1
|
Abedini A, Zirak MR, Akbari N, Saatloo NV, Badeenezhad A, Sadighara P. Acrylamide; a neurotoxin in popcorns: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:647-653. [PMID: 35960600 DOI: 10.1515/reveh-2022-0085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Acrylamide is a known neurotoxic compound for humans. Foods that have high concentrations of acrylamide need to be identified. One of the food products containing acrylamide is popcorn. Popcorn is an important source of snacks for children, especially students. The presented study is a systematic review and meta-analysis of the level of acrylamide in popcorn. The search was done in different databases with the keywords; acrylamide, popcorn, popped corn. 27 articles were found by searching various databases. After initial screening and full text evaluation, 8 articles were selected for systematic review and 6 articles for meta-analysis. The amount of acrylamide in this product was in the range of 1,017.7-106 μg/kg. Microwaved corn contains lower amounts of acrylamide than other methods of preparation. The type of popcorn also had an effect on the amount of acrylamide with Meta-regression. It was found that sweet popcorn contains higher amounts of acrylamide. The overall value of acrylamide concentration in popcorns was calculated to be 459.6 ± 220.3 μg/kg. This amount is high and requires measures to reduce the amount of acrylamide.
Collapse
Affiliation(s)
- Amirhossein Abedini
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nader Akbari
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naiema Vakili Saatloo
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ahmad Badeenezhad
- Department of Environmental Health Engineering, School of Medical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Hölzle E, Becker L, Oellig C, Granvogl M. Heat-Introduced Formation of Acrylamide in Table Olives: Analysis of Acrylamide, Free Asparagine, and 3-Aminopropionamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13508-13517. [PMID: 37647584 DOI: 10.1021/acs.jafc.3c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Acrylamide was detected in considerable amounts in black table olives. In this study, besides black, also green and naturally black table olives were investigated for their acrylamide, free asparagine, and 3-aminopropionamide contents before and after heat treatment. Acrylamide amount was 208-773 μg/kg in black table olives and did not change due to heat treatment. In green and naturally black table olives acrylamide was ≤24 μg/kg before heat treatment and rose to 1200 μg/kg afterward. Asparagine content was 0.35-35 mg/kg in all samples before heat treatment and after heat treatment with no considerable change in the range. 3-Aminopropionamide showed amounts of ≤56 μg/kg in the unheated samples and increased up to 131 μg/kg due to heat impact. However, quantified asparagine and 3-aminopropionamide amounts were insufficient in almost all samples to explain the acrylamide quantities formed due to heat treatment based on the formation via the Maillard reaction.
Collapse
Affiliation(s)
- Eva Hölzle
- Institute of Food Chemistry, Department of Food Chemistry and Analytical Chemistry, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Laura Becker
- Institute of Food Chemistry, Department of Food Chemistry and Analytical Chemistry, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Claudia Oellig
- Institute of Food Chemistry, Department of Food Chemistry and Analytical Chemistry, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Michael Granvogl
- Institute of Food Chemistry, Department of Food Chemistry and Analytical Chemistry, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| |
Collapse
|
3
|
Khan MI, Ashfaq F, Alsayegh AA, Hamouda A, Khatoon F, Altamimi TN, Alhodieb FS, Beg MMA. Advanced glycation end product signaling and metabolic complications: Dietary approach. World J Diabetes 2023; 14:995-1012. [PMID: 37547584 PMCID: PMC10401445 DOI: 10.4239/wjd.v14.i7.995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Advanced glycation end products (AGEs) are a heterogeneous collection of compounds formed during industrial processing and home cooking through a sequence of nonenzymatic glycation reactions. The modern western diet is full of heat-treated foods that contribute to AGE intake. Foods high in AGEs in the contemporary diet include processed cereal products. Due to industrialization and marketing strategies, restaurant meals are modified rather than being traditionally or conventionally cooked. Fried, grilled, baked, and boiled foods have the greatest AGE levels. Higher AGE-content foods include dry nuts, roasted walnuts, sunflower seeds, fried chicken, bacon, and beef. Animal proteins and processed plant foods contain furosine, acrylamide, heterocyclic amines, and 5-hydroxymethylfurfural. Furosine (2-furoil-methyl-lysine) is an amino acid found in cooked meat products and other processed foods. High concentrations of carboxymethyl-lysine, carboxyethyl-lysine, and methylglyoxal-O are found in heat-treated nonvegetarian foods, peanut butter, and cereal items. Increased plasma levels of AGEs, which are harmful chemicals that lead to age-related diseases and physiological aging, diabetes, and autoimmune/inflammatory rheumatic diseases such as systemic lupus erythematosus and rheumatoid arthritis. AGEs in the pathophysiology of metabolic diseases have been linked to individuals with diabetes mellitus who have peripheral nerves with high amounts of AGEs and diabetes has been linked to increased myelin glycation. Insulin resistance and hyperglycemia can impact numerous human tissues and organs, leading to long-term difficulties in a number of systems and organs, including the cardiovascular system. Plasma AGE levels are linked to all-cause mortality in individuals with diabetes who have fatal or nonfatal coronary artery disease, such as ventricular dysfunction. High levels of tissue AGEs are independently associated with cardiac systolic dysfunction in diabetic patients with heart failure compared with diabetic patients without heart failure. It is widely recognized that AGEs and oxidative stress play a key role in the cardiovascular complications of diabetes because they both influence and are impacted by oxidative stress. All chronic illnesses involve protein, lipid, or nucleic acid modifications including crosslinked and nondegradable aggregates known as AGEs. Endogenous AGE formation or dietary AGE uptake can result in additional protein modifications and stimulation of several inflammatory signaling pathways. Many of these systems, however, require additional explanation because they are not entirely obvious. This review summarizes the current evidence regarding dietary sources of AGEs and metabolism-related complications associated with AGEs.
Collapse
Affiliation(s)
- Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Alshaimaa Hamouda
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Tahani Nasser Altamimi
- Department of Family and Community Medicine, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | | |
Collapse
|
4
|
Acquaticci L, Angeloni S, Cela N, Galgano F, Vittori S, Caprioli G, Condelli N. Impact of coffee species, post-harvesting treatments and roasting conditions on coffee quality and safety related compounds. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Peña-Correa RF, Ataç Mogol B, Fogliano V. The impact of roasting on cocoa quality parameters. Crit Rev Food Sci Nutr 2022; 64:4348-4361. [PMID: 36382628 DOI: 10.1080/10408398.2022.2141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Roasting is an essential process in cocoa industry involving high temperatures that causes several physicochemical and microstructural changes in cocoa beans that ensure their quality and further processability. The versatility in roasting temperatures (100 - 150 °C) has attracted the attention of researchers toward the exploration of the effects of different roasting conditions on the color, proximal composition, cocoa butter quality, concentration of thermolabile compounds, formation of odor-active volatile organic compounds, generation of melanoidins, production of thermal processes contaminants in cocoa nibs, among others. Some researchers have drowned in exploring new roasting parameters (e.g., the concentration of water steam in the roasting chamber), whilst others have adapted novel heat-transfer techniques to cocoa nibs (e.g., fluidized bed roasting and microwaves). A detailed investigation of the physicochemical phenomena occurring under different cocoa roasting scenarios is lacking. Therefore, this review provides a comprehensive analysis of the state of art of cocoa roasting, identifies weak and mistaken points, presents research gaps, and gives recommendations to be considered for future cocoa studies.
Collapse
Affiliation(s)
- Ruth Fabiola Peña-Correa
- Department of Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Burçe Ataç Mogol
- Hacettepe Üniversitesi, Department of Food Engineering, Food Quality and Safety (FoQuS) Research Group, Beytepe, Ankara, Turkey
| | - Vincenzo Fogliano
- Department of Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
6
|
Gil M, Gallego V, Jaramillo Y, Gil M, Uribe D. Advances on Acrylamide in cocoa and its derivates: a challenge to control from postharvest to the industrialization. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Desmarchelier A, Bebius A, Reding F, Griffin A, Ahijado Fernandez M, Beasley J, Clauzier E, Delatour T. Towards a consensus LC-MS/MS method for the determination of acrylamide in food that prevents overestimation due to interferences. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:653-665. [PMID: 35113763 DOI: 10.1080/19440049.2021.2022773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Acrylamide is prone to misquantification, and critical steps in the analytical procedures need to be identified and controlled to ensure a reliable determination. Four methods were considered to illustrate misquantification issues with acrylamide. For two methods varying by the extent of their sample preparations, cases of overestimation in cocoa samples reaching up to a 20-fold factor are shown. A second example, applied to a variety of food products, includes two other methods varying by their chromatographic conditions. As a follow up of a study conducted in 2020 about the identification of N-acetyl-ß-alanine as an interference of acrylamide in coffee, the extent of this interference was evaluated in a selection of coffee samples, cereal-based products and baby foods. The ultimate objective of this manuscript was to resolve such cases of misquantification and validate a wide scope and robust method allowing an interference free acrylamide analysis. To do so, an extraction procedure based on the EN 16618:2015 standard with water extraction and two consecutive solid phase extraction (SPE) steps was applied with modified liquid chromatographic conditions. The method was validated in coffee, cereals, baby foods, cocoa and pet foods with excellent performance in terms of recovery (97-108%) and precision (RSDr and RSDiR <12 %). The breath of scope was further proved through trueness determination in quality control materials and reference materials including French fries, potato crisps, vegetable crisps, instant coffee, infant food and biscuit (cookie), with trueness values found within a 94-107% range.
Collapse
Affiliation(s)
| | - Aude Bebius
- Société des Produits Nestlé SA, Nestlé Research and Development Orbe, Orbe, Switzerland
| | - Frédérique Reding
- Société des Produits Nestlé SA, Nestlé Research and Development Orbe, Orbe, Switzerland
| | - Ashley Griffin
- Center, Quality Management, Nestlé Quality Assurance Center, Dublin, Ohio, USA
| | | | - Jason Beasley
- Reading Scientific Services Ltd, Reading Science Centre, Reading, UK
| | - Emilie Clauzier
- Reading Scientific Services Ltd, Reading Science Centre, Reading, UK
| | - Thierry Delatour
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
8
|
Analysis of acrylamide in vegetable chips after derivatization with 2-mercaptobenzoic acid by liquid chromatography–mass spectrometry. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03898-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSince many years, acrylamide (AA) is a well-known toxicologically relevant processing contaminant (“food-borne toxicant”). However, only during the recent years, high levels of acrylamide have been reported in vegetable chips. In the present study, AA was quantitated via a modified derivatization procedure with 2-mercaptobenzoic acid based on stable isotope dilution analysis and liquid chromatography–mass spectrometry. Extraction with a modified QuEChERS (quick, easy, cheap, efficient, rugged, safe) method, defatting with n-hexane, and a solid phase extraction clean-up with strong cation-exchange material were performed prior to the derivatization step. Limits of detection and quantitation (LoD and LoQ) were 12 and 41 µg of AA/kg of vegetable chips (estimated via signal-to-noise ratios of 3:1 and 10:1, respectively), and thus below the LoQ of 50 µg/kg requested by the European Food Safety Authority. Recovery rates between 92 and 101% at four spiking levels with a good precision expressed as a relative standard deviation < 7% were determined. With this method at hand, a survey of the current AA amounts in 38 vegetable chips from the worldwide market was performed, showing a remarkable variability between the different vegetables, but also between different products of the same vegetable. Thereby, the AA amounts ranged between 77.3 and 3090 µg/kg, with an average of 954 µg/kg which was distinctly higher in comparison to commercially available potato chips also analyzed in the present study (12 samples, range: 117–832 µg/kg, average: 449 µg/kg). While for sweet potato and parsnip relatively low AA amounts were found, beetroot and carrot showed rather high contents.
Collapse
|
9
|
Quesada-Valverde M, Artavia G, Granados-Chinchilla F, Cortés-Herrera C. Acrylamide in foods: from regulation and registered levels to chromatographic analysis, nutritional relevance, exposure, mitigation approaches, and health effects. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2018611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mónica Quesada-Valverde
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Fabio Granados-Chinchilla
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
10
|
Aktağ IG, Hamzalıoğlu A, Kocadağlı T, Gökmen V. Dietary exposure to acrylamide: A critical appraisal on the conversion of disregarded intermediates into acrylamide and possible reactions during digestion. Curr Res Food Sci 2022; 5:1118-1126. [PMID: 35865802 PMCID: PMC9294190 DOI: 10.1016/j.crfs.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
The amount of acrylamide in asparagine rich thermally processed foods has been broadly monitored over the past two decades. Acrylamide exposure can be estimated by using the concentration of acrylamide found in foods and alternatively, biomarkers of exposure are correlated. A better estimation of dietary acrylamide exposure is crucial for a proper food safety assessment, regulations, and public health research. This review addresses the importance of the presence of neglected Maillard reaction intermediates found in foods, that may convert into acrylamide during digestion and the fate of acrylamide in the gastrointestinal tract as a reactive compound. Therefore, it is questioned in this review whether acrylamide concentration in ingested foods is directly correlated with the dietary exposure to acrylamide.
Neglected Maillard reaction intermediates play role in acrylamide formation in gut. Exposure may increase when intermediates are converted into acrylamide in the gut. Nucleophiles cause elimination of acrylamide in the intestinal phase. The fate of acrylamide during digestion could be important for exposure estimation.
Collapse
Affiliation(s)
- Işıl Gürsul Aktağ
- Department of Culinary Arts and Gastronomy, Munzur University, 62000, Aktuluk Campus, Tunceli, Turkey
| | - Aytül Hamzalıoğlu
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Tolgahan Kocadağlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800, Beytepe, Ankara, Turkey
- Corresponding author.
| |
Collapse
|
11
|
Kruszewski B, Obiedziński MW. Impact of Raw Materials and Production Processes on Furan and Acrylamide Contents in Dark Chocolate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2562-2569. [PMID: 32003990 DOI: 10.1021/acs.jafc.0c00412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study was aimed to evaluate the level of furan and acrylamide contamination in cocoa and noncocoa raw materials, in masses from processing stages, and in chocolates originating from three factories. Acrylamide was determined by the gas chromatography-mass spectrometry (GC-MS) method using the QuEChERS procedure with dispersive solid-phase extraction clean-up and isotopic standard (2,3,3-d3-acrylamide). Furan was analyzed by the headspace solid-phase microextraction/GC-MS technique with the d4-furan marker. Both analytical methods were validated in terms of accuracy, precision, and linearity as well as the limit of detection (LOD) and limit of quantification (LOQ). Among all raw materials, the most abundant in acrylamide were cocoa masses and powders (83.0-127.5 ng g-1). Roasting of cocoa beans increased the content of acrylamide 2-3-fold. The obtained results indicate that acrylamide might be formed during wet conching. Only in cocoa powders and lecithin, it was possible to quantify furan (3.7-10.2 and 16.3 ng g-1, respectively). Roasting of cocoa beans increased the content of furan from <LOD to 25.1-34.8 ng g-1. Because of the high volatility of furan and specific manufacturing processes, favorable conditions were created for furan evaporation. Manufactured chocolates were products with a low level of acrylamide (61.8-108.0 ng g-1) and a very low level of furan (<1.5 ng g-1).
Collapse
Affiliation(s)
- Bartosz Kruszewski
- Institute of Food Sciences, Department of Food Technology and Assessment , Warsaw University of Life Sciences-SGGW , Nowoursynowska 159 C , 02-776 Warsaw , Poland
| | - Mieczysław Wiesław Obiedziński
- Faculty of Computer Science and Food Science , Lomza State University of Applied Sciences (LSUAS) , Akademicka 14 , 18-400 Łomża , Poland
| |
Collapse
|
12
|
Rifai L, Saleh FA. A Review on Acrylamide in Food: Occurrence, Toxicity, and Mitigation Strategies. Int J Toxicol 2020; 39:93-102. [PMID: 32013673 DOI: 10.1177/1091581820902405] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Acrylamide (AA) is a food contaminant present in a wide range of frequently consumed foods, which makes human exposure to this toxicant unfortunately unavoidable. However, efforts to reduce the formation of AA in food have resulted in some success. This review aims to summarize the occurrence of AA and the potential mitigation strategies of its formation in foods. Formation of AA in foods is mainly linked to Maillard reaction, which is the first feasible route that can be manipulated to reduce AA formation. Furthermore, manipulating processing conditions such as time and temperature of the heating process, and including certain preheating treatments such as soaking and blanching, can further reduce AA formation. Due to the high exposure to AA, recognition of its toxic effect is necessary, especially in developing countries where awareness about AA health risks is still very low. Therefore, this review also focuses on the different toxic effects of AA exposure, including neurotoxicity, genotoxicity, carcinogenicity, reproductive toxicity, hepatotoxicity, and immunotoxicity.
Collapse
Affiliation(s)
- Lubna Rifai
- Department of Nutrition & Dietetics, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Fatima A Saleh
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
13
|
Gil M, Ruiz P, Quijano J, Londono-Londono J, Jaramillo Y, Gallego V, Tessier F, Notario R. Effect of temperature on the formation of acrylamide in cocoa beans during drying treatment: An experimental and computational study. Heliyon 2020; 6:e03312. [PMID: 32072041 PMCID: PMC7016235 DOI: 10.1016/j.heliyon.2020.e03312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/31/2019] [Accepted: 01/24/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of this work was to determine the effect of temperature on the formation of acrylamide in cocoa beans during drying treatment by an experimental and computational study, in order to assess the presence of this neoformed compound from postharvest stage. The computational study was conducted on the reaction between fructose, glyoxal from glucose, and on asparagine at the M06-2X/6-31+G(d,p) level, under cocoa bean drying conditions at 323.15 to 343.15 K. The proposed reaction for acrylamide formation consisted of seven steps, which required to progress a via cyclic transition state of the four members. In addition, step III (decarboxylation) was considered to be the rate-determining step. Glucose followed an E1-like elimination and fructose exhibited an E1cb-like elimination. Computational model showed that the reaction of acrylamide formation was favored by fructose rather than glucose. The content of reducing sugars, asparagine and acrylamide in fermented and dried cocoa from two subregions of Antioquia-Colombia, as well as roasted cocoa, were evaluated by UHPLC-C-CAD and UHPLC-QqQ. The concentrations of monosaccharides measured at the end of the fermentation and drying process of cocoa nibs showed greater decreases in the levels of fructose as compared to glucose, supporting the main model hypothesis. Acrylamide formation only occurred in Bajo Cauca due to the presence of both precursors and fast drying time (72 h). Finally, it was possible to find the conditions to which acrylamide can be formed from the drying process and not only from roasting, information that can be used for future control strategies.
Collapse
Affiliation(s)
- Maritza Gil
- Grupo de investigación de Ingeniería de Alimentos GRIAL. Corporación Universitaria Lasallista. Caldas, Antioquia, Colombia
- Laboratorio de Fisicoquímica Orgánica, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín AP 3840, Medellín, Colombia
- Instituto Tecnológico Metropolitano, Facultad de Ciencias Exactas y Aplicadas, Medellín, Colombia
| | - Pablo Ruiz
- Laboratorio de Fisicoquímica Orgánica, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín AP 3840, Medellín, Colombia
- Instituto Tecnológico Metropolitano, Facultad de Ciencias Exactas y Aplicadas, Medellín, Colombia
| | - Jairo Quijano
- Laboratorio de Fisicoquímica Orgánica, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín AP 3840, Medellín, Colombia
| | | | - Yamilé Jaramillo
- Grupo de investigación de Ingeniería de Alimentos GRIAL. Corporación Universitaria Lasallista. Caldas, Antioquia, Colombia
| | - Vanessa Gallego
- Grupo de investigación de Ingeniería de Alimentos GRIAL. Corporación Universitaria Lasallista. Caldas, Antioquia, Colombia
| | - Frederic Tessier
- Faculty of Medicine - University of Lille, 59655 Villeneuve d'Ascq, France
| | - Rafael Notario
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
14
|
Spizzirri UG, Puoci F, Iemma F, Restuccia D. Biogenic amines profile and concentration in commercial milks for infants and young children. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:337-349. [PMID: 30722764 DOI: 10.1080/19440049.2018.1563306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Commercial milks for infants and young children (CMIYC) received much attention during last years for their impact on the nutritional status, health and development of the new-born and babies. Among possible contaminants contained in these foods, biogenic amines (BAs) have rarely been determined although they can exert toxic effects in humans if ingested at high concentrations. Spermine, spermidine, putrescine, histamine, tyramine, β-phenylethylamine and cadaverine have been quantified in CMIYC samples by LC-UV after derivatisation with dansyl-chloride. Once optimised in terms of linearity (R2 ≥ 0.989), recovery percentages (92.9-97.3), LOD (0.2-0.4 μg g-1 or 0.03-0.05 μg mL-1 depending on the samples), LOQ (0.5-1.0 μg g-1 and 0.08-0.13 μg mL-1 depending on the samples) and repeatability (0.1-0.2 intra-day; 0.2-0.4 inter-day), the method has been applied to real samples. Very low total BAs concentrations have been found in reconstituted (1.18-3.12 mg L-1) and liquid milks (0.33-2.30 mg L-1), with different biogenic amine profiles and distributions. A risk assessment based on the available information regarding Acute Reference Doses of histamine and tyramine, as well as the application of common Biogenic Amine Indexes, showed that none of the analysed samples represented a possible risk for babies, also considering a worst case evaluation. These findings confirmed the strict safety and quality protocols adopted during the production of CMIYC. Chemical compounds studied in this article: Ammonium chloride (PubChem CID: 25517); Cadaverine hydrochloride (PubChem CID: 5351467); Hydrochloridric acid (PubChem CID: 313); Histamine dihydrochloride (PubChem CID: 5818); Phenylethylamine hydrochloride (PubChem CID: 9075); Putrescine dihydrochloride (PubChem CID: 9532); Sodium hydroxide (PubChem CID: 14798); Spermine tetrahydrochloride (PubChem CID: 1103); Spermidine trihydrochloride (PubChem CID: 1102); Tyramine hydrochloride (PubChem CID: 66449).
Collapse
Affiliation(s)
- U Gianfranco Spizzirri
- a Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Arcavacata di Rende CS , Italy
| | - Francesco Puoci
- a Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Arcavacata di Rende CS , Italy
| | - Francesca Iemma
- a Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Arcavacata di Rende CS , Italy
| | - Donatella Restuccia
- a Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Arcavacata di Rende CS , Italy
| |
Collapse
|
15
|
ALjahdali N, Carbonero F. Impact of Maillard reaction products on nutrition and health: Current knowledge and need to understand their fate in the human digestive system. Crit Rev Food Sci Nutr 2017; 59:474-487. [DOI: 10.1080/10408398.2017.1378865] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nesreen ALjahdali
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Franck Carbonero
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
16
|
Determination of acrylamide in dried fruits and edible seeds using QuEChERS extraction and LC separation with MS detection. Food Chem 2017; 217:191-195. [DOI: 10.1016/j.foodchem.2016.08.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/29/2016] [Accepted: 08/26/2016] [Indexed: 11/23/2022]
|
17
|
Biogenic Amines as Quality Marker in Organic and Fair-Trade Cocoa-Based Products. SUSTAINABILITY 2016. [DOI: 10.3390/su8090856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Granvogl M. Quantitation of Amines in Cereal Products: Thermal Processes Are Able to Generate “Biogenic” Amines. Cereal Chem 2016. [DOI: 10.1094/cchem-10-15-0209-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Michael Granvogl
- Technical University of Munich, Chair for Food Chemistry, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
19
|
Restuccia D, Spizzirri UG, Puoci F, Picci N. Determination of biogenic amine profiles in conventional and organic cocoa-based products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1156-63. [DOI: 10.1080/19440049.2015.1036322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Townley MA, Pu Q, Zercher CK, Neefus CD, Tillinghast EK. Small organic solutes in sticky droplets from orb webs of the spider Zygiella atrica (Araneae; Araneidae): β-alaninamide is a novel and abundant component. Chem Biodivers 2013; 9:2159-74. [PMID: 23081916 DOI: 10.1002/cbdv.201200077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In northeastern North America, Zygiella atrica often build their orb webs near the ocean. We analyzed individual field-built Z. atrica webs to determine if organic low-molecular-mass solutes (LMM) in their sticky droplets showed any unusual features not previously seen in orb webs of other species living in less salty environments. While two of the three most abundant organic LMM (putrescine (butane-1,4-diamine) and GABamide (4-aminobutanamide)) are already well-known from webs of inland spiders, the third major LMM, β-alaninamide (3-aminopropanamide), a homolog of GABamide, has not been detected in sticky droplets from any other araneoid spiders (27 species). It remains to be established, however, whether or not use of β-alaninamide is related to proximity to saltwater. We observed variability in organic LMM composition in Z. atrica webs that appeared to be influenced more by an undetermined factor associated with different collecting locations and/or collection dates than by different genders or instars. Shifts in composition when adult females were transferred from the field to the laboratory were also observed. Structural similarities and inverse correlations among β-alaninamide, GABamide, and N-acetylputrescine suggest that they may form a series of LMM fulfilling essentially the same, as yet unknown, role in the webs of those species in which they occur.
Collapse
Affiliation(s)
- Mark A Townley
- Research Computing and Instrumentation, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, USA.
| | | | | | | | | |
Collapse
|
21
|
Saltini R, Akkerman R, Frosch S. Optimizing chocolate production through traceability: A review of the influence of farming practices on cocoa bean quality. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.05.054] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Farah D, Zaibunnisa A, Misnawi J, Zainal S. Effect of Roasting Process on the Concentration of Acrylamide and Pyrizines in Roasted Cocoa Beans from Different Origins. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.apcbee.2012.11.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Lineback DR, Coughlin JR, Stadler RH. Acrylamide in foods: a review of the science and future considerations. Annu Rev Food Sci Technol 2011; 3:15-35. [PMID: 22136129 DOI: 10.1146/annurev-food-022811-101114] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acrylamide occurs in foods commonly consumed in diets worldwide. It is formed from the reaction of reducing sugars (e.g., glucose or fructose) with the amino acid asparagine via the Maillard reaction, which occurs during heat processing of foods, primarily those derived from plant origin, such as potato and cereal products, above 120°C (248°F). The majority of epidemiological studies concerning potential relationships between acrylamide consumption and different types of cancer have indicated no increased risk, except with a few types that warrant further study. Efforts to reduce the formation of acrylamide in food products have resulted in some successes, but there is no common approach that works for all foods. Reduction in some foods is probably not possible. The results from a major toxicological study (aqueous intake of acrylamide by rats and mice) are in the process of being released. The status of current knowledge in these areas is reviewed.
Collapse
Affiliation(s)
- David R Lineback
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, Maryland 20742, United States.
| | | | | |
Collapse
|
24
|
Capuano E, Fogliano V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. Lebensm Wiss Technol 2011. [DOI: 10.1016/j.lwt.2010.11.002] [Citation(s) in RCA: 503] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Soares CMD, Alves RC, Casal S, Oliveira MBP, Fernandes JO. Development and Validation of a Matrix Solid-Phase Dispersion Method to Determine Acrylamide in Coffee and Coffee Substitutes. J Food Sci 2010; 75:T57-63. [DOI: 10.1111/j.1750-3841.2010.01545.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Knutsen S, Dimitrijevic S, Molteberg E, Segtnan V, Kaaber L, Wicklund T. The influence of variety, agronomical factors and storage on the potential for acrylamide formation in potatoes grown in Norway. Lebensm Wiss Technol 2009. [DOI: 10.1016/j.lwt.2008.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|