1
|
Bhattacharya S, Fernandez CJ, Kamrul-Hasan ABM, Pappachan JM. Monogenic diabetes: An evidence-based clinical approach. World J Diabetes 2025; 16:104787. [DOI: 10.4239/wjd.v16.i5.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Monogenic diabetes is a heterogeneous disorder characterized by hyperglycemia arising from defects in a single gene. Maturity-onset diabetes of the young (MODY) is the most common type with 14 subtypes, each linked to specific mutations affecting insulin synthesis, secretion and glucose regulation. Common traits across MODY subtypes include early-onset diabetes, a family history of autosomal dominant diabetes, lack of features of insulin resistance, and absent islet cell autoimmunity. Many cases are misdiagnosed as type 1 and type 2 diabetes mellitus. Biomarkers and scoring systems can help identify candidates for genetic testing. GCK-MODY, a common subtype, manifests as mild hyperglycemia and doesn’t require treatment except during pregnancy. In contrast, mutations in HNF4A, HNF1A, and HNF1B genes lead to progressive beta-cell failure and similar risks of complications as type 2 diabetes mellitus. Neonatal diabetes mellitus (NDM) is a rare form of monogenic diabetes that usually presents within the first six months. Half of the cases are lifelong, while others experience transient remission. Permanent NDM is most commonly due to activating mutations in genes encoding the adenosine triphosphate-sensitive potassium channel (KCNJ11 or ABCC8) and can be transitioned to sulfonylurea after confirmation of diagnosis. Thus, in many cases, monogenic diabetes offers an opportunity to provide precision treatment. The scope has broadened with next-generation sequencing (NGS) technologies, replacing older methods like Sanger sequencing. NGS can be for targeted gene panels, whole-exome sequencing (WES), or whole-genome sequencing. Targeted gene panels offer specific information efficiently, while WES provides comprehensive data but comes with bioinformatic challenges. The surge in testing has also led to an increase in variants of unknown significance (VUS). Deciding whether VUS is disease-causing or benign can be challenging. Computational models, functional studies, and clinical knowledge help to determine pathogenicity. Advances in genetic testing technologies offer hope for improved diagnosis and personalized treatment but also raise concerns about interpretation and ethics.
Collapse
Affiliation(s)
| | - Cornelius J Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, Lincolnshire, United Kingdom
| | | | - Joseph M Pappachan
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, Greater Manchester, United Kingdom
- Department of Endocrinology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
2
|
Tosur M, Onengut-Gumuscu S, Redondo MJ. Type 1 Diabetes Genetic Risk Scores: History, Application and Future Directions. Curr Diab Rep 2025; 25:22. [PMID: 39920466 DOI: 10.1007/s11892-025-01575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2025] [Indexed: 02/09/2025]
Abstract
PURPOSE OF REVIEW To review the genetics of type 1 diabetes (T1D) and T1D genetic risk scores, focusing on their development, research and clinical applications, and future directions. RECENT FINDINGS More than 90 genetic loci have been linked to T1D risk, with approximately half of the genetic risk attributable to the human leukocyte antigen (HLA) locus, along with non-HLA loci that have smaller effects to disease risk. The practical use of T1D genetic risk scores simplifies the complex genetic information, within the HLA and non-HLA regions, by combining the additive effect and interactions of single nucleotide polymorphisms (SNPs) associated with risk. Genetic risk scores have proven to be useful in various aspects, including classifying diabetes (e.g., distinguishing between T1D vs. neonatal, type 2 or other diabetes types), predicting the risk of developing T1D, assessing the prognosis of the clinical course (e.g., determining the risk of developing insulin dependence and glycemic control), and research into the heterogeneity of diabetes (e.g., atypical diabetes). However, there are gaps in our current knowledge including the specific sets of genes that regulate transition between preclinical stages of T1D, response to disease modifying therapies, and other outcomes of interest such as persistence of beta cell function. Several T1D genetic risk scores have been developed and shown to be valuable in various contexts, from classification of diabetes to providing insights into its etiology and predicting T1D risk across different stages of T1D. Further research is needed to develop and validate T1D genetic risk scores that are effective across all populations and ancestries. Finally, barriers such as cost, and training of medical professionals have to be addressed before the use of genetic risk scores can be incorporated into routine clinical practice.
Collapse
Affiliation(s)
- Mustafa Tosur
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
- Children's Nutrition Research Center, USDA/ARS, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | | | - Maria J Redondo
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Migliorini A, Ge S, Atkins MH, Oakie A, Sambathkumar R, Kent G, Huang H, Sing A, Chua C, Gehring AJ, Keller GM, Notta F, Nostro MC. Embryonic macrophages support endocrine commitment during human pancreatic differentiation. Cell Stem Cell 2024; 31:1591-1611.e8. [PMID: 39406230 DOI: 10.1016/j.stem.2024.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 11/10/2024]
Abstract
Organogenesis is a complex process that relies on a dynamic interplay between extrinsic factors originating from the microenvironment and tissue-specific intrinsic factors. For pancreatic endocrine cells, the local niche consists of acinar and ductal cells as well as neuronal, immune, endothelial, and stromal cells. Hematopoietic cells have been detected in human pancreas as early as 6 post-conception weeks, but whether they play a role during human endocrinogenesis remains unknown. To investigate this, we performed single-nucleus RNA sequencing (snRNA-seq) of the second-trimester human pancreas and identified a wide range of hematopoietic cells, including two distinct subsets of tissue-resident macrophages. Leveraging this discovery, we developed a co-culture system of human embryonic stem cell-derived endocrine-macrophage organoids to model their interaction in vitro. Here, we show that macrophages support the differentiation and viability of endocrine cells in vitro and enhance tissue engraftment, highlighting their potential role in tissue engineering strategies for diabetes.
Collapse
Affiliation(s)
- Adriana Migliorini
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Sabrina Ge
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael H Atkins
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Amanda Oakie
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Gregory Kent
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Haiyang Huang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Angel Sing
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Conan Chua
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
4
|
Ribeiro AF, Fitas AL, Pires MO, Matoso P, Ligeiro D, Sobral D, Penha-Gonçalves C, Demengeot J, Caramalho Í, Limbert C. Whole Exome Sequencing in Children With Type 1 Diabetes Before Age 6 Years Reveals Insights Into Disease Heterogeneity. J Diabetes Res 2024; 2024:3076895. [PMID: 39364395 PMCID: PMC11449554 DOI: 10.1155/2024/3076895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024] Open
Abstract
Aims: This study is aimed at comparing whole exome sequencing (WES) data with the clinical presentation in children with type 1 diabetes onset ≤ 5 years of age (EOT1D). Methods: WES was performed in 99 unrelated children with EOT1D with subsequent analysis to identify potentially deleterious rare variants in MODY genes. High-resolution HLA class II haplotyping, SNP genotyping, and T1D-genetic risk score (T1D-GRS) were also evaluated. Results: Eight of the ninety-nine EOT1D participants carried a potentially deleterious rare variant in a MODY gene. Rare variants affected five genes: GCK (n = 1), HNF1B (n = 2), HNF4A (n = 1), PDX1 (n = 2), and RFX6 (n = 2). At diagnosis, these children had a mean age of 3.0 years, a mean HbA1c of 10.5%, a detectable C-peptide in 5/8, and a positive islet autoantibody in 6/7. Children with MODY variants tend to exhibit a lower number of pancreatic autoantibodies and a lower fasting C-peptide compared to EOT1D without MODY rare variants. They also carried at least one high-risk DR3-DQ2 or DR4-DQ8 haplotype and exhibited a T1D-GRS similar to the other individuals in the EOT1D cohort, but higher than healthy controls. Conclusions: WES found potentially deleterious rare variants in MODY genes in 8.1% of EOT1D, occurring in the context of a T1D genetic background. Such genetic variants may contribute to disease precipitation by a β-cell dysfunction mechanism. This supports the concept of different endotypes of T1D, and WES at T1D onset may be a prerequisite for the implementation of precision therapies in children with autoimmune diabetes.
Collapse
Affiliation(s)
- Andreia Fiúza Ribeiro
- Pediatric Endocrinology UnitHospital de Dona EstefâniaSão José Local Health Unit, Lisbon, Portugal
- Pediatric DepartmentHospital Prof. Doutor Fernando FonsecaAmadora Sintra Local Health Unit, Amadora, Portugal
| | - Ana Laura Fitas
- Pediatric Endocrinology UnitHospital de Dona EstefâniaSão José Local Health Unit, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC)NOVA Medical SchoolUniversidade NOVA de Lisboa, Lisbon, Portugal
| | - Marcela Oliveira Pires
- Pediatric Endocrinology UnitHospital de Dona EstefâniaSão José Local Health Unit, Lisbon, Portugal
- Pediatric DepartmentHospital de São Francisco XavierLisboa Ocidental Local Health Unit, Lisbon, Portugal
| | - Paula Matoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Dário Ligeiro
- Blood and Transplantation Center of LisbonInstituto Português do Sangue e da Transplantação, Lisbon, Portugal
- Immunosurgery UnitChampalimaud Foundation, Lisbon, Portugal
| | | | | | | | - Íris Caramalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculty of SciencesUniversity of Lisbon, Lisbon, Portugal
| | - Catarina Limbert
- Pediatric Endocrinology UnitHospital de Dona EstefâniaSão José Local Health Unit, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC)NOVA Medical SchoolUniversidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Golden GJ, Wu VH, Hamilton JT, Amses KR, Shapiro MR, Japp AS, Liu C, Pampena MB, Kuri-Cervantes L, Knox JJ, Gardner JS, Atkinson MA, Brusko TM, Prak ETL, Kaestner KH, Naji A, Betts MR. Immune perturbations in human pancreas lymphatic tissues prior to and after type 1 diabetes onset. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590798. [PMID: 39345402 PMCID: PMC11429609 DOI: 10.1101/2024.04.23.590798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Autoimmune destruction of pancreatic β cells results in type 1 diabetes (T1D), with pancreatic immune infiltrate representing a key feature in this process. Studies of human T1D immunobiology have predominantly focused on circulating immune cells in the blood, while mouse models suggest diabetogenic lymphocytes primarily reside in pancreas-draining lymph nodes (pLN). A comprehensive study of immune cells in human T1D was conducted using pancreas draining lymphatic tissues, including pLN and mesenteric lymph nodes, and the spleen from non-diabetic control, β cell autoantibody positive non-diabetic (AAb+), and T1D organ donors using complementary approaches of high parameter flow cytometry and CITEseq. Immune perturbations suggestive of a proinflammatory environment were specific for T1D pLN and AAb+ pLN. In addition, certain immune populations correlated with high T1D genetic risk independent of disease state. These datasets form an extensive resource for profiling human lymphatic tissue immune cells in the context of autoimmunity and T1D.
Collapse
Affiliation(s)
- Gregory J Golden
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vincent H Wu
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jacob T Hamilton
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kevin R Amses
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Melanie R Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Alberto Sada Japp
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chengyang Liu
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Maria Betina Pampena
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - James J Knox
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jay S Gardner
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Joglekar MV, Kaur S, Pociot F, Hardikar AA. Prediction of progression to type 1 diabetes with dynamic biomarkers and risk scores. Lancet Diabetes Endocrinol 2024; 12:483-492. [PMID: 38797187 DOI: 10.1016/s2213-8587(24)00103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 05/29/2024]
Abstract
Identifying biomarkers of functional β-cell loss is an important step in the risk stratification of type 1 diabetes. Genetic risk scores (GRS), generated by profiling an array of single nucleotide polymorphisms, are a widely used type 1 diabetes risk-prediction tool. Type 1 diabetes screening studies have relied on a combination of biochemical (autoantibody) and GRS screening methodologies for identifying individuals at high-risk of type 1 diabetes. A limitation of these screening tools is that the presence of autoantibodies marks the initiation of β-cell loss, and is therefore not the best biomarker of progression to early-stage type 1 diabetes. GRS, on the other hand, represents a static biomarker offering a single risk score over an individual's lifetime. In this Personal View, we explore the challenges and opportunities of static and dynamic biomarkers in the prediction of progression to type 1 diabetes. We discuss future directions wherein newer dynamic risk scores could be used to predict type 1 diabetes risk, assess the efficacy of new and emerging drugs to retard, or prevent type 1 diabetes, and possibly replace or further enhance the predictive ability offered by static biomarkers, such as GRS.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | | | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
7
|
Kyrönniemi A, Valtanen T, Koskenniemi J, Vähäsalo P, Härkönen T, Ilonen J, Toppari J, Knip M, Veijola R. Extremely Early Appearance of Islet Autoantibodies in Genetically Susceptible Children. Pediatr Diabetes 2023; 2023:9973135. [PMID: 40303239 PMCID: PMC12017086 DOI: 10.1155/2023/9973135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 05/02/2025] Open
Abstract
Objective We studied the characteristics of children who developed islet autoantibodies by the age of 0.50 years and hypothesized that the appearance of extremely early islet autoimmunity differs between four birth cohorts within 1994-2019 according to the change in the incidence of Type 1 diabetes (T1D) in Finland. Methods Data from Finnish children participating in the Type 1 Diabetes Prediction and Prevention (DIPP) study, or the Environmental Determinants of Diabetes in the Young (TEDDY) study were analyzed. These studies follow children with increased HLA-conferred risk for T1D with regular measurements of islet autoantibodies. Maternally transferred antibodies were excluded by comparing islet autoantibodies in cord serum, child's first follow-up serum and the maternal serum. Results Among 20,979 Finnish children at increased risk to T1D, 53 (0.25%) developed at least one islet autoantibody at the age of ≤0.50 years. During a mean follow-up of 8.1 years, 15.1% progressed to T1D (median age at diagnosis 2.0 years), 43.4% developed confirmed islet autoimmunity but no T1D, and 41.5% had only transient islet autoantibodies. IAA was the most common first-appearing autoantibody. Among progressors, age at diagnosis was 1.0-2.4 years in children with IAA-initiated autoimmunity and 4.5-16.1 years in ZnT8A-initiated autoimmunity. When comparing children developing autoantibodies either at the age of ≤0.50 years or 0.51-0.75 years, confirmed positivity during follow-up was more common in the older group (81.7% vs. 58.5%; p=0.002). In four birth cohorts within 1994-2019 appearance of islet autoantibodies at the age of ≤0.50 years decreased towards the most recent birth cohorts (p=0.016). Conclusion Islet autoimmunity by the age of 0.50 years was rare in genetically susceptible children and was typically initiated with IAA. Confirmed positivity was less common in children with autoantibodies at age ≤0.50 than at slightly older age. The secular decrease of islet autoimmunity before age 0.50 years was observed. This trial is registered with NCT03269084 and NCT00279318.
Collapse
Affiliation(s)
- Anni Kyrönniemi
- Department of Pediatrics, Research Unit of Clinical Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, Oulu 90014, Finland
- Department for Children and Adolescents, Medical Research Center, Oulu University Hospital, P.O. Box 10, Oulu 90029, Finland
| | - Toni Valtanen
- Department of Pediatrics, Research Unit of Clinical Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, Oulu 90014, Finland
- Department for Children and Adolescents, Medical Research Center, Oulu University Hospital, P.O. Box 10, Oulu 90029, Finland
| | - Jaakko Koskenniemi
- Department of Pediatrics, Turku University Hospital, P.O. Box 52, Turku 20521, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, University of Turku, 20014, Turku, Finland
| | - Paula Vähäsalo
- Department of Pediatrics, Research Unit of Clinical Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, Oulu 90014, Finland
- Department for Children and Adolescents, Medical Research Center, Oulu University Hospital, P.O. Box 10, Oulu 90029, Finland
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, P.O. Box 63, Helsinki 00014, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, 20014, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, P.O. Box 52, Turku 20521, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, University of Turku, 20014, Turku, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, P.O. Box 63, Helsinki 00014, Finland
- Tampere Centre for Child Health Research, Tampere University Hospital, P.O. Box 2000, Tampere 33521, Finland
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, P.O. Box 347, Helsinki 00029, Finland
| | - Riitta Veijola
- Department of Pediatrics, Research Unit of Clinical Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, Oulu 90014, Finland
- Department for Children and Adolescents, Medical Research Center, Oulu University Hospital, P.O. Box 10, Oulu 90029, Finland
| |
Collapse
|
8
|
Luckett AM, Weedon MN, Hawkes G, Leslie RD, Oram RA, Grant SFA. Utility of genetic risk scores in type 1 diabetes. Diabetologia 2023; 66:1589-1600. [PMID: 37439792 PMCID: PMC10390619 DOI: 10.1007/s00125-023-05955-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Iterative advances in understanding of the genetics of type 1 diabetes have identified >70 genetic regions associated with risk of the disease, including strong associations across the HLA class II region that account for >50% of heritability. The increased availability of genetic data combined with the decreased costs of generating these data, have facilitated the development of polygenic scores that aggregate risk variants from associated loci into a single number: either a genetic risk score (GRS) or a polygenic risk score (PRS). PRSs incorporate the risk of many possibly correlated variants from across the genome, even if they do not reach genome-wide significance, whereas GRSs estimate the cumulative contribution of a smaller subset of genetic variants that reach genome-wide significance. Type 1 diabetes GRSs have utility in diabetes classification, aiding discrimination between type 1 diabetes, type 2 diabetes and MODY. Type 1 diabetes GRSs are also being used in newborn screening studies to identify infants at risk of future presentation of the disease. Most early studies of type 1 diabetes genetics have been conducted in European ancestry populations, but, to develop accurate GRSs across diverse ancestries, large case-control cohorts from non-European populations are still needed. The current barriers to GRS implementation within healthcare are mainly related to a lack of guidance and knowledge on integration with other biomarkers and clinical variables. Once these limitations are addressed, there is huge potential for 'test and treat' approaches to be used to tailor care for individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Amber M Luckett
- University of Exeter College of Medicine and Health, Exeter, UK
| | | | - Gareth Hawkes
- University of Exeter College of Medicine and Health, Exeter, UK
| | - R David Leslie
- Blizard Institute, Queen Mary University of London, London, UK.
| | - Richard A Oram
- University of Exeter College of Medicine and Health, Exeter, UK.
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK.
| | - Struan F A Grant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Diabetes and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Kaur G, Helmer RA, Martinez-Marin D, Sennoune SR, Washburn RL, Martinez-Zaguilan R, Dufour JM, Chilton BS. Helicase-like transcription factor (Hltf)-deletion activates Hmgb1-Rage axis and granzyme A-mediated killing of pancreatic β cells resulting in neonatal lethality. PLoS One 2023; 18:e0286109. [PMID: 37624843 PMCID: PMC10456192 DOI: 10.1371/journal.pone.0286109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 08/27/2023] Open
Abstract
Epigenetic mechanisms are integral to pancreatic β cell function. Promoter hypermethylation of the helicase like-transcription factor (HLTF) gene-a component of the cellular DNA damage response that contributes to genome stability-has been implicated in age-associated changes in β cells. To study HLTF, we generated global and β cell-specific (β) Hltf knockout (KO) immune competent (IC) and immune deficient (ID) Rag2-/IL2- mice. IC global and β Hltf KO mice were neonatal lethal whereas ID global and β Hltf KO newborn mice had normal survival. This focused our investigation on the effects of Rag2 interruption with common gamma chain interruption on β cell function/survival. Three-way transcriptomic (RNAseq) analyses of whole pancreata from IC and ID newborn β Hltf KO and wild type (Hltf +/+) controls combined with spatially resolved transcriptomic analysis of formalin fixed paraffin embedded tissue, immunohistochemistry and laser scanning confocal microscopy showed DNA damage caused by β Hltf KO in IC mice upregulated the Hmgb1-Rage axis and a gene signature for innate immune cells. Perforin-delivered granzyme A (GzmA) activation of DNase, Nme1, showed damaged nuclear single-stranded DNA (γH2AX immunostaining). This caspase-independent method of cell death was supported by transcriptional downregulation of Serpinc1 gene that encodes a serine protease inhibitor of GzmA. Increased transcriptional availability of complement receptors C3ar1 and C5ar1 likely invited crosstalk with Hmgb1 to amplify inflammation. This study explores the complex dialog between β cells and immune cells during development. It has implications for the initiation of type I diabetes in utero when altered gene expression that compromises genome stability invokes a localized inflammatory response.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rebecca A. Helmer
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Dalia Martinez-Marin
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
| | - Souad R. Sennoune
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rachel L. Washburn
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S. Chilton
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
10
|
Mancuso G, Bechi Genzano C, Fierabracci A, Fousteri G. Type 1 diabetes and inborn errors of immunity: Complete strangers or 2 sides of the same coin? J Allergy Clin Immunol 2023; 151:1429-1447. [PMID: 37097271 DOI: 10.1016/j.jaci.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Type 1 diabetes (T1D) is a polygenic disease and does not follow a mendelian pattern. Inborn errors of immunity (IEIs), on the other hand, are caused by damaging germline variants, suggesting that T1D and IEIs have nothing in common. Some IEIs, resulting from mutations in genes regulating regulatory T-cell homeostasis, are associated with elevated incidence of T1D. The genetic spectrum of IEIs is gradually being unraveled; consequently, molecular pathways underlying human monogenic autoimmunity are being identified. There is an appreciable overlap between some of these pathways and the genetic variants that determine T1D susceptibility, suggesting that after all, IEI and T1D are 2 sides of the same coin. The study of monogenic IEIs with a variable incidence of T1D has the potential to provide crucial insights into the mechanisms leading to T1D. These insights contribute to the definition of T1D endotypes and explain disease heterogeneity. In this review, we discuss the interconnected pathogenic pathways of autoimmunity, β-cell function, and primary immunodeficiency. We also examine the role of environmental factors in disease penetrance as well as the circumstantial evidence of IEI drugs in preventing and curing T1D in individuals with IEIs, suggesting the repositioning of these drugs also for T1D therapy.
Collapse
Affiliation(s)
- Gaia Mancuso
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
11
|
Redondo MJ, van Raalte DH. Age Ain't Nothing But a Number . . . or Is It? Diabetes Care 2023; 46:1135-1136. [PMID: 37220267 PMCID: PMC10234734 DOI: 10.2337/dci23-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Maria J. Redondo
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Daniël H. van Raalte
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands
- Diabetes Center, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands
- Research Institute for Cardiovascular Sciences, VU University, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Alsharairi NA. Exploring the Diet-Gut Microbiota-Epigenetics Crosstalk Relevant to Neonatal Diabetes. Genes (Basel) 2023; 14:genes14051017. [PMID: 37239377 DOI: 10.3390/genes14051017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Neonatal diabetes (NDM) is a rare monogenic disorder that presents as hyperglycemia during the first six months of life. The link between early-life gut microbiota dysbiosis and susceptibility to NDM remains uncertain. Experimental studies have demonstrated that gestational diabetes mellitus (GDM) could develop into meconium/gut microbiota dysbiosis in newborns, and thus, it is thought to be a mediator in the pathogenesis of NDM. Epigenetic modifications have been considered as potential mechanisms by which the gut microbiota and susceptibility genes interact with the neonatal immune system. Several epigenome-wide association studies have revealed that GDM is associated with neonatal cord blood and/or placental DNA methylation alterations. However, the mechanisms linking diet in GDM with gut microbiota alterations, which may in turn induce the expression of genes linked to NDM, are yet to be unraveled. Therefore, the focus of this review is to highlight the impacts of diet, gut microbiota, and epigenetic crosstalk on altered gene expression in NDM.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Griffith University, Gold Coast, QLD P.O. Box 4222, Australia
| |
Collapse
|
13
|
Martin A, Mick GJ, Choat HM, Lunsford AA, Tse HM, McGwin GG, McCormick KL. A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes. Nat Commun 2022; 13:7928. [PMID: 36566274 PMCID: PMC9790014 DOI: 10.1038/s41467-022-35544-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
Gamma aminobutyric acid(GABA) is synthesized by glutamate decarboxylase(GAD) in β-cells. Regarding Type 1 diabetes(T1D), animal/islet-cell studies found that GABA promotes insulin secretion, inhibits α-cell glucagon and dampens immune inflammation, while GAD immunization may also preserve β-cells. We evaluated the safety and efficacy of oral GABA alone, or combination GABA with GAD, on the preservation of residual insulin secretion in recent-onset T1D. Herein we report a single-center, double-blind, one-year, randomized trial in 97 children conducted March 2015 to June 2019(NCT02002130). Using a 2:1 treatment:placebo ratio, interventions included oral GABA twice-daily(n = 41), or oral GABA plus two-doses GAD-alum(n = 25), versus placebo(n = 31). The primary outcome, preservation of fasting/meal-stimulated c-peptide, was not attained. Of the secondary outcomes, the combination GABA/GAD reduced fasting and meal-stimulated serum glucagon, while the safety/tolerability of GABA was confirmed. There were no clinically significant differences in glycemic control or diabetes antibody titers. Given the low GABA dose for this pediatric trial, future investigations using higher-dose or long-acting GABA formulations, either alone or with GAD-alum, could be considered, although GABA alone or in combination with GAD-alum did nor preserve beta-cell function in this trial.
Collapse
Affiliation(s)
- Alexandra Martin
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gail J Mick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Heather M Choat
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alison A Lunsford
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerald G McGwin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth L McCormick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Abdelmeguid Y, Mowafy EW, Marzouk I, Franco ED, ElSayed S. Clinical and molecular characteristics of infantile-onset diabetes mellitus in Egypt. Ann Pediatr Endocrinol Metab 2022; 27:214-222. [PMID: 35114785 PMCID: PMC9537677 DOI: 10.6065/apem.2142184.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE In patients diagnosed with diabetes mellitus (DM) before the age of 12 months, there is an increasing recognition of diabetes caused by single-gene mutations, also known as monogenic diabetes of infancy or neonatal DM (NDM). This study aimed to classify patients at Alexandria University Children's Hospital (AUCH) diagnosed with infantile-onset DM into type 1 DM (T1DM) or NDM and to detect differences in molecular characteristics of NDM patients at our center in comparison to other countries. METHODS This retrospective/prospective observational study was conducted on 39 patients diagnosed with infantile-onset DM (age of onset ≤1 year) at AUCH from January 2003 to November 2020. The patients were divided into 2 groups according to age at the onset of DM: ≤6 months and >6-12 months. Molecular testing was done in patients diagnosed with DM at ≤6 months and those with negative autoantibodies. RESULTS Twelve patients were diagnosed with DM at age ≤6 months and 27 patients were diagnosed between 6-12 months. Seventeen patients (43.6%) had T1DM, whereas 9 patients (23.1%) had genetically confirmed NDM, including 3 harboring novel mutations. The most common genetic causes of NDM were EIF2AK3 mutations (n=3), followed by KCNJ11 (n=2) and ABCC8 (n=2). Other mutations included SLC19A2 (n=1) and INS (n=1). Three patients with potassium ATP channel mutations were transferred from insulin to sulfonylurea treatment. CONCLUSION It is essential to identify patients with NDM clinically and confirm the diagnosis by molecular testing to distinguish them from T1DM as it helps in refining their management, predicting prognosis, and guiding genetic counseling.
Collapse
Affiliation(s)
- Yasmine Abdelmeguid
- Faculty of Medicine, Alexandria University, Alexandria, Egypt,Address for correspondence: Yasmine Abdelmeguid Faculty of Medicine, Alexandria University, Champollion Street, El-Khartoum Square, El Azareeta Medical Campus, Alexandria, Egypt
| | | | - Iman Marzouk
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Elisa De Franco
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, UK
| | - Shaymaa ElSayed
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
16
|
Dettmer R, Niwolik I, Cirksena K, Yoshimoto T, Tang Y, Mehmeti I, Gurgul-Convey E, Naujok O. Proinflammatory cytokines induce rapid, NO-independent apoptosis, expression of chemotactic mediators and interleukin-32 secretion in human pluripotent stem cell-derived beta cells. Diabetologia 2022; 65:829-843. [PMID: 35122482 PMCID: PMC8960637 DOI: 10.1007/s00125-022-05654-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to examine the effects of proinflammatory cytokines on cells of different developmental stages during the generation of stem cell-derived beta cells (SC-beta cells) from human pluripotent stem cells (hPSCs). We wanted to find out to what extent human SC-beta cells are suitable as an experimental cellular model and, with regard to a possible therapeutic use, whether SC-beta cells have a comparable vulnerability to cytokines as bona fide beta cells. METHODS hPSCs were differentiated towards pancreatic organoids (SC-organoids) using a 3D production protocol. SC-beta cells and non-insulin-producing cells were separated by FACS and differential gene expression profiles of purified human SC-beta cells, progenitor stages and the human beta cell line EndoC-βH1, as a reference, were determined after 24 h incubation with the proinflammatory cytokines IL-1β, TNF-α and IFN-γ via a transcriptome microarray. Furthermore, we investigated apoptosis based on caspase cleavage, the generation of reactive oxygen species and activation of mitogen-activated protein-kinase (MAPK) stress-signalling pathways. RESULTS A 24 h exposure of SC-beta cells to proinflammatory cytokines resulted in significant activation of caspase 3/7 and apoptosis via the extrinsic and intrinsic apoptosis signalling pathways. At this time point, SC-beta cells showed a markedly higher sensitivity towards proinflammatory cytokines than non-insulin-producing cells and EndoC-βH1 cells. Furthermore, we were able to demonstrate the generation of reactive oxygen species and rule out the involvement of NO-mediated stress. A transient activation of stress-signalling pathways p38 mitogen-activated protein kinases (p38) and c-Jun N-terminal kinase (JNK) was already observed after 10 min of cytokine exposure. The transcriptome analysis revealed that the cellular response to proinflammatory cytokines increased with the degree of differentiation of the cells. Cytokines induced the expression of multiple inflammatory mediators including IL-32, CXCL9 and CXCL10 in SC-beta cells and in non-insulin-producing cells. CONCLUSIONS/INTERPRETATION Our results indicate that human SC-beta cells respond to proinflammatory cytokines very similarly to human islets. Due to the fast and fulminant cellular response of SC-beta cells, we conclude that SC-beta cells represent a suitable model for diabetes research. In light of the immaturity of SC-beta cells, they may be an attractive model for developmentally young beta cells as they are, for example, present in patients with early-onset type 1 diabetes. The secretion of chemotactic signals may promote communication between SC-beta cells and immune cells, and non-insulin-producing cells possibly participate in the overall immune response and are thus capable of amplifying the immune response and further stimulating inflammation. We demonstrated that cytokine-treated SC-organoids secrete IL-32, which is considered a promising candidate for type 1 diabetes onset. This underlines the need to ensure the survival of SC-beta cells in an autoimmune environment such as that found in type 1 diabetes.
Collapse
Affiliation(s)
- Rabea Dettmer
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Isabell Niwolik
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Karsten Cirksena
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Toshiaki Yoshimoto
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Yadi Tang
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
17
|
Barbetti F, Rapini N, Schiaffini R, Bizzarri C, Cianfarani S. The application of precision medicine in monogenic diabetes. Expert Rev Endocrinol Metab 2022; 17:111-129. [PMID: 35230204 DOI: 10.1080/17446651.2022.2035216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Monogenic diabetes, a form of diabetes mellitus, is caused by a mutation in a single gene and may account for 1-2% of all clinical forms of diabetes. To date, more than 40 loci have been associated with either isolated or syndromic monogenic diabetes. AREAS COVERED While the request of a genetic test is mandatory for cases with diabetes onset in the first 6 months of life, a decision may be difficult for childhood or adolescent diabetes. In an effort to assist the clinician in this task, we have grouped monogenic diabetes genes according to the age of onset (or incidental discovery) of hyperglycemia and described the additional clinical features found in syndromic diabetes. The therapeutic options available are reviewed. EXPERT OPINION Technical improvements in DNA sequencing allow for rapid, simultaneous analysis of all genes involved in monogenic diabetes, progressively shrinking the area of unsolved cases. However, the complexity of the analysis of genetic data requires close cooperation between the geneticist and the diabetologist, who should play a proactive role by providing a detailed clinical phenotype that might match a specific disease gene.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Novella Rapini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Riccardo Schiaffini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carla Bizzarri
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Cianfarani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy
- Department of Women's and Children Health, Karolisnska Institute and University Hospital, Sweden
| |
Collapse
|
18
|
Hammoud B, Greeley SAW. Growth and development in monogenic forms of neonatal diabetes. Curr Opin Endocrinol Diabetes Obes 2022; 29:65-77. [PMID: 34864759 PMCID: PMC11056188 DOI: 10.1097/med.0000000000000699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Neonatal diabetes mellitus (NDM) is a rare disorder in which 80-85% of infants diagnosed under 6 months of age will be found to have an underlying monogenic cause. This review will summarize what is known about growth and neurodevelopmental difficulties among individuals with various forms of NDM. RECENT FINDINGS Patients with NDM often have intrauterine growth restriction and/or low birth weight because of insulin deficiency in utero and the severity and likelihood of ongoing growth concerns after birth depends on the specific cause. A growing list of rare recessive causes of NDM are associated with neurodevelopmental and/or growth problems that can either be related to direct gene effects on brain development, or may be related to a variety of co-morbidities. The most common form of NDM results in spectrum of neurological disability due to expression of mutated KATP channels throughout the brain. SUMMARY Monogenic causes of neonatal diabetes are characterized by variable degree of restriction of growth in utero because of deficiency of insulin that depends on the specific gene cause. Many forms also include a spectrum of neurodevelopmental disability because of mutation-related effects on brain development. Longer term study is needed to clarify longitudinal effects on growth into adulthood.
Collapse
Affiliation(s)
- Batoul Hammoud
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, and Kovler Diabetes Center, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
19
|
Haliyur R, Walker JT, Sanyoura M, Reihsmann CV, Shrestha S, Aramandla R, Poffenberger G, Ramirez AH, Redick SD, Babon JAB, Prasad N, Hegele RA, Kent SC, Harlan DM, Bottino R, Philipson LH, Brissova M, Powers AC. Integrated Analysis of the Pancreas and Islets Reveals Unexpected Findings in Human Male With Type 1 Diabetes. J Endocr Soc 2021; 5:bvab162. [PMID: 34870058 PMCID: PMC8633619 DOI: 10.1210/jendso/bvab162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
Clinical and pathologic heterogeneity in type 1 diabetes is increasingly being recognized. Findings in the islets and pancreas of a 22-year-old male with 8 years of type 1 diabetes were discordant with expected results and clinical history (islet autoantibodies negative, hemoglobin A1c 11.9%) and led to comprehensive investigation to define the functional, molecular, genetic, and architectural features of the islets and pancreas to understand the cause of the donor's diabetes. Examination of the donor's pancreatic tissue found substantial but reduced β-cell mass with some islets devoid of β cells (29.3% of 311 islets) while other islets had many β cells. Surprisingly, isolated islets from the donor pancreas had substantial insulin secretion, which is uncommon for type 1 diabetes of this duration. Targeted and whole-genome sequencing and analysis did not uncover monogenic causes of diabetes but did identify high-risk human leukocyte antigen haplotypes and a genetic risk score suggestive of type 1 diabetes. Further review of pancreatic tissue found islet inflammation and some previously described α-cell molecular features seen in type 1 diabetes. By integrating analysis of isolated islets, histological evaluation of the pancreas, and genetic information, we concluded that the donor's clinical insulin deficiency was most likely the result autoimmune-mediated β-cell loss but that the constellation of findings was not typical for type 1 diabetes. This report highlights the pathologic and functional heterogeneity that can be present in type 1 diabetes.
Collapse
Affiliation(s)
- Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - May Sanyoura
- Department of Medicine and Pediatrics-Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL, USA
| | - Conrad V Reihsmann
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Radhika Aramandla
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrea H Ramirez
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sambra D Redick
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jenny Aurielle B Babon
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Sally C Kent
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - David M Harlan
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Louis H Philipson
- Department of Medicine and Pediatrics-Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
20
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
21
|
London S, De Franco E, Elias-Assad G, Barhoum MN, Felszer C, Paniakov M, Weiner SA, Tenenbaum-Rakover Y. Case Report: Neonatal Diabetes Mellitus Caused by a Novel GLIS3 Mutation in Twins. Front Endocrinol (Lausanne) 2021; 12:673755. [PMID: 34093443 PMCID: PMC8169976 DOI: 10.3389/fendo.2021.673755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Background Mutations in GLIS3 cause a rare syndrome characterized by neonatal diabetes mellitus (NDM), congenital hypothyroidism, congenital glaucoma and cystic kidneys. To date, 14 mutations in GLIS3 have been reported, inherited in an autosomal recessive manner. GLIS3 is a key transcription factor involved in β-cell development, insulin expression, and development of the thyroid, eyes, liver and kidneys. Cases We describe non-identical twins born to consanguineous parents presenting with NDM, congenital hypothyroidism, congenital glaucoma, hepatic cholestasis, cystic kidney and delayed psychomotor development. Sequence analysis of GLIS3 identified a novel homozygous nonsense mutation, c.2392C>T, p.Gln798Ter (p.Q798*), which results in an early stop codon. The diabetes was treated with a continuous subcutaneous insulin infusion pump and continuous glucose monitoring. Fluctuating blood glucose and intermittent hypoglycemia were observed on follow-up. Conclusions This report highlights the importance of early molecular diagnosis for appropriate management of NDM. We describe a novel nonsense mutation of GLIS3 causing NDM, extend the phenotype, and discuss the challenges in clinical management. Our findings provide new areas for further investigation into the roles of GLIS3 in the pathophysiology of diabetes mellitus.
Collapse
Affiliation(s)
- Shira London
- Pediatric Endocrine Institute, Ha’Emek Medical Center, Afula, Israel
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Ghadir Elias-Assad
- Pediatric Endocrine Institute, Ha’Emek Medical Center, Afula, Israel
- The Rappaport Faculty of Medicine, Technion – Institute of Technology, Haifa, Israel
| | - Marie Noufi Barhoum
- Pediatric Endocrine Institute, Ha’Emek Medical Center, Afula, Israel
- Clalit Health Services, Children Health Center, Naharia, Israel
- Faculty of Medicine, Bar-Ilan University, Zeffat, Israel
| | - Clari Felszer
- Neonatal Intensive Care Unit, Ha’Emek Medical Center, Afula, Israel
| | - Marina Paniakov
- Neonatal Intensive Care Unit, Ha’Emek Medical Center, Afula, Israel
| | - Scott A. Weiner
- Neonatal Intensive Care Unit, Ha’Emek Medical Center, Afula, Israel
| | - Yardena Tenenbaum-Rakover
- Pediatric Endocrine Institute, Ha’Emek Medical Center, Afula, Israel
- The Rappaport Faculty of Medicine, Technion – Institute of Technology, Haifa, Israel
| |
Collapse
|
22
|
Impact of the exposome on the development and function of pancreatic β-cells. Mol Aspects Med 2021; 87:100965. [PMID: 33965231 DOI: 10.1016/j.mam.2021.100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
The development and plasticity of the endocrine pancreas responds to both the intrauterine and postnatal exposome in a constant attempt to predict and respond to alterations in nutritional availability and metabolic requirements. Both under- and over-nutrition in utero, or exposure to adverse environmental pollutants or maternal behaviors, can each lead to altered β-cell or function at birth, and a subsequent mismatch in pancreatic hormonal demands and secretory capacity postnatally. This can be further exacerbated by metabolic stress postnatally such as from obesity or pregnancy, resulting in an increased risk of gestational diabetes, type 2 diabetes, and even type 1 diabetes. This review will discuss evidence identifying the cellular pathways in early life whereby the plasticity of the endocrine pancreatic can become pathologically limited. By necessity, much of this evidence has been gained from animal models, although extrapolation to human fetal development is possible from the fetal growth trajectory and study of the newborn. Cellular limitations to plasticity include the balance between β-cell proliferation and apoptosis, the appearance of β-cell oxidative stress, impaired glucose-stimulated insulin secretion, and sensitivity to circulating cytokines and responsiveness to programmed death receptor-1. Evidence suggests that many of the cellular pathways responsible for limiting β-cell plasticity are related to paracrine interactions within the islets of Langerhans.
Collapse
|
23
|
Sanyoura M, Lundgrin EL, Subramanian HP, Yu M, Sodadasi P, Greeley SAW, MacLeish S, Del Gaudio D. Novel compound heterozygous LRBA deletions in a 6-month-old with neonatal diabetes. Diabetes Res Clin Pract 2021; 175:108798. [PMID: 33845048 PMCID: PMC11056189 DOI: 10.1016/j.diabres.2021.108798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022]
Abstract
We report a 6-month-old boy with antibody-positive insulin-dependent diabetes mellitus. Sequencing identified compound heterozygous deletions of exon 5 and exons 36-37 in LRBA. At three years, he has yet to exhibit any other immune symptoms. Genetic testing of LRBA is warranted in patients with neonatal diabetes, even without immune dysregulation.
Collapse
Affiliation(s)
- May Sanyoura
- Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave., G701, Chicago, IL 60637, USA
| | - Erika L Lundgrin
- Division of Pediatric Endocrinology and Metabolism, University Hospitals Rainbow Babies & Children's Hospital, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Hari Prasanna Subramanian
- Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave., G701, Chicago, IL 60637, USA
| | - Min Yu
- Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave., G701, Chicago, IL 60637, USA
| | - Priscilla Sodadasi
- Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave., G701, Chicago, IL 60637, USA
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, 5841 S. Maryland Ave., MC 1027, Chicago, IL 60637, USA
| | - Sarah MacLeish
- Division of Pediatric Endocrinology and Metabolism, University Hospitals Rainbow Babies & Children's Hospital, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Daniela Del Gaudio
- Department of Human Genetics, The University of Chicago, 5841 S. Maryland Ave., G701, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Neuer Typ-1-Diabetes-Subtyp. DIABETOL STOFFWECHS 2021. [DOI: 10.1055/a-1327-9783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
O'Neill S. Update on technologies, medicines and treatments including Libre 3, Minimed 780G and Glucomen Day continuous glucose monitoring. Diabet Med 2021; 38:e14451. [PMID: 33155340 DOI: 10.1111/dme.14451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022]
|