1
|
Kurilovich E, Geva-Zatorsky N. Effects of bacteriophages on gut microbiome functionality. Gut Microbes 2025; 17:2481178. [PMID: 40160174 PMCID: PMC11959909 DOI: 10.1080/19490976.2025.2481178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/28/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
The gut microbiome, composed of bacteria, fungi, and viruses, plays a crucial role in maintaining the delicate balance of human health. Emerging evidence suggests that microbiome disruptions can have far-reaching implications, ranging from the development of inflammatory diseases and cancer to metabolic disorders. Bacteriophages, or "phages", are viruses that specifically infect bacterial cells, and their interactions with the gut microbiome are receiving increased attention. Despite the recently revived interest in the gut phageome, it is still considered the "dark matter" of the gut, with more than 80% of viral genomes remaining uncharacterized. Today, research is focused on understanding the mechanisms by which phages influence the gut microbiota and their potential applications. Bacteriophages may regulate the relative abundance of bacterial communities, affect bacterial functions in various ways, and modulate mammalian host immunity. This review explores how phages can regulate bacterial functionality, particularly in gut commensals and pathogens, emphasizing their role in gut health and disease.
Collapse
Affiliation(s)
- Elena Kurilovich
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Humans and the Microbiome program, CIFAR, Toronto, ON, Canada
| |
Collapse
|
2
|
Boulund U, Thorsen J, Trivedi U, Tranæs K, Jiang J, Shah SA, Stokholm J. The role of the early-life gut microbiome in childhood asthma. Gut Microbes 2025; 17:2457489. [PMID: 39882630 PMCID: PMC11784655 DOI: 10.1080/19490976.2025.2457489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/05/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Asthma is a chronic disease affecting millions of children worldwide, and in severe cases requires hospitalization. The etiology of asthma is multifactorial, caused by both genetic and environmental factors. In recent years, the role of the early-life gut microbiome in relation to asthma has become apparent, supported by an increasing number of population studies, in vivo research, and intervention trials. Numerous early-life factors, which for decades have been associated with the risk of developing childhood asthma, are now being linked to the disease through alterations of the gut microbiome. These factors include cesarean birth, antibiotic use, breastfeeding, and having siblings or pets, among others. Association studies have highlighted several specific microbes that are altered in children developing asthma, but these can vary between studies and disease phenotype. This demonstrates the importance of the gut microbial ecosystem in asthma, and the necessity of well-designed studies to validate the underlying mechanisms and guide future clinical applications. In this review, we examine the current literature on the role of the gut microbiome in childhood asthma and identify research gaps to allow for future microbial-focused therapeutic applications in asthma.
Collapse
Affiliation(s)
- Ulrika Boulund
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Urvish Trivedi
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Tranæs
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jie Jiang
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Shiraz A. Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Tobón-Cornejo S, Sanchez-Tapia M, Guizar-Heredia R, Velázquez Villegas L, Noriega LG, Furuzawa-Carballeda J, Hernández-Pando R, Vázquez-Manjarrez N, Granados-Portillo O, López-Barradas A, Rebollar-Vega R, Maya O, Miller AW, Serralde A, Guevara-Cruz M, Torres N, Tovar AR. Increased dietary protein stimulates amino acid catabolism via the gut microbiota and secondary bile acid production. Gut Microbes 2025; 17:2465896. [PMID: 39980327 PMCID: PMC11849929 DOI: 10.1080/19490976.2025.2465896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/27/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Excess amino acids from a protein-rich diet are mainly catabolized in the liver. However, it is still unclear to what extent the gut microbiota may be involved in the mechanisms governing this catabolism. Therefore, the aim of this study was to investigate whether consumption of different dietary protein concentrations induces changes in the taxonomy of the gut microbiota, which may contribute to the regulation of hepatic amino acid catabolism. Consumption of a high-protein diet caused overexpression of HIF-1α in the colon and increase in mitochondrial activity, creating a more anaerobic environment that was associated with changes in the taxonomy of the gut microbiota promoting an increase in the synthesis of secondary bile acids, increased secretion of pancreatic glucagon. This effect was demonstrated in pancreatic islets, where secondary bile acids stimulated the expression of the PC2 enzyme that promotes glucagon formation. The increase in circulating glucagon was associated with an induction of the expression of hepatic amino acid-degrading enzymes, an effect attenuated by antibiotics. Thus, high protein intake in mice and humans induced the increase of different species in the gut microbiota with the capacity to produce secondary bile acids leading to an increase in secondary bile acids and glucagon levels, promoting amino acid catabolism.
Collapse
Affiliation(s)
- Sandra Tobón-Cornejo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Monica Sanchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Rocio Guizar-Heredia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Laura Velázquez Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Janette Furuzawa-Carballeda
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Natalia Vázquez-Manjarrez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Adriana López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Rosa Rebollar-Vega
- RED de apoyo a la investigación, Coordinación de la Investrigación Científica, UNAM e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Otoniel Maya
- Physics Department, Chalmers University of Technology, Chalmers E-Commons, Gothenburg, Sweden
| | - Aaron W. Miller
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aurora Serralde
- Departamento de Nutrición Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| |
Collapse
|
4
|
Ma G, Chai Y, Tye KD, Xie H, Meng L, Tang X, Luo H, Xiao X. Predictive analysis of the impact of probiotic administration during pregnancy on the functional pathways of the gut microbiome in healthy infants based on 16S rRNA gene sequencing. Gene 2025; 952:149414. [PMID: 40086705 DOI: 10.1016/j.gene.2025.149414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/16/2024] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Maternal probiotic supplementation altered the microbial composition in infants' gut, yet its effect on the functional pathways of the microbiota remains unclear. This study aimed to explore the potential impact of maternal probiotic intake on the predicted functional pathways of the gut microbiome in healthy infants. A total of 24 pregnant women were randomly allocated to either the control group or the probiotic group. The women in the probiotic group began receiving probiotics at the 32nd week of pregnancy and continued until delivery. Meconium and fecal samples were collected from infants at birth, as well as on the 3rd day, 14th day, and 6th month after birth. The functional characteristics of the microbial community were inferred using 16S rRNA gene analysis, processed with PICRUSt software, and cross-referenced with the KEGG database. The probiotic group had lower levels of Actinobacteria and Bacteroidetes, while Bifidobacterium growth was notably increased in the infant gut microbiota. At day 0 postpartum, the control group exhibited higher levels of Prevotellaceae compared to the probiotic group (P < 0.05). However, no significant differences were found by day 3. At day 14, the control group exhibited higher levels of Bacteroidaceae and Bacteroides, while Bacteroides_thetaiotaomicron was more abundant in the probiotic group (P < 0.05). By 6 months, the control group showed a higher abundance of Firmicutes (P < 0.05). On day 0 postpartum, maternal probiotic consumption increased the Environmental information processing pathway at KEGG Level 1, and increased Energy metabolism, Metabolism of cofactors and vitamins, and Cell growth and death pathways at KEGG Level 2. It also increased Histidine metabolism, One carbon pool by folate, and Folate biosynthesis at KEGG Level 3. No changes were observed in the infant gut microbiota's functional metabolic pathways at 3 days postpartum. At 14 days postpartum, probiotics reduced Lipid metabolism pathways at KEGG Level 2 and the Citrate cycle at KEGG Level 3. At 6 months postpartum, probiotics decreased Carbohydrate metabolism pathways at KEGG Level 2. Our findings suggest that probiotic supplementation during pregnancy affects the functional metabolism of the gut microbiota in healthy infants. This, in turn, may influence the development of the infant's immune system, metabolism, and overall health by modifying the gut microbial environment.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yang Chai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haishan Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lulu Meng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Iddrisu I, Monteagudo-Mera A, Poveda C, Shahzad M, Walton GE, Andrews SC. A review of the effect of iron supplementation on the gut microbiota of children in developing countries and the impact of prebiotics. Nutr Res Rev 2025; 38:229-237. [PMID: 38586996 DOI: 10.1017/s0954422424000118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Iron is essential for many physiological functions of the body, and it is required for normal growth and development. Iron deficiency (ID) is the most common form of micronutrient malnutrition and is particularly prevalent in infants and young children in developing countries. Iron supplementation is considered the most effective strategy to combat the risk of ID and ID anaemia (IDA) in infants, although iron supplements cause a range of deleterious gut-related problems in malnourished children. The purpose of this review is to assess the available evidence on the effect of iron supplementation on the gut microbiota during childhood ID and to further assess whether prebiotics offer any benefits for iron supplementation. Prebiotics are well known to improve gut-microbial health in children, and recent reports indicate that prebiotics can mitigate the adverse gut-related effects of iron supplementation in children with ID and IDA. Thus, provision of prebiotics alongside iron supplements has the potential for an enhanced strategy for combatting ID and IDA among children in the developing world. However, further understanding is required before the benefit of such combined treatments of ID in nutritionally deprived children across populations can be fully confirmed. Such enhanced understanding is of high relevance in resource-poor countries where ID, poor sanitation and hygiene, alongside inadequate access to good drinking water and poor health systems, are serious public health concerns.
Collapse
Affiliation(s)
- Ishawu Iddrisu
- Rose Ward, Prospect Park Hospital, Berkshire Healthcare NHS Foundation Trust, Reading, RG30 4EJ, UK
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| | - Andrea Monteagudo-Mera
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Muhammed Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
- Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Simon C Andrews
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| |
Collapse
|
6
|
Moravcová M, Siatka T, Krčmová LK, Matoušová K, Mladěnka P. Biological properties of vitamin B 12. Nutr Res Rev 2025; 38:338-370. [PMID: 39376196 DOI: 10.1017/s0954422424000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Vitamin B12, cobalamin, is indispensable for humans owing to its participation in two biochemical reactions: the conversion of l-methylmalonyl coenzyme A to succinyl coenzyme A, and the formation of methionine by methylation of homocysteine. Eukaryotes, encompassing plants, fungi, animals and humans, do not synthesise vitamin B12, in contrast to prokaryotes. Humans must consume it in their diet. The most important sources include meat, milk and dairy products, fish, shellfish and eggs. Due to this, vegetarians are at risk to develop a vitamin B12 deficiency and it is recommended that they consume fortified food. Vitamin B12 behaves differently to most vitamins of the B complex in several aspects, e.g. it is more stable, has a very specific mechanism of absorption and is stored in large amounts in the organism. This review summarises all its biological aspects (including its structure and natural sources as well as its stability in food, pharmacokinetics and physiological function) as well as causes, symptoms, diagnosis (with a summary of analytical methods for its measurement), prevention and treatment of its deficiency, and its pharmacological use and potential toxicity.
Collapse
Affiliation(s)
- Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Padhi S, Sarkar P, Sahoo D, Rai AK. Potential of fermented foods and their metabolites in improving gut microbiota function and lowering gastrointestinal inflammation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4058-4069. [PMID: 38299734 DOI: 10.1002/jsfa.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Foods prepared using microbial conversion of major and minor food components, which are otherwise known as fermented foods continue to impact human health. The live microorganisms and transformed metabolites can also have a deep influence on the gut microbiota, the multifaceted population of microorganisms dwelling inside the gut play a key role in wellbeing of an individual. The probiotic strains delivered through the consumption of fermented food and other bioactive components such as polyphenolic metabolites, bioactive peptides, short-chain fatty acids and others including those produced via gut microbiota mediated transformations have been proposed to balance the gut microbiota diversity and activity, and also to regulate the inflammation in the gut. However, little is known about such effects and only a handful of fermented foods have been explored to date. We herein review the recent knowledge on the dysbiotic gut microbiota linking to major gut inflammatory diseases. Also, evidences that fermented food consumption modulates the gut microbiota, and its impact on the gut inflammation and inflammatory diseases have been discussed. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Srichandan Padhi
- Nutrition Biotechnlogy Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Puja Sarkar
- Nutrition Biotechnlogy Division, National Agri-Food Biotechnology Institute, Mohali, India
| | | | - Amit Kumar Rai
- Nutrition Biotechnlogy Division, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
8
|
Huang W, Jiang T, He J, Ruan J, Wu B, Tao R, Xu P, Wang Y, Chen R, Wang H, Yang Q, Zhang K, Jin L, Sun D, You J. Modulation of Intestinal Flora: a Novel Immunotherapeutic Approach for Enhancing Thyroid Cancer Treatment. Probiotics Antimicrob Proteins 2025; 17:1038-1063. [PMID: 39890752 DOI: 10.1007/s12602-025-10471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Over the past 3 years, there has been a growing interest in clinical research regarding the potential involvement of intestinal flora in thyroid cancer (TC). This review delves into the intricate connection between intestinal flora and TC, focusing on the particular intestinal flora that is directly linked to the disease and identifying which may be able to predict potential microbial markers of TC. In order to shed light on the inflammatory pathways connected to the onset of TC, we investigated the impact of intestinal flora on immune modulation and the connection between chronic inflammation when investigating the role of intestinal flora in the pathogenesis of TC. Furthermore, the potential role of intestinal flora metabolites in the regulation of thyroid function was clarified by exploring the effects of short-chain fatty acids and lipopolysaccharide on thyroid hormone synthesis and metabolism. Based on these findings, we further explore the effects of probiotics, prebiotics, postbiotics, vitamins, and trace elements.
Collapse
Affiliation(s)
- Weiqiang Huang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Tao Jiang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Baihui Wu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Peiye Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yongpan Wang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Hanbing Wang
- The University of Hong Kong School of Biomedical Sciences, Hong Kong, 999077, SAR, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
9
|
Burananat T, Wilantho A, Kulalert P, Nanthapisal S, Tonglim J, Deetienin W, Wangkumhang P, Tongsima S, Thaweekul P. The role of gut microbiota in obesity severity and metabolic risk in pediatric populations. Nutr Metab Cardiovasc Dis 2025; 35:103970. [PMID: 40180829 DOI: 10.1016/j.numecd.2025.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/12/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND AND AIMS Childhood obesity is a considerable public health issue. Recent research has shown that alterations in gut microbiota can have an impact on developing obesity and other metabolic health problems in children. This study aimed to investigate whether the characteristics of gut microbiota in obese children and adolescents are associated with the severity of obesity and any metabolic complications. METHODS AND RESULTS During May 2022 to May 2023, a total of 56 children and adolescents with obesity, aged 6-18 years, were recruited at Thammasat Hospital, situated in provincial Pathumthani in central Thailand. Participants were allocated into two groups, characterized by the severity of their obesity. Demographic data, body composition, along with resting energy expenditures were determined. Serum samples were collected for the metabolic profile and inflammatory markers. Fecal samples were obtained for gut microbiota analysis via 16S rRNA Illumina. The obese group exhibited notably greater relative abundance of Actinobacteriota in comparison to the severely obese group, along with a lower abundance of Bacteroidota. There were no statistically significant differences in the relative abundance of Firmicutes and the Firmicutes to Bacteroidota ratio between the two cohorts. Bacteroidota positively correlated with FMI, while Actinobacteriota showed a negative correlation with FMI. CONCLUSION The data gathered from this study illustrated that children and adolescents with obesity and severe obesity in Thailand showed differences in the relative abundance of Actinobacteriota and Bacteroidota. Certain microbiome taxa showed correlations with various body and metabolic parameters.
Collapse
Affiliation(s)
- Thanyamas Burananat
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Alisa Wilantho
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Prapasri Kulalert
- Department of Clinical Epidemiology, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Sira Nanthapisal
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | | | | | - Pongsakorn Wangkumhang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Patcharapa Thaweekul
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand.
| |
Collapse
|
10
|
Qian L, Jiang J, Zhang Y, Huang X, Che Z, Chen G, Liu S. Sublethal exposure to boscalid induced respiratory abnormalities and gut microbiota dysbiosis in adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107370. [PMID: 40252307 DOI: 10.1016/j.aquatox.2025.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Boscalid (BO), one of the frequently detected fungicides of succinate dehydrogenase inhibitor in water environments, has unknown effects on the respiratory function and gut health of aquatic organisms. Therefore, zebrafish were exposed to BO solutions (0.01-1.0 mg/L) for 21 days to assess its effects on zebrafish respiration and intestinal microbiota in this study. The results showed that exposure to 0.1 and 1.0 mg/L BO for 21 days resulted in zebrafish exhibiting aggregation of gill filaments, reduction of mucous cells, and significantly decreased opercular movement, linked to a marked decline in the activity of respiratory chain complex II. 16S rRNA gene sequencing revealed significant changes in the intestinal microbiota composition of zebrafish exposed to 1.0 mg/L BO. Specifically, the relative abundance of beneficial bacteria (Cetobacterium) was markedly reduced, while pathogenic bacteria (such as Ralstonia, Legionella, Acinetobacter, Escherichia/Shigella) associated with energy metabolism and immune pathways in zebrafish showed a significant increase in relative abundance. Accordingly, metagenomic functional prediction analysis further revealed the potential impact of BO-induced gut microbiota changes on energy metabolism and immune pathways in zebrafish. Furthermore, histopathological analysis of intestinal tissues revealed that exposure to BO resulted in necrosis and shedding of epithelial cells, as well as a decrease in goblet cell count, which exacerbated adverse effects on intestinal health. In conclusion, sublethal exposure to BO affects the respiratory function and intestinal health of zebrafish. Therefore, the impact of BO in aquatic environments on fish health warrants attention.
Collapse
Affiliation(s)
- Le Qian
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Jia Jiang
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Yikai Zhang
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Xiaobo Huang
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Zhiping Che
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Genqiang Chen
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Shengming Liu
- College of Horticulture and plant protection, Henan University of Science and Technology, Luoyang, Henan Province, PR China.
| |
Collapse
|
11
|
Song W, Shi J, Du M, Liang M, Zhou B, Liang L, Gao Y. Causal relationship between gut microbiota and lung squamous cell carcinoma: a bidirectional two-sample Mendelian randomization study. Postgrad Med J 2025; 101:526-534. [PMID: 39690971 DOI: 10.1093/postmj/qgae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE This study aims to explore the potential causal relationship between gut microbiota and lung squamous cell carcinoma (LUSC). METHODS A bidirectional two-sample Mendelian randomization analysis was conducted using genome-wide association study (GWAS) data from gut microbiota and LUSC. Gut microbiota served as the exposure factor, with instrumental variables selected from a GWAS involving 18 340 participants. LUSC data were drawn from a European cohort including 29 266 LUSC cases and 56 450 controls. Inverse-variance weighted (IVW) method was used as the primary method, with the Benjamini-Hochberg method applied to adjust for multiple comparisons. An independent dataset (ieu-a-967, containing 3275 LUSC cases and 15 038 controls) was used for replication analysis to ensure robustness. RESULTS IVW analysis found that Butyricicoccus (OR = 0.79, 95% CI: 0.63-0.99, P = .042) and Coprobacter (OR = 0.85, 95% CI: 0.74-0.97, P = .018) were significantly protective against LUSC. In contrast, Victivallis (OR = 1.11, 95% CI: 1.00-1.23, P = .045) and Ruminococcus (OR = 1.28, 95% CI: 1.03-1.60, P = .028) increased LUSC risk. Replication analysis in the independent dataset confirmed significant associations for Ruminococcus and Coprobacter. No reverse causality or pleiotropy was detected. CONCLUSION This study provides evidence of a causal relationship between specific gut microbiota and LUSC risk, highlighting new microbial targets for potential prevention and treatment strategies in lung cancer. Key messages What is already known on this topic? Previous studies have suggested potential links between gut microbiota composition and the development of various cancers, including lung cancer. However, the exact causal relationship between specific gut microbiota and lung squamous cell carcinoma (LUSC) has remained unclear. Traditional observational studies have struggled to determine the direction of causality due to confounding factors, making further investigation necessary through more robust methods such as Mendelian randomization (MR). What this study adds? This bidirectional MR study provides novel genetic evidence indicating that certain gut microbiotas are causally associated with LUSC risk. Specifically, Butyricicoccus appears to reduce the risk of LUSC, while Victivallis increases the risk. These findings highlight the role of the gut-lung axis in LUSC and open up new avenues for exploring gut microbiota as potential modulators of lung cancer risk. How this study might affect research, practice, or policy? The implications of this study may significantly influence future research into cancer prevention strategies by targeting gut microbiota. Additionally, it could inform clinical practices aimed at modulating gut microbiota to lower the risk of LUSC, potentially influencing dietary or probiotic interventions to reduce cancer susceptibility. Furthermore, these results might shape public health policies that focus on the gut-lung axis as a novel avenue for cancer prevention and management.
Collapse
Affiliation(s)
- Weijian Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| | - Jianwei Shi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| | - Minjun Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| | - Mei Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| | - Boxuan Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| | - Linchuan Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing 100021, People's Republic of China
| |
Collapse
|
12
|
Li Z, Wang X, Du H, Liu W, Zhang C, Talifu Z, Xu X, Pan Y, Zhang J, Ke H, Yang D, Gao F, Yu Y, Jing Y, Li J. Unraveling Spinal Cord Injury Nutrition: Effects of Diet on the Host and Microbiome. Adv Nutr 2025:100448. [PMID: 40383300 DOI: 10.1016/j.advnut.2025.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/25/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
Spinal cord injury (SCI) leads to severe neurological dysfunction with significant nutritional alterations. These alterations are closely associated with gut dysbiosis and neurogenic gut dysfunction after SCI, creating complex interactions that further exacerbate metabolic disturbances and impede neurological recovery. In the context of SCI, diet not only fulfills basic nutritional needs but also serves as an important therapeutic tool to modulate these interactions. This review provides a broad overview of existing research findings, analyzes the impact of existing dietary interventions on SCI, and attempts to clarify the complex relationship between diet and host and gut microbiota. We hope to provide a clear direction for future research and a scientific basis for the development of personalized dietary interventions to improve the nutritional status of SCI patients, reduce the incidence of complications such as metabolic disorders, and promote the recovery of neurological function and overall quality of life of SCI patients. STATEMENT OF SIGNIFICANCE: This review evaluates the nutritional changes in patients with spinal cord injury, comprehensively elucidating the effects of dietary interventions on SCI patients from both the host and gut microbiota perspectives. By revealing the complex interactions among them, it lays the foundation for developing personalized nutritional intervention strategies to optimize recovery and improve long-term health outcomes in the future.
Collapse
Affiliation(s)
- ZeHui Li
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - XiaoXin Wang
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - HuaYong Du
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - WuBo Liu
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, 250012, P.R. China
| | - ChunJia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, 100096, P.R. China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100005, P.R. China; University of Health and Rehabilitation Sciences, Shandong, 266100, P.R. China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, 250012, P.R. China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; University of Health and Rehabilitation Sciences, Shandong, 266100, P.R. China; Rehabilitation Department, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, P.R. China
| | - JinMing Zhang
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, 250012, P.R. China; Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100013, P.R. China
| | - DeGang Yang
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - YingLi Jing
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, 100069, P.R. China.
| | - JianJun Li
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, 250012, P.R. China; University of Health and Rehabilitation Sciences, Shandong, 266100, P.R. China.
| |
Collapse
|
13
|
Rahmati R, Zarimeidani F, Ghanbari Boroujeni MR, Sadighbathi S, Kashaniasl Z, Saleh M, Alipourfard I. CRISPR-Assisted Probiotic and In Situ Engineering of Gut Microbiota: A Prospect to Modification of Metabolic Disorders. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10561-y. [PMID: 40377871 DOI: 10.1007/s12602-025-10561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/18/2025]
Abstract
The gut microbiota, a substantial group of microorganisms residing in the human body, profoundly impacts various physiological and pathological mechanisms. Recent studies have elucidated the association between gut dysbiosis and multiple organ diseases. Gut microbiota plays a crucial role in maintaining gastrointestinal stability, regulating the immune system and metabolic processes not only within the gastrointestinal tract but also in other organs such as the brain, lungs, and skin. Dysbiosis of the gut microbiota can disrupt biological functioning and contribute to the development of metabolic disorders. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated proteins (Cas) modules are adaptive immune systems in numerous archaea and bacteria. CRISPR/Cas is a versatile gene-editing tool that enables modification of the genome in live cells, including those within the gut microbiota. This technique has revolutionized gene editing due to its simplicity and effectiveness. It finds extensive applications in diverse scientific arenas, facilitating the functional screening of genomes during various biological processes. Additionally, CRISPR has been instrumental in creating model organisms and cell lines for research purposes and holds great potential for developing personalized medical treatments through precise genetic alterations. This review aims to explore and discuss the possibilities of CRISPR/Cas and the current trends in using this technique for editing gut microbiota genes in various metabolic disorders. By uncovering the valuable potential of CRISPR/Cas in modifying metabolic disorders through the human gut microbiota, we shed light on its promising applications.
Collapse
Affiliation(s)
- Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Sepideh Sadighbathi
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
- Faculty of Chemistry, Department of Comparative Biochemistry, RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Zeinab Kashaniasl
- College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Mobina Saleh
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
- Lab of Regenerative Medicine, Center of Preclinical Studies (CePT), Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
14
|
Wylie AC, Murgueitio N, Carlson AL, Fry RC, Propper CB. The role of the gut microbiome in the associations between lead exposure and child neurodevelopment. Toxicol Lett 2025; 408:95-104. [PMID: 40250742 DOI: 10.1016/j.toxlet.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/10/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Lead is highly toxic to the developing brain. Given its persistence in the environment, new intervention strategies are needed to mitigate the impacts of lead on child neurodevelopment. The gut microbiome, referring to the bacteria and microorganisms residing in the gastrointestinal system, may be a viable target for intervention. This short review summarizes recent evidence linking the gut-brain axis to child developmental outcomes. We explore how lead-induced effects to the gut microbiome could indirectly affect child neurodevelopment, such that disrupting or offsetting this mediating process could buffer the effects of lead on child developmental outcomes. Unexpected findings with respect to child microbiota diversity and child cognitive and behavioral outcomes as well as lead exposure and adult microbiota diversity are discussed. When possible, we draw connections between observed changes to relative bacterial abundance, proposed bacterial functions, and downstream effects to brain development. We also explore how the gut microbiome might modify the toxicity of lead by impeding the uptake of lead across the gastrointestinal tract or through indirect mechanisms in such ways that the gut microbiome does not fit within a mediating pathway. In this case, promoting the buffering capacity of the gut microbiome may reduce the impacts of lead on child neurodevelopment. The goal of this short review is to bring attention to the potential role of the gut microbiome in the associations between lead exposure and child neurodevelopment with an eye towards intervention.
Collapse
Affiliation(s)
- Amanda C Wylie
- RTI International, Research Triangle Park, North Carolina, United States; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, United States.
| | - Nicolas Murgueitio
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, United States
| | | | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States
| | - Cathi B Propper
- School of Nursing, University of North Carolina at Chapel Hill, United States; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, United States
| |
Collapse
|
15
|
Jiang J, Zheng T, Zheng H, Wu Y, Jia F, Xu Y, He K, Yang Y. The role of modification in the physicochemical properties and gut microecological regulatory functions of non-digestible polysaccharides: A review. Int J Biol Macromol 2025:144137. [PMID: 40368200 DOI: 10.1016/j.ijbiomac.2025.144137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Non-digestible polysaccharides (NDPs) are a type of polysaccharides that are difficult for human digestive enzymes to degrade. They typically reach the large intestine as food residues and exert prebiotic effects by interacting with intestinal microorganisms. However, they were limited in practical application value due to their complex structure and poor water solubility. Hence, the alteration of the physicochemical properties of NDPs is of great significance for enhancing their functional performance. The existing literature on the modification of NDPs primarily focuses on chemical methods to modify their physicochemical properties. Meanwhile, we also found that they focus on the modification methods themselves, lacking a systematic summary and analysis of the regulation of intestinal microecological functions by modified NDPs. The correlation between the physicochemical properties of modified NDPs and the regulatory mechanisms of gut microbiota needs to be systematically summarized. Therefore, this paper aims to systematically review the modification methods of NDPs from the perspectives of physics, chemistry and biology, with a focus on the molecular mechanisms and optimization strategies of these modification methods, such as the combined use of various modification methods, the regulatory mechanisms of the modified NDPs on the microbiota, as well as their potential applications in functional foods and pharmaceutical carriers. This paper could provide a theoretical basis for the selective modification and targeted regulation of intestinal microecology by NDPs and the development of new functional NDPs products, which is of great significance for promoting the innovative application of NDPs in precision nutrition and adjunctive disease therapy.
Collapse
Affiliation(s)
- Jiani Jiang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China.
| | - Tao Zheng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China.
| | - Hui Zheng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yuhang Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China.
| | - Fan Jia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yao Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China.
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua 418000, China.
| | - Yong Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China.
| |
Collapse
|
16
|
Mangoni AA, Woodman RJ, Jarmuzewska EA. Pharmacokinetic and pharmacodynamic alterations in older people: what we know so far. Expert Opin Drug Metab Toxicol 2025:1-19. [PMID: 40338211 DOI: 10.1080/17425255.2025.2503848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/14/2025] [Accepted: 05/06/2025] [Indexed: 05/09/2025]
Abstract
INTRODUCTION Healthcare professionals face increasing challenges when managing older patients, a group characterized by significant interindividual variability in comorbidity patterns, homeostatic capacity, frailty status, cognitive function, and life expectancy. Complex therapeutic decisions may increase the risk of inappropriate polypharmacy, drug-drug, and drug-disease interactions in the context of age-associated pharmacokinetic and pharmacodynamic alterations, with consequent drug accumulation and toxicity. AREAS COVERED This state-of-the-art narrative review article summarizes and critically appraises the results of original research studies and reviews published in PubMed, Scopus, and Web of Science, from inception to 9 April 2025, on age-associated changes in critical organs and systems and relevant pharmacokinetic and pharmacodynamic alterations. It also discusses the emerging role of frailty and the gut microbiota in influencing such alterations and the potential utility of machine learning techniques in identifying new signals of drug efficacy and toxicity in older patients. EXPERT OPINION The available knowledge regarding specific age-associated pharmacokinetic and pharmacodynamic alterations applies to a limited number of drugs, some of which are not frequently prescribed in contemporary practice. Future studies investigating a wider range of drugs and their patterns of use will likely enhance therapeutic efficacy and minimize toxicity in the older patient population.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Richard J Woodman
- Discipline of Biostatistics, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Elzbieta A Jarmuzewska
- Department of Internal Medicine, Polyclinic IRCCS, Ospedale Maggiore, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Jiménez-González C, Alonso-Peña M, Argos Vélez P, Crespo J, Iruzubieta P. Unraveling MASLD: The Role of Gut Microbiota, Dietary Modulation, and AI-Driven Lifestyle Interventions. Nutrients 2025; 17:1580. [PMID: 40362889 PMCID: PMC12073168 DOI: 10.3390/nu17091580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Gut microbiota has a crucial role in the pathophysiology of metabolic-associated steatotic liver disease (MASLD), influencing various metabolic mechanisms and contributing to the development of the disease. Dietary interventions targeting gut microbiota have shown potential in modulating microbial composition and mitigating MASLD progression. In this context, the integration of multi-omics analysis and artificial intelligence (AI) in personalized nutrition offers new opportunities for tailoring dietary strategies based on individual microbiome profiles and metabolic responses. The use of chatbots and other AI-based health solutions offers a unique opportunity to democratize access to health interventions due to their low cost, accessibility, and scalability. Future research should focus on the clinical validation of AI-powered dietary strategies, integrating microbiome-based therapies and precision nutrition approaches. Establishing standardized protocols and ethical guidelines will be crucial for implementing AI in MASLD management, paving the way for a more personalized, data-driven approach to disease prevention and treatment.
Collapse
Affiliation(s)
- Carolina Jiménez-González
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| | - Marta Alonso-Peña
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain
| | - Paula Argos Vélez
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain; (C.J.-G.); (M.A.-P.); (P.A.V.); (P.I.)
| |
Collapse
|
18
|
Zhang H, Dong Z, Su J, Zhou Z, Li W, Yuan X, Chen L, He W. Research trends and hotspots of osteoporosis and intestinal microbiota: A bibliometric analysis. Medicine (Baltimore) 2025; 104:e41939. [PMID: 40324264 PMCID: PMC12055077 DOI: 10.1097/md.0000000000041939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Osteoporosis (OP) is the second most detrimental chronic disease, and thus novel diagnostic and therapeutic approaches are needed. In recent years, there has been an increased emphasis on the utilization of gut microbiota (GM) in the context of OP. However, a comprehensive bibliometric analysis on this subject is currently lacking. Furthermore, a deeper exploration of the role of GM in bone health is imperative, and there is a pressing need to foster international and inter-agency exchange and experience in this field. Accordingly, this study aimed to provide an overview of the research trends in this field and propose suggestions for related scientific and technological research and development. METHODS The Web of Science database was searched for articles related to both GM and OP. Statistical analyses and data visualization were performed using the EXCEL and CiteSpace software. RESULTS China exhibited the highest number of publications, followed by the United States. NUTRIENTS and Sichuan University were identified as the journal and institution, respectively, with the highest number of articles. Notably, the keywords "gut microbiota" and "bone loss" have been increasingly used in publications. CONCLUSION In conclusion, this study fills the existing gap in the literature and contributes valuable insights to the understanding of the relationship between GM and OP.
Collapse
Affiliation(s)
- Hongbin Zhang
- Department of Orthopaedics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Zhiyu Dong
- Department of Traditional Chinese Medicine, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Jinyi Su
- Department of Orthopaedics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Zhiqiang Zhou
- Department of Rheumatism Immunity, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Wenbing Li
- Department of Pneumology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Xuefei Yuan
- Department of Reproductive Center, Changhai Hospital of Shanghai, Shanghai, China
| | - Limin Chen
- Department of Traditional Chinese Medicine, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Wenquan He
- Department of Orthopaedics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| |
Collapse
|
19
|
Noman AM, Sultan MT, Maaz M, Mazhar A, Tariq N, Imran M, Hussain M, Mujtaba A, Abdelgawad MA, Mostafa EM, Ghoneim MM, Selim S, Al Jbawi E. Nutraceutical Potential of Anthocyanins: A Comprehensive Treatise. Food Sci Nutr 2025; 13:e70164. [PMID: 40330208 PMCID: PMC12050221 DOI: 10.1002/fsn3.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Anthocyanins (Anthos; flower and kyanos; blue) are natural coloring compounds from the flavonoids class that include cyanidin, peonidin, delphinidin, malvidin, pelargonidin, and petunidin. Recently, the role of anthocyanins in disease prevention, especially inflammation, diabetes, cancer, neuro-disorders, hepato-renal protective, and immuno-modulation properties has been highlighted. The current review covered the literature on the pharmacokinetics and pharmacological effects of anthocyanins, especially absorption, distribution, metabolism, and excretion (ADME). The discussion on molecular mechanisms underlying their therapeutic effects is the limelight of the article. The GLUT1, GLUT3, SGLT1, SMCT1, and SMCT2 are the main carriers involved in the transportation of anthocyanins in the gastrointestinal tract. The anthocyanins exert their anticancer effects by reducing the expression of IL-6, IL-1β, TNF-β, COX-2, downregulation of NF-kB, EZH2, MDR1, Akt, and modulation of P13K/AKT and AMPK/mTOR pathways. The reduction in α-amylase and α-glucosidase and improved FFAR1 activity results in antidiabetic effects. The regulation of PGC-1α/NRF2/TFAM, p-PI3K/Akt/GSK3β, and Nrf2/HO-1 prevents neurodegeneration. The anthocyanins impose hepato-renal protective effects via ameliorating NLRP3 inflammasome, inhibiting MDA, GSSG, iNOS, HO-1, ICAM-1, β2-microglobulin, and MPO activity, and improved SOD, CAT, and GSH activity. Anthocyanins promote beneficial gut microbiota and enhance SCFA production, thus inhibiting pro-inflammatory markers. The immuno-modulatory impact of anthocyanins involves the reduction of CRP, P-selectin, C1q, and C4. Anthocyanins reduce LDL, VLDL, TGs, and TC via improved GBA and upregulation of ATP6 V0C, ZO-1, and ATG4D expression. The WHO/FAO suggested that 2.5 mg/kg/day of grape-skin extracts of anthocyanins are safe, and China recommended that 50 mg/day of anthocyanins are safe for consumption. In a nutshell, the multifaceted health benefits of anthocyanins make them promising candidates for disease prevention and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmad Mujtaba Noman
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
- TIMES InstituteMultanPakistan
| | - Muhammad Tauseef Sultan
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Muhammad Maaz
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Aimen Mazhar
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Naima Tariq
- Departmnet of Food Science and Technology, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering Sciences and TechnologyHamdard University IslamabadIslamabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityRiyadhSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | | |
Collapse
|
20
|
Zare MJ, Ahmadi A, Dehbozorgi S, Zare M, Hejazi N. The Association Between Children's Dietary Inflammatory Index (C-DII) and Nutrient Adequacy with Gastrointestinal Symptoms, Sleep Habits, and Autistic Traits. J Autism Dev Disord 2025; 55:1727-1736. [PMID: 38607471 DOI: 10.1007/s10803-024-06328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Affiliation(s)
- Mohammad Javad Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
| | - Afsane Ahmadi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran.
| | - Sara Dehbozorgi
- Research Center for Psychiatry and Behavior Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
| | - Najmeh Hejazi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
21
|
Tang X, Huang L, Ma W, Huang M, Zeng Z, Yu Y, Qin N, Zhou F, Li F, Gong S, Yang H. Intestinal 8 gingerol attenuates TBI-induced neuroinflammation by inhibiting microglia NLRP3 inflammasome activation in a PINK1/Parkin-dependent manner. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156580. [PMID: 40058316 DOI: 10.1016/j.phymed.2025.156580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND traumatic brain injury (TBI) is irreversible brain damage, leading to inflammation and cognitive dysfunction. Microglia involved in the inflammatory response after TBI. The gut microbiota, known as the body's "second brain," regulates neurogenesis and immune responses, but its precise role in regulating TBI remains unclear. PURPOSE to investigate the effect of gut microbiota and metabolites disorder on TBI injury. STUDY DESIGN 16SrRNA and metabolomics compared gut microbiota and metabolites in sham group and TBI group, then proved that the differential metabolite 8-gingerol (8G) alleviated the microglia neuroinflammatory response after TBI. METHODS fecal microbiota transplantation explored the role of dysbiosis in TBI. LC/MS detected the content of 8-gingerol in cecum, blood, and brain. HE, Nissl, Tunel staining and mNSS score evaluated brain injury. Western blot and immunofluorescence detected the expression of inflammasome-related proteins and mitophagy-related proteins in brain tissue and BV2 cells. RNA sequencing analyzed the molecular mechanism of 8-gingerol. RESULT rats transplanted with TBI feces had worse brain injury and neurological deficits than those with normal feces. 16SrRNA and metabolomics found that TBI caused dysbiosis and decreased 8-gingerol level, leading to severe neuroinflammation. Mechanistically, 8-gingerol inhibited NLRP3 inflammasome by promoting PINK1-Parkin mediated mitophagy in microglia. Inhibition of Parkin, through either small interfering RNA or the inhibitor 3MA reversed the inhibitory effect of 8-gingerol on NLRP3 by blocking mitophagy. BV2 cells transcriptome showed that 8-gingerol significantly increased the expression of autophagy factor Wipi1, and small interfering RNA of Wipi1 abolished the effect of 8-gingerol on promoting mitophagy and the inhibitory effect on NLRP3. CONCLUSION our findings shed light on the pivotal role of gut microbes in TBI, and identify 8 gingerol as an important anti-inflammatory compound during TBI.
Collapse
Affiliation(s)
- Xuheng Tang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China
| | - Lin Huang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China
| | - Weiquan Ma
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China
| | - Mingxin Huang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yiqin Yu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China
| | - Na Qin
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China
| | - Fei Zhou
- Central Hospital of Guangdong Prison, Guangzhou 510430, China
| | - Fen Li
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China.
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, 510515, China.
| | - Hong Yang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou 510515, China.
| |
Collapse
|
22
|
Ni X, Li J, Xiong H, Deng Z, Sun Y. Influence of fatty acid distribution on lipid metabolism and cognitive development in first-weaned mice. Food Res Int 2025; 209:116292. [PMID: 40253195 DOI: 10.1016/j.foodres.2025.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/18/2025] [Accepted: 03/13/2025] [Indexed: 04/21/2025]
Abstract
There are significant structural differences between breast milk fat and the fat found in existing infant formulas, and these differences may partly explain the observed variations in growth and development between breastfed and formula-fed infants. This study used mice compared three groups: a control group (mixed vegetable oil), an OPO group (vegetable oil added with OPO), and a human milk fat substitute (HMFS) group formulated to match the fatty acid composition of breast milk. Compared to the control group and OPO group, HMFS-fed mice exhibited reduced body fat content and improved cognitive abilities. Lipidomics studies revealed that these differences in HMFS mice were associated with downregulation of hepatic glycerolipids and upregulation of glycerophospholipids and sphingolipids, facilitating the delivery of long-chain polyunsaturated fatty acids to the brain. Molecular investigations confirmed that HMFS reduces body fat accumulation by inhibiting endogenous fatty acid synthesis and promoting fatty acid β-oxidation, while changes in hepatic lipid profiles result from lipid molecule synthesis and interconversion. Metataxonomic studies demonstrated that HMFS reshaped the gut microbiota, including upregulating Akkermansia and downregulating Desulfovibrio and the Firmicutes/Bacteroidetes ratio, with strong correlations observed between the change of gut microbiota and responded lipids in liver. Overall, the breast milk's unique fatty acid distribution promotes organismal growth by modulating hepatic lipid metabolism, systemic lipid circulation, and gut microbiota. These findings underscore the nutritional benefits of breast milk fat structure and provide insights for the development of next-generation infant formulas.
Collapse
Affiliation(s)
- Xinggang Ni
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
23
|
Nie P, Hu L, Feng X, Xu H. Gut Microbiota Disorders and Metabolic Syndrome: Tales of a Crosstalk Process. Nutr Rev 2025; 83:908-924. [PMID: 39504479 DOI: 10.1093/nutrit/nuae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The microbiota in humans consists of trillions of microorganisms that are involved in the regulation of the gastrointestinal tract and immune and metabolic homeostasis. The gut microbiota (GM) has a prominent impact on the pathogenesis of metabolic syndrome (MetS). This process is reciprocal, constituting a crosstalk process between the GM and MetS. In this review, GM directly or indirectly inducing MetS via the host-microbial metabolic axis has been systematically reviewed. Additionally, the specifically altered GM in MetS are detailed in this review. Moreover, short-chain fatty acids (SCFAs), as unique gut microbial metabolites, have a remarkable effect on MetS, and the role of SCFAs in MetS-related diseases is highlighted to supplement the gaps in this area. Finally, the existing therapeutics are outlined, and the superiority and shortcomings of different therapeutic approaches are discussed, in hopes that this review can contribute to the development of potential treatment strategies.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation Co., Ltd, Nanchang University, Nanchang 330200, China
| |
Collapse
|
24
|
Zhang L, Li X, Gao H, Chang W, Li P. Gut microbiota-lncRNA/circRNA crosstalk: implications for different diseases. Crit Rev Microbiol 2025; 51:499-513. [PMID: 38967384 DOI: 10.1080/1040841x.2024.2375516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The gut microbiota features an abundance of diverse microorganisms and represents an important component of human physiology and metabolic homeostasis, indicating their roles in a wide array of physiological and pathological processes in the host. Maintaining balance in the gut microbiota is critical for normal functionality as microbial dysbiosis can lead to the occurrence and development of diseases through various mechanisms. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are non-coding RNAs that perform important regulatory functions for many processes. Furthermore, the gut microbiota and lncRNAs/circRNAs are known to interact in a range of both physiological and pathological activities. In this article, we review existing research relevant to the interaction between the gut microbiota and lncRNAs/circRNAs and investigate the role of their crosstalk in the pathogenesis of different diseases. Studies have shown that, the gut microbiota can target lncRNAs ENO1-IT1, BFAL1, and LINC00152 to regulate colorectal cancer development via various signaling pathways. In addition, the gut microbiota can influence mental diseases and lung tumor metastasis by modulating circRNAs such as circNF1-419, circ_0001239, circHIPK2 and mmu_circ_0000730. These findings provide a theoretical basis for disease prevention and treatment and suggest that gut microbiota-lncRNA/circRNA crosstalk has high clinical value.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Dong J, Al‐Issa M, Feeney JS, Shelp GV, Poole EM, Cho CE. Prenatal Intake of High Multivitamins or Folic Acid With or Without Choline Contributes to Gut Microbiota-Associated Dysregulation of Serotonin in Offspring. Mol Nutr Food Res 2025; 69:e70044. [PMID: 40123263 PMCID: PMC12050513 DOI: 10.1002/mnfr.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
The gut microbiota is amenable to early nutrition including micronutrients but intake above and below the recommendations commonly occur with unknown consequences. Serotonin (5-hydroxytryptamine [5-HT]) is a monoamine found centrally and peripherally with diverse functions such as food intake regulation via the hypothalamic 5-HT receptor 2C (5-HTR2C). This study determined the impact of prenatal micronutrients on the gut microbiota and serotonergic system in offspring. Pregnant Wistar rats were fed either recommended vitamins (RV), high vitamins (HV), high folic acid with recommended choline (HFRC), or high folic acid with no choline (HFNC). Offspring were fed a high-fat diet for 12 weeks postweaning. HV, HFRC, and HFNC males and females had lower hypothalamic 5-HTR2C protein expression compared to RV. Brain 5-HT concentrations were lower but colon 5-HT concentrations were higher in HV and HFNC males and females and HFRC males compared to RV. Refeeding response after 5-HTR2C agonist was negatively correlated with hypothalamic 5-HTR2C protein expression in males and with brain 5-HT concentrations in females. Random forest revealed top bacterial taxa, which Lactococcus, Ruminococcus, Bacteroides, and Oscillospira showed significant correlations with refeeding response and concentrations of brain and colon 5-HT. In conclusion, excess or imbalanced prenatal consumption of micronutrients leads to gut microbiota-associated disturbances in the serotonergic system in offspring.
Collapse
Affiliation(s)
- Jianzhang Dong
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Mali Al‐Issa
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Jenny S. Feeney
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Gia V. Shelp
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Elizabeth M. Poole
- Department of Family Relations and Applied NutritionUniversity of GuelphGuelphOntarioCanada
| | - Clara E. Cho
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
26
|
Flores-Treviño S, Bocanegra-Ibarias P, Salas-Treviño D, Ramírez-Elizondo MT, Pérez-Alba E, Camacho-Ortiz A. Microbiota transplantation and administration of live biotherapeutic products for the treatment of dysbiosis-associated diseases. Expert Opin Biol Ther 2025; 25:1-14. [PMID: 40134274 DOI: 10.1080/14712598.2025.2484303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION The microbiota composition in humans varies according to the anatomical site and is crucial for maintaining homeostasis and an overall healthy state. Several gastrointestinal, vaginal, respiratory, and skin diseases are associated with dysbiosis. Alternative therapies such as microbiota transplantation can help restore microbiota normal composition and can be implemented to treat clinically relevant diseases. AREAS COVERED Current microbiota transplantation therapies conducted in clinical trials were included in this review (after searching on MEDLINE database from years 2017 to 2025) such as fecal microbiota transplantation (FMT) against recurrent Clostridioides difficile infection (rCDI) and vaginal microbiota transplantation (VMT) against bacterial vaginosis. Washed microbiota transplantation (WMT) and live biotherapeutic products (LBPs) were also reviewed. EXPERT OPINION In microbiota-based transplantation therapy, selecting optimal donors is a limitation. A stool or a vaginal microbiota bank should be implemented to overcome the time-consuming and expensive process of donor recruitment. Microbiota-based LBPs are also promising treatment alternatives for rCDI and other dysbiosis-associated diseases. Specific LBPs could be engineered out of donor fluids-derived strains to achieve the selection of specific beneficial microorganisms for the treatment of specific dysbiosis-associated diseases. Personalized microbiota-based treatments are promising solutions for dysbiosis-associated diseases, which remains an important necessity in clinical practice.
Collapse
Affiliation(s)
- Samantha Flores-Treviño
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Paola Bocanegra-Ibarias
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Daniel Salas-Treviño
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - María Teresa Ramírez-Elizondo
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Eduardo Pérez-Alba
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Adrián Camacho-Ortiz
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
27
|
Ding F, Yu Y, Zhang Y, Wei S, Han JH, Li Z, Jiang HB, Ryu D, Park W, Ha KT, Geng L. Harnessing nutrients and natural products for sustainable drug development against aging. Front Pharmacol 2025; 16:1579266. [PMID: 40356992 PMCID: PMC12066681 DOI: 10.3389/fphar.2025.1579266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Developing treatments for age-related diseases requires cost-effective and efficient approaches. Nutrients and natural metabolites offer safer alternatives to synthetic drugs. Aging increases the need for solutions that protect health and repair cells. Recent studies show that nutrients and natural products reduce oxidative stress, regulate metabolism, and influence longevity-related genes. This review focuses on vitamins, minerals, antioxidants, and natural products that improve healthspan and combat aging. It also discusses challenges such as standardization, clinical validation, and regulatory approval. Finally, emerging trends, such as personalized nutrition and advanced delivery systems, highlight the potential of these metabolites for addressing aging.
Collapse
Affiliation(s)
- Fuan Ding
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying Yu
- Department of Surgery, Changchun University of Chinese Medicine, Changchun, China
| | - Yan Zhang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Zhuo Li
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hong-Bo Jiang
- Department of Dermatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Li Geng
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Zhang X, Wu L, Li H, Zhang S, Hua W. Association between the dietary index for gut microbiota and female infertility: a cross-sectional study of NHANES 2013-2018. Front Nutr 2025; 12:1583805. [PMID: 40357046 PMCID: PMC12066596 DOI: 10.3389/fnut.2025.1583805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Background Infertility poses a substantial societal and economic burden; however, current preventive strategies are limited. Recently, the relationship between gut microbiota and infertility has garnered increasing attention. The dietary index for gut microbiota (DI-GM) is a new index that reflects the diversity of the gut microbiota. However, its association with female infertility remains unclear. Methods This cross-sectional study included 3,053 women aged 18-45 years from the National Health and Nutrition Examination Survey (NHANES) database between 2013 and 2018. Infertility was defined based on responses to a questionnaire on reproductive health. The DI-GM score was calculated by averaging the intake from two 24-h dietary recall interviews. Weighted multivariable logistic regression, restricted cubic splines (RCS), and subgroup analyses were used to investigate the association between DI-GM and female infertility. Results Based on self-reported data, 370 participants (12.12%) were classified as infertile. A higher proportion of participants with lower DI-GM scores experienced infertility. Multivariable logistic regression analysis indicated a negative association between DI-GM and the risk of female infertility, regardless of whether the independent variable was analyzed as a continuous variable or in quartiles in the fully adjusted model (Model 3, continuous variable: OR = 0.89, 95% confidence interval (CI): 0.80-0.98, p = 0.025; Q4 vs. Q1: OR = 0.63, 95% CI = 0.42-0.94, p = 0.032, p for trend = 0.013). The RCS curves demonstrated a non-linear relationship between the DI-GM scores and infertility risk. Subsequent subgroup analyses corroborated the robustness of these findings. Conclusion These findings suggest a non-linear relationship between DI-GM and the risk of infertility in females, with lower DI-GM scores associated with a higher risk of infertility.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, Guangdong, China
| | - Liangzhi Wu
- Department of Gynecology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Haiyan Li
- Department of Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, Guangdong, China
| | - Wenfeng Hua
- Department of Gynecology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Valencia S, Zuluaga M, Florian Pérez MC, Montoya-Quintero KF, Candamil-Cortés MS, Robledo S. Human Gut Microbiome: A Connecting Organ Between Nutrition, Metabolism, and Health. Int J Mol Sci 2025; 26:4112. [PMID: 40362352 PMCID: PMC12071897 DOI: 10.3390/ijms26094112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 05/15/2025] Open
Abstract
The gut microbiome plays a vital role in human health, functioning as a metabolic organ that influences nutrient absorption and overall well-being. With growing evidence that dietary interventions can modulate the microbiome and improve health, this review examines whether healthcare systems should prioritize personalized microbiome-targeted therapies, such as probiotics, prebiotics, and microbiota transplants, over traditional pharmaceutical treatments for chronic diseases like obesity, diabetes, cardiovascular risk, and inflammatory conditions. A systematic review using Web of Science and Scopus databases was conducted, followed by a scientometric analysis. Key metabolic pathways, such as dietary fiber fermentation and short-chain fatty acid production, were explored, focusing on their impact on lipid and glucose metabolism. The interactions between microbial metabolites and the immune system were also investigated. Dietary interventions, including increased fiber and probiotic intake, show potential for addressing dysbiosis linked to conditions, such as type 2 diabetes, obesity, and autoimmune diseases. The review emphasizes the need to incorporate microbiome modulation strategies into clinical practice and research, calling for a multidisciplinary approach that integrates nutrition, microbiology, and biochemistry to better understand the gut microbiome's complex role in health.
Collapse
Affiliation(s)
- Sandra Valencia
- Centro de Bioinformática y Biología Computacional de Colombia—BIOS, Grupo de Investigación—BIOS, Parque los Yarumos, Manizales 170002, Colombia;
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias para la Salud, Universidad de Caldas, Calle 65 # 26-10, Manizales 170004, Colombia; (M.C.F.P.); (K.F.M.-Q.)
| | - Martha Zuluaga
- Dirección Académica, Universidad Nacional de Colombia, Sede De La Paz, Km 9 Valledupar—La Paz, Cesar 202010, Colombia;
| | - María Cristina Florian Pérez
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias para la Salud, Universidad de Caldas, Calle 65 # 26-10, Manizales 170004, Colombia; (M.C.F.P.); (K.F.M.-Q.)
| | - Kevin Fernando Montoya-Quintero
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias para la Salud, Universidad de Caldas, Calle 65 # 26-10, Manizales 170004, Colombia; (M.C.F.P.); (K.F.M.-Q.)
| | - Mariana S. Candamil-Cortés
- Centro de Bioinformática y Biología Computacional de Colombia—BIOS, Grupo de Investigación—BIOS, Parque los Yarumos, Manizales 170002, Colombia;
| | - Sebastian Robledo
- Dirección Académica, Universidad Nacional de Colombia, Sede De La Paz, Km 9 Valledupar—La Paz, Cesar 202010, Colombia;
| |
Collapse
|
30
|
Kelley M, Rathore S, Chandrasegaran K, Herbert C, Sabile CEG, Wood T, Joves J, Palacios A, Susanto E, Uhran M, Ramirez AL, Chen SC, Tompkin J, Singh K, Khalid MS, Vinauger C, Buschbeck E, Limbach PA, Benoit JB. A microbiome-derived nutrient underlies tyrosine metabolism and predator avoidance in mosquito larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646203. [PMID: 40236032 PMCID: PMC11996489 DOI: 10.1101/2025.04.02.646203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The gut microbiome is a rich source of nutrients that are critical to the development and biology of eukaryotes. Transfer RNAs (tRNAs) are essential components of protein synthesis, and some chemical modifications to tRNA rely on the availability of microbiome-derived nutrients. In eukaryotes, the micronutrient queuosine (Q) is salvaged from the microbiome or diet and then incorporated into eukaryotic tRNA to influence the speed and efficiency of protein synthesis. Here, we examine the role of microbiome-derived Q in mosquito larval development and behavior. When mosquito larvae are grown with a microbiome incapable of synthesizing Q, there is a significant impact on tyrosine levels and processes, which correlate with defects in behavior and cuticle formation. Due to defects in movement and behavioral responses, Q-deficient larvae demonstrate impaired predator evasion, leading to higher instances of capture by predaceous beetle larvae. The broad effects of Q-deficiency in mosquito larvae highlight the importance of microbiome-derived nutrients for eukaryotic physiology and behavior.
Collapse
|
31
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
32
|
Li H, Feng W, An T, Dai P, Liu YJ. Polystyrene microplastics reduce honeybee survival by disrupting gut microbiota and metabolism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104704. [PMID: 40274082 DOI: 10.1016/j.etap.2025.104704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/13/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Polystyrene microplastics (PS-MPs) pose significant risks to honeybee health. However, how microplastics (MPs) adversely influence honeybee survival through the gut pathway, especially the metabolic processes, remains poorly understood. To conduct the experiment, the honeybees (Apis mellifera L.) were exposed to PS-MPs (0.5 μm and 5 μm) at environmental concentrations of 25 mg/L and 50 mg/L for 21 days. Results revealed that PS-MPs reduced honeybee survival rates and food consumption. The accumulation of PS-MPs in honeybee guts caused structural damage to gut walls and elevated oxidative stress levels. Additionally, PS-MPs altered gut microbial communities, with a decrease in Lactobacillus and an increase in Bartonella. Gut metabolomics analysis indicated that PS-MPs disrupted metabolic pathways, upregulated amino acid and carbohydrate metabolism, and downregulated alpha-linolenic acid and lipid metabolism. Our study offers important insights into the physiological effects of accumulated MPs on honeybees, highlighting the critical need for effective strategies to manage environmental pollutants.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wangjiang Feng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Tong An
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
33
|
da Silva Morais E, Grimaud GM, Warda A, Stephens N, Ross RP, Stanton C. Bacteroides maternus sp. nov., a novel species isolated from human faeces. Sci Rep 2025; 15:13808. [PMID: 40258876 PMCID: PMC12012224 DOI: 10.1038/s41598-025-96846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
A novel bacterial strain, MSB163, was isolated from the stool sample of a healthy mother, 4 weeks after giving birth via vaginal delivery. Taxonomic identification tools revealed that MSB163 belongs to the genus Bacteroides, but it is distinct from any currently known species. The closest related species is Bacteroides cellulosilyticus strain BFG- 250, with an average nucleotide identity (fastANI) of 94.51%. The genome length of MSB163 is 6,440,948 bp and the GC content 42.95%. Two plasmids were identified in the whole genome sequence. MSB163 is a Gram-negative, rod-shaped, non-motile anaerobic bacterium. The optimum growth conditions were at 37 °C, pH 7 and 0% (w/v) NaCl. The respiratory quinones were the menaquinones MK- 10 and MK- 11 and C15:0 ANTEISO was the major fatty acid. The predominant polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phospholipid. According to the taxonomic results and physiological analysis, strain MSB163 represents a novel species of the genus Bacteroides, for which we propose the name Bacteroides maternus, since the type strain was isolated from the stool sample of a mother. B. maternus type strain (MSB163) sequencing can be accessed under the biosample ID SAMN3953129 on NCBI. The strain was deposited on BCCM/LMG Bacteria Collection under the accession number LMG 33,374 and Leibniz Institut DSMZ GMBH under the accession number DSM 117,047.
Collapse
Affiliation(s)
- Emilene da Silva Morais
- Department of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, T12 YT20, Ireland
| | - Ghjuvan M Grimaud
- APC Microbiome Ireland, Cork, T12 YT20, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
- Division of Biotechnology and Applied Microbiology, Department of Process in Life Science and Engineering, Lund University, 22100, Lund, Sweden
| | - Alicja Warda
- APC Microbiome Ireland, Cork, T12 YT20, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Niamh Stephens
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Dublin 4, Ireland
| | - R Paul Ross
- Department of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, T12 YT20, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, T12 YT20, Ireland.
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
34
|
Withycombe JS, Bai J, Xiao C, Eldridge RC. Metabolomic Associations With Fatigue and Physical Function in Children With Cancer: A Pilot Study. Biol Res Nurs 2025:10998004251335639. [PMID: 40251999 DOI: 10.1177/10998004251335639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Background: Fatigue is a frequently reported symptom in children undergoing cancer treatment. Prior research shows an inverse relationship between fatigue and physical activity. Less is known about fatigue's relationship with physical function or the underlying biological mechanisms of fatigue. This study explored associations among fatigue, physical function, and associated metabolites. Methods: Children (7-18 years) provided serum samples and self-reports of fatigue and lower extremity physical function (mobility) using Pediatric Patient-Reported Outcomes Measurement Information System (PROMIS) surveys at two timepoints during cancer therapy. PROMIS scores were categorized as high/low per established cut points (high fatigue T >47.5; high physical function T >51.5). High-resolution liquid chromatography-mass spectrometry extracted 29 metabolites hypothesized a priori to be associated with fatigue or physical function. Descriptive statistics summarized PROMIS scores, and linear mixed effect models estimated metabolite associations adjusting for age, gender and steroid use. Results: Forty children participated (female, 53%; 7-12 years, 38%; 13-18 years 62%; Hodgkins Lymphoma, 33%; Acute Lymphoblastic/Lymphocytic Leukemia, 40%; Osteosarcoma, 10%; Other, 17%). Physical function and fatigue were inversely related: T1 (r = -0.64; p < .001) and T2 (r = -0.63; p < .001). One metabolite (indole-3-latic acid) differentiated between low and high fatigue. Five metabolites differentiated significantly between low and high physical function (4-Hydroxybenzoic acid, m-Coumaric acid, myoinositol, tryptophan, and tyrosine). Conclusions:These findings substantiate prior studies showing metabolites, particularly amino acids, significantly associated with fatigue and physical function. All significant metabolites were associated with the gut microbiome. Physical function was inversely corelated with fatigue providing another potential intervention for fatigue management.
Collapse
Affiliation(s)
- Janice S Withycombe
- School of Nursing, Clemson University, Clemson, SC, USA
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Canhua Xiao
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Ronald C Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| |
Collapse
|
35
|
Liu Z, Zhou X, Kuang L, Chen Q, Zhao J, Yin H, Zhou Z, Liu X, Liu D, Wu S, Wu L. Novel insights into immune-gut microbiota interactions in colorectal cancer: a Mendelian randomization study. Infect Agent Cancer 2025; 20:27. [PMID: 40251662 PMCID: PMC12008918 DOI: 10.1186/s13027-025-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/25/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND The relationship between immune cells and colorectal cancer (CRC) development has been extensively studied; however, the mediating role of gut microbiota in this relationship remains poorly understood. METHODS We utilized summary data from genome-wide association studies (GWAS) to analyze 731 immune cell phenotypes, 473 gut microbiota, and CRC-related data. A two-step mediation analysis was employed to identify mediating gut microbiota. The primary analysis method was inverse variance weighting (IVW), supplemented by MR-Egger, simple mode, weighted median, and weighted mode analyses. Robustness of the results was ensured through systematic sensitivity analyses. RESULTS Our analysis identified 13 immune cell phenotypes significantly associated with CRC, including 10 protective factors and 3 risk factors. Additionally, 13 gut microbiota showed significant associations with CRC, comprising 8 protective factors and 5 risk factors. Mediation analysis revealed that 4-gut microbiota (1 order, 1 family, 1 genus, and 1 unclassified) mediated the relationship between immune cells and CRC. For instance, unclassified CAG - 977 mediated the effects of FSC-A on NK and NKT %lymphocyte on CRC risk, with mediation proportions of 11% and 12.3%, respectively. Notably, 22.3% of the protective effect of EM CD8br %CD8br on CRC was mediated through order Francisellales. CONCLUSION This study provides evidence for a potential causal relationship between immune cells, gut microbiota, and CRC, highlighting the mediating role of specific gut microbiota. These findings offer new insights into the pathogenesis of CRC and may inform future therapeutic strategies.
Collapse
Affiliation(s)
- Zenghui Liu
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaohui Zhou
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Lu Kuang
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qijun Chen
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaxing Zhao
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Huayu Yin
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zeyu Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Chengde Medical College, Cengde,, Hebei,, China
| | - Xuehui Liu
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dabin Liu
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shaoguo Wu
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Limei Wu
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
| |
Collapse
|
36
|
Lu Y, Wang K, Hu L. Advancements in delivery systems for dietary polyphenols in enhancing radioprotection effects: challenges and opportunities. NPJ Sci Food 2025; 9:51. [PMID: 40229284 PMCID: PMC11997175 DOI: 10.1038/s41538-025-00419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Radiotherapy, a widely employed cancer treatment, often triggers diverse inflammatory responses such as radiation enteritis, pulmonary injury, pelvic inflammation, dermatitis, and osteitis. Dietary polyphenols have recently emerged as promising agents for mitigating radiation-induced inflammation. However, their clinical application faced challenges related to variable bioavailability, individual pharmacokinetics, optimal dosing, and limited clinical evidence. Current researches revealed the efficacy of bioactive small molecule polyphenols in addressing radiation-induced inflammation. In this review, along with a comprehensive examination of the etiology and categories of radiation-induced inflammatory conditions, the diversity of polyphenols and elucidating their anti-inflammatory mechanisms are explored. This study emphasizes the recent progresses in delivery systems for dietary polyphenols, aiming to enhance radioprotection effects. The optimized utilization of polyphenols, with a theoretical framework and reference guide, is of paramount relevance. Through diverse delivery mechanisms, the more effective and safer radioprotective strategies become achievable. This endeavor aspires to contribute to breakthroughs in the dietary polyphenols' application, significantly enhancing human health protection during radiotherapy. These comprehensive insights presented here also support (pre)-clinical practices in navigating the complexities of utilizing dietary polyphenols for radioprotection, fostering advancements in the field and improving patient outcomes.
Collapse
Affiliation(s)
- Yuxuan Lu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
37
|
Tan K, Sun N, Chen J, Long J, Feng W, Zhang X, Tan Z. Adherence to the Mediterranean diet and allergic diseases in Korean adults: KNHANES 2013-2016. Front Nutr 2025; 12:1563251. [PMID: 40260093 PMCID: PMC12009722 DOI: 10.3389/fnut.2025.1563251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/14/2025] [Indexed: 04/23/2025] Open
Abstract
Background The prevalence of allergic diseases [e.g., asthma, allergic rhinitis (AR), atopic dermatitis (AD)] has increased significantly in recent years, which is coincides with a shift in modern eating habits. The Mediterranean diet, due to its anti-inflammatory properties, may be beneficial in the prevention of allergic diseases. However, its effects on allergic diseases have not been sufficiently studied. We investigated the relationship between adherence to the Mediterranean diet and allergic diseases. Methods This study analyzed the relationship between adherence to the Mediterranean diet (using the modified Mediterranean diet score, mMED) and atopic dermatitis, asthma, and allergic rhinitis in 12,080 participants using data from the 2013-2016 Korean National Health and Nutrition Examination Survey (KNHANES). Multiple logistic regression analyses were used to control for confounding factors such as age, gender, education level, income, and lifestyle. Results In multivariable adjusted models, participants with higher mMED had a significantly lower risk of developing AD (OR 0.57; 95% CI, 0.36-0.92; p trend = 0.0201). When stratified by sex, this risk reduction was more significant in females (OR 0.50; 95% CI, 0.27-0.96; p trend <0.05). Across mMED components, fish and peanut intake were negatively associated with the occurrence of AD and AR (OR 0.55; 95% CI, 0.40-0.76; p trend <0.05, OR 0.75; 95% CI, 0.65-0.87; p trend <0.05). There was no significant association between asthma and AR and mMED scores. Conclusion High adherence to the Mediterranean diet is associated with a lower prevalence of atopic dermatitis, especially in women. Fish and peanut intake have an important protective role against atopic diseases.
Collapse
Affiliation(s)
- Kaiyue Tan
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Nanren Sun
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiaojiao Chen
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiaqi Long
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenzhe Feng
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaojie Zhang
- Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhimin Tan
- Department of Otolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
38
|
Zhou J, Lu P, He H, Zhang R, Yang D, Liu Q, Liu Q, Liu M, Zhang G. The metabolites of gut microbiota: their role in ferroptosis in inflammatory bowel disease. Eur J Med Res 2025; 30:248. [PMID: 40189555 PMCID: PMC11974165 DOI: 10.1186/s40001-025-02524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Inflammatory bowel disease (IBD) includes chronic inflammatory conditions, such as Crohn's disease and ulcerative colitis, characterized by impaired function of the intestinal mucosal epithelial barrier. In recent years, ferroptosis, a novel form of cell death, has been confirmed to be involved in the pathological process of IBD and is related to various pathological changes, such as oxidative stress and inflammation. Recent studies have further revealed the complex interactions between the microbiome and ferroptosis, indicating that ferroptosis is an important target for the regulation of IBD by the gut microbiota and its metabolites. This article reviews the significant roles of gut microbial metabolites, such as short-chain fatty acids, tryptophan, and bile acids, in ferroptosis in IBD. These metabolites participate in the regulation of ferroptosis by influencing the intestinal microenvironment, modulating immune responses, and altering oxidative stress levels, thereby exerting an impact on the pathological development of IBD. Treatments based on the gut microbiota for IBD are gradually becoming a research hotspot. Finally, we discuss the potential of current therapeutic approaches, including antibiotics, probiotics, prebiotics, and fecal microbiota transplantation, in modulating the gut microbiota, affecting ferroptosis, and improving IBD symptoms. With a deeper understanding of the interaction mechanisms between the gut microbiota and ferroptosis, it is expected that more precise and effective treatment strategies for IBD will be developed in the future.
Collapse
Affiliation(s)
- Jingying Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Penghui Lu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Haolong He
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ruhan Zhang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Dican Yang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qiong Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Guoshan Zhang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
39
|
Bhagat NR, Bharti VK, Shukla G, Rishi P, Chaurasia OP. Gut bacteriome dynamics in high altitude-adapted chicken lines: a key to future poultry therapeutics. Sci Rep 2025; 15:11910. [PMID: 40195460 PMCID: PMC11976950 DOI: 10.1038/s41598-025-96178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
High-altitude-adapted chickens harbor a unique gut bacteriome essential for their survival under extremely cold and hypoxic environment, however, little is known about their population and functional dynamics, limiting their application in poultry production. Hence, this study employed amplicon-based metagenomics to examine the gut bacterial diversity and their functional profile in two high-altitude-adapted chicken lines, e.g. LEHBRO-1 and LEHBRO-3. The results revealed significant variations in taxonomic abundance at the phylum level, with Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria predominating in LEHBRO-1, whereas Firmicutes, Proteobacteria, Bacteroidetes, Planctomycetes, and Actinobacteria predominated in LEHBRO-3. Genus-level diversity and Linear Discriminant Analysis Effect Size (LEfSe) biomarker analysis also substantiated the differences in the gut bacterial communities between the two chicken lines. Furthermore, functional profiling revealed enrichment of carbohydrate, nucleotide, lipid, amino acid, fatty acid, energy, and glycan metabolic pathways in the gut bacteriomes of these high-altitude chicken lines. The Statistical Analysis of Metagenomic Profiles (STAMP) for metabolic profiling identified a significant difference in purine and protein metabolism between these two chicken lines. These findings indicate the unique gut bacteriome and their functional diversity in high-altitude-adapted chickens, which would provide a foundation for future research on gut therapeutics to improve chicken health and productivity in high-altitude areas.
Collapse
Affiliation(s)
- Neha R Bhagat
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, UT Ladakh, 194101, India
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, UT Ladakh, 194101, India.
| | - Geeta Shukla
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| | - O P Chaurasia
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, UT Ladakh, 194101, India
| |
Collapse
|
40
|
Rajbhandari RM, Forcina G, Manandhar P, Rajbhandari PG, Napit R, Raut R, Shrestha S, Sadaula A, Gortázar C, Alves PC, de la Fuente J, Queirós J, Karmacharya D. Gut microbiota diversity among humans, elephants, livestock and wild herbivores in Chitwan National Park bears implications for conservation medicine. Sci Rep 2025; 15:11596. [PMID: 40185849 PMCID: PMC11971256 DOI: 10.1038/s41598-025-89402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/05/2025] [Indexed: 04/07/2025] Open
Abstract
Gut microbiome influences host health and well-being. Co-occurring hosts may exchange disease-causing bacteria belonging to these microbial communities. Therefore, monitoring gut microbiota composition in wildlife and humans is paramount to prevent zoonotic diseases, thus protecting and strengthening public health. We characterized diversity and abundance of the gut microbiome bacterial component across mahouts (captive elephant trainers and handlers), their pachyderms, livestock and wild herbivores in and around Chitwan National Park (Nepal). Firmicutes and Bacteroidota were invariably the dominant phyla. In humans, the relative abundance of Firmicutes was higher, the alpha diversity lower and beta diversity different compared to other host categories. Livestock and wild herbivores displayed similar alpha and beta diversity due to the presence of Proteobacteria, Actinobacteriota and Verrucomicrobiota. Elephants had a higher alpha diversity, and a significant beta diversity compared to other mammals. Our results suggest that taxonomic affiliation and diet niche are the main drivers of gut microbiota composition. Nevertheless, Mycobacterium and other potentially pathogenic bacteria genera were detected in elephants and livestock other than wild herbivores. These findings shed light on microbiota sharing and interlinking in each environment, thereby highlighting the importance of conservation medicine to better our understanding of health in co-occurring host species.
Collapse
Affiliation(s)
- Rajesh Man Rajbhandari
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), SaBio Research Group, Ciudad Real, Spain
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal
| | - Giovanni Forcina
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Ciencias de la Vida, Global Change Ecology and Evolution (GloCEE) Group and Research Team on Soil Biology and Subterranean Ecosystems (GIBSES), Universidad de Alcalá (UAH), Alcalá de Henares, Madrid, Spain
| | - Prajwol Manandhar
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal
| | - Pragun G Rajbhandari
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal
| | - Rajindra Napit
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal
| | - Roji Raut
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal
| | - Seily Shrestha
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal
| | - Amir Sadaula
- Biodiversity Conservation Center, National Trust for Nature Conservation, Sauraha, Chitwan, Nepal
| | - Christian Gortázar
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), SaBio Research Group, Ciudad Real, Spain
| | - Paulo Célio Alves
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- EBM, Estação Biológica de Mértola, Praça Luís de Camões, 7750-329, Mértola, Portugal
| | - José de la Fuente
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), SaBio Research Group, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - João Queirós
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- EBM, Estação Biológica de Mértola, Praça Luís de Camões, 7750-329, Mértola, Portugal
| | - Dibesh Karmacharya
- Center for Molecular Dynamics Nepal, Swaraj Sadhan, Thapathali 11, Kathmandu, Nepal.
- School of Biological Sciences, Faculty of Science, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
41
|
Schneider S, Biggerstaff D, Barber TM. Dietary Guidelines Post Kidney Transplant: Is This the Missing Link in Recovery and Graft Survival? Transpl Int 2025; 38:14288. [PMID: 40248508 PMCID: PMC12004285 DOI: 10.3389/ti.2025.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/11/2025] [Indexed: 04/19/2025]
Abstract
The physiology of a transplanted kidney is affected from the moment it is separated from the donor. The risk of complications arising from surgery are highly associated with ischemic-reperfusion injury (IRI) due to the effects of hypoxia and oxidative stress during the procurement, preservation and reperfusion procedures. Hypoxia promotes the formation of reactive oxygen species (ROS) and it seems apparent that finding ways of optimising the metabolic milieu for the transplanted kidney would improve recovery and graft survival. Studies have demonstrated the benefits of nutrition and antioxidant compounds in mitigating the disturbance of energy supply to cells post-transplant and at improving long-term graft survival. Particularly in patients who may be nutritionally deficient following long-term dialysis. Despite the high incidence of allograft failure, a search of the literature and grey literature reveals no medical nutriti on therapy guidelines on beneficial nutrient intake to aid transplant recovery and survival. This narrative review aims to summarise current knowledge of specific macro and micronutrients and their effect on allograft recovery and survival in the perioperative period, up to 1-year post transplant, to optimise the metabolic environment and mitigate risk to graft injury.
Collapse
Affiliation(s)
- Suzanne Schneider
- Directorate Applied Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Deborah Biggerstaff
- Directorate Applied Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Thomas M. Barber
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| |
Collapse
|
42
|
Adil NA, Omo-Erigbe C, Yadav H, Jain S. The Oral-Gut Microbiome-Brain Axis in Cognition. Microorganisms 2025; 13:814. [PMID: 40284650 PMCID: PMC12029813 DOI: 10.3390/microorganisms13040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and neuronal loss, affecting millions worldwide. Emerging evidence highlights the oral microbiome-a complex ecosystem of bacteria, fungi, viruses, and protozoa as a significant factor in cognitive health. Dysbiosis of the oral microbiome contributes to systemic inflammation, disrupts the blood-brain barrier, and promotes neuroinflammation, processes increasingly implicated in the pathogenesis of AD. This review examines the mechanisms linking oral microbiome dysbiosis to cognitive decline through the oral-brain and oral-gut-brain axis. These interconnected pathways enable bidirectional communication between the oral cavity, gut, and brain via neural, immune, and endocrine signaling. Oral pathogens, such as Porphyromonas gingivalis, along with virulence factors, including lipopolysaccharides (LPS) and gingipains, contribute to neuroinflammation, while metabolic byproducts, such as short-chain fatty acids (SCFAs) and peptidoglycans, further exacerbate systemic immune activation. Additionally, this review explores the influence of external factors, including diet, pH balance, medication use, smoking, alcohol consumption, and oral hygiene, on oral microbial diversity and stability, highlighting their role in shaping cognitive outcomes. The dynamic interplay between the oral and gut microbiomes reinforces the importance of microbial homeostasis in preserving systemic and neurological health. The interventions, including probiotics, prebiotics, and dietary modifications, offer promising strategies to support cognitive function and reduce the risk of neurodegenerative diseases, such as AD, by maintaining a diverse microbiome. Future longitudinal research is needed to identify the long-term impact of oral microbiome dysbiosis on cognition.
Collapse
Affiliation(s)
- Noorul Ain Adil
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Christabel Omo-Erigbe
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
43
|
Ma C, Liang Z, Wang Y, Luo H, Yang X, Yao B, Tu T. p-Hydroxycinnamic Acids: Advancements in Synthetic Biology, Emerging Regulatory Targets in Gut Microbiota Interactions, and Implications for Animal Health. J Nutr 2025; 155:1041-1056. [PMID: 39900184 DOI: 10.1016/j.tjnut.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
p-hydroxycinnamic acids (p-HCAs), a class of natural phenolic acid compounds extracted from plant resources and widely distributed, feature a C6-C3 phenylpropanoid structure. Their antioxidant, anti-inflammatory, and antibacterial activities have shown great potential for applications in food and animal feed. The interactions between p-HCAs and the gut microbiota, as well as their subsequent effects on animal health, have increasingly attracted the attention of researchers. In the context of a greener and safer future, the progress and innovation in biosynthetic technology have occupied a central position in ensuring the safety of food and feed. This review emphasizes the complex mechanisms underlying the interactions between p-HCAs and the gut microbiota, providing a solid explanation for the remarkable bioactivities of p-HCAs and their subsequent impact on animal health. Furthermore, it explores the advancements in the synthetic biology of p-HCAs. This review could aid in a basis for better understanding the underlying interactions between p-HCAs and gut microbiota and animal health.
Collapse
Affiliation(s)
- Chunlai Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ziqi Liang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
44
|
Stonehouse W, Benassi-Evans B, Louise J. The effects of a novel nutraceutical combination on low-density lipoprotein cholesterol and other markers of cardiometabolic health in adults with hypercholesterolaemia: A randomised double-blind placebo-controlled trial. Atherosclerosis 2025; 403:119177. [PMID: 40147213 DOI: 10.1016/j.atherosclerosis.2025.119177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/12/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND AND AIM Clinical evidence exists for LDL-cholesterol lowering by plant sterols, bergamot extract and artichoke leaf extract individually but their effect when combined is unknown. This study investigated the effects of a novel nutraceutical combining plant sterols, bergamot extract, artichoke leaf extract and hydroxytyrosol (referred to as 'Cholesterol Balance'), on serum LDL-cholesterol (primary outcome), other cardiometabolic and oxidative stress markers in adults with hypercholesterolaemia. METHODS Healthy adults (n = 42, 18-<66 years, body mass index [BMI] >18.5-<35 kg/m2), with mild hypercholesterolaemia (LDL-cholesterol ≥2.5-<5 mmol/L) and low CVD risk participated in a 4-month double-blind randomised placebo-controlled trial. Participants consumed either 3 capsules/day Cholesterol Balance (providing 375 mg Bergavit40™, 150 mg Altilix™, 1.8 g phytosterols, and 50 mg of Hydrovas10™ daily) or placebo. Outcomes were assessed at baseline, 2- and 4-months. RESULTS There was no evidence that Cholesterol Balance affected serum LDL-cholesterol compared to placebo (adjusted mean difference [95 % CI] at 4 months between treatments, -0.12 [-0.34, 0.11] mmol/L, p = 0.307). None of the secondary outcomes, including total cholesterol, HDL-cholesterol, triglycerides, non-HDL-cholesterol, total cholesterol:HDL-cholesterol ratio, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), ApoB:ApoA1 ratio, plasma oxidised LDL, serum malondialdehyde, HbA1c, blood pressure or safety markers showed a significant difference between groups. CONCLUSION While safe to consume, a nutraceutical containing plant sterols, bergamot extract, artichoke leaf extract and hydroxytyrosol did not show evidence of improving serum LDL-cholesterol, or any other lipid and oxidative stress markers in adults with mild hypercholesterolaemia. Further research is needed to determine if ingredients in the complex formulation interact or interfere with LDL-cholesterol lowering mechanisms.
Collapse
Affiliation(s)
- Welma Stonehouse
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Health and Biosecurity, Adelaide, South Australia, Australia.
| | - Bianca Benassi-Evans
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Health and Biosecurity, Adelaide, South Australia, Australia.
| | - Jennie Louise
- Biostatistics Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
45
|
Yuan H, Huang H, Du Y, Zhao J, Yu S, Lin Y, Chen Y, Shan C, Zhao Y, Belwal T, Fu X. Sea buckthorn polyphenols on gastrointestinal health and the interactions with gut microbiota. Food Chem 2025; 469:142591. [PMID: 39721439 DOI: 10.1016/j.foodchem.2024.142591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The potential health benefits of sea buckthorn polyphenols (SBP) have been extensively studied, attracting increasing attention from researchers. This paper reviews the composition of SBP, the effects of processing on SBP, its interactions with nutrients, and its protective role in the gastrointestinal tract. Polyphenols influence nutrient absorption and metabolism by regulating the intestinal flora, thereby enhancing bioavailability, protecting the gastrointestinal tract, and altering nutrient structures. Additionally, polyphenols exhibit anti-inflammatory and immunomodulatory effects, promoting intestinal health. The interaction between polyphenols and intestinal flora plays a significant role in gastrointestinal health, supporting the composition and diversity of the gut microbiota. However, further research is needed to emphasize the importance of human trials and to explore the intricate relationship between SBP and gut microbiota, as these insights are crucial for understanding the mechanisms underlying SBP's benefits for the gastrointestinal tract (GIT).
Collapse
Affiliation(s)
- Hexi Yuan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Hao Huang
- College of Ecology, Lishui University, Lishui 323000, China
| | - Yinglin Du
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Jiaqi Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shiyang Yu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yanhong Lin
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yan Chen
- GOBI Memory Brand Management Co. Ltd, Ninth Division 170 Regiment Sea buckthorn Picking-garden, Tacheng 834700, China
| | - Chunhui Shan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yue Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | | | - Xizhe Fu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
46
|
Boggio CMT, Veronese F, Armari M, Zavattaro E, Esposto E, Savoia P, Azzimonti B. The Western Diet and Atopic Dermatitis: The Potential Role of Nutrients, Contaminants, and Additives in Dysbiosis and Epithelial Barrier Dysfunction. Antioxidants (Basel) 2025; 14:386. [PMID: 40298689 PMCID: PMC12024387 DOI: 10.3390/antiox14040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/30/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder influenced by both genetic and environmental factors, collectively termed the exposome. Among these determinants, diet emerges as a pivotal component, with diverse nutrients, contaminants, and additives shaping immune responses, microbiota composition, and systemic inflammatory status. This literature review aimed to elucidate the interplay between dietary factors and skin dysbiosis in AD, providing insights into how these interactions may impact disease susceptibility and progression. A comprehensive search of PubMed and Scopus was conducted using relevant keywords and medical subject headings (MeSH). Studies published in English within the past 25 years were included, encompassing in vitro, in vivo, and ex vivo research, as well as reviews. Priority was given to frequently cited articles, reflecting significant contributions to current understanding. Findings suggest that dietary habits influence AD by modulating both gut and skin microbiota, immune pathways, and inflammatory processes. These insights underscore the importance of considering diet within a broader exposome framework, paving the way for targeted interventions to improve AD management. Further research is needed to clarify the mechanisms and optimize nutritional strategies, potentially informing preventive and therapeutic approaches for AD.
Collapse
Affiliation(s)
- Chiara Maria Teresa Boggio
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (C.M.T.B.); (M.A.); (B.A.)
| | - Federica Veronese
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (F.V.); (E.Z.); (E.E.)
| | - Marta Armari
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (C.M.T.B.); (M.A.); (B.A.)
| | - Elisa Zavattaro
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (F.V.); (E.Z.); (E.E.)
| | - Elia Esposto
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (F.V.); (E.Z.); (E.E.)
| | - Paola Savoia
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (F.V.); (E.Z.); (E.E.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (C.M.T.B.); (M.A.); (B.A.)
| |
Collapse
|
47
|
Ayayee P, Custer G, Clayton JB, Price J, Ramer-Tait A, Larsen T. Assessing gut microbial provisioning of essential amino acids to host in a murine model with reconstituted gut microbiomes. RESEARCH SQUARE 2025:rs.3.rs-6255159. [PMID: 40195995 PMCID: PMC11975013 DOI: 10.21203/rs.3.rs-6255159/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Gut microbial essential amino acid (EAA) provisioning to mammalian hosts remains a critical yet poorly understood aspect of host-microbe nutritional interactions, with significant implications for human and animal health. To investigate microbial EAA contributions in mice with reconstituted gut microbiomes, we analyzed stable carbon isotopes (13C) of six EAAs across multiple organs. Germ-free (GF) mice fed a high-protein diet (18%) were compared to conventionalized (CVZ) mice fed a low-protein diet (10%) following fecal microbiota transplantation 30 days prior and a 20-day dietary intervention. We found no evidence for microbial EAA contributions to host tissues, with 13C-EAA fingerprinting revealing nearly identical patterns between GF and CVZ organs. Both groups maintained their expected microbiome statuses, with CVZ gut microbiota dominated by Firmicutes and Bacteroidetes phyla. These findings raise important questions about the functional capacities of reconstituted gut microbiomes. Future studies should investigate longer adaptation periods, varied dietary protein levels, and complementary analytical techniques to better understand the context-dependent nature of microbial EAA provisioning in mammalian hosts.
Collapse
Affiliation(s)
- Paul Ayayee
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Gordon Custer
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Jonathan B. Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jeff Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Thomas Larsen
- Max Planck Institute of Geoanthropology, Jena, Germany
- Institute for Prehistoric and Protohistoric Archaeology, University of Kiel, Kiel, Germany
| |
Collapse
|
48
|
Abdi R, Datta S, Zawar A, Kafle P. Evaluation of extended-spectrum β-lactamase producing bacteria in feces of shelter dogs as a biomarker for altered gut microbial taxa and functional profiles. Front Microbiol 2025; 16:1556442. [PMID: 40196031 PMCID: PMC11975251 DOI: 10.3389/fmicb.2025.1556442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Background The USA is home to 83-88 million dogs, with 3-7 million living in shelters. Shelter dogs move through the supply chain from their geographical origin to adoptive homes, with possible exposure to pathogens and shift in their gut microbiota. However, research in this area is limited. This study examined the effects of intestinal colonization by ESBL bacteria on gut taxa abundance, diversity, and functions in 52 shelter dogs of various ages, sexes, and fertility statuses. Methodology We isolated fecal DNA, sequenced their 16S, processed the sequences using DADA2, identified taxa profiles in each dog by Phyloseq, and analyzed Chao1, Shannon, and Simpson alpha diversity by ggplot2 and Wilcoxon test. We analyzed beta diversity using Bray-Curtis dissimilarity matrix from the vegan package. Differential abundance of taxa, gut microbiome functions, and differential abundance of microbiome functions were analyzed using DESeq2, PICRUSt2, and ALDEx2, respectively, with Wilcoxon rank and Kruskal-Wallis tests for comparisons between dog groups. Results Firmicutes (69.3%), Bacteroidota (13.5%), Actinobacteriota (6.77%), Proteobacteria (5.54%), and Fusobacteriota (4.75%) were the major phyla in the gut of shelter dogs. ESBL bacteria colonized dogs had reduced gut microbiota alpha diversity than non-colonized dogs. The abundance levels of the following phyla (Proteobacteria, Deferribacterota, Bacteroidota, Fusobacteriota, and Spirochaetota), class (Gammaproteobacteria, Bacteroidia, Deferribacteres, Brachyspirae, and Fusobacteria), and families (Enterobacteriaceae, Peptostreptococcaceae, Lactobacillaceae, Lachnospiraceae, Prevotellaceae, and Peptostreptococcaceae) were significantly (p < 0.05) varied between the two dog groups. Further stratified analysis by age, sex, and spaying/neutering status influenced the abundance of taxa in ESBL bacteria colonized dogs, indicating these covariates act as effect modifiers. Most gut metabolic and biosynthetic pathways were downregulated in ESBL bacteria colonized dogs compared to non-colonized dogs. However, alpha-linolenic acid metabolism and shigellosis, fluorobenzoate degradation, allantoin degradation, toluene degradation, glycol degradation, fatty acid and beta-oxidation, and glyoxylate metabolism bypass pathways were increased in dogs colonized by ESBL bacteria. Conclusion Colonization by ESBL bacteria marks altered gut microbiota. Dog's demography and fertility status modify the alterations, indicating host factors and ESBL bacteria interplay to shape gut microbiota. ESBL bacteria or other factors reprogram gut microbiome functions through down and upregulating multiple metabolic and biosynthesis pathways to promote ESBL bacteria colonization.
Collapse
Affiliation(s)
- Reta Abdi
- Biomedical Sciences College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Srinka Datta
- GeneSpectrum Life Sciences LLP, Pune, Maharashtra, India
| | | | - Pratap Kafle
- Shreiber School of Veterinary Medicine, Rowan University, Mullica Hill, NJ, United States
| |
Collapse
|
49
|
Zhra M, Elahi MA, Tariq A, Abu-Zaid A, Yaqinuddin A. Sirtuins and Gut Microbiota: Dynamics in Health and a Journey from Metabolic Dysfunction to Hepatocellular Carcinoma. Cells 2025; 14:466. [PMID: 40136715 PMCID: PMC11941559 DOI: 10.3390/cells14060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction leading to non-alcoholic fatty liver disease (NAFLD) exhibits distinct molecular and immune signatures that are influenced by factors like gut microbiota. The gut microbiome interacts with the liver via a bidirectional relationship with the gut-liver axis. Microbial metabolites, sirtuins, and immune responses are pivotal in different metabolic diseases. This extensive review explores the complex and multifaceted interrelationship between sirtuins and gut microbiota, highlighting their importance in health and disease, particularly metabolic dysfunction and hepatocellular carcinoma (HCC). Sirtuins (SIRTs), classified as a group of NAD+-dependent deacetylases, serve as crucial modulators of a wide spectrum of cellular functions, including metabolic pathways, the inflammatory response, and the process of senescence. Their subcellular localization and diverse functions link them to various health conditions, including NAFLD and cancer. Concurrently, the gut microbiota, comprising diverse microorganisms, significantly influences host metabolism and immune responses. Recent findings indicate that sirtuins modulate gut microbiota composition and function, while the microbiota can affect sirtuin activity. This bidirectional relationship is particularly relevant in metabolic disorders, where dysbiosis contributes to disease progression. The review highlights recent findings on the roles of specific sirtuins in maintaining gut health and their implications in metabolic dysfunction and HCC development. Understanding these interactions offers potential therapeutic avenues for managing diseases linked to metabolic dysregulation and liver pathology.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Muhammad Affan Elahi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Aamira Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan
| | - Ahmed Abu-Zaid
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Ahmed Yaqinuddin
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
50
|
Ruiz-Moreno AJ, Del Castillo-Izquierdo Á, Tamargo-Rubio I, Fu J. MicrobeRX: a tool for enzymatic-reaction-based metabolite prediction in the gut microbiome. MICROBIOME 2025; 13:78. [PMID: 40108657 PMCID: PMC11921629 DOI: 10.1186/s40168-025-02070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The gut microbiome functions as a metabolic organ, producing numerous enzymes that influence host health; however, their substrates and metabolites remain largely unknown. RESULTS We present MicrobeRX, an enzyme-based metabolite prediction tool that employs 5487 human reactions and 4030 unique microbial reactions from 6286 genome-scale models, as well as 3650 drug metabolic reactions from the DrugBank database (v.5.1.12). MicrobeRX includes additional analysis modules for metabolite visualization and enzymatic and taxonomic analyses. When we applied MicrobeRX to 1083 orally administered drugs that have been approved in at least one jurisdiction at some point in time (DrugBank), it predicted metabolites with physicochemical properties and structures similar to metabolites found in biosamples (from MiMeDB). It also outperformed another existing metabolite prediction tool (BioTransformer 3.0) in terms of predictive potential, molecular diversity, reduction of redundant predictions, and enzyme annotation. CONCLUSIONS Our analysis revealed both unique and overlapping metabolic capabilities in human and microbial metabolism and chemo- and taxa-specific microbial biotransformations. MicrobeRX bridges the genomic and chemical spaces of the gut microbiome, making it a valuable tool for unlocking the chemical potential of the gut microbiome in human health, the food and pharmaceutical industries, and environmental safety. Video Abstract.
Collapse
Affiliation(s)
- Angel J Ruiz-Moreno
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
- Department of Pediatrics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
| | - Ángela Del Castillo-Izquierdo
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
- Department of Medical Microbiology, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Isabel Tamargo-Rubio
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
- Department of Pediatrics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
| |
Collapse
|