1
|
Kanbay M, Copur S, Guldan M, Ozbek L, Hatipoglu A, Covic A, Mallamaci F, Zoccali C. Proximal tubule hypertrophy and hyperfunction: a novel pathophysiological feature in disease states. Clin Kidney J 2024; 17:sfae195. [PMID: 39050867 PMCID: PMC11267238 DOI: 10.1093/ckj/sfae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Indexed: 07/27/2024] Open
Abstract
The role of proximal tubules (PTs), a major component of the renal tubular structure in the renal cortex, has been examined extensively. Along with its physiological role in the reabsorption of various molecules, including electrolytes, amino acids and monosaccharides, transcellular transport of different hormones and regulation of homeostasis, pathological events affecting PTs may underlie multiple disease states. PT hypertrophy or a hyperfunctioning state, despite being a compensatory mechanism at first in response to various stimuli or alterations at tubular transport proteins, have been shown to be critical pathophysiological events leading to multiple disorders, including diabetes mellitus, obesity, metabolic syndrome and congestive heart failure. Moreover, pharmacotherapeutic agents have primarily targeted PTs, including sodium-glucose cotransporter 2, urate transporters and carbonic anhydrase enzymes. In this narrative review, we focus on the physiological role of PTs in healthy states and the current understanding of the PT pathologies leading to disease states and potential therapeutic targets.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Internal Medicine, Division of Nephrology, Koç University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Mustafa Guldan
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Lasin Ozbek
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Alper Hatipoglu
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Nephrology, Dialysis and Transplantation, University Grigore T Popa, Iasi, Romania
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, Grande Ospedale Metropolitano, Reggio Calabria, Italy
- CNR-IFC, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Institute of Clinical Physiology, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, NY, USA
- Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale, Grande Ospedale Metropolitano, c/o Nefrologia, Reggio Calabria, Italy
| |
Collapse
|
2
|
Pereira PR, Carrageta DF, Oliveira PF, Rodrigues A, Alves MG, Monteiro MP. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease. Med Res Rev 2022; 42:1518-1544. [PMID: 35274315 DOI: 10.1002/med.21883] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
Diabetic kidney disease (DKD) is one of the most prevalent comorbidities of diabetes mellitus and the leading cause of the end-stage renal disease (ESRD). DKD results from chronic exposure to hyperglycemia, leading to progressive alterations in kidney structure and function. The early development of DKD is clinically silent and when albuminuria is detected the lesions are often at advanced stages, leading to rapid kidney function decline towards ESRD. DKD progression can be arrested or substantially delayed if detected and addressed at early stages. A major limitation of current methods is the absence of albuminuria in non-albuminuric phenotypes of diabetic nephropathy, which becomes increasingly prevalent and lacks focused therapy. Metabolomics is an ever-evolving omics technology that enables the study of metabolites, downstream products of every biochemical event that occurs in an organism. Metabolomics disclosures complex metabolic networks and provide knowledge of the very foundation of several physiological or pathophysiological processes, ultimately leading to the identification of diseases' unique metabolic signatures. In this sense, metabolomics is a promising tool not only for the diagnosis but also for the identification of pre-disease states which would confer a rapid and personalized clinical practice. Herein, the use of metabolomics as a tool to identify the DKD metabolic signature of tubule interstitial lesions to diagnose or predict the time-course of DKD will be discussed. In addition, the proficiency and limitations of the currently available high-throughput metabolomic techniques will be discussed.
Collapse
Affiliation(s)
- Pedro R Pereira
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.,Department of Nephrology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD, EPE), Vila Real, Portugal
| | - David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Pedro F Oliveira
- Department of Chemistry, QOPNA & LAQV, University of Aveiro, Aveiro, Portugal
| | - Anabela Rodrigues
- Department of Nephrology and Department of Clinical Pathology, Santo António General Hospital (Hospital Center of Porto, EPE), Porto, Portugal.,Nephrology, Dialysis and Transplantation, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Marco G Alves
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.,Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Department of Biology, Unit of Cell Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
3
|
Lee YR, Lew BL, Sim WY, Lee J, Hong J, Chung BC. Altered polyamine profiling in the hair of patients with androgenic alopecia and alopecia areata. J Dermatol 2019; 46:985-992. [PMID: 31464015 DOI: 10.1111/1346-8138.15063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022]
Abstract
Hair follicles are among the most highly proliferative tissues. Polyamines are associated with proliferation, and several polyamines including spermidine and spermine play anti-inflammatory roles. Androgenic alopecia results from increased dihydrotestosterone metabolism, and alopecia areata is an autoimmune disease. This study aimed to investigate differences in polyamine profiles in hair samples between patients with androgenic alopecia and alopecia areata. Polyamine concentrations were determined through high-performance liquid chromatography-mass spectrometry. Hair samples were derivatized with isobutyl chloroformate. Differences in polyamine levels were observed between androgenic alopecia and alopecia areata compared with normal controls. In particular, polyamine levels were higher in alopecia areata patients than in normal controls. Certain polyamines displayed different concentrations between the androgenic alopecia and alopecia areata groups, suggesting that some polyamines, particularly N-acetyl putrescine (P = 0.007) and N-acetyl cadaverine (P = 0.0021), are significantly different in androgenic alopecia. Furthermore, spermidine (P = 0.021) was significantly different in alopecia areata. Our findings suggest that non-invasive quantification of hair polyamines may help distinguish between androgenic alopecia and alopecia areata. Our study provides novel insights into physiological alterations in patients with androgenic alopecia and those with alopecia areata and reveals some differences in polyamine levels in hair loss diseases with two different modes of action.
Collapse
Affiliation(s)
- Yu Ra Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea
| | - Bark Lynn Lew
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Korea
| | - Woo Young Sim
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Korea
| | - Jeongae Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Jongki Hong
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea.,College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
4
|
Micakovic T, Papagiannarou S, Clark E, Kuzay Y, Abramovic K, Peters J, Sticht C, Volk N, Fleming T, Nawroth P, Hammes HP, Alenina N, Gröne HJ, Hoffmann SC. The angiotensin II type 2 receptors protect renal tubule mitochondria in early stages of diabetes mellitus. Kidney Int 2018; 94:937-950. [PMID: 30190172 DOI: 10.1016/j.kint.2018.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/23/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
Abstract
Diabetic nephropathy correlates more closely to defective mitochondria and increased oxidative stress in the kidney than to hyperglycemia. A key driving factor of diabetic nephropathy is angiotensin II acting via the G-protein-coupled cell membrane type 1 receptor. The present study aimed to investigate the role of the angiotensin II type 2 receptor (AT2R) at the early stages of diabetic nephropathy. Using receptor binding studies and immunohistochemistry we found that the mitochondria in renal tubules contain high-affinity AT2Rs. Increased renal mitochondrial AT2R density by transgenic overexpression was associated with reduced superoxide production of isolated mitochondria from non-diabetic rats. Streptozotocin-induced diabetes (28 days) caused a drop in the ATP/oxygen ratio and an increase in the superoxide production of isolated renal mitochondria from wild-type diabetic rats. This correlated with changes in the renal expression profile and increased tubular epithelial cell proliferation. AT2R overexpression in tubular epithelial cells inhibited all diabetes-induced renal changes including a drop in mitochondrial bioenergetics efficiency, a rise in mitochondrial superoxide production, metabolic reprogramming, and increased proliferation. Thus, AT2Rs translocate to mitochondria and can contribute to reno-protective effects at early stages of diabetes. Hence, targeted AT2R overexpression in renal cells may open new avenues to develop novel types of drugs preventing diabetic nephropathy.
Collapse
Affiliation(s)
- Tamara Micakovic
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stamatia Papagiannarou
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Euan Clark
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yalcin Kuzay
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katarina Abramovic
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nadine Volk
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Peter Hammes
- Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine, Cardiovascular Hormones - Berlin-Buch, Berlin, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Sigrid Christa Hoffmann
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
5
|
Gupta P, Bala M, Gupta S, Dua A, Dabur R, Injeti E, Mittal A. Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs—A mechanistic revisit to understand their mode of action. Pharmacol Res 2016; 113:636-674. [DOI: 10.1016/j.phrs.2016.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
|
6
|
Abstract
Diabetes mellitus contributes greatly to morbidity, mortality, and overall health care costs. In major part, these outcomes derive from the high incidence of progressive kidney dysfunction in patients with diabetes making diabetic nephropathy a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved and of the early dysfunctions observed in the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. Here we review the pathophysiological changes that occur in the kidney in response to hyperglycemia, including the cellular responses to high glucose and the responses in vascular, glomerular, podocyte, and tubular function. The molecular basis, characteristics, and consequences of the unique growth phenotypes observed in the diabetic kidney, including glomerular structures and tubular segments, are outlined. We delineate mechanisms of early diabetic glomerular hyperfiltration including primary vascular events as well as the primary role of tubular growth, hyperreabsorption, and tubuloglomerular communication as part of a "tubulocentric" concept of early diabetic kidney function. The latter also explains the "salt paradox" of the early diabetic kidney, that is, a unique and inverse relationship between glomerular filtration rate and dietary salt intake. The mechanisms and consequences of the intrarenal activation of the renin-angiotensin system and of diabetes-induced tubular glycogen accumulation are discussed. Moreover, we aim to link the changes that occur early in the diabetic kidney including the growth phenotype, oxidative stress, hypoxia, and formation of advanced glycation end products to mechanisms involved in progressive kidney disease.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego & VA San Diego Healthcare System, San Diego, California, USA.
| | | |
Collapse
|
7
|
Thompson CS. Diabetic nephropathy: Treatment with phosphodiesterase type 5 inhibitors. World J Diabetes 2013; 4:124-129. [PMID: 23961322 PMCID: PMC3746084 DOI: 10.4239/wjd.v4.i4.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/03/2013] [Accepted: 06/20/2013] [Indexed: 02/05/2023] Open
Abstract
The importance of nitric oxide (NO) in vascular physiology is irrefutable; it stimulates the intracellular production of cyclic guanosine monophosphate (cGMP), initiating vascular smooth muscle relaxation. This biochemical process increases the diameter of small arteries, regulating blood flow distribution between arterioles and the microvasculature. The kidney is no exception, since NO predominantly dilates the glomerular afferent arterioles. It is now evident that the vascular production of cGMP can be augmented by inhibitors of phosphodiesterase type 5 (PDE 5), the enzyme which breakdowns this cyclic nucleotide. This has clinical relevance, since diabetic nephropathy (DN) a major microvascular complication of diabetes mellitus and the most common cause of end-stage renal disease, increases intraglomerular capillary pressure, leading to glomerular hypertension. PDE 5 inhibitors may have, therefore, the potential to reduce glomerular hypertension. This review describes the use of PDE 5 inhibitors to improve the metabolic, haemodynamic and inflammatory pathways/responses, all of which are dysfunctional in DN.
Collapse
|
8
|
Abstract
Genetics and environmental factors have important roles in autoimmune diseases but neither has given us sufficient understanding of these mysterious diseases. Therefore, we are now looking closer at epigenetics, an interface between genetics and environmental factors. Epigenetics can be defined as reversible heritable changes to chromatin that can alter gene expression without altering the gene's DNA sequence. Methylation of DNA and histones are primary means of epigenetic control. By adding methyl groups to DNA and histones, it can limit accessibility of the underlying gene thereby altering the amount of gene expression. The methyl group is derived from an essential molecule in the cell, S-adenosylmethionine (SAM). However, a group of small molecules called polyamines also require SAM for their synthesis. Polyamines are essential for many cellular functions and polyamine activity is increased in many autoimmune diseases. Presented here is the "polyamine hypothesis" in which increased polyamine synthesis competes with cellular methylation (epigenetic control) for SAM. It is proposed that increased polyamine activity can cause disruption of cellular methylation, which can lead to abnormal expression of previously sequestered genes and disruption of other methylation-dependent cellular processes.
Collapse
|
9
|
Vallon V, Thomson SC. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol 2012; 74:351-75. [PMID: 22335797 DOI: 10.1146/annurev-physiol-020911-153333] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus affects the kidney in stages. At the onset of diabetes mellitus, in a subset of diabetic patients the kidneys grow large, and glomerular filtration rate (GFR) becomes supranormal, which are risk factors for developing diabetic nephropathy later in life. This review outlines a pathophysiological concept that focuses on the tubular system to explain these changes. The concept includes the tubular hypothesis of glomerular filtration, which states that early tubular growth and sodium-glucose cotransport enhance proximal tubule reabsorption and make the GFR supranormal through the physiology of tubuloglomerular feedback. The diabetic milieu triggers early tubular cell proliferation, but the induction of TGF-β and cyclin-dependent kinase inhibitors causes a cell cycle arrest and a switch to tubular hypertrophy and a senescence-like phenotype. Although this growth phenotype explains unusual responses like the salt paradox of the early diabetic kidney, the activated molecular pathways may set the stage for tubulointerstitial injury and diabetic nephropathy.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
10
|
Loots DT, Pieters M, Islam MS, Botes L. Antidiabetic effects of Aloe ferox and Aloe greatheadii var. davyana leaf gel extracts in a low-dose streptozotocin diabetes rat model. S AFR J SCI 2011. [DOI: 10.4102/sajs.v107i7/8.532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
11
|
Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1009-22. [PMID: 21228342 DOI: 10.1152/ajpregu.00809.2010] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diabetic nephropathy is a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved in the early changes of the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. This review focuses on the proximal tubule in the early diabetic kidney, particularly on its exposure and response to high glucose levels, albuminuria, and other factors in the diabetic glomerular filtrate, the hyperreabsorption of glucose, the unique molecular signature of the tubular growth phenotype, including aspects of senescence, and the resulting cellular and functional consequences. The latter includes the local release of proinflammatory chemokines and changes in proximal tubular salt and fluid reabsorption, which form the basis for the strong tubular control of glomerular filtration in the early diabetic kidney, including glomerular hyperfiltration and odd responses like the salt paradox. Importantly, these early proximal tubular changes can set the stage for oxidative stress, inflammation, hypoxia, and tubulointerstitial fibrosis, and thereby for the progression of diabetic renal disease.
Collapse
Affiliation(s)
- Volker Vallon
- Depts. of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
12
|
Satriano J. Kidney growth, hypertrophy and the unifying mechanism of diabetic complications. Amino Acids 2007; 33:331-9. [PMID: 17443269 DOI: 10.1007/s00726-007-0529-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 02/01/2007] [Indexed: 01/11/2023]
Abstract
Michael Brownlee has proposed a 'Unifying Mechanism' of hyperglycemia-induced damage in diabetes mellitus. At the crux of this hypothesis is the generation of reactive oxygen species (ROS), and their impact on glycolytic pathways. Diabetes is the leading cause of chronic kidney failure. In the early phase of diabetes, prior to establishment of proteinuria or fibrosis, comes kidney growth and hyperfiltration. This early growth phase consists of an early period of hyperplasia followed by hypertrophy. Hypertrophy also contributes to cellular oxidative stress, and may precede the ROS perturbation of glycolytic pathways described in the Brownlee proposal. This increase in growth promotes hyperfiltration, and along with the hypertrophic phenotype appears required for hyperglycemia-induced cell damage and the progression of downstream diabetic complications. Here we will evaluate this growth phenomenon in the context of diabetes mellitus.
Collapse
Affiliation(s)
- J Satriano
- Division of Nephrology-Hypertension, Department of Medicine, The Veterans Administration San Diego Healthcare System, University of California San Diego, San Diego, CA 92161, USA.
| |
Collapse
|