proportions since 2008. In these patients, cardiovascular (CV) risk stands as the primary cause of morbidity and mortality, placing a substantial burden on healthcare systems due to the potential for macrovascular and microvascular complications. In this context, leptin, an adipocyte-derived hormone, plays a fundamental role. This hormone is essential for regulating the cellular metabolism and energy balance, controlling inflammatory responses, and maintaining CV system homeostasis. Thus, leptin resistance not only contributes to weight gain but may also lead to increased cardiac inflammation, greater fibrosis, hypertension, and impairment of the cardiac metabolism. Understanding the relationship between leptin resistance and CV risk in obese individuals with type 2 DM (T2DM) could improve the management and prevention of this complication. Therefore, in this narrative review, we will discuss the evidence linking leptin with the presence, severity, and/or prognosis of obesity and T2DM regarding CV disease, aiming to shed light on the potential implications for better management and preventive strategies.
Collapse
Affiliation(s)
- Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen del Rocio University Hospital, University of Seville, Seville 41013, Spain;
| | - María L. Polonio-González
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
| | - Josep Ribalta
- Departament de Medicina i Cirurgia, University Rovira i Vigili, IISPV, CIBERDEM, 43007 Tarragona, Spain;
| | - Francisco Arrieta
- Endocrinology and Nutrition Service, Ramón y Cajal University Hospital, 28034 Madrid, Spain;
| | - Manuel Aguilar
- Endocrinology and Nutrition Service, Puerta del Mar University Hospital, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz University (UCA), 11001 Cádiz, Spain;
| | - Juan C. Obaya
- Chopera Helath Center, Alcobendas Primary Care,Alcobendas 28100 Madrid, Spain;
| | - José A. Gimeno-Orna
- Endocrinology and Nutrition Department, Hospital Clinico Universitario Lozano Blesa, 15 50009 Zaragoza, Spain;
| | - Pedro Iglesias
- Endocrinology and Nutrition Service, Puerta de Hierro University Hospital, Majadahonda, 28220 Madrid, Spain;
| | - Jorge Navarro
- Hospital Clínico Universitario de Valencia,46011 Valencia, Spain;
| | - Santiago Durán
- Endodiabesidad Clínica Durán & Asociados,41018 Seville, Spain;
| | - Juan Pedro-Botet
- Lipids and Cardiovascular Risk Unit, Hospital del Mar, Autonomous University of Barcelona, 08003 Barcelona, Spain;
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
- Institute of Biomedicine of Seville (IBIS), Hospital Universitario Virgen del Rocío/Virgen Macarena, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
27
|
Singhal S, Rani V. Cardioprotective Role of Tinospora cordifolia against Trimethylamine-N-Oxide and Glucose Induced Stress in Rat Cardiomyocytes. Cardiovasc Hematol Agents Med Chem 2024; 22:475-494. [PMID: 37907489 DOI: 10.2174/0118715257270512231013064533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 09/15/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Type 2 diabetes has become a concern issue that affects the quality of life and can increase the risk of cardiac insufficiency elevating the threat to the life safety of patients. A recognized cause of cardiac insufficiency is diabetic cardiomyopathy, chronic hyperglycemia, and myocardial lipotoxicity which can reduce the myocardial contractile performance, and enhance the cardiomyocyte hypertrophy and interstitial fibrosis. The cause of diabetic cardiomyopathy is multi-factorial which includes oxidative stress, insulin resistance, inflammation, apoptosis, and autophagy. Recent clinical studies have suggested the dysbiosis of gut microbiota, secretion of metabolites, and their diffusion in to the host as to have direct detrimental effects on the cardiac contractility. MATERIALS AND METHODS In the present paper, we have done in silico studies including molecular interaction of phytoconstituents of Tinospora cordifolia against reactive oxygen species producing proteins. Whereas, in vitro studies were conducted on H9C2 cardiac cells including cell morphological examination, level of reactive oxygen species, cell count-viability, apoptotic status, in the presence of high glucose, trimethylamine-n-oxide, and plant extracts which were determined through cell analyzer and microscopic assays. RESULTS The treatment of high glucose and trimethylamine-n-oxide was found to be increase the cardiac stress approximately two fold by attenuating hypertrophic conditions, oxidative stress, and apoptosis in rat cardiomyocytes, and Tinospora cordifolia was found to be a cardioprotective agent. CONCLUSION Conclusively, our study has reported that the Indian medicinal plant Tinospora cordifolia has the ability to treat diabetic cardiomyopathy. Our study can open up a new herbal therapeutic strategy against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shivani Singhal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Vibha Rani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| |
Collapse
|
28
|
Avagimyan A, Fogacci F, Pogosova N, Kakrurskiy L, Kogan E, Urazova O, Kobalava Z, Mikhaleva L, Vandysheva R, Zarina G, Trofimenko A, Navasardyan G, Mkrtchyan L, Galli M, Jndoyan Z, Aznauryan A, Saahakyan K, Agati L, Shafie D, Cicero A, Salvo GD, Sarrafzadegan N. Diabetic Cardiomyopathy: 2023 Update by the International Multidisciplinary Board of Experts. Curr Probl Cardiol 2024; 49:102052. [PMID: 37640176 DOI: 10.1016/j.cpcardiol.2023.102052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Diabetes mellitus (DM) is considered by many the pandemic of the 21st century and is associated with multiple organ damages. Among these, cardiovascular complications are responsible for an incredible burden of mortality and morbidity in Western Countries. The study of the pathological mechanisms responsible for the cardiovascular complications in DM patients is key for the development of new therapeutic strategies. The metabolic disorders caused by hyperglycemia, insulin resistance, and dyslipidemia, results in a cascade of pathomorphological changes favoring the atherosclerotic process and leading to myocardial remodeling. Parallel to this, oxidative stress, calcium overload, mitochondrial dysfunction, activation of protein kinase C signaling pathways, myocardial lipomatosis, and low-grade inflammation of the myocardium - are the main pathways responsible for the diabetic cardiomyopathy development. This review aims to appraise and discuss the pathogenetic mechanisms behind the diabetic cardiomyopathy development.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Anatomical Pathology and Clinical Morphology Department, Yerevan State Medical University, Yerevan, Armenia.
| | - Federica Fogacci
- Atherosclerosis and Metabolic Disorders Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Nana Pogosova
- Research and Preventive Cardiology, National Medical Research Centre of Cardiology, Moscow, Russia
| | - Lev Kakrurskiy
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Eugenia Kogan
- Pathology Department, Immunohistochemistry Reference Centre of Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olga Urazova
- Pathophysiology Department, Siberian State Medical University, Tomsk, Russia
| | - Zhanna Kobalava
- Internal Disease and Cardiology Department, Peoples Friendship University of Russia, Moscow, Russia
| | - Liudmila Mikhaleva
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Rositsa Vandysheva
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Gioeva Zarina
- A.P. Avtsyn Research Institute of Human Morphology FSBI "Petrovskiy NRCS" Moscow, Russia
| | - Artem Trofimenko
- Pathophysiology Department, Kuban State Medical University, Krasnodar, Russia
| | | | - Lusine Mkrtchyan
- Cardiology Department, Yerevan State Medical University, Yerevan, Armenia
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Zinaida Jndoyan
- Internal Diseases Propaedeutic Department, Yerevan State Medical University, Yerevan, Armenia
| | - Anait Aznauryan
- Histology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Karmen Saahakyan
- Cardiology Department, Azienda Umberto I, Sapienza University, Rome, Italy
| | - Luciano Agati
- Cardiology Department, Azienda Umberto I, Sapienza University, Rome, Italy
| | - Davood Shafie
- Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan, Iran
| | - Arrigo Cicero
- Atherosclerosis and Metabolic Disorders Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
29
|
Liu B, Zhang J, Zhou Z, Feng B, He J, Yan W, Zhou X, Amponsah AE, Guo R, Du X, Liu X, Cui H, O'Brien T, Ma J. Preclinical Evidence for the Effectiveness of Mesenchymal Stromal Cells for Diabetic Cardiomyopathy: A Systematic Review and Meta-analysis. Curr Stem Cell Res Ther 2024; 19:220-233. [PMID: 37165495 DOI: 10.2174/1574888x18666230510111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus that endangers human health. DCM results in cardiac dysfunction, which eventually progresses to heart failure. Mesenchymal stromal cells (MSCs), a type of multipotent stem cell, have shown promising therapeutic effects in various cardiovascular diseases and diabetic complications in preclinical studies due to their immunomodulatory and regenerative abilities. However, there is still a lack of evidence to summarize the effectiveness of MSCs in the treatment of DCM. Therefore, a meta-analysis and systematic review are warranted to evaluate the therapeutic potential of MSCs for DCM in preclinical studies. METHODS A comprehensive literature search in English or Chinese was conducted in PubMed, EMBASE, web of Science, Cochrane Library, and China National Knowledge Internet from inception to June 30, 2022. The summarized outcomes included echocardiography, morphology, and pathology. Data were independently extracted and analyzed by two authors. The software we adopted was Review Manager5.4.1. This systematic review was written in compliance with PRISMA 2020 and the review protocol was registered on PROSPERO, registration no. CRD42022350032. RESULTS We included 20 studies in our meta-analysis to examine the efficacy of MSCs in the treatment of DCM. The MSC-treated group showed a statistically significant effect on left ventricular ejection fraction (WMD=12.61, 95% CI 4.32 to 20.90, P=0.003) and short axis fractional shortening (WMD=6.84, 95% CI 4.09 to 9.59, P < 0.00001). The overall effects on the ratio of early to late diastolic mitral annular velocity, left ventricular end-diastolic pressure, maximum positive pressure development, maximum negative pressure development, left ventricular relaxation time constant, heart weight to body weight ratio, fibrosis area, and arteriole density were analyzed, suggesting that MSCs represent an effective therapy for the treatment of DCM. CONCLUSION Our results suggest a therapeutic role for MSCs in the treatment of DCM, and these results provide support for the use of MSCs in clinical trials of patients with DCM.
Collapse
Affiliation(s)
- Boxin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Zijing Zhou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Wei Yan
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xinghong Zhou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaofeng Du
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province
| | - Timothy O'Brien
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province
| |
Collapse
|
30
|
Lecis D, Prandi FR, Barone L, Belli M, Sergi D, Longo S, Muscoli S, Romeo F, Federici M, Lerakis S, Barillà F. Beyond the Cardiovascular Effects of Glucagon-like Peptide-1 Receptor Agonists: Body Slimming and Plaque Stabilization. Are New Statins Born? Biomolecules 2023; 13:1695. [PMID: 38136567 PMCID: PMC10741698 DOI: 10.3390/biom13121695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by lipid and inflammatory cell deposits in the inner layer of large- and medium-sized elastic and muscular arteries. Diabetes mellitus (DM) significantly increases the risk of cardiovascular diseases and the overall and cardiovascular mortality, and it is a pro-atherogenic factor that induces atherosclerosis development and/or accelerates its progression through a multifactorial process. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a new class of drugs, belonging to the armamentarium to fight type 2 DM, that have shown robust reductions in atherosclerotic events and all-cause mortality in all studies. Preclinical studies have shown that GLP-1RAs play a role in the immunomodulation of atherosclerosis, affecting multiple pathways involved in plaque development and progression. In this review, we wanted to explore the translational power of such preclinical studies by analyzing the most recent clinical trials investigating the atheroprotective effect of GLP-1RAs.
Collapse
Affiliation(s)
- Dalgisio Lecis
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.P.); (L.B.); (M.B.); (D.S.); (S.M.); (F.B.)
| | - Francesca Romana Prandi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.P.); (L.B.); (M.B.); (D.S.); (S.M.); (F.B.)
- Division of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| | - Lucy Barone
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.P.); (L.B.); (M.B.); (D.S.); (S.M.); (F.B.)
| | - Martina Belli
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.P.); (L.B.); (M.B.); (D.S.); (S.M.); (F.B.)
- Cardiovascular Imaging Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Domenico Sergi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.P.); (L.B.); (M.B.); (D.S.); (S.M.); (F.B.)
| | - Susanna Longo
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (S.L.); (M.F.)
| | - Saverio Muscoli
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.P.); (L.B.); (M.B.); (D.S.); (S.M.); (F.B.)
| | - Francesco Romeo
- Faculty of Medicine, UniCamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Massimo Federici
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (S.L.); (M.F.)
| | - Stamatios Lerakis
- Division of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| | - Francesco Barillà
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.P.); (L.B.); (M.B.); (D.S.); (S.M.); (F.B.)
| |
Collapse
|
31
|
Mauricio D, Gratacòs M, Franch-Nadal J. Diabetic microvascular disease in non-classical beds: the hidden impact beyond the retina, the kidney, and the peripheral nerves. Cardiovasc Diabetol 2023; 22:314. [PMID: 37968679 PMCID: PMC10652502 DOI: 10.1186/s12933-023-02056-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
Diabetes microangiopathy, a hallmark complication of diabetes, is characterised by structural and functional abnormalities within the intricate network of microvessels beyond well-known and documented target organs, i.e., the retina, kidney, and peripheral nerves. Indeed, an intact microvascular bed is crucial for preserving each organ's specific functions and achieving physiological balance to meet their respective metabolic demands. Therefore, diabetes-related microvascular dysfunction leads to widespread multiorgan consequences in still-overlooked non-traditional target organs such as the brain, the lung, the bone tissue, the skin, the arterial wall, the heart, or the musculoskeletal system. All these organs are vulnerable to the physiopathological mechanisms that cause microvascular damage in diabetes (i.e., hyperglycaemia-induced oxidative stress, inflammation, and endothelial dysfunction) and collectively contribute to abnormalities in the microvessels' structure and function, compromising blood flow and tissue perfusion. However, the microcirculatory networks differ between organs due to variations in haemodynamic, vascular architecture, and affected cells, resulting in a spectrum of clinical presentations. The aim of this review is to focus on the multifaceted nature of microvascular impairment in diabetes through available evidence of specific consequences in often overlooked organs. A better understanding of diabetes microangiopathy in non-target organs provides a broader perspective on the systemic nature of the disease, underscoring the importance of recognising the comprehensive range of complications beyond the classic target sites.
Collapse
Affiliation(s)
- Dídac Mauricio
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IR Sant Pau, Barcelona, Spain.
- Department of Medicine, University of Vic - Central University of Catalonia, Vic, Spain.
| | - Mònica Gratacòs
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Josep Franch-Nadal
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
32
|
Rodrigues EA, Rosa CM, Campos DHS, Damatto FC, Murata GM, Souza LM, Pagan LU, Gatto M, Brosler JY, Souza HOA, Martins MM, Bastos LM, Tanni SE, Okoshi K, Okoshi MP. The influence of dapagliflozin on cardiac remodeling, myocardial function and metabolomics in type 1 diabetes mellitus rats. Diabetol Metab Syndr 2023; 15:223. [PMID: 37908006 PMCID: PMC10617150 DOI: 10.1186/s13098-023-01196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Sodium-glucose cotransporter (SGLT)2 inhibitors have displayed beneficial effects on the cardiovascular system in diabetes mellitus (DM) patients. As most clinical trials were performed in Type 2 DM, their effects in Type 1 DM have not been established. OBJECTIVE To evaluate the influence of long-term treatment with SGLT2 inhibitor dapagliflozin on cardiac remodeling, myocardial function, energy metabolism, and metabolomics in rats with Type 1 DM. METHODS Male Wistar rats were divided into groups: Control (C, n = 15); DM (n = 15); and DM treated with dapagliflozin (DM + DAPA, n = 15) for 30 weeks. DM was induced by streptozotocin. Dapagliflozin 5 mg/kg/day was added to chow. STATISTICAL ANALYSIS ANOVA and Tukey or Kruskal-Wallis and Dunn. RESULTS DM + DAPA presented lower glycemia and higher body weight than DM. Echocardiogram showed DM with left atrium dilation and left ventricular (LV) hypertrophy, dilation, and systolic and diastolic dysfunction. In LV isolated papillary muscles, DM had reduced developed tension, +dT/dt and -dT/dt in basal condition and after inotropic stimulation. All functional changes were attenuated by dapagliflozin. Hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) activity was lower in DM than C, and PFK and PK activity higher in DM + DAPA than DM. Metabolomics revealed 21 and 5 metabolites positively regulated in DM vs. C and DM + DAPA vs. DM, respectively; 6 and 3 metabolites were negatively regulated in DM vs. C and DM + DAPA vs. DM, respectively. Five metabolites that participate in cell membrane ultrastructure were higher in DM than C. Metabolites levels of N-oleoyl glutamic acid, chlorocresol and N-oleoyl-L-serine were lower and phosphatidylethanolamine and ceramide higher in DM + DAPA than DM. CONCLUSION Long-term treatment with dapagliflozin attenuates cardiac remodeling, myocardial dysfunction, and contractile reserve impairment in Type 1 diabetic rats. The functional improvement is combined with restored pyruvate kinase and phosphofructokinase activity and attenuated metabolomics changes.
Collapse
Affiliation(s)
- Eder Anderson Rodrigues
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Camila Moreno Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Dijon Henrique Salome Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Felipe Cesar Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Gilson Masahiro Murata
- LIM29, Division of Nephrology, Medical School, University of Sao Paulo, USP, Sao Paulo, SP, Brazil
| | - Lidiane Moreira Souza
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luana Urbano Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mariana Gatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jessica Yumi Brosler
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Hebreia Oliveira Almeida Souza
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mario Machado Martins
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luciana Machado Bastos
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Suzana Erico Tanni
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marina Politi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
33
|
Li X, Su X, Xia F, Qiu J, Zhang J, Wu H, Xie X, Xu M. Bibliometric and visual analysis of diabetes mellitus and pyroptosis from 2011 to 2022. Eur J Med Res 2023; 28:235. [PMID: 37443131 DOI: 10.1186/s40001-023-01175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE To visualize and analyze the published literature on diabetes mellitus and pyroptosis based on a bibliometric approach, so as to provide a comprehensive picture of the hot research directions and dynamic progress in this field. METHODS This study was based on the web of science core collection database to conduct a comprehensive search of the published literature in the field of diabetes mellitus and Pyroptosis from January 1985 to August 2022, including the published research literature in this field, as well as a visual analysis of the number of citations, year of publication, journal, author, research institution, country, and research topic. RESULTS A total of 139 literature on research related to diabetes mellitus and cellular scorch from 2011 to 2022 were retrieved, with a total of 3009 citations and a maximum of 255 citations for a single article, which had a first author Schmid-Burgk, JL The first author of this article is from Germany; among 20 publishing countries, China leads with 100 articles; among 222 publishing institutions, Harbin Medical University leads with 18 articles and 184 citations; among 980 authors, Chen, X from China tops the list of high-impact authors with 5 articles and 29 citations. Among the 98 journals, "CELL DEATH DISEASE" ranked first in both volume and high-impact journals with 4 articles and 29 citations. Among 349 keywords, "pyroptosis" ranked first with a cumulative frequency of 65 times. The cluster analysis was divided into three categories, chronic complications of diabetes mellitus and pyroptosis (67 articles), diabetes mellitus and pyroptosis (60 articles), and diabetes mellitus combined with other diseases and pyroptosis (12 articles), and the number of articles related to diabetes mellitus and its chronic complications increased rapidly from 2019, among which, diabetic cardiomyopathy (27 articles) had the highest number of articles. CONCLUSIONS Based on a comprehensive analysis of published literature in the field of diabetes mellitus and pyroptosis from 2011 to 2022, this study achieved a visual analysis of studies with significant and outstanding contributions to the field, thus framing a picture showing the development and changes in the field. At the same time, this study provides research information and direction for clinicians and investigators to conduct diabetes mellitus and pyroptosis-related research in the future.
Collapse
Affiliation(s)
- Xiaodong Li
- The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, 550000, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiaojuan Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Fenglin Xia
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jiaqi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Haiyan Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Mingchao Xu
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620010, China.
| |
Collapse
|
34
|
Li P, Qin D, Chen T, Hou W, Song X, Yin S, Song M, Fernando WCHA, Chen X, Sun Y, Wang J. Dysregulated Rbfox2 produces aberrant splicing of Ca V1.2 calcium channel in diabetes-induced cardiac hypertrophy. Cardiovasc Diabetol 2023; 22:168. [PMID: 37415128 PMCID: PMC10324275 DOI: 10.1186/s12933-023-01894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND L-type Ca2+ channel CaV1.2 is essential for cardiomyocyte excitation, contraction and gene transcription in the heart, and abnormal functions of cardiac CaV1.2 channels are presented in diabetic cardiomyopathy. However, the underlying mechanisms are largely unclear. The functions of CaV1.2 channels are subtly modulated by splicing factor-mediated alternative splicing (AS), but whether and how CaV1.2 channels are alternatively spliced in diabetic heart remains unknown. METHODS Diabetic rat models were established by using high-fat diet in combination with low dose streptozotocin. Cardiac function and morphology were assessed by echocardiography and HE staining, respectively. Isolated neonatal rat ventricular myocytes (NRVMs) were used as a cell-based model. Cardiac CaV1.2 channel functions were measured by whole-cell patch clamp, and intracellular Ca2+ concentration was monitored by using Fluo-4 AM. RESULTS We find that diabetic rats develop diastolic dysfunction and cardiac hypertrophy accompanied by an increased CaV1.2 channel with alternative exon 9* (CaV1.2E9*), but unchanged that with alternative exon 8/8a or exon 33. The splicing factor Rbfox2 expression is also increased in diabetic heart, presumably because of dominate-negative (DN) isoform. Unexpectedly, high glucose cannot induce the aberrant expressions of CaV1.2 exon 9* and Rbfox2. But glycated serum (GS), the mimic of advanced glycation end-products (AGEs), upregulates CaV1.2E9* channels proportion and downregulates Rbfox2 expression in NRVMs. By whole-cell patch clamp, we find GS application hyperpolarizes the current-voltage curve and window currents of cardiac CaV1.2 channels. Moreover, GS treatment raises K+-triggered intracellular Ca2+ concentration ([Ca2+]i), enlarges cell surface area of NRVMs and induces hypertrophic genes transcription. Consistently, siRNA-mediated knockdown of Rbfox2 in NRVMs upregulates CaV1.2E9* channel, shifts CaV1.2 window currents to hyperpolarization, increases [Ca2+]i and induces cardiomyocyte hypertrophy. CONCLUSIONS AGEs, not glucose, dysregulates Rbfox2 which thereby increases CaV1.2E9* channels and hyperpolarizes channel window currents. These make the channels open at greater negative potentials and lead to increased [Ca2+]i in cardiomyocytes, and finally induce cardiomyocyte hypertrophy in diabetes. Our work elucidates the underlying mechanisms for CaV1.2 channel regulation in diabetic heart, and targeting Rbfox2 to reset the aberrantly spliced CaV1.2 channel might be a promising therapeutic approach in diabetes-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Pengpeng Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dongxia Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Tiange Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wei Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xinyu Song
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shumin Yin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Miaomiao Song
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - W C Hewith A Fernando
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaojie Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Juejin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
35
|
Dasari D, Goyal SG, Penmetsa A, Sriram D, Dhar A. Canagliflozin protects diabetic cardiomyopathy by mitigating fibrosis and preserving the myocardial integrity with improved mitochondrial function. Eur J Pharmacol 2023; 949:175720. [PMID: 37054940 DOI: 10.1016/j.ejphar.2023.175720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Sodium-glucose transport protein 2 (SGLT-2) inhibitors are approved antidiabetic drugs with a beneficial effect on reducing major adverse cardiac events and heart failure hospitalization. Among them, canagliflozin has the least selectivity toward SGLT-2 over the SGLT-1 isoform. Canagliflozin can inhibit SGLT-1 at therapeutic levels; however, the underlying molecular mechanism is not understood. This study aimed to evaluate the effect of canagliflozin on SGLT1 expression in an animal model of diabetic cardiomyopathy (DCM) and its associated effects. In vivo studies were carried out in the most clinically relevant high-fat diet and streptozotocin-induced type-2 diabetes model of diabetic cardiomyopathy, and in vitro studies were performed using cultured rat cardiomyocytes stimulated with high glucose and palmitic acid. DCM was induced in male Wistar rats for 8 weeks with or without 10 mg/kg canagliflozin treatment. At the end of the study, systemic and molecular characteristics were measured using immunofluorescence, quantitative RT‒PCR, immunoblotting, histology, and FACS analysis. SGLT-1 expression was upregulated in DCM hearts and was associated with fibrosis, apoptosis, and hypertrophy. Canagliflozin treatment attenuated these changes. The histological evaluation showed improved myocardial structure, and in vitro results revealed improved mitochondrial quality and biogenesis after canagliflozin treatment. In conclusion, canagliflozin protects the DCM heart by inhibiting myocardial SGLT-1 and associated hypertrophy, fibrosis, and apoptosis. Thus, developing novel pharmacological inhibitors targeting SGLT-1 could be a better strategy for treating DCM and associated cardiovascular complications.
Collapse
Affiliation(s)
- Deepika Dasari
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Srashti Gopal Goyal
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Anuhya Penmetsa
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
36
|
Ghosh N, Chacko L, Bhattacharya H, Vallamkondu J, Nag S, Dey A, Karmakar T, Reddy PH, Kandimalla R, Dewanjee S. Exploring the Complex Relationship between Diabetes and Cardiovascular Complications: Understanding Diabetic Cardiomyopathy and Promising Therapies. Biomedicines 2023; 11:biomedicines11041126. [PMID: 37189744 DOI: 10.3390/biomedicines11041126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Diabetes mellitus (DM) and cardiovascular complications are two unmet medical emergencies that can occur together. The rising incidence of heart failure in diabetic populations, in addition to apparent coronary heart disease, ischemia, and hypertension-related complications, has created a more challenging situation. Diabetes, as a predominant cardio-renal metabolic syndrome, is related to severe vascular risk factors, and it underlies various complex pathophysiological pathways at the metabolic and molecular level that progress and converge toward the development of diabetic cardiomyopathy (DCM). DCM involves several downstream cascades that cause structural and functional alterations of the diabetic heart, such as diastolic dysfunction progressing into systolic dysfunction, cardiomyocyte hypertrophy, myocardial fibrosis, and subsequent heart failure over time. The effects of glucagon-like peptide-1 (GLP-1) analogues and sodium-glucose cotransporter-2 (SGLT-2) inhibitors on cardiovascular (CV) outcomes in diabetes have shown promising results, including improved contractile bioenergetics and significant cardiovascular benefits. The purpose of this article is to highlight the various pathophysiological, metabolic, and molecular pathways that contribute to the development of DCM and its significant effects on cardiac morphology and functioning. Additionally, this article will discuss the potential therapies that may be available in the future.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, Rockville, MD 20850-3173, USA
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | | | - Sagnik Nag
- Department of Biotechnology, Vellore Institute of Technology (VIT), School of Biosciences & Technology, Tiruvalam Road, Vellore 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Tanushree Karmakar
- Dr. B C Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India
| | | | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
37
|
Abo-Saif MA, Ragab AE, Ibrahim AO, Abdelzaher OF, Mehanyd ABM, Saber-Ayad M, El-Feky OA. Pomegranate peel extract protects against the development of diabetic cardiomyopathy in rats by inhibiting pyroptosis and downregulating LncRNA-MALAT1. Front Pharmacol 2023; 14:1166653. [PMID: 37056985 PMCID: PMC10086142 DOI: 10.3389/fphar.2023.1166653] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Pyroptosis is an inflammatory programmed cell death accompanied by activation of inflammasomes and maturation of pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. Pyroptosis is closely linked to the development of diabetic cardiomyopathy (DC). Pomegranate peel extract (PPE) exhibits a cardioprotective effect due to its antioxidant and anti-inflammatory properties. This study aimed to investigate the underlying mechanisms of the protective effect of PPE on the myocardium in a rat model of DC and determine the underlying molecular mechanism.Methods: Type 1 diabetes (T1DM) was induced in rats by intraperitoneal injection of streptozotocin. The rats in the treated groups received (150 mg/kg) PPE orally and daily for 8 weeks. The effects on the survival rate, lipid profile, serum cardiac troponin-1, lipid peroxidation, and tissue fibrosis were assessed. Additionally, the expression of pyroptosis-related genes (NLRP3 and caspase-1) and lncRNA-MALAT1 in the heart tissue was determined. The PPE was analyzed using UPLC-MS/MS and NMR for characterizing the phytochemical content.Results: Prophylactic treatment with PPE significantly ameliorated cardiac hypertrophy in the diabetic rats and increased the survival rate. Moreover, prophylactic treatment with PPE in the diabetic rats significantly improved the lipid profile, decreased serum cardiac troponin-1, and decreased lipid peroxidation in the myocardial tissue. Histopathological examination of the cardiac tissues showed a marked reduction in fibrosis (decrease in collagen volume and number of TGF-β-positive cells) and preservation of normal myocardial structures in the diabetic rats treated with PPE. There was a significant decrease in the expression of pyroptosis-related genes (NLRP3 and caspase-1) and lncRNA-MALAT1 in the heart tissue of the diabetic rats treated with PPE. In addition, the concentration of IL-1β and caspase-1 significantly decreased in the heart tissue of the same group. The protective effect of PPE on diabetic cardiomyopathy could be due to the inhibition of pyroptosis and downregulation of lncRNA-MALAT1. The phytochemical analysis of the PPE indicated that the major compounds were hexahydroxydiphenic acid glucoside, caffeoylquinic acid, gluconic acid, citric acid, gallic acid, and punicalagin.Conclusion: PPE exhibited a cardioprotective potential in diabetic rats due to its unique antioxidant, anti-inflammatory, and antifibrotic properties and its ability to improve the lipid profile. The protective effect of PPE on DC could be due to the inhibition of the NLRP3/caspase-1/IL-1β signaling pathway and downregulation of lncRNA-MALAT1. PPE could be a promising therapy to protect against the development of DC, but further clinical studies are recommended.
Collapse
Affiliation(s)
- Mariam Ali Abo-Saif
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amany E. Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- *Correspondence: Amany E. Ragab, ; Maha Saber-Ayad,
| | - Amera O. Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | | | - Maha Saber-Ayad
- Department of Clinical Sciences, College of Medicine and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacology, College of Medicine, Cairo University, Giza, Egypt
- *Correspondence: Amany E. Ragab, ; Maha Saber-Ayad,
| | - Ola A. El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
38
|
Macvanin MT, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front Endocrinol (Lausanne) 2023; 14:1124613. [PMID: 36950696 PMCID: PMC10025540 DOI: 10.3389/fendo.2023.1124613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Diabetes mellitus (DM) is on the rise, necessitating the development of novel therapeutic and preventive strategies to mitigate the disease's debilitating effects. Diabetic cardiomyopathy (DCMP) is among the leading causes of morbidity and mortality in diabetic patients globally. DCMP manifests as cardiomyocyte hypertrophy, apoptosis, and myocardial interstitial fibrosis before progressing to heart failure. Evidence suggests that non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), regulate diabetic cardiomyopathy-related processes such as insulin resistance, cardiomyocyte apoptosis and inflammation, emphasizing their heart-protective effects. This paper reviewed the literature data from animal and human studies on the non-trivial roles of miRNAs and lncRNAs in the context of DCMP in diabetes and demonstrated their future potential in DCMP treatment in diabetic patients.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
39
|
Dhar A, Venkadakrishnan J, Roy U, Vedam S, Lalwani N, Ramos KS, Pandita TK, Bhat A. A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy. Ther Adv Cardiovasc Dis 2023; 17:17539447231210170. [PMID: 38069578 PMCID: PMC10710750 DOI: 10.1177/17539447231210170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/09/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by structural and functional abnormalities in the myocardium affecting people with diabetes. Treatment of DCM focuses on glucose control, blood pressure management, lipid-lowering, and lifestyle changes. Due to limited therapeutic options, DCM remains a significant cause of morbidity and mortality in patients with diabetes, thus emphasizing the need to develop new therapeutic strategies. Ongoing research is aimed at understanding the underlying molecular mechanism(s) involved in the development and progression of DCM, including oxidative stress, inflammation, and metabolic dysregulation. The goal is to develope innovative pharmaceutical therapeutics, offering significant improvements in the clinical management of DCM. Some of these approaches include the effective targeting of impaired insulin signaling, cardiac stiffness, glucotoxicity, lipotoxicity, inflammation, oxidative stress, cardiac hypertrophy, and fibrosis. This review focuses on the latest developments in understanding the underlying causes of DCM and the therapeutic landscape of DCM treatment.
Collapse
Affiliation(s)
- Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | | | - Utsa Roy
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Sahithi Vedam
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Nikita Lalwani
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT) 184311, India
| |
Collapse
|
40
|
Li JY, Zhao CC, Peng JF, Zhang M, Wang L, Yin G, Zhou P. The Protective Effect of Sheng Mai Yin on Diabetic Cardiomyopathy via NLRP3/Caspase-1 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1234434. [PMID: 36506810 PMCID: PMC9731757 DOI: 10.1155/2022/1234434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Sheng Mai Yin (SMY) has therapeutic effects on myocardial infarction (MI), heart failure (HF), diabetic cardiomyopathy (DCM), and myocarditis. To study whether SMY can relieve pyroptosis and play a protective role in diabetic cardiomyopathy, a molecular docking technique was used to predict the possible mechanism of SMY against DCM. Then, a DCM rat model was induced by intraperitoneal injection of streptozotocin (STZ), divided into 5 groups: the DM group (model), SMY-L group (2.7 mL/kg SMY), SMY-M group (5.4 mL/kg SMY), SMY-H group (10.8 mL/kg SMY), and Met group (120 mg/kg metformin). Rats in the CTL group (control) and DM group were given normal saline. After 8 weeks, the levels of blood glucose, lipids, and myocardial enzymes were detected according to the kit instructions. Cardiac function was detected by echocardiography. HE and Masson were used to observing the pathological changes, collagen deposition, and collagen volume fraction (CVF). The apoptosis rate of cardiomyocytes was determined by Tunel. The IL-1β level was determined by ELISA and RT-PCR. The expressions of NLRP3, caspase-1, and GSDMD were measured using RT-PCR and Western blotting. The docking results suggested that SMY may act on NLRP3 and its downstream signal pathway. The in vivo results showed that SMY could reduce blood glucose and lipid levels, improve heart function, improve histopathological changes and myocardial enzymes, and alleviate cardiomyocyte apoptosis and myocardial fibrosis. SMY inhibited the mRNA and protein expressions of NLRP3, ASC, Caspase-1, and GSDMD and IL-1β production. SMY can reduce DCM by regulating the NLRP3/caspase-1 signaling pathway, providing a new research direction for the treatment of DCM.
Collapse
Affiliation(s)
- Jing-Ya Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chun-Chun Zhao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jian-Fei Peng
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Meng Zhang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Liang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Gang Yin
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
41
|
Ji M, Liu Y, Zuo Z, Xu C, Lin L, Li Y. Downregulation of amphiregulin improves cardiac hypertrophy via attenuating oxidative stress and apoptosis. Biol Direct 2022; 17:21. [PMID: 35996142 PMCID: PMC9394079 DOI: 10.1186/s13062-022-00334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Amphiregulin (AREG) is a ligand of epidermal growth factor receptor and participates in the fibrosis of multiple organs. However, whether AREG can regulate hypertrophic cardiomyopathy is not well known. This research aims to explore the effect of AREG on cardiac hypertrophy, and whether the oxidative stress and apoptosis was involved in the influence of AREG on cardiac hypertrophy. Angiotensin (Ang) II induced cardiac hypertrophy in mice and neonatal rat cardiomyocytes (NRCMs) or HL-1 cells in vitro. AREG expressions raised in the heart of mice. After AREG downregulation, the increases of Ang II induced cardiac weight and cardiomyocytes area were inhibited. Down-regulation of AREG could inhibit Ang II induced the increases of atrial natriuretic peptide, brain natriuretic peptide, beta-myosin heavy chain in the heart of mice, and NRCMs and HL-1 cells. The enhancement of oxidative stress in mice heart with Ang II treatment was alleviated by AREG knockdown. The raises of Ang II induced Bax and cleaved caspase3 in mice heart were inhibited by AREG downregulation. AREG downregulation reduced myocardial hypertrophy via inhibition of oxidative and apoptosis. AREG may be a target for future cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Mingyue Ji
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Yun Liu
- Department of Intensive Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi Zuo
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Cheng Xu
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, 150 JimoRoad, Shanghai, 200120, China.
| | - Yong Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
42
|
Jia Y, Li D, Yu J, Jiang W, Liao X, Zhao Q. Potential diabetic cardiomyopathy therapies targeting pyroptosis: A mini review. Front Cardiovasc Med 2022; 9:985020. [PMID: 36061533 PMCID: PMC9433721 DOI: 10.3389/fcvm.2022.985020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Pyroptosis is primarily considered a pro-inflammatory class of caspase-1- and gasdermin D (GSDMD)-dependent programmed cell death. Inflammasome activation promotes the maturation and release of interleukin (IL)-1β and IL-18, cleavage of GSDMD, and development of pyroptosis. Recent studies have reported that NLRP3 inflammasome activation-mediated pyroptosis aggravates the formation and development of diabetes cardiomyopathy (DCM). These studies provide theoretical mechanisms for exploring a novel approach to treat DCM-associated cardiac dysfunction. Accordingly, this review aims to summarize studies that investigated possible DCM therapies targeting pyroptosis and elucidate the molecular mechanisms underlying NLRP3 inflammasome-mediated pyroptosis, and its potential association with the pathogenesis of DCM. This review may serve as a basis for the development of potential pharmacological agents as novel and effective treatments for managing and treating DCM.
Collapse
Affiliation(s)
- Yu Jia
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongze Li
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, Chengdu, China
| | - Jing Yu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoyang Liao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qian Zhao,
| |
Collapse
|
43
|
Inhibition of GCN2 Alleviates Cardiomyopathy in Type 2 Diabetic Mice via Attenuating Lipotoxicity and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11071379. [PMID: 35883870 PMCID: PMC9312289 DOI: 10.3390/antiox11071379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a kind of heart disease that affects diabetic patients and is one of the primary causes of death. We previously demonstrated that deletion of the general control nonderepressible 2 (GCN2) kinase ameliorates cardiac dysfunction in diabetic mice. The aim of this study was to investigate the protective effect of GCN2iB, a GCN2 inhibitor, in type 2 diabetic (T2D) mice induced by a high-fat diet (HFD) plus low-dose streptozotocin (STZ) treatments or deletion of the leptin receptor (db/db). GCN2iB (3 mg/kg/every other day) treatment for 6 weeks resulted in significant decreases in fasting blood glucose levels and body weight and increases in the left ventricular ejection fraction. GCN2iB treatment also attenuated myocardial fibrosis, lipid accumulation and oxidative stress in the hearts of T2D mice, which was associated with decreases in lipid metabolism-related genes and increases in antioxidative genes. Untargeted metabolomics and RNA sequencing analysis revealed that GCN2iB profoundly affected myocardial metabolomic profiles and gene expression profiles. In particular, GCN2iB increased myocardial phosphocreatine and taurine levels and upregulated genes involved in oxidative phosphorylation. In conclusion, the data provide evidence that GCN2iB effectively protects against cardiac dysfunction in T2D mice. Our findings suggest that GCN2iB might be a novel drug candidate for DCM therapy.
Collapse
|
44
|
Prandi FR, Lecis D, Illuminato F, Milite M, Celotto R, Lerakis S, Romeo F, Barillà F. Epigenetic Modifications and Non-Coding RNA in Diabetes-Mellitus-Induced Coronary Artery Disease: Pathophysiological Link and New Therapeutic Frontiers. Int J Mol Sci 2022; 23:4589. [PMID: 35562979 PMCID: PMC9105558 DOI: 10.3390/ijms23094589] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is a glucose metabolism disorder characterized by chronic hyperglycemia resulting from a deficit of insulin production and/or action. DM affects more than 1 in 10 adults, and it is associated with an increased risk of cardiovascular morbidity and mortality. Cardiovascular disease (CVD) accounts for two thirds of the overall deaths in diabetic patients, with coronary artery disease (CAD) and ischemic cardiomyopathy as the main contributors. Hyperglycemic damage on vascular endothelial cells leading to endothelial dysfunction represents the main initiating factor in the pathogenesis of diabetic vascular complications; however, the underlying pathophysiological mechanisms are still not entirely understood. This review addresses the current knowledge on the pathophysiological links between DM and CAD with a focus on the role of epigenetic modifications, including DNA methylation, histone modifications and noncoding RNA control. Increased knowledge of epigenetic mechanisms has contributed to the development of new pharmacological treatments ("epidrugs") with epigenetic targets, although these approaches present several challenges. Specific epigenetic biomarkers may also be used to predict or detect the development and progression of diabetes complications. Further studies on diabetes and CAD epigenetics are needed in order to identify possible new therapeutic targets and advance personalized medicine with the prediction of individual drug responses and minimization of adverse effects.
Collapse
Affiliation(s)
- Francesca Romana Prandi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
- Department of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Dalgisio Lecis
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Federica Illuminato
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Marialucia Milite
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Roberto Celotto
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Stamatios Lerakis
- Department of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Francesco Romeo
- Department of Departmental Faculty of Medicine, Unicamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Francesco Barillà
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| |
Collapse
|
45
|
Wu H, Norton V, Cui K, Zhu B, Bhattacharjee S, Lu YW, Wang B, Shan D, Wong S, Dong Y, Chan SL, Cowan D, Xu J, Bielenberg DR, Zhou C, Chen H. Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Front Cardiovasc Med 2022; 9:841928. [PMID: 35252405 PMCID: PMC8891533 DOI: 10.3389/fcvm.2022.841928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a worldwide health problem that usually comes with severe complications. There is no cure for diabetes yet and the threat of these complications is what keeps researchers investigating mechanisms and treatments for diabetes mellitus. Due to advancements in genomics, epigenomics, proteomics, and single-cell multiomics research, considerable progress has been made toward understanding the mechanisms of diabetes mellitus. In addition, investigation of the association between diabetes and other physiological systems revealed potentially novel pathways and targets involved in the initiation and progress of diabetes. This review focuses on current advancements in studying the mechanisms of diabetes by using genomic, epigenomic, proteomic, and single-cell multiomic analysis methods. It will also focus on recent findings pertaining to the relationship between diabetes and other biological processes, and new findings on the contribution of diabetes to several pathological conditions.
Collapse
Affiliation(s)
- Hao Wu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Vikram Norton
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kui Cui
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Bo Zhu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Sudarshan Bhattacharjee
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yao Wei Lu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Beibei Wang
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Dan Shan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Scott Wong
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yunzhou Dong
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Siu-Lung Chan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Douglas Cowan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jian Xu
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Diane R Bielenberg
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
46
|
Palazzuoli A, Savarese G. An update on diabetes spectrum in heart failure: current evidence and potential therapeutic applications. Heart Fail Rev 2022; 28:573-575. [PMID: 35067834 DOI: 10.1007/s10741-021-10202-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 01/25/2023]
Abstract
This is an introduction to this special issue on diabetes and heart failure (HF). The issue deals with the primary features and key questions regarding the coexistence of diabetes and heart failure. Evidence for most treatments of this disease state comes from post hoc analysis of clinical trials and registries. Recent evidence shows a significant decrease in HF-related events with the newer antidiabetic agents. Therefore, in this issue, we briefly summarize the most relevant cardiovascular outcome trials supporting the use of newer antidiabetic drugs beyond traditional glucose-lowering agents. Notably, this issue focuses on the important effects of antidiabetic drugs in specific population, namely, the elderly; patients with HF with preserved ejection fraction; and patients with pulmonary hypertension, as well as specific conditions related to muscle, pulmonary, and renal metabolism.
Collapse
|
47
|
Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:907757. [PMID: 35784531 PMCID: PMC9240190 DOI: 10.3389/fendo.2022.907757] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disease that is increasing in prevalence and causes many complications. Diabetic cardiomyopathy (DCM) is a complication of diabetes that is associated with high mortality, but it is not well defined. Nevertheless, it is generally accepted that DCM refers to a clinical disease that occurs in patients with diabetes and involves ventricular dysfunction, in the absence of other cardiovascular diseases, such as coronary atherosclerotic heart disease, hypertension, or valvular heart disease. However, it is currently uncertain whether the pathogenesis of DCM is directly attributable to metabolic dysfunction or secondary to diabetic microangiopathy. Oxidative stress (OS) is considered to be a key component of its pathogenesis. The production of reactive oxygen species (ROS) in cardiomyocytes is a vicious circle, resulting in further production of ROS, mitochondrial DNA damage, lipid peroxidation, and the post-translational modification of proteins, as well as inflammation, cardiac hypertrophy and fibrosis, ultimately leading to cell death and cardiac dysfunction. ROS have been shown to affect various signaling pathways involved in the development of DCM. For instance, OS causes metabolic disorders by affecting the regulation of PPARα, AMPK/mTOR, and SIRT3/FOXO3a. Furthermore, OS participates in inflammation mediated by the NF-κB pathway, NLRP3 inflammasome, and the TLR4 pathway. OS also promotes TGF-β-, Rho-ROCK-, and Notch-mediated cardiac remodeling, and is involved in the regulation of calcium homeostasis, which impairs ATP production and causes ROS overproduction. In this review, we summarize the signaling pathways that link OS to DCM, with the intention of identifying appropriate targets and new antioxidant therapies for DCM.
Collapse
Affiliation(s)
- Meng-ling Peng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chu-wen Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Hang Ren
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Shan-shan Zhou
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Shan-shan Zhou,
| |
Collapse
|