1
|
Wang X, Liu Q, Cheng P, Yang T, Zhao T, Liu M, Dai E, Sha W, Yuan J, Rong J, Qu H, Zhou H. LuQi formula ameliorates pressure overload-induced heart failure by regulating macrophages and regulatory T cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156527. [PMID: 40118747 DOI: 10.1016/j.phymed.2025.156527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Inflammatory macrophages in failing myocardium secrete CCL17, which targets CCR4 in immunosuppressive Tregs and inhibits the intracellular second messenger ARRB2-mediated cardiac chemotaxis. Traditional Chinese medicine (TCM) LuQi formula (LQF) is safe and effective in treating heart failure (HF). This study aims to elucidate the cardioprotective mechanism of LQF through its modulation of cardiac macrophages and Tregs. METHODS In vivo, the HF mouse model was established via transverse aortic constriction (TAC), with the superagonistic anti-CD28 monoclonal antibody (CD28-SA)-induced Tregs expansion as a positive control. Proteomics analysis elucidated the core link of LQF in anti-HF. In vitro, bone marrow-derived macrophages (BMDMs) were isolated, and Naive CD4+T cells were sorted and stimulated to differentiate into Tregs. The pharmacological mechanism of LQF was confirmed through histological and molecular biology experiments. RESULTS Proteomics reveals that LQF modulates the immune microenvironment of failing myocardium. We revealed that LQF inhibited cardiac inflammatory macrophage infiltration and NF-κB (p50, p65)/CCL17 axis expression, and promoted cardiac Tregs recruitment against HF, with the comparable efficacy of CD-SA28-induced Tregs expansion. Mechanistically, LQF inhibited the NF-κB activator 1-induced NF-κB (p50, p65)/CCL17 axis overexpression, and JSH-23 (NF-κB Inhibitor) abolished NF-κB (p50, p65)/CCL17 axis expression in inflammatory macrophages. Furthermore, the inhibition of CCL17 expression in inflammatory macrophages by LQF was found to be mediated by NF-κB (p50, p65). LQF concentration-dependently promoted Tregs CD73/Foxp3 axis expression, enhancing Tregs immunosuppressive function. LQF activated CCR4-ARRB2 complex and CCR4/ARRB2 axis expression in Tregs. Although AZD2098 (CCR4 Inhibitor) blocked CCR4 expression and CCR4-ARRB2 complex, LQF promoted ARRB2-mediated Tregs cardiac chemotaxis independent of the CCR4. We revealed that NF-κB p50SEP337-CCL17, NF-κB p65SEP536-CCL17, and CCR4-ARRB2 highly bound subunit interface targets. Molecular docking analysis demonstrated that the LQF's active ingredients exhibit good binding affinity with the NF-κB (p50, p65) /CCL17 axis in macrophages and Foxp3 in Tregs. CONCLUSION LQF has the potential to enhance the cardiac immune microenvironment and effectively prevent and treat HF by modulating both innate and adaptive immune responses. It achieves this by inhibiting the infiltration of inflammatory macrophages, suppressing the NF-κB (p50, p65)/CCL17 axis, and promoting Tregs recruitment. The active ingredients of LQF provide valuable candidate compounds for developing new anti-HF drugs. Furthermore, CD-28SA-induced Tregs expansion showed cardioprotective effects in TAC-induced non-ischemic HF models.
Collapse
Affiliation(s)
- Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianshu Yang
- Department of Cardiovascular Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai 200040, China
| | - Tingyao Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200050, China
| | - Meng Liu
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200050, China
| | - Enrui Dai
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wanjing Sha
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinfeng Yuan
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingfeng Rong
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huiyan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Zhang Z, Xiong R, Hu Q, Zhang Q, Wang S, Chen Y. Review on anti-tumour lipid nano drug delivery systems of traditional Chinese medicine. J Drug Target 2025; 33:704-716. [PMID: 39743936 DOI: 10.1080/1061186x.2024.2448708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
In recent years, the use of traditional Chinese medicine (TCM) in the treatment of cancer has received widespread attention. Treatment of tumours using TCM can effectively reduce the side effects of anti-tumour drugs, meanwhile to improve the treatment efficacy of patients. However, most of the active ingredients in TCM, such as saponins, alkaloids, flavonoids, volatile oils, etc., have defects such as low bioavailability and poor solubility in clinical application, which seriously restrict the application of TCM. Meanwhile, the encapsulation of TCM into lipid nano-delivery systems for cancer therapy has received much attention. Lipid nano-delivery systems are obtained by using phospholipids as the base material and adding other auxiliary materials under a certain preparation process, including, for example, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), microemulsions, and self-microemulsion drug delivery systems (SMEDDS), can resolve the application problems of TCM by improving the efficacy of active ingredients of TCM and reducing the toxicity of anti-tumour drugs. This paper focuses on the categories, development status, and research progress of lipid nano delivery system of TCM, aiming to provide a certain theoretical basis for further in-depth research and rational application of these systems.
Collapse
Affiliation(s)
- Ziwei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Rui Xiong
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Qiyan Hu
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Qiang Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Shaozhen Wang
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Yunyan Chen
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
Liu X, Feng J, Guo M, Chen C, Zhao T, Sun X, Zhang Y. Resetting the aging clock through epigenetic reprogramming: Insights from natural products. Pharmacol Ther 2025; 270:108850. [PMID: 40221101 DOI: 10.1016/j.pharmthera.2025.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Epigenetic modifications play a critical role in regulating gene expression under various physiological and pathological conditions. Epigenetic modifications reprogramming is a recognized hallmark of aging and a key component of the aging clock used to differentiate between chronological and biological age. The potential for prospective diagnosis and regulatory capabilities position epigenetic modifications as an emerging drug target to extend longevity and alleviate age-related organ dysfunctions. In the past few decades, numerous preclinical studies have demonstrated the therapeutic potential of natural products in various human diseases, including aging, with some advancing to clinical trials and clinical application. This review highlights the discovery and recent advancements in the aging clock, as well as the potential use of natural products as anti-aging therapeutics by correcting disordered epigenetic reprogramming. Specifically, the focus is on the imbalance of histone modifications, alterations in DNA methylation patterns, disrupted ATP-dependent chromatin remodeling, and changes in RNA modifications. By exploring these areas, new insights can be gained into aging prediction and anti-aging interventions.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jing Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Madi Guo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Chen Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xiuxiu Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
4
|
Han M, Zhu X, Li D, Si Q, Zhu T, Zhou Z, Liu G, Ren D, Jiang Q, Tang S. Quercetin and taxifolin enhance immunity in Chinese sucker (Myxocyprinus asiaticus) and increase its resistance to Aeromonas hydrophila. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101369. [PMID: 39644864 DOI: 10.1016/j.cbd.2024.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
This study investigated the effects of short-term exposure to flavonoids, specifically quercetin and taxifolin, on the transcriptomic responses of Chinese sucker (Myxocyprinus asiaticus) to validate their influence on gene expression related to immunity, antioxidant activity, and metabolism. Using transcriptomic data, we also analyzed their influence on relevant immune genes and examined the Chinese suckers' resistance to A. hydrophila. Oxidative stress, immune defense, and glucose metabolism of Chinese suckers were tested to assess potential enhancements. Significant alterations were observed in multiple immune-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the liver of Chinese suckers, notably the complement and coagulation cascades, degradation of aromatic compounds, and xenobiotic metabolism by cytochrome P450. The key immune markers such as UGT, MPO, C3, and C4 were highlighted in these pathways, underlining their importance in fish immunity. Additionally, oxidative stress related KEGG pathways were notably influenced after exposure to quercetin and taxifolin, displaying markers such as CYP3A, superoxide dismutase, GST, malondialdehyde, and catalase. Quercetin particularly affected the enzymatic activity of glucose oxidase, hexokinase, phosphofructokinase, and ATPase, which are enzymes related to stress responses in fish. Antimicrobial tests revealed that both flavonoids enhanced Chinese suckers' defense against A. hydrophila by bolstering oxidative stress resistance and immunity. These results provided valuable insights for using flavonoids to enhance fish immunity.
Collapse
Affiliation(s)
- Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Xiaohua Zhu
- Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Daming Li
- Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Qin Si
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China
| | - Tian Zhu
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Zihan Zhou
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Guoxing Liu
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China; Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Di Ren
- Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Qichen Jiang
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China; Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Shengkai Tang
- Nanjing Normal University; Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| |
Collapse
|
5
|
Liu J, Li Z, Liu W, Jiang Z, Zhang X, Yuan Y, Shen Y. Quercetin down-regulates MCP-1 expression in autoimmune myocarditis via ERK1/2-C/EBPβ pathway: An integrative approach using network pharmacology and experimental models. Int Immunopharmacol 2025; 154:114559. [PMID: 40158430 DOI: 10.1016/j.intimp.2025.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Myocarditis is one of the common causes of sudden death in adolescents, and autoimmune response and inflammation play an essential role in the development of myocarditis. Quercetin is a natural flavonoid compound with anti-inflammatory and cardioprotective effects. However, the mechanism of quercetin in autoimmune myocarditis remains unclear. This study observed that quercetin significantly improved cardiac function, inflammation and fibrosis in mice with experimental autoimmune myocarditis (EAM). In addition, Network pharmacology predicts the key target C/EBPβ and signalling pathway MAPK for quercetin treatment of autoimmune myocarditis. CESTA and DARTS experiments verified that quercetin and C/EBPβ have strong binding ability. It is shown that quercetin down-regulates MCP-1 expression in H9C2 cells by dephosphorylation of ERK1/2 and C/EBPβ. Specifically, quercetin reduced the binding of C/EBPβ to the MCP-1 promoter, resulting in decreased expression of MCP-1, which was associated with decreased ERK1/2 dependent phosphorylation at the C/EBPβ threonine 188 site. This inhibitory effect of quercetin could be further enhanced by the ERK1/2 inhibitor PD98059. The biological relevance of this regulatory network is demonstrated in EAM mice. In conclusion, these results illustrate the protective effect of quercetin against autoimmune myocarditis. A novel regulatory mechanism was revealed, namely the down-regulation of MCP-1 through the ERK1/2-C/EBPβ axis. This provides a new therapeutic strategy for autoimmune myocarditis.
Collapse
Affiliation(s)
- Jinlin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Liu
- Department of Liver Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Zuli Jiang
- Department of Blood Transfusion, Henan Provincial Children's Hospital, Zhengzhou 450052, China
| | - Xin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yizhe Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yan Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
6
|
Fazeli Kakhki H, Mohammadi Zonouz A, Hosseinzadeh H. Herbal nanoparticles: bridging traditional medicine and modern science in epilepsy treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04239-z. [PMID: 40332554 DOI: 10.1007/s00210-025-04239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Millions of people worldwide suffer from epilepsy, a persistent neurological illness characterized by recurring seizures. Despite advances in anti-epileptic medications, a significant number of patients continue to have insufficient seizure control and have side effects. Nanotechnology has emerged as a promising alternative for increasing medicine delivery and therapeutic effects in recent years. The anti-epileptic potential of nanoparticles produced from herbal medicines such as berberine-loaded zein/hyaluronic acid composite, Cannabis sativa extract-loaded nanoliposomes and nanostructured lipids, nanostructured lipid vehicle-carried safranal, and cryptolepine solid-lipid NPs is reviewed in this work, which makes use of the synergistic effects of nanotechnology and natural substances. The manuscript presents an overview of the mechanisms underlying the anti-epileptic effects of these nanoparticles, ranging from regulating neurotransmitter systems and ion channels to lowering oxidative stress and inflammation. Preclinical studies using animal models of epilepsy have shown that herbal medicine nanoparticles can reduce seizure activity, prolong seizure latency, and improve cognitive function. The findings presented in this manuscript highlight the remarkable potential of herbal medicine nanoparticles as a novel approach to the management of epilepsy. Continued research and development in this field have the potential to revolutionize epilepsy therapy and improve the quality of life for people suffering from this debilitating condition.
Collapse
Affiliation(s)
- Homa Fazeli Kakhki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aidin Mohammadi Zonouz
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Zhang J, Guo J, Qian Y, Yu L, Ma J, Gu B, Tang W, Li Y, Li H, Wu W. Quercetin Induces Apoptosis Through Downregulating P4HA2 and Inhibiting the PI3K/Akt/mTOR Axis in Hepatocellular Carcinoma Cells: An In Vitro Study. Cancer Rep (Hoboken) 2025; 8:e70220. [PMID: 40347062 PMCID: PMC12065022 DOI: 10.1002/cnr2.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/25/2025] [Accepted: 04/22/2025] [Indexed: 05/12/2025] Open
Abstract
BACKGROUND Quercetin is a natural product with multiple activities, which possesses a promising antitumor effect on malignancies. The involvement of proline 4-hydroxylase II (P4HA2) in collagen synthesis is crucial in the growth of tumor cells. Apoptosis is a programmed cell death requisite for the stability of the intracellular environment. However, the relationship between quercetin and cell apoptosis, as well as the impact of P4HA2 in this connection, has not yet been specified in hepatocellular carcinoma(HCC). AIMS The present study used HCC cells to investigate how quercetin regulates P4HA2 and influences cell proliferation and apoptosis. METHODS AND RESULTS The outcomes reveal that quercetin can impede the viability and growth of HCC cells and generate cell apoptosis in a dose-dependent manner. Additionally, quercetin prompts downregulation of P4HA2, leading to cell apoptosis in HCC cells, and knocking down P4HA2 can enhance this effect. Furthermore, we pretreated HCC cells with inhibitors (Z-VAD-FMK, LY294002) or activators (740Y-P) and found that the PI3K/Akt/mTOR pathway was occupied with quercetin-induced cell apoptosis. CONCLUSION This investigation reveals that quercetin compels apoptosis in HCC cells by diminishing P4HA2 and restraining the PI3K/Akt/mTOR axis.
Collapse
Affiliation(s)
- Junli Zhang
- The Third People's Hospital of Bengbu Affiliated to Bengbu Medical UniversityBengbuChina
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and TreatmentBengbuChina
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory DiagnosisBengbu Medical UniversityBengbuChina
| | - Jiayi Guo
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory DiagnosisBengbu Medical UniversityBengbuChina
| | - Ying Qian
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory DiagnosisBengbu Medical UniversityBengbuChina
| | - Lianchen Yu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory DiagnosisBengbu Medical UniversityBengbuChina
| | - Junrao Ma
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory DiagnosisBengbu Medical UniversityBengbuChina
| | - Biao Gu
- The Third People's Hospital of Bengbu Affiliated to Bengbu Medical UniversityBengbuChina
| | - Weichun Tang
- The Third People's Hospital of Bengbu Affiliated to Bengbu Medical UniversityBengbuChina
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and TreatmentBengbuChina
| | - Yi Li
- The Third People's Hospital of Bengbu Affiliated to Bengbu Medical UniversityBengbuChina
| | - Hongwei Li
- The Third People's Hospital of Bengbu Affiliated to Bengbu Medical UniversityBengbuChina
| | - Wenjuan Wu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory DiagnosisBengbu Medical UniversityBengbuChina
- Department of Biochemistry and Molecular BiologySchool of Laboratory Medicine, Bengbu Medical UniversityBengbuChina
| |
Collapse
|
8
|
Chen BL, Zhang WM, Dong XW, Liu JY, Bai YP. Quercetin induces keratinocytes apoptosis via triple inhibition of Notch, PI3K/AKT signaling and Glut1 in the treatment of psoriasis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167879. [PMID: 40316055 DOI: 10.1016/j.bbadis.2025.167879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 03/20/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Psoriasis is an immune-mediated inflammatory skin disorder marked by excessive keratinocyte proliferation and inflammatory cell infiltration. Quercetin has shown a range of biological activities, highlighting its potential as a therapeutic agent for psoriasis. PURPOSE This study aims to explore the mechanisms by which quercetin treats psoriasis. METHODS An Imiquimod-induced psoriasis mouse model and a TNF-α-induced keratinocyte proliferation model were utilized, supplemented with quercetin and DAPT. The expression of K10, K14, Notch1, NICD, AKT and Glut1 in psoriatic lesions and normal skin was assessed. Techniques employed included hematoxylin-eosin staining, immunohistochemical staining, western blotting, quantitative polymerase chain reaction, cell counting kit-8 assay, flow cytometry, and enzyme-linked immunosorbent assay. RESULTS Notch1, AKT, and Glut1 were highly expressed in psoriasis. Quercetin induced keratinocyte apoptosis and inhibited the Notch signaling pathway, as well as the expression of AKT and Glut1. Inhibition of Notch signaling led to keratinocyte apoptosis and downregulation of the AKT and Glut1 expression. The results of network pharmacology and molecular docking are consistent with this. CONCLUSION This study provides the first evidence that quercetin induces keratinocyte apoptosis and promotes keratinocyte differentiation to treat psoriasis through the triple inhibition of the Notch and PI3K/AKT signaling pathways, as well as Glut1. The downregulation of the PI3K/AKT pathway and Glut1 is achieved partially via Notch inhibition. These findings suggest that quercetin could be a novel agent for improving psoriasis treatment, especially in patients exhibiting high expression of Notch1, AKT, and Glut1 in their skin lesions.
Collapse
Affiliation(s)
- Bai-Lin Chen
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China; Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei-Ming Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiao-Wan Dong
- Beijing University of Chinese Medicine, Beijing 100029, China; Dermatology Department, National Center for Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jia-Yi Liu
- Beijing University of Chinese Medicine, Beijing 100029, China; Dermatology Department, National Center for Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan-Ping Bai
- Dermatology Department, National Center for Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
9
|
Dai Z, Yin W, Li J, Ma L, Chen F, Shen Q, Hu X, Xue Y, Ji J. Zein and Trimethyl Chitosan-Based Core-Shell Nanoparticles for Quercetin Oral Delivery to Enhance Absorption by Paracellular Pathway in Obesity Mice. Biomater Res 2025; 29:0193. [PMID: 40296879 PMCID: PMC12034925 DOI: 10.34133/bmr.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/05/2025] [Accepted: 03/29/2025] [Indexed: 04/30/2025] Open
Abstract
Quercetin as a flavonoid polyphenol in nature has shown great anti-obesity effects. Due to its poor stability in chemical structure and low intestinal absorption, the in vivo bioavailability of quercetin is considered to be the main challenge for applications. To achieve the oral quercetin administration, chitosan was successfully trimethylated (TMC) to coat the quercetin-loaded zein nanoparticles (Zein-Q), which were designed as the core-shell structure for enhancing the intestinal absorption in this study. TMC-Zein-Q was demonstrated to protect quercetin from degradation and showed the sustained-release effect in an in vitro drug release experiment. The nanoparticles were found to reversibly open tight junctions between intestinal epithelial cells and help to increase quercetin uptake via the paracellular pathway in Caco-2 cells. In addition, the delivery system also showed stronger intestinal permeability and mucoadhesion in vivo, which improved the bioavailability of quercetin in cellular and animal experiments. After 10 weeks of intervention, TMC-Zein-Q could effectively suppress weight gain, improve serum lipid levels, and ameliorate hepatic steatosis and glucose tolerance in high-fat diet (HFD) mice by mediating the AMPK pathway. Consequently, this work successfully constructed TMC-Zein-Q for oral quercetin delivery, providing a novel and feasible strategy for the treatment of obesity via the oral route.
Collapse
Affiliation(s)
| | | | - Jiahao Li
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Lingjun Ma
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Fang Chen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Xiaosong Hu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Junfu Ji
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| |
Collapse
|
10
|
Zhu X, Xiong C, Zhou H, Wang J, Wu Y. Single-atom nanozymes for enhanced electrochemical biosensing: A review. Talanta 2025; 294:128179. [PMID: 40286743 DOI: 10.1016/j.talanta.2025.128179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Enzyme-based electrochemical biosensors have broad and significant applications in biomedical, environmental monitoring, and food safety fields. However, the application of natural enzymes is limited due to issues such as poor stability, complex preparation, and high cost. Single-atom nanozymes (SAzymes), with their unique catalytic properties and efficient enzyme-like activities, present a promising alternative in the field of electrochemical biosensing. Compared to traditional enzymes, SAzyme offer enhanced stability and controllability, making them particularly effective in complex detection environments. This work presents the first systematic review of the progress made since 2018 in the use of SAzymes as alternatives to natural enzymes in electrochemical biosensors, and presents the latest advancements in this area. The review begins with a discussion of various enzyme-like activities of single-atom materials, including peroxidase (POD)-like, oxidase (OXD)-like, catalase (CAT)-like, and superoxide dismutase (SOD)-like activities. It then explores the advantages of SAzymes in improving the performance of electrochemical biosensors from multiple perspectives. The review also summarizes the applications of SAzyme-based electrochemical sensors for reactive oxygen species (ROS), metabolites, neurotransmitters, and other analytes, highlighting specific examples to elucidate underlying catalytic mechanisms and understand fundamental structure-performance relationships. In the final section, the challenges faced by SAzyme-based electrochemical biosensing are discussed, along with potential solutions.
Collapse
Affiliation(s)
- Xiaofei Zhu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China; Key Laboratory of Precision and Intelligent/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Can Xiong
- Key Laboratory of Precision and Intelligent/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Huang Zhou
- Key Laboratory of Precision and Intelligent/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China.
| | - Yuen Wu
- Key Laboratory of Precision and Intelligent/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China; Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
11
|
Adarthaiya S, Arivarasan VK. Potential of Cinnamomum zeylanicum for metabolic syndrome management: insights from in vivo and human studies. JOURNAL OF INTEGRATIVE MEDICINE 2025:S2095-4964(25)00049-4. [PMID: 40319007 DOI: 10.1016/j.joim.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/12/2025] [Indexed: 05/07/2025]
Abstract
Metabolic syndrome (MetS) is a cluster of risk factors that significantly increase the chances of developing heart disease, type 2 diabetes mellitus, stroke, and other cardiovascular complications. Since current anti-MetS medications like statins, angiotensin-converting enzyme inhibitors, β-blockers, insulin sensitizers and diuretics have been reported to cause unwanted side effects, researchers are exploring promising alternatives. One such alternative relies on the potential of spices and condiments, which have a long history of use in traditional medicine. Among them, Cinnamomum zeylanicum Blume stands out as a popular spice worldwide for its unique taste, aroma, and delicate sweetness compared to other cinnamon varieties. This narrative review aims to summarize the in vivo and clinical evidence concerning the efficacy of C. zeylanicum against MetS indices. Relevant articles from PubMed, Scopus and Google scholar databases were reviewed. In vivo results suggested that C. zeylanicum preparations (extracts, essential oil, crude powder, bioactive compounds, and biosynthesized nanoparticles) were remarkably efficient in ameliorating MetS indices, while the clinical data were less and with several methodological limitations. Further robust clinical studies are warranted to definitively establish C. zeylanicum as a promising functional food for mitigating MetS, potentially leading to its dietary integration as a natural approach to improve metabolic health. Please cite this article as: Adarthaiya S, Arivarasan VK. Potential of Cinnamomum zeylanicum for metabolic syndrome management: insights from in vivo and human studies. J Integr Med. 2025; Epub ahead of print.
Collapse
Affiliation(s)
- Saikrupa Adarthaiya
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| |
Collapse
|
12
|
Zhao Q, Jin M, Zhao Q, Wang Z, Zhao C, Xue X, Qiao X, Qu P, Han D, Tao R. Natural products in traditional Chinese medicine for renal fibrosis: a comprehensive review. Front Pharmacol 2025; 16:1560567. [PMID: 40308781 PMCID: PMC12041090 DOI: 10.3389/fphar.2025.1560567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Renal fibrosis represents the terminal pathological manifestation of most chronic kidney diseases, driving progressive loss of renal function. Natural products have emerged as promising therapeutic agents for preventing and ameliorating renal fibrosis due to their multi-target efficacy and favorable safety profiles. In this review, we conducted a comprehensive literature search on PubMed using the keywords "natural product" and "renal fibrosis" from 2004 to 2025, identifying 704 relevant articles. We systematically categorize and discuss the biological effects of key natural products and formulations with antifibrotic potential, focusing on five major classes: glycosides, flavonoids, phenolic compounds, anthraquinones, and terpenoids. Representative compounds from each category are highlighted for their mechanisms of action, including modulation of oxidative stress, inflammation, autophagy, and fibrosis signaling pathways. This review aims to provide a theoretical foundation for the development of natural product-based therapies to combat renal fibrosis, offering insights into their therapeutic potential and future research directions.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Meihua Jin
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Qiang Zhao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Zhimei Wang
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Chun Zhao
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xiaocong Xue
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xikai Qiao
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Peng Qu
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Donghe Han
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
13
|
Lu J, Huang Y, Zhang Y, Xie J, Guo Q, Yang H, Yang Y, Chen J, Su L. Quercetin ameliorates obesity and inflammation via microbial metabolite indole-3-propionic acid in high fat diet-induced obese mice. Front Nutr 2025; 12:1574792. [PMID: 40308638 PMCID: PMC12040668 DOI: 10.3389/fnut.2025.1574792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background Obesity is a chronic metabolic disease, mainly caused by excessive/abnormal fat accumulation, as well as accompanied by endotoxemia and chronic inflammation. Quercetin, a natural flavonoid, may alleviate obesity by regulating gut microbiota and metabolites, but its exact mechanism for improving obesity is unknown. Objectives The aim of this study was to investigate the effects of quercetin on high-fat diet (HFD)-induced obesity in mice. In particular, we focused on the regulatory effects of quercetin on gut microbiota and the tryptophan metabolite indole-3-propionic acid (IPA). Methods The C57BL/6J mice were subjected to a 20-week HFD feeding regimen with concurrent daily oral administration of quercetin or IPA. The body weight, fat accumulation, gut barrier function, and chronic inflammation were determined. Gut microbiota composition was analyzed by 16S rRNA sequencing and IPA levels were measured in serum and feces. In vitro experiments, Caco-2 cells were used to evaluate the effects of IPA and fecal dilutions from quercetin-treated mice on tight junction protein expression and aryl hydrocarbon receptor (AhR) activation. Results Our results revealed that quercetin supplementation significantly mitigated obesity and chronic inflammation, and improved the disrupted gut barrier function through the actvation of AhR/interleukin 22 (IL-22) pathway. 16S rRNA sequencing revealed that quercetin treatment increased the abundance of Lactobacillus. Quercetin intervention increased the levels of IPA in the serum and feces of mice. IPA supplementation alleviated obesity and chronic inflammation, and enhanced intestinal barrier function through AhR activation. The findings were further corroborated by Caco-2 cell experiment, which indicated that the modulation of the dysregulated gut microbiota to change microbial metabolite IPA coordinated the improvement effect of quercetin on gut barrier disruption. Conclusion Quercetin supplementation alleviates obesity by restoring high-fat diet induced gut microbiota disorder, which elevates IPA level to activate AhR/IL-22 pathway, thereby enhancing intestinal barrier integrity and suppressing chronic inflammation.
Collapse
Affiliation(s)
- Jiaxin Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanting Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yujing Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiayu Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qingjun Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huifan Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunyan Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lijie Su
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Lin J, Li F, Jiao J, Qian Y, Xu M, Wang F, Sun X, Zhou T, Wu H, Kong X. Quercetin, a natural flavonoid, protects against hepatic ischemia-reperfusion injury via inhibiting Caspase-8/ASC dependent macrophage pyroptosis. J Adv Res 2025; 70:555-569. [PMID: 38735388 PMCID: PMC11976413 DOI: 10.1016/j.jare.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/20/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION Hepatic ischemia-reperfusion injury (IRI) is an inevitable adverse event following liver surgery, leading to liver damage and potential organ failure. Despite advancements, effective interventions for hepatic IRI remain elusive, posing a significant clinical challenge. The innate immune response significantly contributes to the pathogenesis of hepatic IRI by promoting an inflammatory cytotoxic cycle. We have reported that blocking GSDMD-induced pyroptosis in innate immunity cells protected hepatic IRI from inflammatory injury. However, the search for effective pyroptosis inhibitors continues. OBJECTIVES This study aims to evaluate whether quercetin, a natural flavonoid, can inhibit GSDMD-induced pyroptosis and mitigate hepatic IRI. METHODS We established the hepatic IRI murine model and cellular pyroptosis model to evaluate the efficacy of quercetin. RESULTS Quercetin effectively alleviated hepatic IRI-induced tissue necrosis and inflammation. We found that during hepatic IRI, the cleavage of GSDMD occurred in hepatic macrophages, but not in other non-parenchymal cells. Quercetin inhibited the cleavage of GSDMD in macrophages. Moreover, we found that quercetin blocked the ASC assembly to inhibit the formation of NLRP3 inflammasomes and AIM2 inflammasomes, suppressing macrophage pyroptosis. Co-immunoprecipitation experiments confirmed that quercetin inhibited the interaction between ASC and Caspase-8, which is the mechanism of ASC complex and inflammasome formation. Overexpression of Caspase-8 abolished the anti-pyroptosis effect of quercetin in NLRP3 and AIM2 inflammasome signaling. Furthermore, we found that the hepatoprotective activity of quercetin was reduced in myelocytic GSDMD-deficient mice. CONCLUSION Our findings suggest that quercetin has beneficial effects on hepatic IRI. Quercetin could attenuate hepatic IRI and target inhibition of macrophage pyroptosis via blocking Caspase-8/ASC interaction. We recommend that quercetin might serve as a targeted approach for the prevention and personalized treatment of hepatic IRI in perioperative patients.
Collapse
Affiliation(s)
- Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fuyang Li
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junzhe Jiao
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihan Qian
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Xu
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Wang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuehua Sun
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Zhou
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
15
|
Wen C, Tang J, Wu M, Liu H, Lin X, Fan M, Liu G, Zhang J, Liang L, Liu X, Li Y, Duan Y, Xu X. Preparation, characterization, and stability of pectin-whey protein isolate-based nanoparticles with mitochondrial targeting ability. Int J Biol Macromol 2025; 301:140383. [PMID: 39880250 DOI: 10.1016/j.ijbiomac.2025.140383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Quercetin (Que) is a polyhydroxy flavonoid with strong inhibitory activity against cancer cells. However, the poor water solubility and low bioavailability of Que. limit its application in the functional food industry. In the present study, the nanoparticle loaded with Que. was prepared with whey isolate protein (WPI) stabilized by triphenylphosphonium bromide (TPP) and pectin (P) as wall materials. The formation mechanism, release of Que., and antitumor activity of nanoparticles were investigated. The results showed that the optimal ratio of WPI: TPP: Que.: P in the preparation of nanoparticles (WPI-TPP-Que-P) was 50:8:1:20 (w/w/w/w). The encapsulation rate of Que. in the WPI-TPP-Que-P was 82.64 % with a particle size of 261.7 nm and a zeta potential of -42.1 mV. Compared with WPI-TPP-Que, the retention rate of WPI-TPP-Que-P increased by 4.03 % after in vitro digestion. The release kinetic result indicated that WPI-TPP-Que-P release was dominated by non-Fickian diffusion. In addition, WPI-TPP-Que-P was taken in and achieved intracellular targeting to mitochondria and promoted apoptosis (apoptosis rate: 83.6 %) by decreasing mitochondrial membrane potential and IL-10 content and improving the content of TNF-α in HepG-2 cells. This study highlights the promising application of P-modified mitochondria-targeted nanocarriers for enhanced Que. delivery.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Maowei Wu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
16
|
Wu X, Chen H, Tian Y, Wang H, Hou H, Hu Q, Wang C. Amelioration of obesity-associated disorders using solanesol with the mitigation of NLRP3 inflammasome activation and macrophage inflammation in adipose tissue. Food Funct 2025; 16:1903-1918. [PMID: 39935386 DOI: 10.1039/d4fo05586a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Obesity and obesity-related metabolic diseases are causally linked to inflammatory activation. Proinflammatory macrophage infiltration and NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation contribute to chronic inflammation and insulin resistance. Alleviating inflammatory responses is a reliable method to restore insulin sensitivity and reduce the severity of metabolic syndrome. Solanesol, rich in anti-inflammatory foods (potato, tomato, eggplant, chili peppers), has demonstrated anti-inflammatory properties, but whether it plays a beneficial role in obesity-induced chronic inflammation remains poorly understood. In this study, we investigated the effects of solanesol on the NLRP3 inflammasome and inflammatory responses both in vitro and in high-fat diet (HFD)-fed mice. We found that oral administration of solanesol reduced weight gain, insulin resistance, and inflammation in epididymal white adipose tissue (eWAT) in both HFD-fed obese mice and mice concurrently treated with a HFD. This effect was involved with reducing macrophage inflammation and inactivating the NLRP3 inflammasome by reducing the K+ efflux and reactive oxygen species (ROS) production in macrophages. Solanesol also reprogrammed the phenotype of inflammatory macrophages. Taken together, our study suggests that solanesol may be a promising candidate for treating obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Xiaqing Wu
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, China.
- China National Tobacco Quality Supervision & Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou, China.
- Beijing Life Science Academy, Beijing, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou, China.
- Beijing Life Science Academy, Beijing, China
| | - Yushan Tian
- China National Tobacco Quality Supervision & Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou, China.
- Beijing Life Science Academy, Beijing, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision & Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou, China.
- Beijing Life Science Academy, Beijing, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou, China.
- Beijing Life Science Academy, Beijing, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou, China.
- Beijing Life Science Academy, Beijing, China
| | - Congyi Wang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, China.
| |
Collapse
|
17
|
Xing A, Wang F, Liu J, Zhang Y, He J, Zhao B, Sun B. The prospect and underlying mechanisms of Chinese medicine in treating periodontitis. Chin J Nat Med 2025; 23:269-285. [PMID: 40122658 DOI: 10.1016/s1875-5364(25)60842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 03/25/2025]
Abstract
Inflammation represents a critical immune response triggered by cellular activities and inflammatory mediators following tissue damage. It plays a central role in the pathological progression of diverse diseases, including psychiatric disorders, cancer, and immunological conditions, rendering it an essential target for therapeutic intervention. Periodontitis, a prevalent oral inflammatory disease, is a leading cause of tooth loss and poses significant health challenges globally. Traditionally, inflammatory diseases such as periodontitis have been treated with systemic administration of synthetic chemicals. However, recent years have witnessed challenges, including drug resistance and microbial dysbiosis associated with these treatments. In contrast, natural products derived from Chinese medicine offer numerous benefits, such as high safety profiles, minimal side effects, innovative pharmacological mechanisms, ease of extraction, and multiple targets, rendering them viable alternatives to conventional antibiotics for treating inflammatory conditions. Numerous effective anti-inflammatory natural products have been identified in traditional Chinese medicine (TCM), including alkaloids, flavonoids, terpenoids, lignans, and other natural products that exhibit inhibitory effects on inflammation and are potential therapeutic agents. Several studies have confirmed the substantial anti-inflammatory and immunomodulatory properties of these compounds. This comprehensive review examines the literature on the anti-inflammatory effects of TCM-derived natural products from databases such as PubMed, Web of Science, and CNKI, focusing on terms like "inflammation", "periodontitis", "pharmacology", and "traditional Chinese medicine". The analysis systematically summarizes the molecular pharmacology, chemical composition, and biological activities of these compounds in inflammatory responses, alongside their mechanisms of action. This research seeks to deepen understanding of the mechanisms and biological activities of herbal extracts in managing inflammatory diseases, potentially leading to the development of promising new anti-inflammatory drug candidates. Future applications could extend to the treatment of various inflammatory conditions, including periodontitis.
Collapse
Affiliation(s)
- Aili Xing
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Feng Wang
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Jinzhong Liu
- Preventive Dentistry, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Yuan Zhang
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Jingya He
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Bin Zhao
- Periodontics, Hospital of Stomatologyl, Jilin University, Changchun 130021, China.
| | - Bin Sun
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China.
| |
Collapse
|
18
|
Huang X, Chen B, Xiao X, Piao C. Potential molecular mechanisms of Jiedu Tongluo Tiaogan Formula in treating hyperthyroidism based on network pharmacology and in vivo experiments in mice. Physiol Genomics 2025; 57:148-159. [PMID: 39854209 DOI: 10.1152/physiolgenomics.00113.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
"Jiedu Tongluo Tiaoying Formula" (JDTLTYF) is a kind of traditional Chinese medicine (TCM) prescription for treating hyperthyroidism, which can effectively improve the condition of patients. The main active ingredients of JDTLTYF were collected from the traditional Chinese medicine systems pharmacology (TCMSP) database, and the target was predicted. Genes related to hyperthyroidism were identified using DisGeNET, GeneCards, and Online Mendelian Inheritance in Man (OMIM) databases. Protein-protein interaction (PPI) network and interaction network of "formula-herb-active ingredient-target genes" was constructed. Mass spectrometry was used to identify the components. The binding of key components to the target was verified by molecular docking and molecular dynamics (MD) simulations. A hyperthyroidism mouse model was established by using levothyroxine sodium tablets, and the hormone and expression levels of inflammatory factors were examined by ELISA and Western blot. The key genes of JDTLTYF in the treatment of hyperthyroidism were TNF and AKT1. The results of mass spectrometry also showed that quercetin was one of the main components. The results of molecular docking and MD simulation showed that the binding-free energy between AKT1 and quercetin was the lowest, and the binding was stable. In vivo experimental results showed that gastric lavage with JDTLTYF could target AKT1 and TNF-α, effectively alleviate the pathological features of hyperthyroidism in mice, and reduce inflammation response. This study elucidated the key small molecule compounds and their action targets of JDTLTYF in the treatment of hyperthyroidism. It provides a direction for the development of new drugs for clinical hyperthyroidism.NEW & NOTEWORTHY Based on the network pharmacology and molecular dynamics (MD) simulation, this study elucidated the key small molecule compounds and their action targets of JDTLTYF Chinese herbal prescription (debark peony root, common selfheal fruit-spike, figwort root, thunberg fritillary bulb, and oyster shell) in the treatment of hyperthyroidism, preliminarily analyzed its molecular mechanism, and provided a reference direction for subsequent cell experiments.
Collapse
Affiliation(s)
- Xin Huang
- Shenzhen Futian District Shenkang Community Health Care Service Station, Shenzhen Hospital (Fu Tian) Of Guangzhou University Of Chinese Medicine, Shenzhen, People's Republic of China
| | - Binqin Chen
- Shenzhen Hospital (Fu Tian) Of Guangzhou University Of Chinese Medicine, Shenzhen, People's Republic of China
| | - Xiaoli Xiao
- Shenzhen Futian District Tefa Community Health Care Service Station, Shenzhen Hospital (Fu Tian) Of Guangzhou University Of Chinese Medicine, Shenzhen, People's Republic of China
| | - Chunli Piao
- Shenzhen Hospital (Fu Tian) Of Guangzhou University Of Chinese Medicine, Shenzhen, People's Republic of China
| |
Collapse
|
19
|
Liu J, Liu Y, Huang C, He C, Yang T, Ren R, Xin Z, Wang X. Quercetin-Driven Akkermansia Muciniphila Alleviates Obesity by Modulating Bile Acid Metabolism via an ILA/m 6A/CYP8B1 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412865. [PMID: 39888270 PMCID: PMC11948036 DOI: 10.1002/advs.202412865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/19/2024] [Indexed: 02/01/2025]
Abstract
Global health is increasingly challenged by the growing prevalence of obesity and its associated complications. Quercetin, one of the most important dietary flavonoids, is being explored as an effective therapy for obesity with its mechanism remains understudied. Here in this study, it is demonstrated that quercetin intervention significantly reverses obesity-related phenotypes through reshaping the overall structure of microbiota, especially boosting colonization of the beneficial gut commensal Akkermansia muciniphila (A. muciniphila). Enrichment of A. muciniphila leads to generate more indole-3-lactic acid (ILA) to upregulate the expression of 12α-hydroxylase (CYP8B1) via fat mass and obesity-associated protein (FTO)/ N6-methyladenosine (m6A)/YTHDF2 manner, thereby facilitating cholesterol converts to cholic acid (CA). CA in turn drastically suppresses lipid accumulation via activating the farnesoid X receptor (FXR) in adipose tissue. This work introduces a novel therapeutic target for addressing obesity and expands upon the current limited understanding of the mediator function of m6A modifications in microorganism-influenced bile acid (BA) metabolism.
Collapse
Affiliation(s)
- Jiaqi Liu
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Youhua Liu
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Chaoqun Huang
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Chuan He
- Department of ChemistryDepartment of Biochemistry and Molecular BiologyInstitute for Biophysical DynamicsHoward Hughes Medical InstituteThe University of Chicago929 East 57th StreetChicagoIL60637USA
| | - Tongyudan Yang
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Ruiti Ren
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Zimeng Xin
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Xinxia Wang
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| |
Collapse
|
20
|
Zhang LH, Liu ST, Zhao Q, Liu XY, Liu T, Zhang Q, Liu MH, Zhao WX. Role of triggering receptor expressed on myeloid cells 2 in the pathogenesis of non-alcoholic fatty liver disease. World J Hepatol 2025; 17:102328. [PMID: 40027566 PMCID: PMC11866134 DOI: 10.4254/wjh.v17.i2.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/04/2025] [Accepted: 01/18/2025] [Indexed: 02/20/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disease. Without effective interventions, NAFLD can gradually develop to non-alcoholic steatohepatitis, fatty liver fibrosis, liver cirrhosis and even hepatocellular carcinoma. It is still to investigate the precise molecular mechanism behind the pathophysiology of NAFLD. Triggering receptor expressed on myeloid cells 2 (TREM2) can sense tissue injury and mediate immune remodeling, thereby inducing phagocytosis, lipid metabolism, and metabolic transfer, promoting cell survival and combating inflammatory activation. NAFLD might develop as a result of TREM2's regulatory role. We here briefly summarize the biological characteristics of TREM2 and its functions in the disease progression of NAFLD. Moreover, we propose to broaden the therapeutic strategy for NAFLD by targeting TREM2.
Collapse
Affiliation(s)
- Li-Hui Zhang
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Su-Tong Liu
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Qing Zhao
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Xiao-Yan Liu
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Tong Liu
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Qiang Zhang
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Ming-Hao Liu
- Department of Spleen, Stomach and Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Wen-Xia Zhao
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Department of Spleen, Stomach, Liver and Gallbladder Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China.
| |
Collapse
|
21
|
Wang L, Cao W, Wu T. Cadmium-Induced Kidney Apoptosis Based on the IRE1α-XBP1 Signaling Pathway and the Protective Effect of Quercetin. TOXICS 2025; 13:129. [PMID: 39997944 PMCID: PMC11860638 DOI: 10.3390/toxics13020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Cadmium (Cd) is an important environmental pollutant that can enter the body and inflict kidney damage. Quercetin (Que) is a natural flavonoid compound that can alleviate kidney damage in Cd-treated rats, but the specific mechanism is unclear. Herein, 24 male Sprague-Dawley rats were divided into four groups, namely the control, Cd, Cd + Que, and Que groups. Four weeks later, the rats were anesthetized with ether and were euthanized; then, their blood was collected and their kidneys were removed. Renal function markers were measured. Kidney tissue structure was observed by HE staining, cell apoptosis was detected by the TUNEL method, and mRNA and protein expression levels in the IRE1α-XBP1 apoptosis signaling pathway were analyzed by RT-PCR and Western blotting. Results showed that the Cd treatment group exhibited decreased renal dysfunction and pathologic injury. Cd-induced tissue damage and cell apoptosis and significantly increased the mRNA and protein expression levels (p < 0.01) related to the IRE1α-XBP1 signaling pathway. Compared with the Cd group, the Cd + Que group exhibited increased renal dysfunction. Conversely, kidney tissue damage and renal cell apoptosis decreased, and the mRNA and protein expression levels of IRE1α and XBP1 significantly decreased (p < 0.01). Cd treatment inflicted renal damage. Therefore, Que can restore the kidney tissue damage and alleviate the cell apoptosis caused by Cd through the inhibition of the IRE1α-XBP1 signaling pathway.
Collapse
Affiliation(s)
- Liuxin Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Weiwei Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Ting Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
22
|
Di Pierro F, Rabbani F, Tareen M, Nigar R, Khan A, Zerbinati N, Tanda ML, Cazzaniga M, Bertuccioli A, Falasca P, Damiani G, Villanova N. Potential pharmacological effect of Quercetin Phytosome™ in the management of hyperuricemia: results from real-life clinical studies. Front Nutr 2025; 12:1519459. [PMID: 39990611 PMCID: PMC11844220 DOI: 10.3389/fnut.2025.1519459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Background Hyperuricemia is associated with several metabolic and cardiovascular disorders, and traditional treatments, such as xanthine oxidase (XO) inhibitors, often have limitations, such as severe hypersensitivity reactions or ineffectiveness in achieving target serum urate levels in some patients. Quercetin, a naturally occurring flavonoid, has shown potential as a hypouricemic agent through XO inhibition. Objective This study aims to evaluate the potential hypouricemic effect of Quercetin Phytosome™ (QP) supplementation across three cohort studies involving healthy adults with various metabolic health profiles, exploring its potential as a safe, effective intervention for hyperuricemia. Methods Clinical data collected in various clinics in Italy between September 2021 and April 2024 under real-life clinical settings from three distinct cohort studies, were analyzed. Cohort 1 consisted of 164 healthy participants (87 QP-treated, 77 probiotic Streptococcus salivarius (S. salivarius) K12-treated) who were monitored for 90 days. Cohort 2 included 22 mildly hyperuricemic adults with metabolic disorders receiving QP, while Cohort 3 comprised 64 obese adults with hypercholesterolemia, further divided into moderately hyperuricemic QP-treated group (n = 20), a moderately hyperuricemic Berberine Phytosome™ and monacolins (BM)-treated group (n = 22), and a normouricemic BM-treated group (n = 22). QP was administered at 400 mg of quercetin daily in all cohorts. Primary endpoints were reductions in serum uric acid levels, while secondary outcomes included effects on lipid profile, glycemia, liver enzymes, and treatment tolerability. Results In Cohort 1, QP significantly reduced uric acid levels by 15.2% in males and 13.8% in females, with no significant changes observed in the probiotic group. Cohort 2 showed a significant 13.1% reduction in uric acid (p < 0.01) and a concurrent 10.2% reduction in triglycerides (p < 0.05). In Cohort 3, QP led to a 13.7% decrease in uric acid and a 20.8% reduction in triglycerides (p < 0.01), with no significant uric acid changes in the BM-treated group. QP was well tolerated across all cohorts, with minimal, transient side effects. Conclusion QP supplementation demonstrates a significant hypouricemic effect. Additionally, triglyceride-lowering benefits were evident, particularly in metabolically compromised individuals (Cohorts 2 and 3), where these effects were statistically significant. With high tolerability, these findings highlight Quercetin Phytosome™'s potential as a safe adjunctive therapy for hyperuricemia management, meriting further investigation in larger, randomized trials to confirm its efficacy and safety. Clinical Trial Registration clinicaltrials.gov, identifier NCT06652035.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Microbiota International Clinical Society, Torino, Italy
- Department of Scientific and Research, Velleja Research, Milano, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Fazle Rabbani
- Department of Psychiatry, Lady Reading Hospital, Peshawar, Pakistan
| | - Meherullah Tareen
- Department of Oncology, Bolan Medical College Hospital, Quetta, Pakistan
| | - Roohi Nigar
- Department of Obstetrics and Gynecology, Bilawal Medical College, Jamshoro, Pakistan
| | - Amjad Khan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicola Zerbinati
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Maria L. Tanda
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | - Alexander Bertuccioli
- Microbiota International Clinical Society, Torino, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Gabriele Damiani
- Department of Scientific and Research, Velleja Research, Milano, Italy
| | - Nicola Villanova
- IRCCS-Azienda Ospedaliera di Bologna Sant' Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
23
|
Anaeigoudari A. A Narrative Review of Protective Effects of Natural Compounds Against Lipopolysaccharide-Induced Injuries. Food Sci Nutr 2025; 13:e70026. [PMID: 39898124 PMCID: PMC11786020 DOI: 10.1002/fsn3.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Lipopolysaccharide (LPS) is a large amphipathic glycoconjugate molecule in the cell wall of Gram-negative bacteria. This bacterial endotoxin binds to toll-like receptor 4 (TLR4) and stimulates the inflammatory reactions and oxidative stress. The current paper presents the protective effects of natural compounds against LPS-induced injuries. The relevant findings were extracted from PubMed, Web of Science, Scopus, and Google Scholar databases from the beginning of 2005 until the end of September 2023 were employed. The results of in vitro and in vivo studies indicated that thymoquinone, crocin, carvacrol, and quercetin effectively attenuated LPS-induced damages via lowering the level of inflammatory cytokines and free radicals. These natural compounds could also amplify the antioxidant defense against LPS by increasing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT). In addition, a part of the protective effects of these phytochemicals against detrimental impacts of LPS is attributed to their ability to downregulate the TLR4 expression and to inhibit the NF-κB signaling pathway. Briefly, the protective effects of natural compounds mentioned in current review against LPS-caused damages mainly are mediated by their anti-inflammatory and antioxidant activities.
Collapse
Affiliation(s)
- Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| |
Collapse
|
24
|
Sousa A, Carvalho F, Fernandes E, Freitas M. Quercetin protective potential against nanoparticle-induced adverse effects. Nanotoxicology 2025; 19:28-49. [PMID: 39815656 DOI: 10.1080/17435390.2024.2446554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
The rapid development of nanotechnology has resulted in the widespread use of nanoparticles (NPs) in various sectors due to their unique properties and diverse applications. However, the increased exposure of humans to NPs raises concerns about their potential negative impact on human health and the environment. The pathways through which NPs exert adverse effects, including inflammation and oxidative stress, are primarily influenced by their size, shape, surface charge, and chemistry, underscoring the critical need to comprehend and alleviate their potential detrimental impacts. In this context, the natural flavonoid quercetin is a promising candidate for counteracting the toxicity induced by NPs due to its anti-inflammatory and antioxidant properties. This review provides an overview of the existing literature on quercetin's protective effects against NPs-induced toxicity, highlighting its therapeutic benefits and mechanisms of action, focusing on its ability to alleviate oxidative stress, inflammation, and cellular damage caused by various types of NPs. Insights from both in vitro and in vivo studies demonstrate the effectiveness of quercetin in preserving cellular function, modulating apoptotic pathways, and maintaining tissue integrity in the presence of NPs. The potential of quercetin as a natural therapeutic agent against NPs-induced toxicity provides valuable insights for safer use of NPs in various daily applications.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associated Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Tang W, Wang K, Feng Y, Tsui KH, Singh KK, Stout MB, Wang S, Wu M. Exploration of the mechanism and therapy of ovarian aging by targeting cellular senescence. LIFE MEDICINE 2025; 4:lnaf004. [PMID: 40110109 PMCID: PMC11916902 DOI: 10.1093/lifemedi/lnaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
The ovary is a crucial gonadal organ that supports female reproductive and endocrine functions. Ovarian aging can result in decreased fertility and dysfunction across multiple organs. Research has demonstrated that cellular senescence in various cell types within the ovary can trigger a decline in ovarian function through distinct stress responses, resulting in ovarian aging. This review explores how cellular senescence may contribute to ovarian aging and reproductive failure. Additionally, we discuss the factors that cause ovarian cellular senescence, including the accumulation of advanced glycation end products, oxidative stress, mitochondrial dysfunction, DNA damage, telomere shortening, and exposure to chemotherapy. Furthermore, we discuss senescence in six distinct cell types, including oocytes, granulosa cells, ovarian theca cells, immune cells, ovarian surface epithelium, and ovarian endothelial cells, inside the ovary and explore their contribution to the accelerated ovarian aging. Lastly, we describe potential senotherapeutics for the treatment of ovarian aging and offer novel strategies for ovarian longevity.
Collapse
Affiliation(s)
- Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Kaichen Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yourong Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813779, Taiwan, China
- Department of Obstetrics and Gynecology, Yang-Ming University, Taipei 112304, Taiwan, China
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 900391, Taiwan, China
| | - Keshav K Singh
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| |
Collapse
|
26
|
Shi L, Teng X, Wu C, Zhang T, Jin X, Wang L, Tian P, Shang KX, Zhao J, Rao C, Wang G. Lactic acid bacteria reduce polystyrene micro- and nanoplastics-induced toxicity through their bio-binding capacity and gut environment repair ability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125288. [PMID: 39638230 DOI: 10.1016/j.envpol.2024.125288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/10/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024]
Abstract
Microplastics and nanoplastics (MNPs) are emerging environmental contaminants that have received significant attention in recent years. Currently, there are more studies on the toxic effects of MNPs exposure on animals (especially aquatic organisms and mammals), but data on the reduction of toxic effects caused by MNPs exposure are still very limited. Lactic acid bacteria (LAB), recognized as safe food-grade microorganisms, possess the capability to bioconjugate harmful substances. In this experiment, we chose lactic acid bacteria (LAB) with different binding capacities to MNPs in vitro to intervene in MNPs-exposed mice to investigate the reducing effect on the toxicity caused by MNPs exposure. Our study showed that LAB with a high intercalation capacity with MNPs in vitro were more effective in alleviating the toxicity caused by MNPs exposure. Notably, Lactobacillus plantarum DT22, despite its low inter-adsorption with MNPs, played a pivotal role in upregulating the relative expression of tight junction proteins and modulating the intestinal microbiota. Thus, LAB strains' mitigation of MNPs toxicity extends beyond bio-binding; their capacity to repair the damaged gut environment is also crucial. LAB strains are proposed as a dietary intervention to reduce MNPs-induced toxicity.
Collapse
Affiliation(s)
- Liuting Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xin Teng
- Bluepha Co., Ltd., Shanghai, 200434, PR China
| | - Changyin Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | | | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Ke-Xin Shang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China
| | - Chitong Rao
- Bluepha Co., Ltd., Shanghai, 200434, PR China.
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China.
| |
Collapse
|
27
|
Biyabani A, Ghorbani F, Koushki M, Nedaei K, Hemmati M, Mahdei Nasir Mahalleh N, Ghadimi D. Quercetin and calorie restriction improve leptin/adiponectin balance through reducing high-fat diet-induced oxidative stress in male BALB/c mice. Biochem Biophys Res Commun 2025; 742:151073. [PMID: 39637705 DOI: 10.1016/j.bbrc.2024.151073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Throughout the recent decades, obesity has become a serious health problem that raises the risk of several diseases, including cancer, diabetes, hypertension, heart disease, neurological musculoskeletal disorders, and Non-alcoholic fatty liver disease. Some strategies, such as dietary interventions, calorie restriction (CR), and the use of antioxidant compounds, have been proposed to improve quality of life in relation to obesity. The goal of this study was to characterize the effects of CR and quercetin (QUER) on obesity-induced oxidative stress (OS). Thirty 8-week-old male BALB/c mice were divided into 5 groups of six mice each: normal diet, high-fat diet (HFD), HFD + CR, HFD + QUER (15 mg kg-1, IP), and HFD + QUER + CR. CR was applied as two fasting days with an interval of two days in a week. Catalase (CAT), Paraxonase 1 (PON1) and adiponectin (APN) were decreased in the HFD group, while the combination of QUER and CR increased these parameters. Treatment with QUER and CR improved Alanine transaminase and Alkaline Phosphatase enzyme activity and also the amount of leptin and insulin. Moreover, combined QUER and CR also reduced triacylglycerol (TAG), total cholesterol and TAG droplets in hepatocytes. Decreased OS was associated with the higher expression of NAD(P)H Quinone Oxidoreductase 1(NQO1) and reduced hepatic vacuoles in QUER and CR-HFD treated groups. In conclusion, these findings suggest that the combination of QUER and CR might exert protective impacts on obesity through alleviating OS and the regulation of metabolism.
Collapse
Affiliation(s)
- Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fereshte Ghorbani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Keivan Nedaei
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Nima Mahdei Nasir Mahalleh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Darya Ghadimi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
28
|
Rivas García F, García Sierra JA, Valverde-Merino MI, Zarzuelo Romero MJ. Dietary Supplements for Weight Loss and Drug Interactions. Pharmaceuticals (Basel) 2024; 17:1658. [PMID: 39770500 PMCID: PMC11678256 DOI: 10.3390/ph17121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Food supplements are used for a variety of purposes, one of which is weight reduction. As excess weight is a long-term condition, some supplements are expected to be used for long periods of time. The long-term use of these dietary supplements makes it highly likely that they will be combined with medications, increasing the risk of food supplement-drug interactions, which are not always known or disclosed, and can lead to serious health problems, as has been observed. This article discusses some of the compounds used as food supplements for weight reduction (green tea extract, Garcinia cambogia, chitosan, quercetin and resveratrol) and the interactions they may cause with some drugs such as: dextromethorphan, buspirone, diclofenac, irinotecan, 5-fluorouracil, cytochrome P450 inducers and inhibitors, statins, orlistat, warfarina, acenocoumarol, fluoxetine, valproate, quetiapine, carbamazepine. This information is expected to be useful for healthcare professionals to detect and intervene on food supplement-drug interactions to ensure the optimization of therapy and patient safety.
Collapse
Affiliation(s)
| | | | | | - Maria Jose Zarzuelo Romero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| |
Collapse
|
29
|
Jiang Z, Yan M, Qin Y, Liu Z, Duan Y, Wang Y, Zhang R, Lin W, Li Y, Xie T, Ke J. Quercetin alleviates ulcerative colitis through inhibiting CXCL8-CXCR1/2 axis: a network and transcriptome analysis. Front Pharmacol 2024; 15:1485255. [PMID: 39717557 PMCID: PMC11663639 DOI: 10.3389/fphar.2024.1485255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Ulcerative colitis (UC) is a chronic inflammatory condition of the intestinal tract in which mucosal healing is a crucial measure of therapeutic efficacy. Quercetin, a flavonoid prevalent in various foods and traditional Chinese medicines, exhibits notable pharmacological properties, including antioxidant and anti-inflammatory activities. Consequently, it warrants investigation to determine its potential therapeutic effects on UC. The objective of this study was to investigate the effects and underlying mechanisms of quercetin in a murine model of UC. Methods A comprehensive approach integrating network predictions with transcriptomic analyses was employed to identify the potential targets and enriched pathways associated with quercetin in UC. Subsequently, the effects of quercetin on pathological morphology, inflammatory mediators, and mucosal barrier-associated proteins, as well as the identified potential targets and enriched pathways, were systematically investigated in a murine model of dextran sulfate sodium (DSS)-induced UC. Results Network analyses identified CXCL8 and its receptors, CXCR1 and CXCR2, as primary target genes for therapeutic intervention in UC. Further validation through transcriptomic analysis and immunofluorescence staining demonstrated significant upregulation of the CXCL8-CXCR1/2 axis in the intestinal tissues of patients with UC. Experimental investigations in animal models have shown that quercetin markedly alleviates DSS-induced symptoms in mice. This effect includes the restoration of colonic crypt architecture, normalization of goblet cell structure and density, reduction of inflammatory cell infiltration, and decreased concentrations of inflammatory mediators. Quercetin enhanced the expression of tight junction (TJ) proteins, including ZO-1, MUC2 (Mucin 2), and occludin, thereby preserving the integrity of the intestinal mucosal barrier. Additionally, it significantly diminished the levels of IL-17A, NF-κB, CXCL8, CXCR1, and CXCR2 in the colonic tissues of mice with UC. Discussion The ameliorative effects of quercetin on colon tissue damage in DSS-induced UC mice were significant, possibly due to its ability to inhibit the CXCL8-CXCR1/2 signaling axis. These findings provide a solid foundation for the clinical application and pharmaceutical advancement of quercetin.
Collapse
Affiliation(s)
- Zhangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingjuan Yan
- Department of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanmi Qin
- Department of Cardiology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhenglin Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yilin Duan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingju Wang
- Foshan Chancheng Center Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Ruisen Zhang
- Department of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjia Lin
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian Xie
- Department of Cardiology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junyu Ke
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, China
| |
Collapse
|
30
|
Wei S, Amevor FK, Du X, Li L, Yi Z, Shu G, Wang Y, Zhao X. Quercetin mitigates iron-induced cell death in chicken granulosa cell. J Anim Sci Biotechnol 2024; 15:168. [PMID: 39645563 PMCID: PMC11625408 DOI: 10.1186/s40104-024-01118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/21/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Granulosa cell (GC) apoptosis, ferroptosis, and other programmed cell death processes are markers of follicular aging. Quercetin has been shown to reduce ferroptosis, however, its effects on ferroptosis in poultry remains unexplored. Our preliminary study identified ferroptosis in aging ovaries. Therefore, in the present study, 540-day-old Mountain Plum-blossom chickens were fed with quercetin supplementation at varying doses (0.2, 0.4, and 0.6 g/kg), and examined its molecular effects on GC ferroptosis using an in vitro Erastin-induced model. RESULTS The results showed that quercetin supplementation significantly increased egg production, which confirmed its potential to alleviate ferroptosis in chicken ovarian tissue. The in vitro experiment revealed that quercetin and Fer-1 (positive control) mitigated Erastin-induced ferroptosis in GCs. Further, transcriptome analysis revealed that quercetin modulated key genes such as acyl-CoA synthetase long-chain family member 4 (ACSL4), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor (TFRC), involved in ferroptosis regulation. The results further showed that quercetin also reduced Erastin-induced apoptosis and inflammation by modulating the expression of genes and proteins related to apoptosis and inflammatory factors (NF-κB, TNF-α, IL-6, and IL-10). CONCLUSION Taken together, the results showed that quercetin improves egg production performance in chickens and mitigates ovarian ferroptosis in aging hens, and inhibits Erastin-induced ferroptosis, inflammation, and apoptosis in GCs. These findings revealed the protective role of quercetin in poultry ovarian tissue and its cellular mechanisms against detrimental factors in poultry production.
Collapse
Grants
- Innovation and Demonstration of Industry and Education Integration in Feed Industrial Chain Transformation and Upgradation, Sichuan Province, China Innovation and Demonstration of Industry and Education Integration in Feed Industrial Chain Transformation and Upgradation, Sichuan Province, China
- 2022YFD1600902-4 National Key R&D Program of China
- 32272870 National Natural Science Foundation of China
- 32350410427 National Natural Science Foundation of China
- 23ZYZYTS0346 Sichuan Province Central Guided Local Science and Technology Development Special Programme
- 24NSFJQ0121 Sichuan Provincial Natural Science Foundation Outstanding Youth Science Fund Project
- Breeding, Development, and Healthy Breeding of Plum Blossom Chickens in the Bazhong Mountains, a City School Cooperation Project in Bazhong City Breeding, Development, and Healthy Breeding of Plum Blossom Chickens in the Bazhong Mountains, a City School Cooperation Project in Bazhong City
- National Key R&D Program of China
Collapse
Affiliation(s)
- Shuo Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Felix Kwame Amevor
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiaxia Du
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Linxiang Li
- Bazhong Academy of Agriculture and Forestry Sciences, Bazhong, P. R. China
| | - Zhixin Yi
- Bazhong Academy of Agriculture and Forestry Sciences, Bazhong, P. R. China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiaoling Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
31
|
Fang L, Gao D, Wang T, Zhao H, Zhang Y, Wang S. From nature to clinic: Quercetin's role in breast cancer immunomodulation. Front Immunol 2024; 15:1483459. [PMID: 39712006 PMCID: PMC11659267 DOI: 10.3389/fimmu.2024.1483459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Immunotherapy has brought hope to many breast cancer patients, but not all patients benefit from it. Quercetin (Qu), a natural product found in various sources, has anti-inflammatory and anti-tumor properties. We conducted a review of the pharmacological research of Qu in regulating anti-tumor immunity in vivo and in vitro. Qu can directly regulate the local tumor microenvironment (TME) by enhancing the activity of immune cells which includes promoting the infiltration of T cells and natural killer (NK) cells, inhibiting the recruitment of myeloid-derived suppressor cells and tumor-associated macrophages. Additionally, Qu inhibits anaerobic glycolysis in tumor cells, thereby reducing the production and transport of lactic acid. It also suppresses tumor angiogenesis by targeting the vascular endothelial growth factor (VEGF) pathway and the vitamin D pathway. Furthermore, Qu can enhance the efficacy of immunotherapy for breast cancer by modulating the systemic microenvironment. This includes inhibiting obesity-related chronic inflammation to decrease the production of inflammatory factors, regulating the composition of intestinal microbiota, and intervening in the metabolism of intestinal flora. At the same time, we also address challenges in the clinical application of Qu, such as low absorption rates and unknown effective doses. In conclusion, we highlight Qu as a natural immunomodulator that enhances immune cell activity and has the potential to be developed as an adjunct for breast cancer.
Collapse
Affiliation(s)
- Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dandan Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haijun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine (TCM) Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine (TCM) Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
32
|
Zhang Y, Wu X, Yao W, Ni Y, Ding X. Advances of traditional Chinese medicine preclinical mechanisms and clinical studies on diabetic peripheral neuropathy. PHARMACEUTICAL BIOLOGY 2024; 62:544-561. [PMID: 38946248 PMCID: PMC11218592 DOI: 10.1080/13880209.2024.2369301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
CONTEXT Diabetic peripheral neuropathy (DPN) results in an enormous burden and reduces the quality of life for patients. Considering there is no specific drug for the management of DPN, traditional Chinese medicine (TCM) has increasingly drawn attention of clinicians and researchers around the world due to its characteristics of multiple targets, active components, and exemplary safety. OBJECTIVE To summarize the current status of TCM in the treatment of DPN and provide directions for novel drug development, the clinical effects and potential mechanisms of TCM used in treating DPN were comprehensively reviewed. METHODS Existing evidence on TCM interventions for DPN was screened from databases such as PubMed, the Cochrane Neuromuscular Disease Group Specialized Register (CENTRAL), and the Chinese National Knowledge Infrastructure Database (CNKI). The focus was on summarizing and analyzing representative preclinical and clinical TCM studies published before 2023. RESULTS This review identified the ameliorative effects of about 22 single herbal extracts, more than 30 herbal compound prescriptions, and four Chinese patent medicines on DPN in preclinical and clinical research. The latest advances in the mechanism highlight that TCM exerts its beneficial effects on DPN by inhibiting inflammation, oxidative stress and apoptosis, endoplasmic reticulum stress and improving mitochondrial function. CONCLUSIONS TCM has shown the power latent capacity in treating DPN. It is proposed that more large-scale and multi-center randomized controlled clinical trials and fundamental experiments should be conducted to further verify these findings.
Collapse
Affiliation(s)
- Yuna Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xianglong Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yadong Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
33
|
Zhao Y, Ma Y, Pei J, Zhao X, Jiang Y, Liu Q. Exploring Pyroptosis-related Signature Genes and Potential Drugs in Ulcerative Colitis by Transcriptome Data and Animal Experimental Validation. Inflammation 2024; 47:2057-2076. [PMID: 38656456 DOI: 10.1007/s10753-024-02025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Ulcerative colitis (UC) is an idiopathic, relapsing inflammatory disorder of the colonic mucosa. Pyroptosis contributes significantly to UC. However, the molecular mechanisms of UC remain unexplained. Herein, using transcriptome data and animal experimental validation, we sought to explore pyroptosis-related molecular mechanisms, signature genes, and potential drugs in UC. Gene profiles (GSE48959, GSE59071, GSE53306, and GSE94648) were selected from the Gene Expression Omnibus (GEO) database, which contained samples derived from patients with active and inactive UC, as well as health controls. Gene Set Enrichment Analysis (GSEA), Weighted Gene Co-expression Network Analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on microarrays to unravel the association between UC and pyroptosis. Then, differential expressed genes (DEGs) and pyroptosis-related DEGs were obtained by differential expression analyses and the public database. Subsequently, pyroptosis-related DEGs and their association with the immune infiltration landscape were analyzed using the CIBERSORT method. Besides, potential signature genes were selected by machine learning (ML) algorithms, and then validated by testing datasets which included samples of colonic mucosal tissue and peripheral blood. More importantly, the potential drug was screened based on this. And these signature genes and the drug effect were finally observed in the animal experiment. GSEA and KEGG enrichment analyses on key module genes derived from WGCNA revealed a close association between UC and pyroptosis. Then, a total of 20 pyroptosis-related DEGs of UC and 27 pyroptosis-related DEGs of active UC were screened. Next, 6 candidate genes (ZBP1, AIM2, IL1β, CASP1, TLR4, CASP11) in UC and 2 candidate genes (TLR4, CASP11) in active UC were respectively identified using the binary logistic regression (BLR), least absolute shrinkage and selection operator (LASSO), random forest (RF) analysis and artificial neural network (ANN), and these genes also showed high diagnostic specificity for UC in testing sets. Specially, TLR4 was elevated in UC and further elevated in active UC. The results of the drug screen revealed that six compounds (quercetin, cyclosporine, resveratrol, cisplatin, paclitaxel, rosiglitazone) could target TLR4, among which the effect of quercetin on intestinal pathology, pyroptosis and the expression of TLR4 in UC and active UC was further determined by the murine model. These findings demonstrated that pyroptosis may promote UC, and especially contributes to the activation of UC. Pyroptosis-related DEGs offer new ideas for the diagnosis of UC. Besides, quercetin was verified as an effective treatment for pyroptosis and intestinal inflammation. This study might enhance our comprehension on the pathogenic mechanism and diagnosis of UC and offer a treatment option for UC.
Collapse
Affiliation(s)
- Yang Zhao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yiming Ma
- Macau University of Science and Technology, Macau, 999078, China
| | - Jianing Pei
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qingsheng Liu
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China.
| |
Collapse
|
34
|
Dai G, Xu C, Han B, Wang Z, Cai J, You W, Zhang Y. Treatment of bone-cartilage defects with dual-layer tissue-engineered scaffolds loaded with icariin and quercetin. J Biomed Mater Res A 2024; 112:2170-2186. [PMID: 38949056 DOI: 10.1002/jbm.a.37753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024]
Abstract
Over the past few decades, significant research has been conducted on tissue-engineered constructs for cartilage repair. However, there is a growing interest in addressing subchondral bone repair along with cartilage regeneration. This study focuses on a bilayer tissue engineering scaffold loaded with icariin (ICA) and quercetin (QU) for simultaneous treatment of knee joint cartilage and subchondral bone defects. The cytotoxicity of dual-layer scaffolds loaded with ICA and QU was assessed through live/dead cell staining. Subsequently, these dual-layer scaffolds loaded with ICA and QU were implanted into cartilage and subchondral bone defects in Sprague-Dawley (SD) rats. The repair effects were evaluated through macroscopic observation, computed tomography, and immunohistochemistry. After 12 weeks of implantation of dual-layer scaffolds loaded with ICA and QU into the cartilage and bone defects of SD rats, better repair effects were observed in both cartilage and bone defects compared to the blank control group. We found that the dual-layer tissue-engineered scaffold loaded with ICA and QU had excellent biocompatibility and could effectively repair articular cartilage and subchondral bone injuries, showing promising prospects for clinical applications.
Collapse
Affiliation(s)
- Guoda Dai
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Xu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Baoguo Han
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichen Wang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianpin Cai
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wulin You
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
35
|
Julio T, Fenerich BA, Halpern G, Carrera-Bastos P, Schor E, Kopelman A. The effects of oral nutritional supplements on endometriosis-related pain: A narrative review of clinical studies. J Gynecol Obstet Hum Reprod 2024; 53:102830. [PMID: 39067786 DOI: 10.1016/j.jogoh.2024.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Endometriosis is a condition that can cause significant pain and discomfort for women, and the clinical and surgical treatments available have variable efficacy and can have adverse effects. These drawbacks often lead to poor adherence and therapeutic failure. Consequently, there has been increasing interest in the use of nutritional supplements as an adjuvant therapy for endometriosis. To facilitate clinical decision-making in managing women with endometriosis, a narrative review of clinical studies was conducted to investigate the effects of oral nutritional supplements on endometriosis-related pain. A literature search of the English-language PubMed/MEDLINE database was performed using appropriate keywords to identify clinical studies involving oral nutritional supplements and reporting on endometriosis-related pain. This narrative review included 20 studies published between 2013 and 2023, comprising 12 randomized controlled trials, six non-comparative trials, and two observational studies. The studies investigated the effects of various nutritional supplements on endometriosis-related pain, including vitamins, fatty acids, probiotics, medicinal plants, and bioactive compounds. A significant decrease in endometriosis-related pain was found in three out of five studies on vitamins, four out of six studies on fatty acids, one study on probiotics, two studies on medicinal plants, and five out of six studies on bioactive compounds. These nutritional supplements exhibited diverse biological activities, such as anti-inflammatory, antioxidant, antiproliferative, and antiangiogenic effects, all of which are relevant for managing endometriosis. These findings suggest that oral nutritional supplements could be included as part of a multidisciplinary treatment for endometriosis to decrease pain and enhance overall medical treatment.
Collapse
Affiliation(s)
- Tamiris Julio
- Division of Nutrition, Institute of Health Sciences, Paulista University, Ribeirão Preto, São Paulo, Brazil; Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| | - Bruna Alves Fenerich
- Division of Nutrition, Institute of Health Sciences, Paulista University, Ribeirão Preto, São Paulo, Brazil
| | - Gabriela Halpern
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden; Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain; Centro de Estudios Avanzados en Nutrición (CEAN), Cádiz, Spain
| | - Eduardo Schor
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Alexander Kopelman
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Li C, Liang J, Allai L, Badaoui B, Shao Q, Ouyang Y, Wu G, Quan G, Lv C. Integrating proteomics and metabolomics to evaluate impact of semen collection techniques on the quality and cryotolerance of goat semen. Sci Rep 2024; 14:29489. [PMID: 39604559 PMCID: PMC11603158 DOI: 10.1038/s41598-024-80556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Results of artificial insemination (AI) are affected by changes in sperm quality and the function throughout collection and preservation procedures. Proteome and metabolome alterations of sperm treated with the different procedures in goat, however, aren't fully understood. To this end, we sought to investigate the impacts of rectal probe electrostimulation (EE) and artificial vagina (AV) semen collection methods on the quality and the cryotolerance of goat sperm, with additional focus on proteomic and metabolomic analyses. Semen samples were collected from Yunshang black goats and categorized into four groups: fresh sperm collected via AV (XAZ), fresh sperm collected via EE (XEZ), frozen sperm post-AV collection (DAZ) and frozen sperm post-EE collection (DEZ). Four comparisons (XAZ vs. XEZ, DAZ vs. XAZ, DEZ vs. XEZ, DAZ vs. DEZ) were performed, respectively. This study first evaluated sperm motility, acrosome integrity, plasma membrane integrity, mitochondrial activity, and reactive oxygen species (ROS) levels. The results indicated that there were no significant differences in fresh sperm quality parameters between the EE and AV methods. However, notable differences emerged post-cryopreservation. Specifically, the AV method proved more advantageous in preserving the motility, integrities of acrosome and plasma membrane, mitochondrial activity of frozen sperm compared to the EE method. Through the multi-omics approaches, a total of 210 differentially abundant proteins (DAPs) related to sperm characteristics and function were identified across the four comparations. Moreover, 32 differentially abundant metabolites (DAMs) were detected. Comprehensive bioinformatics analysis underscored significant molecular pathways in the co-enrichment of DAPs and DAMs, particularly focusing on the citrate cycle, ROS, oxidative phosphorylation, and glycine, serine, and threonine metabolism etc. We elucidated the differential impacts of AV and EE collection methods on the quality and cryotolerance of goat semen from omics perspectives, which offer a critical foundation for further exploration into optimizing semen collection and cryopreservation techniques in goat breeding program.
Collapse
Affiliation(s)
- Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Larbi Allai
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | | | - Qingyong Shao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Yina Ouyang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China.
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China.
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China.
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China.
| |
Collapse
|
37
|
Jiang L, Gong Y, Zhao Y, Dong W, Guo L, Ju J, Su N. Changes in Biochemical Composition and Nutrient Materials in Apocynum pictum Honey During Storage. Foods 2024; 13:3790. [PMID: 39682862 DOI: 10.3390/foods13233790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Apocynum pictum (A. pictum) honey is rich in effective ingredients including flavonoids, terpenes, and alkaloids that are beneficial to human health. In this study, widely targeted metabolomics were used to detect the plant-derived secondary metabolites of the same batch of A. pictum honey from 2022 to 2024, in order to explore whether storage time changes the quality of A. pictum honey, especially the content of plant-derived secondary metabolites with important health benefits. The results showed that storage time had no significant effect on the content of sugars, proteins, and other major components in A. pictum honey. At the same time, we also found that although storage time had an impact on the content of some secondary metabolites such as flavonoids in A. pictum honey, the changes in the content of the characteristic active ingredient, hyperoside, in A. pictum honey were not significant. These findings suggest that storage time has a minimal impact on the quality of A. pictum honey. This study provides a theoretical basis for the rational storage of A. pictum honey.
Collapse
Affiliation(s)
- Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yanning Gong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanqing Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Leyan Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqi Ju
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
38
|
Xie Q, Jia Y, Tao J, Bu T, Wang Q, Shen N, Zhang X, Xiao Y, Ye L, Chen Z, Huang H, Li Q, Tang Z. Chemical constituents and biological activities of endophytic fungi from Fagopyrum dibotrys. PeerJ 2024; 12:e18529. [PMID: 39575167 PMCID: PMC11580677 DOI: 10.7717/peerj.18529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Background Fagopyrum dibotrys is an important wild food and feed germplasm resource. It has high nutritional and medicinal value and is rich in natural products, including flavonoids, phenolic acids, coumarins, and alkaloids. Endophytic fungi in F. dibotrys have emerged as valuable sources of natural products. However, studies on the biological activity and chemical composition of these endophytic fungi remain limited. Methods In this paper, a new method to obtain natural active ingredients by fermentation of endophytic fungi from medicinal plants was proposed. Then the antioxidant and pathogenic activities of the endophytic fungi extracts were determined in vitro. In addition, secondary metabolites produced by endophytic fungi with medicinal activity were analyzed by high performance liquid chromatography-tandem mass spectrometry (LC-MS). Results Among the 95 endophytic fungal strains in F. dibotrys, four strains with high phenol yields were selected by reaction: Alternaria alstroemeriae (J2), Fusarium oxysporum (J15), Colletotrichum karsti (J74), and Colletotrichum boninense (J61). Compared with those of various extracts, the ethyl acetate fractions of A. alstroemeriae (J2), F. oxysporum (J15), and C. boninense (J61) exhibited superior antioxidant and antibacterial properties. The results indicated that the fungal extract was an excellent natural antioxidant and might be a potential antibacterial agent. The DPPH free radical clearance of A. alstroemeriae was 94.96 ± 0.004%. These findings indicated that A. alstroemeriae had strong antioxidant activity. In addition, the extract of A. alstroemeriae had good antibacterial activity against Escherichia coli and Staphylococcus aureus, with MICs of 0.5 and 0.05 mg/mL, respectively. The chemical constituents of the ethyl acetate extract from A. alstroemeriae were further analyzed by liquid chromatography-mass spectrometry (LC-MS). We noted that A. alstroemeriae can create a variety of medicinal substances that have high value in medicine, such as caffeic acid (884.75 ng/mL), 3-phenyllactic acid (240.72 ng/mL) and norlichexanthone (74.36 ng/mL). Discussion In summary, many valuable active substances and medicinal substances can be obtained through the study of endophytic fungi of F. dibotrys.
Collapse
Affiliation(s)
- Qiqi Xie
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yujie Jia
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jiwen Tao
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Qing Wang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Nayu Shen
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Xinyu Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Lin Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Cheng’du, Sichuan, China
| | - Zhao Chen
- Ya’an People’s Hospital, Ya’an People’s Hospital, Ya’an, Sichuan, China
| | - Huahai Huang
- Da’zhu Institute of Scientific and Technical Information, Unaffiliated, Da’zhu, Sichuan, China
| | - Qingfeng Li
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
39
|
Xiong D, Wang X, Wang H, Chen X, Li H, Li Y, Zhong M, Gao J, Zhao Z, Ren W. Quercetin inhibits cardiomyocyte apoptosis via Sirt3/SOD2/mitochondrial reactive oxygen species during myocardial ischemia-reperfusion injury. Heliyon 2024; 10:e39031. [PMID: 39568838 PMCID: PMC11577236 DOI: 10.1016/j.heliyon.2024.e39031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 11/22/2024] Open
Abstract
Background Myocardial ischemia/reperfusion injury (MI/RI) can lead to impaired cardiac function. Quercetin (Que) has a positive effect and improves MI/RI. Sirtuin-3 (Sirt3) is a deacetylase that ameliorates oxidative stress and is associated with MI/RI. This study aimed to investigate the molecular mechanism by which Que protects cardiac function against MI/RI through the Sirt3 signaling pathway. Methods We conducted experiments by constructing hypoxia/reoxygenation (H/R) cardiomyocytes and MI/RI rat models. H9C2 cells were transfected with siRNA-Sirt3. Cardiomyocyte apoptosis was examined by TUNEL and Western blotting. The oxidative stress index was also determined. Mitochondrial reactive oxygen species (ROS) activity assays, ATP assays and mitochondrial membrane potential assays were performed. Evans Blue/TTC staining was used to examine surviving myocardial tissue. Results In the constructed H/R cells and MI/RI animal models, it was found that myocardial cell apoptosis increased (Bcl-2 expression was downregulated; Bax and cleaved caspase-3/8/9 expression were upregulated). In addition, oxidative stress levels increased (MDA levels increased; SOD, CAT, GSH-Px levels decreased), myocardial tissue was damaged (LDH, CK content increased), Sirt3 expression was downregulated, acetylation levels of superoxide dismutase 2 (SOD2) increased (AC-SOD2), and mitochondrial ROS increased. Que treatment alleviated the effects of MI/RI on cardiomyocytes and rats. Sirt3 expression and activity were upregulated, SOD2 acetylation was decreased, and mitochondrial ROS production was reduced by Que treatment. After Sirt3 was knocked down, we found that AC-SOD2 expression was upregulated and mitochondrial ROS were increased in H/R cardiomyocytes, further increased the degree of injury, while Que treatment attenuated the effect of Sirt3 knockdown on H/R cardiomyocytes. Conclusion Que inhibits cardiomyocyte apoptosis, reduces oxidative stress levels, protects mitochondrial function and prevents the impairment of cardiac function during MI/RI via the Sirt3/SOD2/mitochondrial ROS pathway.
Collapse
Affiliation(s)
- Da Xiong
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xin Wang
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Haiyu Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xia Chen
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hongrong Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongwu Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Minghua Zhong
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jingcheng Gao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zicong Zhao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
40
|
Wang Y, Sun X, Zhou Y, Liu J, Zhu H, Jiang R, Miao Y, Fu Y. A ratiometric fluorescent probe based on UiO-66-TCPP for selective and visual detection of quercetin in food. Food Chem 2024; 457:140198. [PMID: 38936127 DOI: 10.1016/j.foodchem.2024.140198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Quercetin (QCT) is a flavonoid with significant health benefits, necessitating sensitive detection methods for food safety and quality control. This study presents a novel UiO-66-TCPP ratiometric fluorescent probe for the quantitative and visual detection of QCT. Under optimal conditions, the fluorescence intensity of UiO-66-TCPP decreased linearly with increasing QCT concentration, with a detection limit of 26 nM. The probe demonstrated high specificity, showing no significant interference from various substances and QCT analogues. Practical applicability was confirmed by testing artificially contaminated juice samples, achieving recovery rates between 98.0% and 104.8%. Furthermore, a paper-based sensor was developed by incorporating UiO-66-TCPP onto Whatman#1 chromatography paper. This sensor exhibited stable fluorescence and a reliable, sensitive visual response to QCT concentrations, detectable via a smartphone-based color recognizer application. The UiO-66-TCPP ratiometric fluorescent probe provides a sensitive, specific, and practical method for detecting QCT in food matrices, offering significant potential for both laboratory and on-site applications.
Collapse
Affiliation(s)
- Yiran Wang
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Sciences, Taizhou University, Taizhou 318000, Zhejiang Province, PR China; School of Food Sciences and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, PR China
| | - Xiaolong Sun
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Sciences, Taizhou University, Taizhou 318000, Zhejiang Province, PR China
| | - Yufeng Zhou
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Sciences, Taizhou University, Taizhou 318000, Zhejiang Province, PR China; School of Food Sciences and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, PR China
| | - Jiachen Liu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Sciences, Taizhou University, Taizhou 318000, Zhejiang Province, PR China; School of Food Sciences and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, PR China
| | - Huayue Zhu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Sciences, Taizhou University, Taizhou 318000, Zhejiang Province, PR China
| | - Ru Jiang
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Sciences, Taizhou University, Taizhou 318000, Zhejiang Province, PR China
| | - Yingjie Miao
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Sciences, Taizhou University, Taizhou 318000, Zhejiang Province, PR China.
| | - Yongqian Fu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Sciences, Taizhou University, Taizhou 318000, Zhejiang Province, PR China.
| |
Collapse
|
41
|
He L, Su Z, Wang S. The anti-obesity effects of polyphenols: a comprehensive review of molecular mechanisms and signal pathways in regulating adipocytes. Front Nutr 2024; 11:1393575. [PMID: 39539361 PMCID: PMC11557335 DOI: 10.3389/fnut.2024.1393575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Excess weight gain is a growing concern worldwide, fueled by increased consumption of calorie-dense foods and more sedentary lifestyles. Obesity in China is also becoming increasingly problematic, developing into a major public health concern. Obesity not only increases the risk of associated disease but also imposes a burden on health care systems, and it is thus imperative that an effective intervention approach be identified. Recent studies have demonstrated that the polyphenol-rich Mediterranean diet has considerable potential in this regard. Polyphenols can inhibit the production of adipocytes and reduce adverse reactions, such as inflammation, insulin resistance, and gut microflora imbalance. In this review, we examine four polyphenols (curcumin, ellagic acid, ferulic acid, and quercetin) in terms of their potential as interventions targeting obesity. The mechanisms that help promote adipocyte browning, increase thermogenic factors, increase thermogenesis, and regulate adipocyte differentiation are summarized, and key signaling pathways, including PPARγ, C/EBP-, and others, are reviewed.
Collapse
Affiliation(s)
- Lan He
- Department of Cardiology, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhan Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shuangshuang Wang
- Department of Cardiology, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
42
|
Kábelová A, Malínská H, Marková I, Hüttl M, Liška F, Chylíková B, Šeda O. Quercetin supplementation in metabolic syndrome: nutrigenetic interactions with the Zbtb16 gene variant in rodent models. GENES & NUTRITION 2024; 19:22. [PMID: 39455928 PMCID: PMC11515271 DOI: 10.1186/s12263-024-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Quercetin is a promising phytochemical in treating abnormalities associated with metabolic syndrome (MetS). This study aimed to explore the morphometric, metabolic, transcriptomic, and nutrigenetic responses to quercetin supplementation using two genetically distinct MetS models that only differ in the variant of the MetS-related Zbtb16 gene (Zinc Finger And BTB Domain Containing 16). RESULTS Quercetin supplementation led to a significant reduction in the relative weight of retroperitoneal adipose tissue in both investigated strains. A decrease in visceral (epididymal) fat mass, accompanied by an increase in brown fat mass after quercetin treatment, was observed exclusively in the SHR strain. While the levels of serum triglycerides decreased within both strains, the free fatty acids levels decreased in SHR-Zbtb16-Q rats only. The total serum cholesterol levels were not affected by quercetin in either of the two tested strains. While there were no significant changes in brown adipose tissue transcriptome, quercetin supplementation led to a pronounced gene expression shift in white retroperitoneal adipose tissue, particularly in SHR-Zbtb16-Q. CONCLUSION Quercetin administration ameliorates certain MetS-related features; however, the efficacy of the treatment exhibits subtle variations depending on the specific variant of the Zbtb16 gene.
Collapse
Affiliation(s)
- Adéla Kábelová
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Hana Malínská
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - František Liška
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic.
| |
Collapse
|
43
|
Jung KM, Yu GR, Kim DH, Lim DW, Park WH. Massa Medicata Fermentata, a Functional Food for Improving the Metabolic Profile via Prominent Anti-Oxidative and Anti-Inflammatory Effects. Antioxidants (Basel) 2024; 13:1271. [PMID: 39456523 PMCID: PMC11504248 DOI: 10.3390/antiox13101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Massa Medicata Fermentata (MMF) is a naturally fermented product used to treat indigestion and increase stomach activity in traditional medicine. This study examined the ability of the hydrothermal extract of MMF to scavenge free radicals corresponding to biological oxidative stresses, further protecting essential biomolecules. The anti-inflammatory effects of MMF were evaluated in LPS-induced RAW264.7 macrophages and zebrafish. In addition, the effects of MMF on the body mass index (BMI) and cholesterol accumulation in adult zebrafish fed a high-cholesterol diet (HCD) for three weeks were examined. MMF prevented the DNA and lipid damage caused by oxidative stress, inhibited LDL oxidation, and reduced the expression of cytokines and related proteins (MAPK and NFκB), with prominent anti-oxidative pathway (NRF2-HO-1) activation properties. LPS-induced NO production was reduced, and the increase in BMI and TC caused by the HCD diet was suppressed by MMF in zebrafish embryos or adult zebrafish. The bioactive aglycone of quercetin may be contributing to the mechanisms of systemic effects. MMF has excellent antioxidant properties and is useful for improving inflammation status and metabolic profile, thus highlighting its potential as a healthy, functional food.
Collapse
Affiliation(s)
- Kyung-Mi Jung
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
| | - Ga-Ram Yu
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
- Institute of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Da-Hoon Kim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
| | - Dong-Woo Lim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
- Institute of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Won-Hwan Park
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
| |
Collapse
|
44
|
Zhang R, Qiu X, He C, Deng R, Huo C, Fang B. From Life's Essential 8 to metabolic syndrome: insights from NHANES database and network pharmacology analysis of quercetin. Front Nutr 2024; 11:1452374. [PMID: 39434897 PMCID: PMC11491958 DOI: 10.3389/fnut.2024.1452374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Background Metabolic syndrome (MetS), or syndrome X, is a collection of metabolic illnesses that affect the body's health, particularly insulin resistance and obesity. The prevalence of MetS is on the rise, particularly among younger individuals. Quercetin, a natural flavonoid found in many traditional Chinese medicines, can impact various pathways to disrupt the pathological advancement of MetS with few negative effects. The American Heart Association recently introduced a cardiovascular health assessment termed Life's Essential 8 (LE8), which might impact the treatment of MetS. Methods Quercetin targets and their functions in MetS pathways were identified using a network pharmacology method and molecular docking techniques. The study examined quercetin's direct and indirect interactions with proteins linked to the pathogenic processes of MetS. Data were collected regarding the American Heart Association's LE8 cardiovascular health indicators, which include health behaviors (diet, physical activity, nicotine exposure, and sleep) and health factors (body mass index, non-high-density lipoprotein cholesterol, blood glucose, and blood pressure). The study assessed the connection between LE8 and the occurrence of MetS, taking into account dietary quercetin consumption as a variable of interest. Results The negative correlation between MetS and LE8 indicates that individuals with higher LE8 scores are less likely to develop MetS. Individuals in the fully adjusted highest group (LE8 ≥ 80) demonstrated a 79% lower likelihood of developing MetS than those in the lowest group (OR = 0.21; 95% CI, 0.17-0.26, p < 0.0001). Network pharmacology and molecular docking results show that quercetin may exert its therapeutic effects by modulating various biological response processes, including those related to xenobiotic stimuli, bacterial molecules, lipopolysaccharides, and oxidative stimuli. These processes involve key pathways associated with diabetic complications, such as the AGE-RAGE signaling pathway, pathways related to diabetic complications, and pathways involved in lipids and atherosclerosis. Therefore, quercetin may reduce cardiovascular risk, improve glucose-lipid metabolism, and alleviate insulin resistance and other biological processes by influencing multiple aspects of the lipid profile, blood glucose, and insulin resistance, ultimately impacting the links between LE8 score and MetS. Conclusion This study discovered that an optimal LE8 score is a marker of adopting a lifestyle of wellness and is connected with a reduced likelihood of developing MetS. Quercetin acts on core targets such as IL6, BCL2, TP53, IL1B, MAPK1, and CCL2, and then plays a therapeutic role in regulating lipid metabolism, anti-inflammation, immunomodulation, autophagy, etc., through the pathways of diabetic complications, lipids, atherosclerosis, etc., and has the characteristics of multi-targets, multi-pathways, and multi-functions in regulating interventions for MetS.
Collapse
Affiliation(s)
- Runze Zhang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiuxiu Qiu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenming He
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rou Deng
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenxing Huo
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
45
|
Hu H, Wang S, Chen C. Pathophysiological role and potential drug target of NLRP3 inflammasome in the metabolic disorders. Cell Signal 2024; 122:111320. [PMID: 39067838 DOI: 10.1016/j.cellsig.2024.111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
NLRP3 plays a role in the development of autoinflammatory diseases. NLRP3, ASC, and Caspases 1 or 8 make up the NLRP3 inflammasome, which is an important part of innate immune system. The NLRP3 inflammasome-mediated inflammatory cytokines may also participate in metabolic disorders, such as diabetes, hyperlipidemia, atherosclerosis, non-alcoholic fatty liver disease, and gout. Hence, an overview of the NLRP3 regulation in these metabolic diseases and the potential drugs targeting NLRP3 is the focus of this review.
Collapse
Affiliation(s)
- Huiming Hu
- School of pharmacy, Nanchang Medical College, Nanchang, Jiangxi, China; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia; Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Jiangxi, China
| | - Shuwen Wang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
46
|
Srinivas A, Nehra S. Development of HPTLC method for simultaneous determination of quercetin and kaempferol in leaf extract of Hibiscus mutabilis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1246:124277. [PMID: 39186885 DOI: 10.1016/j.jchromb.2024.124277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
The aim of this study was to develop and validate a densitometric High-Performance Thin-Layer Chromatography (HPTLC) method for the simultaneous quantification of quercetin (Q) and kaempferol (K) in Hibiscus mutabilis leaf extracts. The analyses were performed on silica gel 60 F254 plates using a mobile phase composed of toluene, formic acid, and ethyl acetate (6:0.4:4, v/v/v). Detection was carried out at a wavelength of 272 nm using a deuterium and tungsten light source. The method exhibited excellent linearity over the concentration range of 100-600 ng/spot for quercetin and 500-3000 ng/spot for kaempferol, with determination coefficients (r2) of 0.9989 and 0.9973, respectively. The method showed no interferences from the plant matrix. The relative standard deviation (RSD) values for intra- and inter-day precision were less than 2% for both flavonoids. Recovery rates ranged from 97.69% to 99.20% for quercetin and from 89.91% to 95.87% for kaempferol. The limits of detection (LOD) were 190.23 ng/spot for quercetin and 187.23 ng/spot for kaempferol, while the limits of quantification (LOQ) were 570.10 ng/spot for quercetin and 566.12 ng/spot for kaempferol. This validated HPTLC method is reliable, precise, and accurate, making it suitable for the quality control of Hibiscus mutabilis leaf extracts. The study's findings can be broadly applied to the quality control of herbal products, pharmacological research, and the development of nutraceuticals. The method's ability to provide rapid and accurate quantification makes it an invaluable tool for researchers across various disciplines.
Collapse
Affiliation(s)
- Anusha Srinivas
- School of Basic and Applied Sciences, Nirwan University Jaipur, Rajasthan 303305, India; Innovation Centre, Mane Kancor Ingredients Private Limited, Kochi, Kerala 683573, India
| | - Sapna Nehra
- School of Basic and Applied Sciences, Nirwan University Jaipur, Rajasthan 303305, India.
| |
Collapse
|
47
|
El-Ashmawy NE, Khedr EG, Al-Ashmawy GM, Kamel AA. Emerging role of natural lipophagy modulators in metabolic dysfunction-associated steatotic liver disease. Nutrition 2024; 126:112517. [PMID: 39146583 DOI: 10.1016/j.nut.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 08/17/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a seriously increasing liver disorder affecting nearly 32% of adults globally. Hepatic triglycerides (TG) accumulation is the hallmark of MASLD, which results from dysregulated lipid and fatty acid uptake, increased de novo lipogenesis (DNL), and decreased lipid removal. More recently, selective autophagy of lipid droplets (LDs), termed lipophagy, has emerged to be closely associated with disrupted hepatic lipid homeostasis. Recent studies have indicated that a series of natural products have shown promise as an alternative approach in attenuating MASLD via regulating lipophagy in vivo and in vitro. Therefore, lipophagy could be a new approach for natural products to be used to improve MASLD. This article aims to provide a comprehensive overview on the interrelationship between dysregulated lipid metabolism, lipophagy, and MASLD pathogenesis. In addition, the role of some natural products as lipophagy modulators and their impact on MASLD will be discussed.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt; Department of Pharmacology & Biochemistry, Faculty of Pharmacy, The British University in Egypt, El Sherouk, Cairo, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt; Department of Biochemistry, Faculty of Pharmacy, Al Salam University in Egypt, Kafr Az Zayat, Egypt
| | - Asmaa A Kamel
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
48
|
Wang Z, Li R, Chen X, Ren H, Wang C, Min R, Zhang X. Network pharmacology, molecular docking and experimental validation to elucidate the anti-T2DM mechanism of Lanxangia tsaoko. Fitoterapia 2024; 178:106117. [PMID: 38996878 DOI: 10.1016/j.fitote.2024.106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Lanxangia tsaoko (L. tsaoko) is a natural medicine which could be used to treat type 2 diabetes mellitus (T2DM). However, there is no systematic and comprehensive research on the its active compounds and mechanism. This study aimed to investigate the active ingredients and potential mechanism of L. tsaoko for the treatment of T2DM. The chemical constituents of L. tsaoko were identified by UPLC-Q-Exactive Orbitrap/MS. The active compounds and mechanism of L. tsaoko were predicted by network pharmacology. Then the docking modes of key components and core targets were analyzed by molecular docking. Finally, animal experiments were conducted to verify the efficacy and targets of L. tsaoko in T2DM treatment. 70 compounds from L. tsaoko were identified. We obtained 37 active components, including quercetin, genistein and kaempferol, 5 core targets were AKT1, INS, TP53, TNF and IL-6. Mainly involved in PI3K/Akt, MAPK, RAGE/AGE, HIF-1, FoxO signaling pathways. Molecular docking results showed that the L. tsaoko had good binding potential to TNF. Therefore, we took the inflammatory mechanism as the prediction target for experimental verification. Animal experiments showed that L. tsaoko could alleviated colon injury of T2DM mice, improve glucose metabolism and decrease inflammatory levels. L. tsaoko exerted therapeutic effects on T2DM through multi-component, multi-target and multi-pathway regulation. Its action mechanisms were related to PI3K/Akt, MAPK, RAGE/AGE, HIF-1 and FoxO signaling pathways. This study provided new insights for the clinical treatment of T2DM.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Ruonan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Huilin Ren
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Caixia Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Ruixue Min
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China.
| |
Collapse
|
49
|
Shen X, Gong L, Li R, Huang N, Zhang H, Chen S, Liu Y, Sun R. Treatment of constipation with Aloe and its compatibility prescriptions. CHINESE HERBAL MEDICINES 2024; 16:561-571. [PMID: 39606261 PMCID: PMC11589282 DOI: 10.1016/j.chmed.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 07/23/2024] [Indexed: 11/29/2024] Open
Abstract
Constipation is a common and prevalent digestive system disease in clinical practice, which seriously affects human physical and mental health. Currently, chemical drugs have good short-term therapeutic effects. However, because of their adverse reactions, easy recurrence after drug discontinuation, and dependence with long-term use, the long-term efficacy is unsatisfactory. The pathogenesis of constipation is mainly attributed to dysfunction of zang-fu organs and imbalance of qi-blood and yin-yang, with the syndrome being asthenia in origin and asthenia in superficiality. Aloe is a traditional Chinese medicine with cold properties and a bitter taste, and one of the most commonly used herbs for constipation. Based on Aloe and its monomer components, combined with the existing compatibility studies of Aloe and several Chinese patent drugs represented by Aloe, this paper comprehensively and systematically introduced the research progress of Aloe and its compatibility prescriptions in the treatment of constipation from basic experiments to clinical observations, providing theoretical basis and medication guidance for the clinical rational application of Aloe and its prescriptions in the treatment of constipation. At the same time, it also provides the direction for future research on the mechanism of Aloe in the treatment of constipation.
Collapse
Affiliation(s)
- Xianhui Shen
- The Second Hospital of Shandong University, Jinan 250033, China
| | - Liping Gong
- The Second Hospital of Shandong University, Jinan 250033, China
| | - Rongrong Li
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Nana Huang
- The Second Hospital of Shandong University, Jinan 250033, China
| | - Huijie Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Siyi Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Ying Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Rong Sun
- The Second Hospital of Shandong University, Jinan 250033, China
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| |
Collapse
|
50
|
Rajesh R U, Sangeetha D. Therapeutic potentials and targeting strategies of quercetin on cancer cells: Challenges and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155902. [PMID: 39059266 DOI: 10.1016/j.phymed.2024.155902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Every cell in the human body is vital because it maintains equilibrium and carries out a variety of tasks, including growth and development. These activities are carried out by a set of instructions carried by many different genes and organized into DNA. It is well recognized that some lifestyle decisions, like using tobacco, alcohol, UV, or multiple sexual partners, might increase one's risk of developing cancer. The advantages of natural products for any health issue are well known, and researchers are making attempts to separate flavonoid-containing substances from plants. Various parts of plants contain a phenolic compound called flavonoid. Quercetin, which belongs to the class of compounds known as flavones with chromone skeletal structure, has anti-cancer activity. PURPOSE The study was aimed at investigating the therapeutic action of the flavonoid quercetin on various cancer cells. METHODS The phrases quercetin, anti-cancer, nanoparticles, and cell line were used to search the data using online resources such as PubMed, and Google Scholar. Several critical previous studies have been included. RESULTS Quercetin inhibits various dysregulated signaling pathways that cause cancer cells to undergo apoptosis to exercise its anticancer effects. Numerous signaling pathways are impacted by quercetin, such as the Hedgehog system, Akt, NF-κB pathway, downregulated mutant p53, JAK/STAT, G1 phase arrest, Wnt/β-Catenin, and MAPK. There are downsides to quercetin, like hydrophobicity, first-pass effect, instability in the gastrointestinal tract, etc., because of which it is not well-established in the pharmaceutical industry. The solution to these drawbacks in the future is using bio-nanomaterials like chitosan, PLGA, liposomes, and silk fibroin as carriers, which can enhance the target specificity of quercetin. The first section of this review covers the specifics of flavonoids and quercetin; the second section covers the anti-cancer activity of quercetin; and the third section explains the drawbacks and conjugation of quercetin with nanoparticles for drug delivery by overcoming quercetin's drawback. CONCLUSIONS Overall, this review presented details about quercetin, which is a plant derivative with a promising molecular mechanism of action. They inhibit cancer by various mechanisms with little or no side effects. It is anticipated that plant-based materials will become increasingly relevant in the treatment of cancer.
Collapse
Affiliation(s)
- Udaya Rajesh R
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India
| | - Dhanaraj Sangeetha
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India.
| |
Collapse
|