1
|
Guo C, Sun L, Hao S, Huang X, Hu H, Liang D, Feng Q, Li Y, Feng Y, Xie X, Hu J. Monoclonal antibody against H1N1 influenza virus hemagglutinin cross reacts with hnRNPA1 and hnRNPA2/B1. Mol Med Rep 2020; 22:3969-3975. [PMID: 32901845 PMCID: PMC7533452 DOI: 10.3892/mmr.2020.11494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Following influenza A vaccination, certain individuals exhibit adverse reactions in the nervous system, which causes a problem with the safety of the influenza A vaccine. However, to the best of our knowledge, the underlying mechanism of this is unknown. The present study revealed that a monoclonal antibody (H1‑84mAb) against the H1N1 influenza virus hemagglutinin (HA) protein cross‑reacted with an antigen from brain tissue. Total brain tissue protein was immunoprecipitated with this cross‑reactive antibody, and mass spectrometry revealed that the bound antigens were heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and hnRNPA2/B1. Subsequently, the two proteins were expressed in bacteria and it was demonstrated that H1‑84mAb bound to hnRNPA1 and hnRNPA2/B1. These two proteins were expressed in three segments and the cross‑reactivity of H1‑84mAb with the glycine (Gly)‑rich domains of hnRNPA1 (195aa‑320aa) and hnRNPA2/B1 (202aa‑349aa) was determined using ELISA blocking experiments. It was concluded that the Gly‑rich domains of these two proteins are heterophilic antigens that cross‑react with influenza virus HA. The association between the heterophilic antigen Gly‑rich domains and the safety of influenza A vaccines remains to be investigated.
Collapse
Affiliation(s)
- Chunyan Guo
- Central Laboratory of Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Medical School, Xi'an Jiaotong University, Shaanxi Province Research Centre of Cell Immunological Engineering and Technology, Key Laboratory of Microbial Infections and Autoimmune Diseases, Xi'an, Shaanxi 710068, P.R. China
| | - Lijun Sun
- Central Laboratory of Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Medical School, Xi'an Jiaotong University, Shaanxi Province Research Centre of Cell Immunological Engineering and Technology, Key Laboratory of Microbial Infections and Autoimmune Diseases, Xi'an, Shaanxi 710068, P.R. China
| | - Shuangping Hao
- Guangshui Traditional Chinese Medicine Hospital of Hubei Province, Guangshui, Hubei 432700, P.R. China
| | - Xiaoyan Huang
- Central Laboratory of Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Medical School, Xi'an Jiaotong University, Shaanxi Province Research Centre of Cell Immunological Engineering and Technology, Key Laboratory of Microbial Infections and Autoimmune Diseases, Xi'an, Shaanxi 710068, P.R. China
| | - Hanyu Hu
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Daoyan Liang
- Central Laboratory of Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Medical School, Xi'an Jiaotong University, Shaanxi Province Research Centre of Cell Immunological Engineering and Technology, Key Laboratory of Microbial Infections and Autoimmune Diseases, Xi'an, Shaanxi 710068, P.R. China
| | - Qing Feng
- Central Laboratory of Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Medical School, Xi'an Jiaotong University, Shaanxi Province Research Centre of Cell Immunological Engineering and Technology, Key Laboratory of Microbial Infections and Autoimmune Diseases, Xi'an, Shaanxi 710068, P.R. China
| | - Yan Li
- Central Laboratory of Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Medical School, Xi'an Jiaotong University, Shaanxi Province Research Centre of Cell Immunological Engineering and Technology, Key Laboratory of Microbial Infections and Autoimmune Diseases, Xi'an, Shaanxi 710068, P.R. China
| | - Yangmeng Feng
- Central Laboratory of Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Medical School, Xi'an Jiaotong University, Shaanxi Province Research Centre of Cell Immunological Engineering and Technology, Key Laboratory of Microbial Infections and Autoimmune Diseases, Xi'an, Shaanxi 710068, P.R. China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Jun Hu
- Central Laboratory of Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Medical School, Xi'an Jiaotong University, Shaanxi Province Research Centre of Cell Immunological Engineering and Technology, Key Laboratory of Microbial Infections and Autoimmune Diseases, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
2
|
Localization Analysis of Heterophilic Antigen Epitopes of H1N1 Influenza Virus Hemagglutinin. Virol Sin 2019; 34:306-314. [PMID: 31020574 DOI: 10.1007/s12250-019-00100-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/23/2019] [Indexed: 10/26/2022] Open
Abstract
Previous studies have indicated that two monoclonal antibodies (mAbs; A1-10 and H1-84) of the hemagglutinin (HA) antigen on the H1N1 influenza virus cross-react with human brain tissue. It has been proposed that there are heterophilic epitopes between the HA protein and human brain tissue (Guo et al. in Immunobiology 220:941-946, 2015). However, characterisation of the two mAbs recognising the heterophilic epitope on HA has not yet been performed. In the present study, the common antigens of influenza virus HA were confirmed using indirect enzyme-linked immunosorbent assays and analysed with DNAMAN software. The epitopes were localized to nine peptides in the influenza virus HA sequence and the distribution of the peptides in the three-dimensional structure of HA was determined using PyMOL software. Key amino acids and variable sequences of the antibodies were identified using abYsis software. The results demonstrated that there were a number of common antigens among the five influenza viruses studied that were recognised by the mAbs. One of the peptides, P2 (LVLWGIHHP191-199), bound both of the mAbs and was located in the head region of HA. The key amino acids of this epitope and the variable regions in the heavy and light chain sequences of the mAbs that recognised the epitope are described. A heterophilic epitope on H1N1 influenza virus HA was also introduced. The existence of this epitope provides a novel perspective for the occurrence of nervous system diseases that could be caused by influenza virus infection, which might aid in influenza prevention and control.
Collapse
|
3
|
Kharrazian D, Herbert M, Vojdani A. Detection of Islet Cell Immune Reactivity with Low Glycemic Index Foods: Is This a Concern for Type 1 Diabetes? J Diabetes Res 2017; 2017:4124967. [PMID: 28819632 PMCID: PMC5551512 DOI: 10.1155/2017/4124967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/25/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Dietary management of autoimmune diabetes includes low glycemic foods classified from the glycemic index, but it does not consider the role that immunoreactive foods may play with the immunological etiology of the disease. We measured the reactivity of either monoclonal or polyclonal affinity-purified antibodies to insulin, insulin receptor alpha, insulin receptor beta, zinc transporter 8 (ZnT8), tyrosine phosphatase-based islet antigen 2 (IA2), and glutamic acid decarboxylase (GAD) 65 and 67 against 204 dietary proteins that are commonly consumed. Dietary protein determinants included unmodified (raw) and modified (cooked and roasted) foods, herbs, spices, food gums, brewed beverages, and additives. There was no immune reactivity between insulin or insulin receptor beta and dietary proteins. However, we identified strong to moderate immunological reactivity with antibodies against insulin receptor alpha, ZnT8, IA2, GAD-65, and GAD-67 with several dietary proteins. We also identified 49 dietary proteins found in foods classified as low glycemic foods with immune reactivity to autoimmune target sites. Laboratory analysis of immunological cross-reactivity between pancreas target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune diabetes.
Collapse
Affiliation(s)
- Datis Kharrazian
- Harvard Medical School, Boston, MA, USA
- TRANSCEND Research, Department of Neurology, Massachusetts General Hospital, Charlestown, Boston, MA 02129, USA
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Martha Herbert
- Harvard Medical School, Boston, MA, USA
- TRANSCEND Research, Department of Neurology, Massachusetts General Hospital, Charlestown, Boston, MA 02129, USA
| | - Aristo Vojdani
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Immunosciences Laboratory, Inc., Los Angeles, CA, USA
| |
Collapse
|
4
|
Maccari G, Genoni A, Sansonno S, Toniolo A. Properties of Two Enterovirus Antibodies that are Utilized in Diabetes Research. Sci Rep 2016; 6:24757. [PMID: 27091243 PMCID: PMC4835795 DOI: 10.1038/srep24757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/05/2016] [Indexed: 12/16/2022] Open
Abstract
Human enteroviruses (EVs) comprise >100 different types. Research suggests a non-chance association between EV infections and type 1 diabetes. Immunohistochemical studies with the anti-EV antibody 5D-8.1 have shown that the EV capsid antigen is present in pancreatic islet cells of diabetic subjects. When it was noticed that 5D-8.1 may cross-react with human proteins, doubt was casted on the significance of the above histopathologic findings. To address this issue, properties of EV antibodies 5D-8.1 and 9D5 have been investigated using peptide microarrays, peptide substitution scanning, immunofluorescence of EV-infected cells, EV neutralization assays, bioinformatics analysis. Evidence indicates that the two antibodies bind to distinct non-neutralizing linear epitopes in VP1 and are specific for a vast spectrum of EV types (not for other human viruses). However, their epitopes may align with a few human proteins at low expected values. When tested by immunofluorescence, high concentrations of 5D-8.1 yelded faint cytoplasmic staining in uninfected cells. At reduced concentrations, both antibodies produced dotted staining only in the cytoplasm of infected cells and recognized both acute and persistent EV infection. Thus, the two monoclonals represent distinct and independent probes for hunting EVs in tissues of patients with diabetes or other endocrine conditions.
Collapse
Affiliation(s)
- Giuseppe Maccari
- Center for Nanotechnology and Innovation, Italian Institute of Technology, Pisa, Italy
| | - Angelo Genoni
- Laboratory of Medical Microbiology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sansonno
- Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - Antonio Toniolo
- Laboratory of Medical Microbiology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
5
|
Bergamin CS, Dib SA. Enterovirus and type 1 diabetes: What is the matter? World J Diabetes 2015; 6:828-839. [PMID: 26131324 PMCID: PMC4478578 DOI: 10.4239/wjd.v6.i6.828] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/30/2015] [Accepted: 04/09/2015] [Indexed: 02/05/2023] Open
Abstract
A complex interaction of genetic and environmental factors can trigger the immune-mediated mechanism responsible for type 1 diabetes mellitus (T1DM) establishment. Environmental factors may initiate and possibly sustain, accelerate, or retard damage to β-cells. The role of environmental factors in this process has been exhaustive studied and viruses are among the most probable ones, especially enteroviruses. Improvements in enterovirus detection methods and randomized studies with patient follow-up have confirmed the importance of human enterovirus in the pathogenesis of T1DM. The genetic risk of T1DM and particular innate and acquired immune responses to enterovirus infection contribute to a tolerance to T1DM-related autoantigens. However, the frequency, mechanisms, and pathways of virally induced autoimmunity and β-cell destruction in T1DM remain to be determined. It is difficult to investigate the role of enterovirus infection in T1DM because of several concomitant mechanisms by which the virus damages pancreatic β-cells, which, consequently, may lead to T1DM establishment. Advances in molecular and genomic studies may facilitate the identification of pathways at earlier stages of autoimmunity when preventive and therapeutic approaches may be more effective.
Collapse
|
6
|
Abstract
OBJECTIVE The cWnt activator, R-spondin1 (Rspo1), regulates β-cell growth, function, and neogenesis, although its role in conditions such as streptozotocin (STZ)-induced diabetes is unknown. We hypothesized that Rspo1 deficiency enhances β-cell neogenesis in STZ-induced diabetes. METHODS Wild-type (Rspo1) and knockout (Rspo1) mice were injected with STZ (40 mg/kg) for 5 days, followed by analysis of oral glucose and insulin tolerance, and were killed on day 6 (acute; 9-11 mice) or 32 (chronic; 11-16 mice). Immunohistochemistry was performed for β-cell apoptosis, proliferation, neogenesis, and markers of β-cell maturity. RESULTS There was no difference in oral glucose handling between STZ-induced Rspo1 and Rspo1 mice, although Rspo1 mice demonstrated increased insulin sensitivity. β-cell mass, islet number, and islet size distribution did not differ between STZ-induced Rspo1 and Rspo1 mice, but Rspo1 animals had reduced β-cell apoptosis and increased numbers of insulin-positive ductal cells, indicating β-cell neogenesis. Furthermore, the increased β-cell regeneration observed in the Rspo1 animals was associated with a more differentiated/mature β-cell phenotype as assessed by increased immunopositivity for Nkx6.1, MafA, and GLUT2. CONCLUSIONS These findings indicate that Rspo1 is a negative regulator of β-cell neogenesis, development, and survival in the face of STZ-induced diabetes, providing a therapeutic target for the enhancement of β-cell mass.
Collapse
|