1
|
Henriksen K, Jørgensen A, Kaur S, Gerwig R, Brøgger Svane CA, Knop FK, Størling J. Exploring the functional, protective, and transcriptomic effects of GIP on cytokine-exposed human pancreatic islets and EndoC-βH5 cells. Mol Cell Endocrinol 2025; 602:112522. [PMID: 40122442 DOI: 10.1016/j.mce.2025.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Immune-mediated beta-cell destruction and lack of alpha-cell responsiveness to hypoglycaemia are hallmarks of type 1 diabetes pathology. The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) may hold therapeutic potential for type 1 diabetes due to its insulinotropic and glucagonotropic effects, as well as its cytoprotective effects shown in rodent beta cells. To further increase our understanding of GIP's effects on human beta cells, we here examined the functional, protective, and transcriptomic effects of GIP in human EndoC-βH5 beta cells and isolated human islets in the presence or absence of proinflammatory cytokines (interferon (IFN)-γ ± interleukin (IL)-1β) as a mimic of type 1 diabetes. GIP dose-dependently augmented glucose-stimulated insulin secretion from EndoC-βH5 cells and increased insulin and glucagon secretion from human islets at high and low glucose concentrations, respectively. The insulinotropic effect of GIP in EndoC-βH5 cells was abrogated by KN-93, an inhibitor of calcium/calmodulin-dependent protein kinase 2 (CaMK2). GIP did not prevent cytokine-induced apoptosis in EndoC-βH5 cells or human islets, and GIP did not protect against cytokine-induced functional impairment in EndoC-βH5 cells. GIP treatment of human islets for 24 h had no effects on the transcriptome and did not modulate cytokine-induced transcriptional changes. However, GIP augmented IL-1β + IFNγ-induced secretion of interleukin (IL)-10 and c-c motif chemokine ligand (CCL)-2 from human islets while decreasing the secretion of c-x-c motif chemokine ligand (CXCL)-8. In EndoC-βH5 cells, GIP reduced IFN-γ-induced secretion of tumor necrosis factor (TNF)-α, IL-2, IL-6, and IL-10 but increased the secretion of CXCL8, CCL2, CCL4, and CCL11. In conclusion, our results suggest that the insulinotropic effect of GIP is CaMK2-dependent. Furthermore, our findings indicate that GIP neither exerts cytoprotective effects against cytokines nor modulate the transcriptome of human islets. GIP may, however, exert selective modulatory effects on secreted inflammatory factors from cytokine-exposed beta cells and islets.
Collapse
Affiliation(s)
- Kristine Henriksen
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Anne Jørgensen
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Rebekka Gerwig
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Cecilie Amalie Brøgger Svane
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Raavi, Koehler AN, Vegas AJ. At The Interface: Small-Molecule Inhibitors of Soluble Cytokines. Chem Rev 2025; 125:4528-4568. [PMID: 40233276 DOI: 10.1021/acs.chemrev.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cytokines are crucial regulators of the immune system that orchestrate interactions between cells and, when dysregulated, contribute to the progression of chronic inflammation, cancer, and autoimmunity. Numerous biologic-based clinical agents, mostly monoclonal antibodies, have validated cytokines as important clinical targets and are now part of the standard of care for a number of diseases. These agents, while impactful, still suffer from limitations including a lack of oral bioavailability, high cost of production, and immunogenicity. Small-molecule cytokine inhibitors are attractive alternatives that can address these limitations. Although targeting cytokine-cytokine receptor complexes with small molecules has been a challenging research endeavor, multiple small-molecule inhibitors have now been identified, with a number of them undergoing clinical evaluation. In this review, we highlight the recent advancements in the discovery and development of small-molecule inhibitors targeting soluble cytokines. The strategies for identifying these novel ligands as well as the structural and mechanistic insights into their activity represent important milestones in tackling these challenging and clinically important protein-protein interactions.
Collapse
Affiliation(s)
- Raavi
- Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Arturo J Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Gómez-Zaragoza B, Ruiz-Rodríguez M, Rodríguez de Vera Gómez P, Decan-Bardasz D, Martínez-Brocca MA. Secukinumab (Anti-IL-17) induces clinical regression in early diagnosed type 1 diabetes: A case report. DIABETES & METABOLISM 2025; 51:101643. [PMID: 40188942 DOI: 10.1016/j.diabet.2025.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
We report the case of a 30-year-old male with psoriatic arthritis treated with secukinumab (anti-IL-17A) who developed new-onset type 1 diabetes mellitus (T1DM). During follow-up, a consistent reduction in insulin requirements and glycemic variability was observed in the two weeks following each dose of secukinumab. This suggests a possible immunomodulatory effect of IL-17 inhibition on beta-cell function and glycemic control. To our knowledge, this is the first report describing clinical benefits of secukinumab in the early stages of T1DM, highlighting its potential as a therapeutic tool in modulating autoimmune processes involved in disease progression.
Collapse
Affiliation(s)
- Blanca Gómez-Zaragoza
- Endocrinology and Nutrition Service, University Hospital Virgen Macarena, Seville, Spain
| | - María Ruiz-Rodríguez
- Endocrinology and Nutrition Service, University Hospital Virgen Macarena, Seville, Spain
| | | | | | | |
Collapse
|
4
|
Zhang Q, Liao J, Liu Z, Song S, Tian L, Wang Y. The immune tolerance role of Bregs in inhibiting human inflammatory diseases, with a focus on diabetes mellitus. Front Immunol 2025; 16:1565158. [PMID: 40370441 PMCID: PMC12074967 DOI: 10.3389/fimmu.2025.1565158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Regulatory B cells (Bregs) are pivotal modulators of immune tolerance, suppressing inflammation through cytokine secretion and cellular interactions. Their role is particularly significant in inflammatory diseases such as type 1 and type 2 diabetes mellitus (T1DM and T2DM), where immune dysregulation contributes to disease progression. In T1DM, Bregs mitigate β-cell autoimmunity via IL-10 production and FOXP3-mediated pathways, but genetic mutations and dysfunctions in these mechanisms exacerbate autoimmunity. In T2DM, chronic inflammation and metabolic stress impair Breg numbers and function, further fueling insulin resistance. While Bregs play a central role in T1DM by directly preventing β-cell destruction, their role in T2DM is more supportive, modulating inflammation in metabolically stressed tissues. Emerging therapeutic strategies aim to enhance Breg function through IL-10 induction, ex vivo expansion, or targeting Breg-specific pathways using gene-editing and small molecules. Future research should explore Breg heterogeneity, novel markers, and personalized therapies to unlock their full potential. Understanding and leveraging the immune tolerance role of Bregs may offer transformative strategies to inhibit inflammatory diseases like diabetes mellitus.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Jinfeng Liao
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zheng Liu
- Pathology Department, University of Texas, MD Anderson Cancer Center, Texas, Houston, TX, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Limin Tian
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Shakra MY, Geneedy MRM, Ahmad HK, Mazen MAI, Mostafa ME. Impact of Soluble Schistosomal Egg Antigens on Type 1 Diabetes Mellitus in an Induced Diabetic Mouse Model. Acta Parasitol 2025; 70:98. [PMID: 40299229 PMCID: PMC12041111 DOI: 10.1007/s11686-025-01035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE This study aimed to investigate the effects of Schistosoma mansoni soluble egg antigen (SEA) on type 1 diabetes (T1D) in a streptozotocin (STZ)-induced diabetic mouse model. METHODS The study examined the effects of Schistosoma mansoni soluble egg antigen (SEA) on type 1 diabetes (T1D) using a mouse model, involving 50 mice divided into three groups: a healthy control group receiving phosphate-buffered saline (PBS), a diabetic control group with STZ-induced T1D also receiving PBS, and a diabetic treated group receiving SEA. Biochemical and immunological analyses were conducted on blood samples collected at four and eight weeks post-treatment to assess metabolic markers like blood glucose and insulin levels, as well as immune markers including TNF-α, TGF-β, FOXp3, IL-4, and IL-10. RESULTS SEA treatment induced early immune modulation at four weeks and sustained metabolic and immunological improvements at eight weeks, marked by increased regulatory T cells (elevated FOXp3), activation of immunosuppressive pathways (increased TGF-β), reduced inflammation (decreased TNF-α), a shift to an anti-inflammatory Th2 response (elevated IL-4 and IL-10), improved glycemic control, lower blood glucose levels, and higher insulin levels. CONCLUSION SEA exhibits potential therapeutic effects against T1D by modulating immune responses, promoting Th2 polarization, and increasing regulatory T cell activity. This immunological shift reduces systemic inflammation and enhances glycemic control.
Collapse
Affiliation(s)
- Mohammed Y Shakra
- Department of Parasitology, Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| | - Morsy R M Geneedy
- Department of Parasitology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Haitham Kh Ahmad
- Department of Parasitology, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
| | - Moamen A I Mazen
- Department of Parasitology, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
| | - Mostafa E Mostafa
- Department of Parasitology, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
6
|
Sherman S, Slama R, Bar D, Schonmann Y, Cohen AD, Taieb YH, Mimouni D, Peretz A, Duskin-Bitan H. Type 1 Diabetes/Hidradenitis Suppurativa Comorbidity-A Population-Based Study. J Clin Med 2025; 14:2625. [PMID: 40283457 PMCID: PMC12028064 DOI: 10.3390/jcm14082625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Type 1 diabetes (T1D) and hidradenitis suppurativa (HS) share several metabolic and inflammatory dysfunctions. Prior studies of the potential link between the diseases either lacked validated T1D diagnoses or established only an indirect association. This study sought to determine the odds of HS developing in patients with a validated diagnosis of T1D and to characterize the clinical features of HS/T1D comorbidity. Methods: A population-based nested case-control study was conducted including patients with HS and controls matched 5:1 for age, sex, and primary care clinic. T1D was diagnosed using a specialized algorithm, achieving 90% accuracy. Diagnostic validity was confirmed by diabetes specialists who manually reviewed a random subset of the files. Unadjusted and adjusted odds ratios (OR/aOR) were calculated to determine the odds of incident HS in patients with T1D. Results: The study included 10,919 patients with HS and 53,314 controls. A history of T1D was associated with an elevated odds of new-onset HS (OR 1.80 95% CI (1.30-2.40), p < 0.001), even after adjusting for demographics and metabolic and autoimmune comorbidities (aORs > 1.7, p < 0.001). Patients with HS/T1D comorbidity had higher proportions of autoimmune conditions than patients with HS alone (p < 0.001) and a higher mean Charlson Comorbidity Index score than both patients with HS alone (3.5 vs. 0.9, p < 0.001) and T1D alone (3.5 vs. 2.2, p = 0.004). Conclusions: T1D is associated with higher odds of the subsequent development of HS. Awareness of HS/T1D comorbidity is recommended owing to the elevated burden of metabolic and autoimmune conditions.
Collapse
Affiliation(s)
- Shany Sherman
- Division of Dermatology, Rabin Medical Center, Beilinson Hospital, Petach Tikva 4941492, Israel; (Y.H.T.); (D.M.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.S.); (D.B.); (H.D.-B.)
| | - Ron Slama
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.S.); (D.B.); (H.D.-B.)
| | - Danielle Bar
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.S.); (D.B.); (H.D.-B.)
| | - Yochai Schonmann
- Department of Family Medicine, Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Quality Measurements and Research, Clalit Health Services, Tel Aviv 6209804, Israel;
| | - Arnon D. Cohen
- Department of Quality Measurements and Research, Clalit Health Services, Tel Aviv 6209804, Israel;
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Yossef H. Taieb
- Division of Dermatology, Rabin Medical Center, Beilinson Hospital, Petach Tikva 4941492, Israel; (Y.H.T.); (D.M.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.S.); (D.B.); (H.D.-B.)
| | - Daniel Mimouni
- Division of Dermatology, Rabin Medical Center, Beilinson Hospital, Petach Tikva 4941492, Israel; (Y.H.T.); (D.M.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.S.); (D.B.); (H.D.-B.)
| | - Alon Peretz
- Division of Community Medical Services, Clalit Health Services, Tel Aviv 6209804, Israel;
| | - Hadar Duskin-Bitan
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.S.); (D.B.); (H.D.-B.)
- Institute of Endocrinology, Rabin Medical Center, Beilinson Hospital, Petach Tikva 4941492, Israel
| |
Collapse
|
7
|
Foster TP, Bruggeman BS, Haller MJ. Emerging Immunotherapies for Disease Modification of Type 1 Diabetes. Drugs 2025; 85:457-473. [PMID: 39873914 PMCID: PMC11949705 DOI: 10.1007/s40265-025-02150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by the progressive, autoimmune-mediated destruction of β cells. As such, restoring immunoregulation early in the disease course is sought to retain endogenous insulin production. Nevertheless, in the more than 100 years since the discovery of insulin, treatment of T1DM has focused primarily on hormone replacement and glucose monitoring. That said, immunotherapies are widely used to interdict autoimmune and autoinflammatory diseases and are emerging as potential therapeutics seeking the preservation of β-cell function among those with T1DM. In the past 4 decades of diabetes research, several immunomodulatory therapies have been explored, culminating with the US Food and Drug Administration approval of teplizumab to delay stage 3 (clinical) onset of T1DM. Clinical trials seeking to prevent or reverse T1DM by repurposing immunotherapies approved for other autoimmune conditions and by exploring new therapeutics are ongoing. Collectively, these efforts have the potential to transform the future of diabetes care. We encapsulate the past 40 years of immunotherapy trials, take stock of our successes and failures, and chart paths forward in this new age of clinically available immune therapies for T1DM.
Collapse
Affiliation(s)
- Timothy P Foster
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA.
| | - Brittany S Bruggeman
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Reyna J, Fetter K, Ignacio R, Ali Marandi CC, Ma A, Rao N, Jiang Z, Figueroa DS, Bhattacharyya S, Ay F. Loop Catalog: a comprehensive HiChIP database of human and mouse samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.26.591349. [PMID: 38746164 PMCID: PMC11092438 DOI: 10.1101/2024.04.26.591349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
HiChIP enables cost-effective and high-resolution profiling of chromatin loops. To leverage the increasing number of HiChIP datasets, we developed Loop Catalog (https://loopcatalog.lji.org), a web-based database featuring loop calls from 1000+ distinct human and mouse HiChIP samples from 152 studies plus 44 high-resolution Hi-C samples. We demonstrate its utility for interpreting GWAS and eQTL variants through SNP-to-gene linking, identifying enriched sequence motifs and motif pairs, and generating regulatory networks and 2D representations of chromatin structure. Our catalog spans over 4.19M unique loops, and with embedded analysis modules, constitutes an important resource for the field.
Collapse
Affiliation(s)
- Joaquin Reyna
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Bioinformatics and Systems Biology Graduate Program University of California, San Diego, La Jolla, CA 92093 USA
| | - Kyra Fetter
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Romeo Ignacio
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093 USA
| | - Cemil Can Ali Marandi
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Bioinformatics and Systems Biology Graduate Program University of California, San Diego, La Jolla, CA 92093 USA
| | - Astoria Ma
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Nikhil Rao
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Zichen Jiang
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Daniela Salgado Figueroa
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Bioinformatics and Systems Biology Graduate Program University of California, San Diego, La Jolla, CA 92093 USA
| | - Sourya Bhattacharyya
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Ferhat Ay
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Bioinformatics and Systems Biology Graduate Program University of California, San Diego, La Jolla, CA 92093 USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
9
|
Kani ER, Karaviti E, Karaviti D, Gerontiti E, Paschou IA, Saltiki K, Stefanaki K, Psaltopoulou T, Paschou SA. Pathophysiology, diagnosis, and management of immune checkpoint inhibitor-induced diabetes mellitus. Endocrine 2025; 87:875-890. [PMID: 39316333 DOI: 10.1007/s12020-024-04050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
Immune Checkpoint Inhibitors (ICIs) have revolutionized cancer treatment, offering hope for patients with various malignancies. However, along with their remarkable anticancer effects, ICIs can also trigger immune-related adverse events (irAEs). One such noteworthy complication is the development of Diabetes Mellitus (DM), which particularly resembles Type 1 Diabetes Mellitus (T1DM). The aim of this review is to provide insights into the epidemiology, pathophysiology, diagnostic issues, and treatment considerations of ICI-induced DM (ICI-DM), emphasizing the importance of early recognition and management to mitigate adverse outcomes. Although still rare, the incidence has increased with the widespread use of ICIs, especially PD-1/PD-L1 blockers (from 0.2% to 1.9%). Factors affecting the development of ICI-DM, such as specific ICIs, patient demographics, and genetic predispositions, are discussed. The complex interplay between immune dysregulation and pancreatic β-cell destruction contributes to diagnostic challenges, with presentations varying from asymptomatic hyperglycemia to diabetic ketoacidosis (DKA). Management strategies prioritize meticulous glycemic and electrolyte regulation along with tailored intravenous insulin therapy in cases of DKA. DM remission is rare, therefore treatment with both long-acting insulin at bedtime and short-acting insulin before meals is needed in longterm. Total daily insulin requirements can be estimated at 0.3-0.4 units/kg/day for most patients as a starting dose.
Collapse
Affiliation(s)
- Eleni-Rafaela Kani
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftheria Karaviti
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Karaviti
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Gerontiti
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna A Paschou
- First Department of Dermatology and Venereology, Andreas Syggros Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Saltiki
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Stefanaki
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
10
|
Kosheleva L, Koshelev D, Lagunas-Rangel FA, Levit S, Rabinovitch A, Schiöth HB. Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments. Pharmacol Rev 2025; 77:100044. [PMID: 40014914 PMCID: PMC11964952 DOI: 10.1016/j.pharmr.2025.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.
Collapse
Affiliation(s)
- Liudmila Kosheleva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniil Koshelev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Shmuel Levit
- Diabetes and Metabolism Institute, Assuta Medical Centers, Tel Aviv, Israel
| | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
11
|
Aydogan T, Karsiyaka Hendek M, Unsal B, Çifci A, Varol H, Kisa U, Olgun E. Effects of D 3K 2 With Periodontal Therapy in Diabetes Mellitus and Stage I-II Periodontitis Patients. Oral Dis 2025; 31:640-647. [PMID: 39370735 DOI: 10.1111/odi.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND The aim of this study is to look into the clinical and biochemical outcomes of D3K2 supplementation in addition to nonsurgical periodontal treatment (NSPT) for patients suffering from diabetes mellitus (DM) and periodontitis. METHODS Thirty-eight participants with DM and periodontitis were randomized into two different groups. The test group provided NSPT with D3K2 whereas the control group received NSPT with placebo. Clinical periodontal parameters were recorded and serum and gingival crevicular fluid (GCF) were sampled at baseline and at the third and the sixth months after treatment. Glycated hemoglobin A1c (HbA1c), fasting blood glucose (FBG), 25(OH)D3, parathyroid hormone (PTH), calcium (Ca) and magnesium (Mg) values were determined in blood samples. GCF and serum interleukin (IL)-1β and IL-10 levels were analyzed using enzyme-linked immunosorbent assay. RESULTS All clinical periodontal parameters were importantly decreased at the third and sixth months after treatment compared to baseline in both groups. At the sixth month, 25(OH)D3 levels in the test group were observed to be statistically significantly higher than in the control group (p = 0.02). Serum IL-1β showed a statistically significant decrease at the sixth month compared to baseline and the third month in control group. CONCLUSION According to this study, there is limited additional benefit of D3K2 given with NSPT in individuals with DM and periodontitis.
Collapse
Affiliation(s)
- Tolga Aydogan
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | | | - Berrin Unsal
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Aydın Çifci
- Department of Internal Medicine, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | | | - Uçler Kisa
- Department of Biochemistry, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Ebru Olgun
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
12
|
Austin MC, Muralidharan C, Roy S, Crowder JJ, Piganelli JD, Linnemann AK. Dysfunctional β-cell autophagy induces β-cell stress and enhances islet immunogenicity. Front Immunol 2025; 16:1504583. [PMID: 39944686 PMCID: PMC11814175 DOI: 10.3389/fimmu.2025.1504583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Background Type 1 Diabetes (T1D) is caused by a combination of genetic and environmental factors that trigger autoimmune-mediated destruction of pancreatic β-cells. Defects in β-cell stress response pathways such as autophagy may play an important role in activating and/or exacerbating the immune response in disease development. Previously, we discovered that β-cell autophagy is impaired prior to the onset of T1D, implicating this pathway in T1D pathogenesis. Aims To assess the role of autophagy in β-cell health and survival, and whether defects in autophagy render islets more immunogenic. Methods We knocked out the critical autophagy enzyme, ATG7, in the β-cells of mice (ATG7Δβ-cell) then monitored blood glucose, performed glucose tolerance tests, and evaluated bulk islet mRNA and protein. We also assessed MHC-I expression and presence of CD45+ immune cells in ATG7Δβ-cell islets and evaluated how impaired autophagy affects EndoC-βH1 HLA-I expression under basal and IFNα stimulated conditions. Lastly, we co-cultured ATG7Δβ-cell islet cells with diabetogenic BDC2.5 helper T cells and evaluated T cell activation. Results We found that all ATG7Δβ-cell mice developed diabetes between 11-15 weeks of age. Gene ontology analysis revealed a significant upregulation of pathways involved in inflammatory processes, response to ER stress, and the ER-associated degradation pathway. Interestingly, we also observed upregulation of proteins involved in MHC-I presentation, suggesting that defective β-cell autophagy may alter the immunopeptidome, or antigen repertoire, and enhance β-cell immune visibility. In support of this hypothesis, we observed increased MHC-I expression and CD45+ immune cells in ATG7Δβ-cell islets. We also demonstrate that HLA-I is upregulated in EndoC β-cells when autophagic degradation is inhibited. This effect was observed under both basal and IFNα stimulated conditions. Conversely, a stimulator of lysosome acidification/function, C381, decreased HLA-I expression. Lastly, we showed that in the presence of islet cells with defective autophagy, there is enhanced BDC2.5 T cell activation. Conclusions Our findings demonstrate that β-cell autophagy is critical to cell survival/function. Defective β-cell autophagy induces ER stress, alters pathways of antigen production, and enhances MHC-I/HLA-I presentation to surveilling immune cells. Overall, our results suggest that defects in autophagy make β-cells more susceptible to immune attack and destruction.
Collapse
Affiliation(s)
- Matthew C. Austin
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Charanya Muralidharan
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Saptarshi Roy
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Justin J. Crowder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jon D. Piganelli
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amelia K. Linnemann
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
13
|
Ullsten S, Østnes Hansen K, Petit GA, Hansen EH, Andersen JH. Promotion of beta cell proliferation through DYRK kinase inhibition using the marine natural product breitfussin C. Sci Rep 2025; 15:1247. [PMID: 39774736 PMCID: PMC11706957 DOI: 10.1038/s41598-025-85178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Pro-inflammatory cytokines, like interleukin-1 beta and interferon gamma, are known to activate signalling pathways causing pancreatic beta cell death and dysfunction, contributing to the onset of diabetes. Targeting cytokine signalling pathways offers a potential strategy to slow or even halt disease progression, reducing reliance on exogenous insulin and improving glucose regulation. This study explores the protective and proliferative effects of breitfussin C (BfC), a natural compound isolated from the Arctic marine hydrozoan Thuiaria breitfussi, on pancreatic beta cells exposed to pro-inflammatory cytokines. Using the beta cell line RIN-M5F, we assessed the protective effects of BfC through a MTS assay for cell viability, caspase 3/7 activity for apoptosis, and EdU incorporation and cell cycle distribution for proliferation. Additionally, we investigated BfC's inhibitory effects on the DYRK family of kinases using kinase activity and binding assays, western blotting, and docking simulations. Our findings reveal that BfC treatment effectively increases beta cell proliferation and counteracts cytokine-induced decrease in proliferation. The proliferative effect is associated with inhibition of DYRK kinases and a subsequent decrease in the cell cycle inhibitor p27KIP. These results suggest that BfC mediates beta cell-protective effect by promoting proliferation through DYRK inhibition, highlighting its potential as a molecular starting point for the development of a therapeutic agent against diabetes.
Collapse
Affiliation(s)
- Sara Ullsten
- MARBIO, UiT - The Arctic University of Norway, Breivika, 9037, Tromsø, Norway
| | - Kine Østnes Hansen
- MARBIO, UiT - The Arctic University of Norway, Breivika, 9037, Tromsø, Norway
| | | | - Espen Holst Hansen
- MARBIO, UiT - The Arctic University of Norway, Breivika, 9037, Tromsø, Norway
| | | |
Collapse
|
14
|
Nur’aeny N, Widiasta A, Novianti Y, Zakiawati D, Pratidina NB, Sufiawati I. Lower Serum IL-10 Linked to Oral Manifestations in Diabetes Patients. Diabetes Metab Syndr Obes 2025; 18:75-83. [PMID: 39802621 PMCID: PMC11725263 DOI: 10.2147/dmso.s492765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
Background Diabetes mellitus (DM) is a chronic disease that remains a global health problem with increasing prevalence, particularly in Indonesia. The presence of oral manifestations in patients with DM is influenced by changes in immune system function. Interleukin-10 (IL-10) is an inflammatory marker implicated in DM. However, no studies have investigated the differences in IL-10 levels between non-DM and DM patients with and without oral manifestations. Objective This study aimed to compare the serum levels of IL-10 between non-DM and DM patients with and without oral manifestations at Dr. Hasan Sadikin Hospital Bandung. Methodology This observational study used a cross-sectional design. A total of 88 serum samples that met the inclusion criteria were selected, consisting of 37 (42%) samples from non-DM patients, 35 (39.8%) samples from DM patients with oral manifestations, and 16 (18.2%) samples from DM patients without oral manifestations. Serum levels of IL-10 were measured using an enzyme-linked immunosorbent assay (ELISA) kit. Results Among the 35 DM patients with oral manifestations, xerostomia was the most common (80%). The mean serum IL-10 level was 0.93 pg/mL in non-DM patients, 0.80 pg/mL in DM patients with oral manifestations, and 1.08 pg/mL in DM patients without oral manifestations. Statistical analysis using the Kruskal-Wallis test showed a p-value of 0.008 (p ≤ 0.05), indicating a significant difference in serum levels of IL-10 between non-DM and DM patients with and without oral manifestations. Conclusion DM patients with oral manifestations had lower IL-10 serum levels compared to non-DM patients and DM patients without oral manifestations. These findings suggest that monitoring IL-10 levels could help identify diabetic patients at higher risk for oral complications.
Collapse
Affiliation(s)
- Nanan Nur’aeny
- Oral Medicine Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Ahmedz Widiasta
- Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Dr Hasan Sadikin Hospital, Bandung, Indonesia
| | - Yessy Novianti
- Oral Medicine Residency Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Dewi Zakiawati
- Oral Medicine Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Irna Sufiawati
- Oral Medicine Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
15
|
Girdhar K, Mine K, DaCosta JM, Atkinson MA, Ludvigsson J, Altindis E. Sex-specific cytokine, chemokine, and growth factor signatures in T1D patients and progressors. FASEB J 2024; 38:e70270. [PMID: 39704278 DOI: 10.1096/fj.202402354r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Numerous studies have reported altered cytokine levels in type 1 diabetes (T1D) patients, yet findings remain inconsistent. In this pilot study, we tested the hypothesis that circulating immune markers exhibit sex-based differences in T1D, both prior to and after disease onset. We analyzed 47-48 cytokine, chemokine, and growth factor levels in two cohorts. To assess post-disease differences, we analyzed serum samples from 25 controls and 25 T1D patients. To examine pre-disease progression, we utilized samples from 21 control children and 16 T1D progressors, collected at age 5 years before disease onset. Across all T1D patients and controls, only macrophage colony-stimulating factor and interleukin (IL)-6 showed significant differences. However, we identified notable alterations when comparing sex-age-matched controls and T1D samples. Female T1D patients exhibited lower levels of inflammatory cytokines (tumor necrosis factor-α, IL-6, IL-1a), Th2 cytokines (IL-4, IL-13), and chemokines (macrophage inflammatory protein (MIP)-1α, regulated upon activation, normal T cell expressed and secreted, MIP-3) compared to female controls, differences that were not observed in males. Notably, IL-22 was lower in female T1D patients compared to female controls, whereas it was higher in male T1D patients compared to male controls. Male T1D patients showed elevated levels of growth factors (epidermal growth factor, platelet-derived growth factor-AB/BB) compared to male controls. In T1D progressors, growth-regulated alpha was lower compared to controls in both sexes. Multiple regression analysis further revealed associations between cytokine levels and factors such as age, BMI, and breastfeeding duration. Overall, our findings serve as a proof of concept, highlighting the importance of sex-specific differences in T1D pathogenesis. However, follow-up studies with larger sample sizes are needed to validate and generalize these results.
Collapse
Affiliation(s)
- Khyati Girdhar
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | - Keiichiro Mine
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | - Jeffrey M DaCosta
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Crown Princess Victoria Children's Hospital, Linköping University, Linköping, Sweden
| | - Emrah Altindis
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
16
|
Chakraborty R, Mukherjee AK, Bala A. Interleukin-35: A key player managing pre-diabetes and chronic inflammatory type 1 autoimmune diabetes. World J Diabetes 2024; 15:2147-2151. [PMID: 39493554 PMCID: PMC11525726 DOI: 10.4239/wjd.v15.i10.2147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Interleukin-35 (IL-35) is a novel protein comprising IL-12α and IL-27β chains. The IL12A and EBI3 genes are responsible for its production. The study of IL-35 has experienced a substantial increase in interest in recent years, as demonstrated by many research papers. Recent clinical studies have shown that individuals who do not have a C-peptide have notably reduced amounts of IL-35 in their blood serum. This is accompanied by a drop in the percentage of IL-35+ Treg cells, regulatory B cells, and CD8+ FOXP3+ cells that produce IL-35. This article em-phasizes the potential significance of IL-35 expression in governing the immune response and its involvement in chronic inflammatory autoimmune diabetes in pancreatic inflammation. It demonstrates IL-35's ability to regulate cytokine proportions, modulate B cells, and protect against autoimmune diabetes. However, further investigation is necessary to ascertain the precise mechanism of IL-35, and meticulous planning is essential for clinical studies.
Collapse
Affiliation(s)
- Ratul Chakraborty
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Guwahati, Assam, India
| | - Ashis Kumar Mukherjee
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Guwahati, Assam, India
| | - Asis Bala
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India
| |
Collapse
|
17
|
Roy S, Pokharel P, Piganelli JD. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol Metab 2024; 88:101998. [PMID: 39069156 PMCID: PMC11342121 DOI: 10.1016/j.molmet.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Pravil Pokharel
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jon D Piganelli
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
18
|
Bakery HH, Hussein HAA, Ahmed OM, Abuelsaad ASA, Khalil RG. The potential therapeutic role of IL-35 in pathophysiological processes in type 1 diabetes mellitus. Cytokine 2024; 182:156732. [PMID: 39126765 DOI: 10.1016/j.cyto.2024.156732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
A chronic autoimmune condition known as type 1 diabetes mellitus (T1DM) has characteristics marked by a gradual immune-mediated deterioration of the β-cells that produce insulin and causes overt hyperglycemia. it affects more than 1.2 million kids and teenagers (0-19 years old). In both, the initiation and elimination phases of T1DM, cytokine-mediated immunity is crucial in controlling inflammation. T regulatory (Treg) cells, a crucial anti-inflammatory CD4+ T cell subset, secretes interleukin-35 (IL-35). The IL-35 has immunomodulatory properties by inhibiting pro-inflammatory cells and cytokines, increasing the secretion of interleukin-10 (IL-10) as well as transforming Growth Factor- β (TGF-β), along with stimulating the Treg and B regulatory (Breg) cells. IL-35, it is a possible target for cutting-edge therapies for cancers, inflammatory, infectious, and autoimmune diseases, including TIDM. Unanswered questions surround IL-35's function in T1DM. Increasing data suggests Treg cells play a crucial role in avoiding autoimmune T1DM. Throughout this review, we will explain the biological impacts of IL-35 and highlight the most recently progresses in the roles of IL-35 in treatment of T1DM; the knowledge gathered from these findings might lead to the development of new T1DM treatments. This review demonstrates the potential of IL-35 as an effective autoimmune diabetes inhibitor and points to its potential therapeutic value in T1DM clinical trials.
Collapse
Affiliation(s)
- Heba H Bakery
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Heba A A Hussein
- Faculty of Medicine, Egyptian Fellowship of Radiology, Beni-Suef University, Egypt
| | - Osama M Ahmed
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | | | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt.
| |
Collapse
|
19
|
Girdhar K, Mine K, DaCosta JM, Atkinson MA, Ludvigsson J, Altindis E. Sex-Specific Cytokine, Chemokine, and Growth Factor Signatures in T1D Patients and Progressors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611513. [PMID: 39282401 PMCID: PMC11398455 DOI: 10.1101/2024.09.05.611513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
While studies have reported altered levels of cytokines in type 1 diabetes (T1D) patients, the results are inconsistent, likely because of variable factors. This study tests the hypothesis that there are sex-based differences in cytokine levels in T1D, prior to and after disease onset. We analyzed 48 blood cytokine, chemokine, and growth factor levels using a multiplex assay. We found only two cytokines, M-CSF and IL-6, with significant differences between T1D patients (n=25) versus controls overall (n=25). However, we identified notable alterations when comparing sex-age-matched controls and T1D samples. Inflammatory cytokines (TNF-α, IL-6, IL-1a), Th2 cytokines (IL-4, IL-13), and chemokines (MIP-1α, RANTES, MIP-3) were lower in female T1D patients compared to female controls, but not in males. IL-22 was lower in female T1D patients compared to female controls, while it was higher in male T1D patients compared to male controls. In contrast, growth factors (EGF, PDGF-AB/BB) were higher in male T1D patients compared to male controls. In T1D progressors (children who developed the disease years after the sample collection, n=16-21), GROa was lower compared to controls in both sexes. Our findings underscore the importance of understanding sex-specific differences in T1D pathogenesis and their implications for developing personalized treatments.
Collapse
|
20
|
Ramaldes LAL, Dos Santos SS, Dualib PM, de Sa JR, Dib SA. Heterogeneous response of estimated insulin sensitivity indices to metformin in young individuals with type 1 diabetes and different phenotypes. Diabetol Metab Syndr 2024; 16:214. [PMID: 39218890 PMCID: PMC11367792 DOI: 10.1186/s13098-024-01451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
AIMS This study aimed to investigate whether the response to adding metformin to insulin in young adults with type 1 diabetes (T1D) differs according to weight phenotype and insulin sensitivity index. METHODS A prospective pilot study was conducted over 26 weeks in which insulin plus metformin (2 g/day) was administered to 35 individuals, ranging from normal weight (NW) to overweight (OW) to obese (OB) T1D individuals, to correlate insulin sensitivity indices and other clinical variables. RESULTS At the end of the follow-up period, all groups showed an increase in the eGDR (NW: 7.37 vs 8.16, p = 0.002; OW: 7.28 vs 8.24, p < 0.001; OB: 6.33 vs 7.52 p < 0.001). KITT and SEARCH SCORE improved only in the OB group (2.15 vs 3.14, p < 0.001 and 5.26 vs 5.72, p = 0.007, respectively). Furthermore, HbA1c and BMI were significantly greater in the OB group (- 0.62%, p < 0.001; - 1.12 kg/m2, p = 0.031, respectively). Regression analysis revealed that the serum levels of triglycerides and uric acid were significantly (0.059, p = 0.013; 0.076, p = 0.001) associated with insulin sensitivity indices. CONCLUSIONS The study showed that eGDR improved independently of basal weight after metformin treatment. However, the KITT and SEARCH indices improved only in the obese group. Triglycerides and uric acid are associated with insulin sensitivity indices. These results highlight the heterogeneity of the mechanisms underlying insulin resistance and its response to metformin in individuals with T1D.
Collapse
Affiliation(s)
- Luana A L Ramaldes
- Department of Medicine, Division of Endocrinology, Diabetes Center, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Caixa Postal 20266 CEP 04022-001, Brazil.
| | - Sarah S Dos Santos
- Department of Medicine, Division of Endocrinology, Diabetes Center, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Caixa Postal 20266 CEP 04022-001, Brazil
| | - Patricia M Dualib
- Department of Medicine, Division of Endocrinology, Diabetes Center, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Caixa Postal 20266 CEP 04022-001, Brazil
| | - Joao R de Sa
- Department of Medicine, Division of Endocrinology, Diabetes Center, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Caixa Postal 20266 CEP 04022-001, Brazil
- Division of Medicine-Endocrinology, ABC School of Medicine, São Paulo, Brazil
| | - Sérgio A Dib
- Department of Medicine, Division of Endocrinology, Diabetes Center, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Caixa Postal 20266 CEP 04022-001, Brazil
| |
Collapse
|
21
|
Collins J, Piscopio RA, Reyland ME, Johansen CG, Benninger RKP, Farnsworth NL. Cleavage of protein kinase c δ by caspase-3 mediates proinflammatory cytokine-induced apoptosis in pancreatic islets. J Biol Chem 2024; 300:107611. [PMID: 39074637 PMCID: PMC11381875 DOI: 10.1016/j.jbc.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
In type 1 diabetes (T1D), autoreactive immune cells infiltrate the pancreas and secrete proinflammatory cytokines that initiate cell death in insulin producing islet β-cells. Protein kinase C δ (PKCδ) plays a role in mediating cytokine-induced β-cell death; however, the exact mechanisms are not well understood. To address this, we used an inducible β-cell specific PKCδ KO mouse as well as a small peptide inhibitor of PKCδ. We identified a role for PKCδ in mediating cytokine-induced β-cell death and have shown that inhibiting PKCδ protects pancreatic β-cells from cytokine-induced apoptosis in both mouse and human islets. We determined that cytokines induced nuclear translocation and activity of PKCδ and that caspase-3 cleavage of PKCδ may be required for cytokine-mediated islet apoptosis. Further, cytokine activated PKCδ increases activity both of proapoptotic Bax with acute treatment and C-Jun N-terminal kinase with prolonged treatment. Overall, our results suggest that PKCδ mediates cytokine-induced apoptosis via nuclear translocation, cleavage by caspase-3, and upregulation of proapoptotic signaling in pancreatic β-cells. Combined with the protective effects of PKCδ inhibition with δV1-1, the results of this study will aid in the development of novel therapies to prevent or delay β-cell death and preserve β-cell function in T1D.
Collapse
Affiliation(s)
- Jillian Collins
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Robert A Piscopio
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chelsea G Johansen
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Richard K P Benninger
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Nikki L Farnsworth
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
22
|
Chakraborty R, Mukherjee AK, Bala A. Breakthroughs in road mapping IL-35 mediated immunotherapy for type-1 and autoimmune diabetes mellitus. Cytokine 2024; 181:156692. [PMID: 38986251 DOI: 10.1016/j.cyto.2024.156692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
IL-35 is a recently discovered protein made up of IL-12α and IL-27β chains. It is encoded by IL12A and EBI3 genes. Interest in researching IL-35 has significantly increased in recent years, as evidenced by numerous scientific publications. Diabetes is on the rise globally, causing more illness and death in developing countries. The International Diabetes Federation (IDF) reports that diabetes is increasingly affecting children and teenagers, with varying rates across different regions. Therefore, scientists seek new diabetes treatments despite the growth of drug research. Recent research aims to emphasize IL-35 as a critical regulator of diabetes, especially type 1 and autoimmune diabetes. This review provides an overview of recent research on IL-35 and its link to diabetes and its associated complications. Studies suggest that IL-35 can offer protection against type-1 diabetes and autoimmune diabetes by regulating macrophage polarization, T-cell-related cytokines, and regulatory B cells (Bregs). This review will hopefully assist biomedical scientists in exploring the potential role of IL-35-mediated immunotherapy in treating diabetes. However, further research is necessary to determine the exact mechanism and plan clinical trials.
Collapse
Affiliation(s)
- Ratul Chakraborty
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati 781035, Assam, India
| | - Asis Bala
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
23
|
Cano R, Bermúdez V, Galban N, Garrido B, Santeliz R, Gotera MP, Duran P, Boscan A, Carbonell-Zabaleta AK, Durán-Agüero S, Rojas-Gómez D, González-Casanova J, Díaz-Vásquez W, Chacín M, Angarita Dávila L. Dietary Polyphenols and Gut Microbiota Cross-Talk: Molecular and Therapeutic Perspectives for Cardiometabolic Disease: A Narrative Review. Int J Mol Sci 2024; 25:9118. [PMID: 39201807 PMCID: PMC11354808 DOI: 10.3390/ijms25169118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The intricate interplay between the gut microbiota and polyphenols has emerged as a captivating frontier in understanding and potentially harnessing the therapeutic potential of these bioactive compounds. Phenolic compounds, renowned for their antioxidant, anti-inflammatory, antidiabetic, and anticancer properties, are subject to intricate transformations within the gut milieu, where the diverse microbial ecosystem exerts profound effects on their metabolism and bioavailability. Conversely, polyphenols exhibit a remarkable capacity to modulate the composition and activity of the gut microbiota, fostering a bidirectional relationship that extends beyond mere nutrient processing. This symbiotic interaction holds significant implications for human health, particularly in cardiometabolic diseases such as diabetes mellitus, metabolic-dysfunction-associated steatotic liver disease, and cardiovascular disease. Through a comprehensive exploration of molecular interactions, this narrative review elucidates the reciprocal dynamics between the gut microbiota and polyphenols, unveiling novel avenues for therapeutic intervention in cardiometabolic disorders. By unravelling the intricate cross-talk between these two entities, this review underscores the multifaceted roles of polyphenols in overall health and the pivotal role of gut microbiota modulation as a promising therapeutic strategy in mitigating the burden of cardiometabolic diseases.
Collapse
Affiliation(s)
- Raquel Cano
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Nestor Galban
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Bermary Garrido
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Raquel Santeliz
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Maria Paula Gotera
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Pablo Duran
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Arturo Boscan
- Escuela de Medicina, Facultad de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela;
| | | | - Samuel Durán-Agüero
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 7511111, Chile
| | - Diana Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile;
| | - Jorge González-Casanova
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Waldo Díaz-Vásquez
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 7511111, Chile
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Lissé Angarita Dávila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| |
Collapse
|
24
|
Zhou Z, Mukundan N, Zhang JA, Wu Y, Zhang Q, Wang D, Fang RH, Gao W, Zhang L. Macrophage-Mimicking Cellular Nanoparticles Scavenge Proinflammatory Cytokines in Specimens of Patients with Inflammatory Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401423. [PMID: 38884169 PMCID: PMC11336921 DOI: 10.1002/advs.202401423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Indexed: 06/18/2024]
Abstract
Effectively neutralizing inflammatory cytokines is crucial for managing a variety of inflammatory disorders. Current techniques that target only a subset of cytokines often fall short due to the intricate nature of redundant and compensatory cytokine networks. A promising solution to this challenge is using cell membrane-coated nanoparticles (CNPs). These nanoparticles replicate the complex interactions between cells and cytokines observed in disease pathology, providing a potential avenue for multiplex cytokine scavenging. While the development of CNPs using experimental animal models has shown great promise, their effectiveness in scavenging multiple cytokines in human diseases has yet to be demonstrated. To bridge this gap, this study selected macrophage membrane-coated CNPs (MФ-CNPs) and assessed their ability to scavenge inflammatory cytokines in serum samples from patients with COVID-19, sepsis, acute pancreatitis, or type-1 diabetes, along with synovial fluid samples from patients with rheumatoid arthritis. The results show that MФ-CNPs effectively scavenge critical inflammatory cytokines, including interleukin (IL)-6, IL-8, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α, in a dose-dependent manner. Overall, this study demonstrates MФ-CNPs as a multiplex cytokine scavenging formulation with promising applications in clinical settings to treat a range of inflammatory disorders.
Collapse
Affiliation(s)
- Zhidong Zhou
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Nilesh Mukundan
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Jiayuan Alex Zhang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - You‐Ting Wu
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Qiangzhe Zhang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Dan Wang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Ronnie H. Fang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Weiwei Gao
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Liangfang Zhang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
25
|
Polega J. The Role of Cytokines and T Cells as Mediators of Inflammatory Pathology in Type 1 Diabetes and COVID-19. Pediatr Ann 2024; 53:e264-e268. [PMID: 38949876 DOI: 10.3928/19382359-20240502-05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, reports of individuals experiencing new-onset type 1 diabetes (T1D) began to appear in the literature. This spurred subsequent epidemiological studies that demonstrated an increase in new diagnosis of T1D compared to prepandemic. Development of T1D is characterized by the development of an inappropriate T cell response directed against pancreatic beta-cells, leading to eventual loss of insulin secretion. This T cell response occurs in genetically susceptible individuals and may be triggered by viral illnesses. Abnormal cytokine production is another element of the pathogenesis of T1D. Infection with severe acute respiratory syndrome related coronavirus 2 induces a profound increase in the production of inflammatory cytokines and causes significant T-cell dysregulation. These disruptions of the immune system may be linked to the development of T1D following COVID-19. [Pediatr Ann. 2024;53(7):e264-e268.].
Collapse
|
26
|
Nabi-Afjadi M, Ostadhadi S, Liaghat M, Pasupulla AP, Masoumi S, Aziziyan F, Zalpoor H, Abkhooie L, Tarhriz V. Revolutionizing type 1 diabetes management: Exploring oral insulin and adjunctive treatments. Biomed Pharmacother 2024; 176:116808. [PMID: 38805967 DOI: 10.1016/j.biopha.2024.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition that affects millions of people worldwide. Insulin pumps or injections are the standard treatment options for this condition. This article provides a comprehensive overview of the several type 1 diabetes treatment options, focusing on oral insulin. The article is divided into parts that include immune-focused treatments, antigen vaccination, cell-directed interventions, cytokine-directed interventions, and non-immunomodulatory adjuvant therapy. Under the section on non-immunomodulatory adjunctive treatment, the benefits and drawbacks of medications such as metformin, amylin, sodium-glucose cotransporter inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1 Ras), and verapamil are discussed. The article also discusses the advantages of oral insulin, including increased patient compliance and more dependable and regular blood sugar control. However, several variables, including the enzymatic and physical barriers of the digestive system, impair the administration of insulin via the mouth. Researchers have looked at a few ways to get over these challenges, such as changing the structure of the insulin molecule, improving absorption with the use of absorption enhancers or nanoparticles, and taking oral insulin together with other medications. Even with great advancements in the use of these treatment strategies, T1D still needs improvement in the therapeutic difficulties. Future studies in these areas should focus on creating tailored immunological treatments, looking into combination medications, and refining oral insulin formulations in an attempt to better control Type 1 Diabetes. The ultimate objective is to create accurate, customized strategies that will enhance glycemic management and the quality of life for individuals with the condition.
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Samane Ostadhadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Ajay Prakash Pasupulla
- Oral and Maxillofacial Pathology, School of Medicine, Colllege of health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Sajjad Masoumi
- Department of Medical Biotechnology, National institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
27
|
Özer Y, Cansever MŞ, Turan H, Bayramoğlu E, Bingöl Aydın D, İşat E, Ceyhun E, Zubarioğlu T, Aktuğlu Zeybek AÇ, Kıykım E, Evliyaoğlu O. Pteridine and tryptophan pathways in children with type 1 diabetes: Isoxanthopterin as an indicator of endothelial dysfunction. J Pharm Biomed Anal 2024; 243:116072. [PMID: 38437786 DOI: 10.1016/j.jpba.2024.116072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
AIM Type 1 diabetes (T1D) and its complications are known to be associated with oxidative stress. Pteridine derivatives and indoleamine 2,3-dioxygenase (IDO) activity can be used as biomarkers in the evaluation of oxidative stress. In this study, our aim is to compare the concentrations of serum and urinary pteridine derivatives, as well as serum IDO activity, in children and adolescents diagnosed with T1D and those in a healthy control group. METHOD A cross-sectional study was performed and included 93 patients with T1D and 71 healthy children. Serum and urine biopterin, neopterin, monapterin, pterin, isoxanthopterin, and pterin-6-carboxylic acid (6PTC) and serum tryptophan and kynurenine levels were analyzed and compared with healthy controls. High-performance liquid chromatography was used for the analysis of pteridine derivatives, tryptophan, and kynurenine. Xanthine oxidase (XO) activity, a marker of oxidative stress, was defined by measurement of serum and urine isoxanthopterin. As an indicator of indolamine 2,3-dioxygenase (IDO) activity, the ratio of serum kynurenine/tryptophan was used. RESULTS Serum isoxanthopterin and tryptophan concentrations were increased, and serum 6PTC concentration was decreased in children with T1D (p=0.01, p=0.021, p<0.001, respectively). In children with T1D, IDO activity was not different from healthy controls (p>0.05). Serum neopterin level and duration of diabetes were weakly correlated (p=0.045, r=0.209); urine neopterin/creatinine and isoxanthopterin/creatinine levels were weakly correlated with HbA1c levels (p=0.005, r=0.305; p=0.021, r=0.249, respectively). Urine pterin/creatinine level negatively correlated with body mass index-SDS. (p=0.015, r=-0.208). CONCLUSION We found for the first time that isoxanthopterin levels increased and 6PTC levels decreased in children and adolescents with T1D. Elevated isoxanthopterin levels suggest that the XO activity is increased in TID. Increased XO activity may be an indicator of vascular complications reflecting T1D-related endothelial dysfunction.
Collapse
Affiliation(s)
- Yavuz Özer
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pediatric Endocrinology, Istanbul, Turkey.
| | - Mehmet Şerif Cansever
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department Metabolic Diseases and Nutrition, Istanbul, Turkey
| | - Hande Turan
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Elvan Bayramoğlu
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Dilek Bingöl Aydın
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Esra İşat
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department Metabolic Diseases and Nutrition, Istanbul, Turkey
| | - Emre Ceyhun
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pediatrics, Istanbul, Turkey
| | - Tanyel Zubarioğlu
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department Metabolic Diseases and Nutrition, Istanbul, Turkey
| | - Ayşe Çiğdem Aktuğlu Zeybek
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department Metabolic Diseases and Nutrition, Istanbul, Turkey
| | - Ertuğrul Kıykım
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department Metabolic Diseases and Nutrition, Istanbul, Turkey
| | - Olcay Evliyaoğlu
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pediatric Endocrinology, Istanbul, Turkey
| |
Collapse
|
28
|
Malekahmadi S, Asri N, Forouzesh F, Saneifard H, Rezaei-Tavirani M, Rostami-Nejad M. Evaluation of genetic association between celiac disease and type 1 diabetes. J Diabetes Metab Disord 2024; 23:1329-1336. [PMID: 38932832 PMCID: PMC11196513 DOI: 10.1007/s40200-024-01429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/27/2024] [Indexed: 06/28/2024]
Abstract
Purpose Celiac disease (CD) is a chronic autoimmune disorder with a common genetic pathogenesis with type 1 diabetes (T1D). This study aimed to investigate the immune regulation in patients with both CD and T1D. Methods A total of 29 CD patients, 29 T1D patients, and 16 patients with both CD and T1D, along with 30 healthy controls (HCs) were included. The mRNA expression levels of TNF-α, IL-6, IL-2, and CTLA4 were evaluated in peripheral blood samples. Results The results showed that in patients with CD, T1D and CD/T1D, TNF-α mRNA levels were significantly increased (P = 0.0009, 0.0001, and 0.008, respectively), while CTLA4 mRNA levels were significantly decreased in them compared to the control group (P = 0.0009, 0.0001, and 0.004, respectively). IL-2 mRNA expression levels were also significantly higher in CD (P = 0.01) and comorbid CD/T1D (P = 0.01) patients than in the control group. There was no significant difference in terms of IL-6 expression between studied groups (P > 0.05). Conclusions TNF-α mRNA exhibited potential diagnostic value for distinguishing CD, T1D, and comorbid CD/T1D patients from HCs. These findings contribute to our understanding of the shared genetic factors and potential mechanisms underlying CD and T1D, which can aid in improved diagnostic methods and treatment approaches for these conditions.
Collapse
Affiliation(s)
- Sayyad Malekahmadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran MedicalSciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran MedicalSciences, Islamic Azad University, Tehran, Iran
| | - Hedyeh Saneifard
- Pediatric Endocrinology and Metabolism Department, Faculty of Medicine, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Reis M, Teixeira A, Cardoso J, Borges T, Caldas Afonso A, Correia-Costa L. Association between proinflammatory cytokines and arterial stiffness in type 1 diabetic adolescents. J Pediatr Endocrinol Metab 2024; 37:405-412. [PMID: 38592062 DOI: 10.1515/jpem-2023-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/03/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES Type 1 diabetes mellitus is considered a state of chronic low-grade inflammation and activation of the innate immune system, which is regulated by several proinflammatory cytokines and other acute-phase reactants. Arterial stiffness, a dynamic property of the vessels evaluated by the determination of pulse wave velocity (PWV), is increased in diabetic patients and is associated with microvascular and macrovascular complications of diabetes and higher cardiovascular risk. In the present study, we aimed to compare the proinflammatory state and arterial stiffness in diabetic and non-diabetic adolescents, and to characterize the association between these two parameters. METHODS Twenty-three type 1 diabetic patients, aged 12-16 years, followed at a tertiary center, and 23 adolescents nonoverweighted healthy controls, from a Portuguese birth-cohort, were included in the present analysis. Anthropometry, blood pressure, glycemic control data, and lipid parameters were collected. Arterial stiffness was evaluated by carotid-femoral pulse wave velocity. Proinflammatory cytokines' concentrations (TNF-α, IL-1β, IL-6, IL-10, IFN-γ, and GM-CSF) were quantified by multiplex immunoassays using a Luminex 200 analyzer. RESULTS There were no statistically significant differences between the proinflammatory cytokines' concentrations in the two groups. PWV [6.63 (6.23-7.07) vs. 6.07 (5.15-6.65) m/s, p=0.015] was significantly higher in the diabetic group. PWV was negatively correlated with GM-CSF (ρ=-0.437, p=0.037) in the diabetic group. A linear association was found between diabetes duration and PWV (with PWV increasing by 0.094 m/s (95 % confidence interval, 0.019 to 0.169) per month of disease duration). In the diabetic group, HbA1c was negatively correlated with IL-10 (ρ=-0.473, p=0.026). Negative correlations were also found between IL-10 and total, HDL, and LDL cholesterol only in the diabetic group. CONCLUSIONS Diabetic adolescent patients present higher PWV, when compared to their healthy counterparts, even though we could not find differences in the levels of several proinflammatory cytokines between the two groups. The negative correlation found between IL-10 and HbA1c might translate a protective counterbalance effect of this anti-inflammatory cytokine, which might also explain the negative correlations found with blood lipids. Further studies are needed to better clarify the association between arterial stiffness and the proinflammatory milieu of diabetes.
Collapse
Affiliation(s)
- Mónica Reis
- Instituto de Ciências Biomédicas Abel Salazar, 89239 Universidade do Porto , Porto, Portugal
- 522166 Centro Hospitalar Universitário de Santo António , Porto, Portugal
| | - Ana Teixeira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Division of Pediatric Nephrology, Centro Materno-Infantil do Norte, 522166 Centro Hospitalar Universitário do Porto , Porto, Portugal
| | - Juliana Cardoso
- Division of Pediatrics, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Teresa Borges
- Instituto de Ciências Biomédicas Abel Salazar, 89239 Universidade do Porto , Porto, Portugal
- Division of Pediatric Endocrinology, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Alberto Caldas Afonso
- Instituto de Ciências Biomédicas Abel Salazar, 89239 Universidade do Porto , Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Division of Pediatric Nephrology, Centro Materno-Infantil do Norte, 522166 Centro Hospitalar Universitário do Porto , Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- CAC ICBAS-CHP - Centro Académico Clínico Instituto de Ciências Biomédicas Abel Salazar - Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Liane Correia-Costa
- Instituto de Ciências Biomédicas Abel Salazar, 89239 Universidade do Porto , Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Division of Pediatric Nephrology, Centro Materno-Infantil do Norte, 522166 Centro Hospitalar Universitário do Porto , Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- CAC ICBAS-CHP - Centro Académico Clínico Instituto de Ciências Biomédicas Abel Salazar - Centro Hospitalar Universitário de Santo António, Porto, Portugal
| |
Collapse
|
30
|
Jin Z, Zhang Q, Liu K, Wang S, Yan Y, Zhang B, Zhao L. The association between interleukin family and diabetes mellitus and its complications: An overview of systematic reviews and meta-analyses. Diabetes Res Clin Pract 2024; 210:111615. [PMID: 38513987 DOI: 10.1016/j.diabres.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE To evaluate and summarize the association between interleukin (IL) concentrations and diabetes mellitus (DM) and its complications. METHODS Meta-analyses and eligible individual studies of observational studies investigating the associations between IL and DM and its complications were included. The random-effects model was used to estimate the summary effect, and the heterogeneity among studies was assessed using the Q-statistic and the I2 metric; The Egger's regression and the χ2 test were used to test for small study effects and excess significance bias. RESULTS This overview identified 34 meta-analyses that investigated the association between IL concentrations and DM and its complications. Meta-analyses of prospective studies indicated that elevated circulating IL-6 and IL-1β had predictive value for the incident of type 2 diabetes mellitus (T2DM), type 1 diabetes mellitus (T1DM) as well as gestational diabetes mellitus (GDM), and the overall Hazard Ratio (HR) of T2DM was 1.28 (95 % CI: 1.17, 1.40; P<0.001) per 1 log pg/ml increment in IL-6 levels, however, there was no correlation between circulating IL-10 levels and DM. Meanwhile, the increased level of IL-6 was significantly associated several diabetic complications (Diabetic kidney disease[DKD], diabetic peripheral neuropathy[DPN], and cognitive impairment[CI]), and for the diabetic retinopathy (DR), the levels of IL-1β, IL-8 and IL-10 in the aqueous humor and vitreous humor, but not the blood were significantly correlated with it. CONCLUSION Multiple ILs, such as the IL-6 and IL-1β, are definitively linked to DM and its complications, and they may be new targets for the diagnosis and treatment, but stronger evidence needs to be confirmed by prospective studies with larger sample sizes and longer observation periods.
Collapse
Affiliation(s)
- Zishan Jin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100105, China
| | - Qiqi Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ke Liu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Sicheng Wang
- Beijing University of Chinese Medicine, Beijing 100105, China
| | - Yan Yan
- Health Construction Administration Center, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Linhua Zhao
- Beijing University of Chinese Medicine, Beijing 100105, China.
| |
Collapse
|
31
|
Ali A, Flatt PR, Irwin N. Gut-Derived Peptide Hormone Analogues and Potential Treatment of Bone Disorders in Obesity and Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2024; 17:11795514241238059. [PMID: 38486712 PMCID: PMC10938612 DOI: 10.1177/11795514241238059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Obesity and diabetes mellitus are prevalent metabolic disorders that have a detrimental impact on overall health. In this regard, there is now a clear link between these metabolic disorders and compromised bone health. Interestingly, both obesity and diabetes lead to elevated risk of bone fracture which is independent of effects on bone mineral density (BMD). In this regard, gastrointestinal (GIT)-derived peptide hormones and their related long-acting analogues, some of which are already clinically approved for diabetes and/or obesity, also seem to possess positive effects on bone remodelling and microarchitecture to reduce bone fracture risk. Specifically, the incretin peptides, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), as well as glucagon-like peptide-2 (GLP-2), exert key direct and/or indirect benefits on bone metabolism. This review aims to provide an initial appraisal of the relationship between obesity, diabetes and bone, with a focus on the positive impact of these GIT-derived peptide hormones for bone health in obesity/diabetes. Brief discussion of related peptides such as parathyroid hormone, leptin, calcitonin and growth hormone is also included. Taken together, drugs engineered to promote GIP, GLP-1 and GLP-2 receptor signalling may have potential to offer therapeutic promise for improving bone health in obesity and diabetes.
Collapse
Affiliation(s)
- Asif Ali
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
32
|
Cobb J, Rawson J, Gonzalez N, Singer M, Kandeel F, Husseiny MI. Mechanism of Action of Oral Salmonella-Based Vaccine to Prevent and Reverse Type 1 Diabetes in NOD Mice. Vaccines (Basel) 2024; 12:276. [PMID: 38543910 PMCID: PMC10975319 DOI: 10.3390/vaccines12030276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2025] Open
Abstract
A combination therapy of preproinsulin (PPI) and immunomodulators (TGFβ+IL10) orally delivered via genetically modified Salmonella and anti-CD3 promoted glucose balance in in NOD mice with recent onset diabetes. The Salmonella bacteria were modified to express the diabetes-associated antigen PPI controlled by a bacterial promoter in conjunction with over-expressed immunomodulating molecules. The possible mechanisms of action of this vaccine to limit autoimmune diabetes remained undefined. In mice, the vaccine prevented and reversed ongoing diabetes. The vaccine-mediated beneficial effects were associated with increased numbers of antigen-specific CD4+CD25+Foxp3+ Tregs, CD4+CD49b+LAG3+ Tr1-cells, and tolerogenic dendritic-cells (tol-DCs) in the spleens and lymphatic organs of treated mice. Despite this, the immune response to Salmonella infection was not altered. Furthermore, the vaccine effects were associated with a reduction in islet-infiltrating lymphocytes and an increase in the islet beta-cell mass. This was associated with increased serum levels of the tolerogenic cytokines (IL10, IL2, and IL13) and chemokine ligand 2 (CCL2) and decreased levels of inflammatory cytokines (IFNγ, GM-CSF, IL6, IL12, and TNFα) and chemokines (CXCL1, CXCL2, and CXCL5). Overall, the data suggest that the Salmonella-based vaccine modulates the immune response, reduces inflammation, and promotes tolerance specifically to an antigen involved in autoimmune diabetes.
Collapse
Affiliation(s)
- Jacob Cobb
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohamed I. Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
33
|
López-González JA, Martínez-Soto JM, Avila-Cervantes C, Mata-Pineda AL, Álvarez-Hernández G, Álvarez-Meza JB, Bolado-Martínez E, Candia-Plata MDC. Evaluation of Systemic Inflammation Before and After Standard Anti-tuberculosis Treatment in Patients With Active Pulmonary Tuberculosis and Diabetes Mellitus. Cureus 2024; 16:e55391. [PMID: 38562330 PMCID: PMC10984244 DOI: 10.7759/cureus.55391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Background Diabetes mellitus (DM) is a common comorbidity of active pulmonary tuberculosis (APTB) that increases the risk of treatment failure during anti-tuberculosis chemotherapy. Evaluating systemic inflammatory response could help determine differences in response to treatment between APTB patients and those with APTB and DM. Methodology To explore changes in systemic inflammation, measured by a set of inflammatory mediators in subjects with APTB and TBDM before and after six months of anti-tuberculosis chemotherapy, 30 APTB and nine TBDM subjects underwent cytokine testing, including interleukin (IL)-6, IL-8, IL-10, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta 1 (TGF-β1) by enzyme-linked immunosorbent assay, C-reactive protein by nephelometry, and sialic acid by colorimetric assay at baseline and following six months of standard anti-tuberculosis treatment. Sputum smear microscopy or molecular biology (Xpert MTB/RIF) was used for diagnosis, and sputum smear microscopy was performed monthly during the treatment of the patient with pulmonary tuberculosis to evaluate his evolution. Principal component analysis examined changes in the inflammatory status. Results Both groups showed negative sputum smear microscopy in the sixth month after starting anti-tuberculosis chemotherapy. TGF-β1 was found to be significantly higher in subjects with TBDM before treatment compared to APTB patients (p<0.001), and systemic inflammation continued only in TBDM subjects after treatment (accumulation and persistence of inflammatory mediators like IL-6, IL-8, IL-10, IFN-γ, TNF-α, TGF-β1, C-reactive protein, and sialic acid in blood). On the other hand, the mediators IFN-γ, C-reactive protein, and total sialic acid were found to be most influential in distinguishing pre- and post-treatment inflammatory response in subjects with APTB without DM. Conclusions Inflammatory mediators analyzed in combination, including IFN-γ, CRP, and total sialic acid, may be useful in evaluating the systemic inflammatory response in subjects with APTB and TBDM before and after anti-tuberculosis treatment. Determining these mediators revealed persistent systemic inflammation in TBDM subjects after six months of standard tuberculosis treatment, despite negative sputum smear microscopy results and good glycemic control. This suggests a need for inflammation-modulating therapies during tuberculosis control. Finally, monitoring sputum smear microscopy results alongside the determination of proposed inflammatory mediators (IFN-γ, CRP, and total sialic acid) are effective in evaluating the response to anti-tuberculosis treatment in APTB subjects without DM, warranting further investigation.
Collapse
|
34
|
Dabiri H, Sadeghizadeh M, Ziaei V, Moghadasi Z, Maham A, Hajizadeh-Saffar E, Habibi-Anbouhi M. Development of an ostrich-derived single-chain variable fragment (scFv) against PTPRN extracellular domain. Sci Rep 2024; 14:3689. [PMID: 38355744 PMCID: PMC10866909 DOI: 10.1038/s41598-024-53386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
In type 1 diabetes, the immune system destroys pancreatic beta cells in an autoimmune condition. To overcome this disease, a specific monoclonal antibody that binds to pancreatic beta cells could be used for targeted immunotherapy. Protein tyrosine phosphatase receptor N (PTPRN) is one of the important surface antigen candidates. Due to its high sequence homology among mammals, so far, no single-chain monoclonal antibody has been produced against this receptor. In this study, we developed a novel single-chain variable fragment (scFv) against the PTPRN extracellular domain. To this aim, ostrich species was used as a host is far phylogenetically birds from mammals to construct a phage display library for the first time. An ostrich-derived scfv phage display library was prepared and biopanning steps were done to enrich and screen for isolating the best anti-PTPRN binders. An scFv with appropriate affinity and specificity to the PTPRN extracellular domain was selected and characterized by ELISA, western blotting, and flow cytometry. The anti-PTPRN scFv developed in this study could be introduced as an effective tool that can pave the way for the creation of antibody-based targeting systems in cooperation with the detection and therapy of type I diabetes.
Collapse
Affiliation(s)
- Hamed Dabiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Vahab Ziaei
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Moghadasi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Maham
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | | |
Collapse
|
35
|
Novianti Y, Nur'aeny N. Exploring Interleukin-10 Levels in Diabetes Patients with and without Oral Diseases: A Systematic Review. J Inflamm Res 2024; 17:541-552. [PMID: 38313209 PMCID: PMC10838512 DOI: 10.2147/jir.s449546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/23/2024] [Indexed: 02/06/2024] Open
Abstract
Aim Interleukin-10 (IL-10) is a cytokine that plays an important role in the progression of diabetes mellitus (DM). Oral diseases were more common in diabetics than in non-diabetics. The aim of this review is to identify IL-10 levels in diabetic patients with and without oral diseases. Methods A systematic review was conducted based on the PRISMA guidelines. Three databases (PubMed, Cochrane Library, and Science Direct) were used to search for articles up to November 2023 for studies on the measurement of IL-10 in diabetics with and without oral disease. The criteria were limited to human studies and full-text in English only. The outcome was the value of IL-10. The study was quality-graded using the Risk of Bias Assessment Tool for Non-randomized Studies (RoBANS). Results There were eleven articles that met the eligibility criteria for analysis. Four articles discovered higher IL-10 levels, while seven articles discovered lower IL-10 levels in diabetes patients with oral diseases compared with each control group. Conclusion Most studies showed lower IL-10 levels in diabetic patients with oral diseases compared with the control group.
Collapse
Affiliation(s)
- Yessy Novianti
- Oral Medicine Residency Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Nanan Nur'aeny
- Oral Medicine Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
36
|
Wołoszyn-Durkiewicz A, Iwaszkiewicz-Grześ D, Świętoń D, Kujawa MJ, Jankowska A, Durawa A, Glasner P, Trzonkowski P, Glasner L, Szurowska E, Myśliwiec M. The Complex Network of Cytokines and Chemokines in Pediatric Patients with Long-Standing Type 1 Diabetes. Int J Mol Sci 2024; 25:1565. [PMID: 38338843 PMCID: PMC10855710 DOI: 10.3390/ijms25031565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Type 1 diabetes (T1D) is a progressive disorder leading to the development of microangiopathies and macroangiopathies. Numerous cytokines and chemokines are involved in the pathogenesis of T1D complications. The study aimed to assess the presence of complications in patients with long-standing T1D and its relationship with serum biomarker concentrations. We examined 52 T1D subjects, with a disease duration ≥4 years and 39 healthy controls. The group of T1D patients was further divided into subgroups based on the duration of the disease (<7 years and ≥7 years) and the metabolic control assessed by the HbAlc level (<8% and ≥8%). We used Luminex Technology to assess a wide range of biomarker concentrations. A 24 h urine test was done to evaluate the rate of albuminuria. Optical coherence tomography (OCT) was conducted to detect early retinopathic changes. Subclinical atherosclerosis was assessed by measuring the carotid intima-media thickness (IMT). T1D patients showed remarkably higher concentrations of EGF, eotaxin/CCL11, MDC/CCL22, sCD40L, TGF-α, and TNF-α. Moreover, we reported statistically significant correlations between cytokines and IMT. Biomarker concentrations depend on numerous factors such as disease duration, metabolic control, and the presence of complications. Although the majority of pediatric T1D patients do not present signs of overt complications, it is indispensable to conduct the screening for angiopathies already in childhood, as its early recognition may attenuate the further progression of complications.
Collapse
Affiliation(s)
- Anna Wołoszyn-Durkiewicz
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Dorota Iwaszkiewicz-Grześ
- Department of Medical Immunology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (D.I.-G.); (P.T.)
| | - Dominik Świętoń
- 2nd Department of Radiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (D.Ś.); (A.J.); (A.D.); (E.S.)
| | - Mariusz J. Kujawa
- 2nd Department of Radiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (D.Ś.); (A.J.); (A.D.); (E.S.)
| | - Anna Jankowska
- 2nd Department of Radiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (D.Ś.); (A.J.); (A.D.); (E.S.)
| | - Agata Durawa
- 2nd Department of Radiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (D.Ś.); (A.J.); (A.D.); (E.S.)
| | - Paulina Glasner
- Department of Ophthalmology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (P.G.); (L.G.)
- Department of Anesthesiology and Intensive Care, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (D.I.-G.); (P.T.)
| | - Leopold Glasner
- Department of Ophthalmology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (P.G.); (L.G.)
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (D.Ś.); (A.J.); (A.D.); (E.S.)
| | - Małgorzata Myśliwiec
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| |
Collapse
|
37
|
Kondegowda NG, Filipowska J, Do JS, Leon-Rivera N, Li R, Hampton R, Ogyaadu S, Levister C, Penninger JM, Reijonen H, Levy CJ, Vasavada RC. RANKL/RANK is required for cytokine-induced beta cell death; osteoprotegerin, a RANKL inhibitor, reverses rodent type 1 diabetes. SCIENCE ADVANCES 2023; 9:eadf5238. [PMID: 37910614 PMCID: PMC10619938 DOI: 10.1126/sciadv.adf5238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Treatment for type 1 diabetes (T1D) requires stimulation of functional β cell regeneration and survival under stress. Previously, we showed that inhibition of the RANKL/RANK [receptor activator of nuclear factor kappa Β (NF-κB) ligand] pathway, by osteoprotegerin and the anti-osteoporotic drug denosumab, induces rodent and human β cell proliferation. We demonstrate that the RANK pathway mediates cytokine-induced rodent and human β cell death through RANK-TRAF6 interaction and induction of NF-κB activation. Osteoprotegerin and denosumab protected β cells against this cytotoxicity. In human immune cells, osteoprotegerin and denosumab reduce proinflammatory cytokines in activated T-cells by inhibiting RANKL-induced activation of monocytes. In vivo, osteoprotegerin reversed recent-onset T1D in nonobese diabetic/Ltj mice, reduced insulitis, improved glucose homeostasis, and increased plasma insulin, β cell proliferation, and mass in these mice. Serum from T1D subjects induced human β cell death and dysfunction, but not α cell death. Osteoprotegerin and denosumab reduced T1D serum-induced β cell cytotoxicity and dysfunction. Inhibiting RANKL/RANK could have therapeutic potential.
Collapse
Affiliation(s)
- Nagesha Guthalu Kondegowda
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joanna Filipowska
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeong-su Do
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Nancy Leon-Rivera
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Rosemary Li
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rollie Hampton
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Selassie Ogyaadu
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Camilla Levister
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Josef M. Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Helena Reijonen
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Carol J. Levy
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rupangi C. Vasavada
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
38
|
Thomaidou S, Munoz Garcia A, de Lange S, Gan J, van der Slik AR, Hoeben RC, Roep BO, Carlotti F, Zaldumbide A. IFNɣ but not IFNα increases recognition of insulin defective ribosomal product-derived antigen to amplify islet autoimmunity. Diabetologia 2023; 66:2075-2086. [PMID: 37581620 PMCID: PMC10542729 DOI: 10.1007/s00125-023-05991-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
AIMS/HYPOTHESIS The inflammatory milieu characteristic of insulitis affects translation fidelity and generates defective ribosomal products (DRiPs) that participate in autoimmune beta cell destruction in type 1 diabetes. Here, we studied the role of early innate cytokines (IFNα) and late immune adaptive events (IFNɣ) in insulin DRiP-derived peptide presentation to diabetogenic CD8+ T cells. METHODS Single-cell transcriptomics of human pancreatic islets was used to study the composition of the (immuno)proteasome. Specific inhibition of the immunoproteasome catalytic subunits was achieved using siRNA, and antigenic peptide presentation at the cell surface of the human beta cell line EndoC-βH1 was monitored using peptide-specific CD8 T cells. RESULTS We found that IFNγ induces the expression of the PSMB10 transcript encoding the β2i catalytic subunit of the immunoproteasome in endocrine beta cells, revealing a critical role in insulin DRiP-derived peptide presentation to T cells. Moreover, we showed that PSMB10 is upregulated in a beta cell subset that is preferentially destroyed in the pancreases of individuals with type 1 diabetes. CONCLUSIONS/INTERPRETATION Our data highlight the role of the degradation machinery in beta cell immunogenicity and emphasise the need for evaluation of targeted immunoproteasome inhibitors to limit beta cell destruction in type 1 diabetes. DATA AVAILABILITY The single-cell RNA-seq dataset is available from the Gene Expression Omnibus (GEO) using the accession number GSE218316 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE218316 ).
Collapse
Affiliation(s)
- Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Amadeo Munoz Garcia
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine de Lange
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jin Gan
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arno R van der Slik
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart O Roep
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
39
|
Park SS, Mai M, Ploszaj M, Cai H, McGarvey L, Mueller C, Garcia-Arcos I, Geraghty P. Type 1 diabetes contributes to combined pulmonary fibrosis and emphysema in male alpha 1 antitrypsin deficient mice. PLoS One 2023; 18:e0291948. [PMID: 37819895 PMCID: PMC10566687 DOI: 10.1371/journal.pone.0291948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023] Open
Abstract
Type 1 diabetes (T1D) is a metabolic disease characterized by hyperglycemia and can affect multiple organs, leading to life-threatening complications. Increased prevalence of pulmonary disease is observed in T1D patients, and diabetes is a leading cause of comorbidity in several lung pathologies. A deficiency of alpha-1 antitrypsin (AAT) can lead to the development of emphysema. Decreased AAT plasma concentrations and anti-protease activity are documented in T1D patients. The objective of this study was to determine whether T1D exacerbates the progression of lung damage in AAT deficiency. First, pulmonary function testing (PFT) and histopathological changes in the lungs of C57BL/6J streptozotocin (STZ)-induced T1D mice were investigated 3 and 6 months after the onset of hyperglycemia. PFT demonstrated a restrictive pulmonary pattern in the lungs of STZ-injected mice, along with upregulation of mRNA expression of pro-fibrotic markers Acta2, Ccn2, and Fn1. Increased collagen deposition was observed 6 months after the onset of hyperglycemia. To study the effect of T1D on the progression of lung damage in AAT deficiency background, C57BL/6J AAT knockout (KO) mice were used. Control and STZ-challenged AAT KO mice did not show significant changes in lung function 3 months after the onset of hyperglycemia. However, histological examination of the lung demonstrated increased collagen accumulation and alveolar space enlargement in STZ-induced AAT KO mice. AAT pretreatment on TGF-β-stimulated primary lung fibroblasts reduced mRNA expression of pro-fibrotic markers ACTA2, CCN2, and FN1. Induction of T1D in AAT deficiency leads to a combined pulmonary fibrosis and emphysema (CPFE) phenotype in male mice.
Collapse
Affiliation(s)
- Sangmi S. Park
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York, United States of America
| | - Michelle Mai
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York, United States of America
| | - Magdalena Ploszaj
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York, United States of America
| | - Huchong Cai
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York, United States of America
| | - Lucas McGarvey
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York, United States of America
| | - Christian Mueller
- The Li Weibo Institute for Rare Diseases Research, Horae Gene Therapy Center, Worcester, Massachusetts, United States of America
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Itsaso Garcia-Arcos
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York, United States of America
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York, United States of America
| | - Patrick Geraghty
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York, United States of America
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York, United States of America
| |
Collapse
|
40
|
Rasmussen VF, Hirschberg Jensen V, Thrysøe M, Vestergaard ET, Størling J, Kristensen K. Cross-sectional study investigating the association between inflammatory biomarkers and neuropathy in adolescents with type 1 diabetes. BMJ Open 2023; 13:e074992. [PMID: 37802616 PMCID: PMC10565182 DOI: 10.1136/bmjopen-2023-074992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
OBJECTIVES The aims of this study were to investigate circulating levels of inflammatory markers in adolescents with type 1 diabetes with and without different types of neuropathies and evaluate the association between inflammatory biomarkers, nerve function and clinical parameters. DESIGN Cross-sectional study. SETTING Hospitals and Steno Diabetes Center in Denmark. PARTICIPANTS Adolescents with more than 5 years of diabetes duration were investigated for large fibre, small fibre and autonomic neuropathy as a part of the T1DANES study. Blood samples from the participants were analysed for inflammatory biomarkers by Meso Scale Discovery multiplexing technology. PRIMARY AND SECONDARY OUTCOME MEASURES Inflammatory biomarkers and results of diagnostic nerve tests. RESULTS Fifty-six adolescents with type 1 diabetes and 23 healthy controls were included. The adolescents with diabetes had significantly higher interferon-gamma, tumour necrosis factor-alpha (TNF-a), interleukin (IL)-10 and soluble urokinase plasminogen activator receptor (suPAR) compared with healthy controls (p values<0.05). TNF-a was higher in the adolescents with large fibre neuropathy (LFN) (p=0.03) compared with those without LFN in the group with diabetes. A negative correlation was seen between TNF-a and conduction velocity in nervus tibialis (p=0.04), and higher TNF-a and IL-6 were associated with higher gastric motility index (TNF-a, p value=0.03; IL-6, p value=0.02). There were no significant associations between inflammatory markers and expressed symptoms, haemoglobin A1c, diabetes duration or body mass index standard derivation score (p values>0.05). The receiver operating characteristic (ROC) curves for the inflammatory markers suggested them as poor screening methods for all types of neuropathies with an area under the curve between 0.47 and 0.67. CONCLUSION Our results confirm increased low-grade inflammation in adolescents with type 1 diabetes. TNF-a was higher in adolescents with LFN and correlated negatively with nervus tibialis conduction velocity. The other inflammatory biomarkers fail to support differences in those with and without different types of diabetic neuropathies. However, TNF-a and IL-6 were positively correlated to gastric motility index.
Collapse
Grants
- Steno Diabetes Center
- The entire project was sponsored by the following: Skibsreder Per Henriksen og Hustrus Fond, Tømrermester Jørgen Holm og Hustru Lisa F. Hansens Mindelegat, Vissing Fonden, Rissfort Fonden, Kirsten Dyrløv Madsens legat, Lipperts Fond, Reinholdt W. Jorck og Hustrus fond, Helga og Peter Kornings Fond, Beckett Fonden, Dagmar Marschall Fond. Danske lægers Forsikring under Danica Pension, William Demant Fonden. Professor Iversens Rejsefond, Diabetesforeningen.
- Novo Nordisk
- Aarhus University
Collapse
Affiliation(s)
- Vinni Faber Rasmussen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pediatrics and Adolescents, Randers Regional Hospital, Randers, Denmark
| | | | - Mathilde Thrysøe
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Joachim Størling
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Kristensen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
41
|
Zhu K, Mukherjee K, Wei C, Hayek SS, Collins A, Gu C, Corapi K, Altintas MM, Wang Y, Waikar SS, Bianco AC, Koch A, Tacke F, Reiser J, Sever S. The D2D3 form of uPAR acts as an immunotoxin and may cause diabetes and kidney disease. Sci Transl Med 2023; 15:eabq6492. [PMID: 37729431 DOI: 10.1126/scitranslmed.abq6492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Soluble urokinase plasminogen activator receptor (suPAR) is a risk factor for kidney diseases. In addition to suPAR, proteolysis of membrane-bound uPAR results in circulating D1 and D2D3 proteins. We showed that when exposed to a high-fat diet, transgenic mice expressing D2D3 protein developed progressive kidney disease marked by microalbuminuria, elevated serum creatinine, and glomerular hypertrophy. D2D3 transgenic mice also exhibited insulin-dependent diabetes mellitus evidenced by decreased levels of insulin and C-peptide, impaired glucose-stimulated insulin secretion, decreased pancreatic β cell mass, and high fasting blood glucose. Injection of anti-uPAR antibody restored β cell mass and function in D2D3 transgenic mice. At the cellular level, the D2D3 protein impaired β cell proliferation and inhibited the bioenergetics of β cells, leading to dysregulated cytoskeletal dynamics and subsequent impairment in the maturation and trafficking of insulin granules. D2D3 protein was predominantly detected in the sera of patients with nephropathy and insulin-dependent diabetes mellitus. These sera inhibited glucose-stimulated insulin release from human islets in a D2D3-dependent manner. Our study showed that D2D3 injures the kidney and pancreas and suggests that targeting this protein could provide a therapy for kidney diseases and insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kamalika Mukherjee
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Salim S Hayek
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Agnieszka Collins
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Changkyu Gu
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Kristin Corapi
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
| | - Sushrut S Waikar
- Section of Nephrology, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA 02129, USA
| | - Antonio C Bianco
- Division of Endocrinology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Koch
- Department of Gastroenterology, Metabolic Diseases and Internal Intensive Care Medicine, University Hospital Aachen, 52072 Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sanja Sever
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
42
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
43
|
George P, Jagun O, Liu Q, Wentworth C, Napatalung L, Wolk R, Anway S, Zwillich SH. Prevalence of autoimmune and inflammatory diseases and mental health conditions among an alopecia areata cohort from a US administrative claims database. J Dermatol 2023; 50:1121-1128. [PMID: 37291688 DOI: 10.1111/1346-8138.16839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 06/10/2023]
Abstract
Alopecia areata (AA) is associated with an increased burden of autoimmune and inflammatory disease and mental health conditions that may have a negative impact on quality of life. However, the exact burden of comorbidities on US patients with AA and the clinical subtypes alopecia totalis (AT) and alopecia universalis (AU) compared with those without AA is not well understood. This retrospective cohort study aimed to assess the incidence rates and prevalence of AA and its clinical subtypes and examine the autoimmune and inflammatory disease and mental health condition diagnosis burden in US patients with AA and a matched cohort without AA. The Optum Clinformatics Data Mart database was used to select patients aged ≥12 years enrolled between October 1, 2016, and September 30, 2020, who had two or more AA diagnosis codes for the AA cohort. Three patients without AA were age-, sex-, and race-matched to each patient with AA. Autoimmune and inflammatory diseases and mental health conditions were evaluated at baseline and up to 2 years after the index date. In total, 8784 patients with AA (599 with AT/AU) and 26 352 matched patients without AA were included. The incidence rate of AA was 17.5 per 100 000 person-years (PY; AT/AU: 1.1 per 100 000 PY; non-AT/AU: 16.3 per 100 000 PY), and the prevalence was 54.9 per 100 000 persons (AT/AU: 3.8; non-AT/AU: 51.2). Patients with AA had a higher prevalence of autoimmune and inflammatory diseases than the matched non-AA cohort, including allergic rhinitis (24.0% vs 14.5%), asthma (12.8% vs 8.8%), atopic dermatitis (8.3% vs 1.8%), and psoriasis (5.0% vs. 1.6%). The proportions of anxiety (30.7% vs 21.6%) and major depressive disorder (17.5% vs 14.0%) were higher in patients with AA than those without AA. Patients with AT/AU generally had a greater prevalence of autoimmune and inflammatory disease and mental health conditions than patients with non-AT/AU AA.
Collapse
Affiliation(s)
| | | | - Qing Liu
- Pfizer Inc, New York, New York, USA
| | | | - Lynne Napatalung
- Pfizer Inc, New York, New York, USA
- Mount Sinai Hospital, New York, New York, USA
| | | | | | | |
Collapse
|
44
|
Martín-Vázquez E, Cobo-Vuilleumier N, López-Noriega L, Lorenzo PI, Gauthier BR. The PTGS2/COX2-PGE 2 signaling cascade in inflammation: Pro or anti? A case study with type 1 diabetes mellitus. Int J Biol Sci 2023; 19:4157-4165. [PMID: 37705740 PMCID: PMC10496497 DOI: 10.7150/ijbs.86492] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 09/15/2023] Open
Abstract
Prostaglandins are lipid mediators involved in physiological processes, such as constriction or dilation of blood vessels, but also pathophysiological processes, which include inflammation, pain and fever. They are produced by almost all cell types in the organism by activation of Prostaglandin endoperoxide synthases/Cyclooxygenases. The inducible Prostaglandin Endoperoxide Synthase 2/Cyclooxygenase 2 (PTGS2/COX2) plays an important role in pathologies associated with inflammatory signaling. The main product derived from PTGS2/COX2 expression and activation is Prostaglandin E2 (PGE2), which promotes a wide variety of tissue-specific effects, pending environmental inputs. One of the major sources of PGE2 are infiltrating inflammatory cells - the production of this molecule increases drastically in damaged tissues. Immune infiltration is a hallmark of type 1 diabetes mellitus, a multifactorial disease that leads to autoimmune-mediated pancreatic beta cell destruction. Controversial effects for the PTGS2/COX2-PGE2 signaling cascade in pancreatic islet cells subjected to diabetogenic conditions have been reported, allocating PGE2 as both, cause and consequence of inflammation. Herein, we review the main effects of this molecular pathway in a tissue-specific manner, with a special emphasis on beta cell mass protection/destruction and its potential role in the prevention or development of T1DM. We also discuss strategies to target this pathway for future therapies.
Collapse
Affiliation(s)
- Eugenia Martín-Vázquez
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Livia López-Noriega
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Petra I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
45
|
Liu Y, Dong G, Huang K, Hong Y, Chen X, Zhu M, Hao X, Ni Y, Fu J. Metabolomics and Lipidomics Studies in Pediatric Type 1 Diabetes: Biomarker Discovery for the Early Diagnosis and Prognosis. Pediatr Diabetes 2023; 2023:6003102. [PMID: 40303249 PMCID: PMC12016713 DOI: 10.1155/2023/6003102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 05/02/2025] Open
Abstract
Aim Type 1 diabetes (T1D) is an autoimmune disease with heterogeneous risk factors. Metabolic perturbations in the pathogenesis of the disease are remarkable to illuminate the interaction between genetic and environmental factors and how islet immunity and overt diabetes develop. This review aimed to integrate the metabolic changes of T1D to identify potential biomarkers for predicting disease progression based on recent metabolomics and lipidomics studies with parallel methodologies. Methods A total of 18 metabolomics and lipidomics studies of childhood T1D during the last 15 years were reviewed. The metabolic fingerprints consisting of 41 lipids and/or metabolite classes of subjects with islet autoantibodies, progressors of T1D, and T1D children were mapped in four-time dimensions based on a tentative effect-score rule. Results From birth, high-risk T1D subjects had decreased unsaturated triacylglycerols, unsaturated phosphatidylcholines (PCs), sphingomyelins (SMs), amino acids, and metabolites in the tricarboxylic acid (TCA) cycle. On the contrary, lysophosphatidylcholines (LPCs) and monosaccharides increased. And LPCs and branched-chain amino acids (BCAAs) were elevated before the appearance of islet autoantibodies but were lowered after seroconversion. Choline-related lipids (including PCs, SMs, and LPCs), BCAAs, and metabolites involved in the TCA cycle were identified as consensus biomarkers potentially predicting the development of islet autoimmunity and T1D. Decreased LPCs and amino acids indicated poor glycemic control of T1D, while elevated lysophosphatidylethanolamines and saturated PCs implied good glycemic control. Further pathway analysis revealed that biosynthesis of aminoacyl-tRNA, BCAAs, and alanine, aspartate, and glutamate metabolism were significantly enriched. Moreover, established cohort studies and predictive statistical models of pediatric T1D were also summarized. Conclusion The metabolic profile of high-risk T1D subjects and patients demonstrated significant changes compared with healthy controls. This integrated analysis provides a comprehensive overview of metabolic features and potential biomarkers in the pathogenesis and progression of T1D.
Collapse
Affiliation(s)
- Yaru Liu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Ke Huang
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Ye Hong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xuefeng Chen
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Mingqiang Zhu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xiaoqiang Hao
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Yan Ni
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| |
Collapse
|
46
|
Somersalo E, Kuuliala K, Kuuliala A, Wasenius NS, Klemetti MM, Kivimäki AS, Kautiainen H, Eriksson JG, Laine MK. Circulating Cytokine Levels and Cardiovascular Disease Risk Profile in Young Adult Offspring of Women with Type 1 Diabetes. Diabetes Ther 2023:10.1007/s13300-023-01428-y. [PMID: 37286850 PMCID: PMC10299958 DOI: 10.1007/s13300-023-01428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
INTRODUCTION Cytokines are key players in the development of both type 1 diabetes (T1D) and cardiovascular disease (CVD). Offspring of women with T1D are known to have an increased risk of early-onset CVD. We studied whether an increased risk of CVD can be observed in the cytokine profile among young adult offspring of women with T1D. METHODS This cross-sectional case-control study included 67 offspring of women with T1D (cases) and 79 control participants (controls). At an age of 18-23 years, they participated in a clinical assessment including laboratory tests and questionnaires. Cytokine levels were analyzed from venous blood samples after 10 h fasting using Quansys biosciences Q-Plex™ High Sensitivity Human Cytokine Array. RESULTS Circulating cytokine levels were in general similar between the groups. The circulating levels of interferon-γ (1.78 [IQR 1.20, 2.36] pg/mL versus 2.57 [IQR 1.50, 3.89] pg/mL) (p = 0.006) were lower in cases than controls. CONCLUSION The findings did not support our hypothesis that serum cytokine profile, determined in early adulthood, was associated with a more adverse CVD risk profile in offspring of women with T1D. Further studies are warranted to find out whether cytokines could serve as early biomarkers of CVD development or whether changes in the cytokine levels over years could be used to monitor CVD progression in offspring of women with T1D.
Collapse
Affiliation(s)
- Erik Somersalo
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Niko S Wasenius
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Miira M Klemetti
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Anne S Kivimäki
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Hannu Kautiainen
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Human Potential Translational Research Programme and Department of Obstetrics and Gynecology, National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore
- Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences (SICS), Singapore, Singapore
| | - Merja K Laine
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
47
|
Singh A, Afshan N, Singh A, Singh SK, Yadav S, Kumar M, Sarma DK, Verma V. Recent trends and advances in type 1 diabetes therapeutics: A comprehensive review. Eur J Cell Biol 2023; 102:151329. [PMID: 37295265 DOI: 10.1016/j.ejcb.2023.151329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/12/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the destruction of pancreatic β-cells, leading to insulin deficiency. Insulin replacement therapy is the current standard of care for T1D, but it has significant limitations. However, stem cell-based replacement therapy has the potential to restore β-cell function and achieve glycaemic control eradicating the necessity for drugs or injecting insulin externally. While significant progress has been made in preclinical studies, the clinical translation of stem cell therapy for T1D is still in its early stages. In continuation, further research is essentially required to determine the safety and efficacy of stem cell therapies and to develop strategies to prevent immune rejection of stem cell-derived β-cells. The current review highlights the current state of cellular therapies for T1D including, different types of stem cell therapies, gene therapy, immunotherapy, artificial pancreas, and cell encapsulation being investigated, and their potential for clinical translation.
Collapse
Affiliation(s)
- Akash Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Noor Afshan
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anshuman Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Suraj Kumar Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sudhanshu Yadav
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Vinod Verma
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
48
|
Houeze EA, Wang Y, Zhou Q, Zhang H, Wang X. Comparison study of Beninese and Chinese herbal medicines in treating COVID-19. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116172. [PMID: 36773790 PMCID: PMC9911150 DOI: 10.1016/j.jep.2023.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The worldwide use of natural remedies is an alternative therapeutic solution to strengthen immunity, fight, and prevent this disease. The rapid spread of the coronavirus disease worldwide has promoted the search for therapeutic solutions following different approaches. China and Benin have seen the use of natural remedies such as Chinese herbal medicine and local endemic plants as alternative solutions in treating COVID-19. AIM OF THE STUDY The present study was designed to identify the prevalence of medicinal plant use in four municipalities of Benin most affected by COVID-19 and compare them with traditional Chinese medicine and finally verify the efficacy of the main components of the six plants most frequently used, via in vitro experiments. MATERIALS AND METHODS This study targeting market herbalists and traditional healers was conducted in the form of an ethnomedicinal survey in four representative communities (Cotonou, Abomey-Calavi, Zè, and Ouidah) of southern Benin. The chemical compositions of the six most commonly used herbs were investigated using network pharmacology. Network-based global prediction of disease genes and drug, target, function, and pathway enrichment analysis of the top six herbs was conducted using databases including IPA and visualised using Cytoscape software. The natural botanical drugs involved three medicines and three formulas used in the treatment of COVID-19 in China from the published literature were compared with the top six botanical drugs used in Benin to identify similarities between them and guide the clinical medication in both countries. Finally, the efficacy of the common ingredients in six plants was verified by measuring the viability of BEAS-2B cells and the release of inflammatory factors after administration of different ingredients. Binding abilities of six components to COVID-19 related targets were verified by molecular docking. RESULTS According to the medication survey investigation, the six most used herbs were Citrus aurantiifolia (13.18%), Momordica charantia (7.75%), Ocimum gratissimum (7.36%), Crateva adansonii (6.59%), Azadirachta indica (5.81%), and Zanthoxylum zanthoxyloides (5.42%). The most represented botanical families were Rutaceae, Lamiaceae, Cucurbitaceae, Meliaceae, and Capparaceae. The network pharmacology of these six herbal plants showed that the flavonoids quercetin, kaempferol, and β-sitosterol were the main active ingredients of the Benin herbal medicine. Chinese and Beninese herbal medicine are similar in that they have the same targets and pathways in inflammation and oxidative stress relief. Mild COVID-19-related targets come from C. aurantiifolia and M. charantia, and severe COVID-19-related targets come from A. indica A. Juss. Cell viability and enzyme-linked immunosorbent assay results confirmed that six major compounds could protect BEAS-2B cells against injury by inhibiting the expression of inflammatory factors, among which quercetin and isoimperatorin were more effective. Docking verified that the six compounds have good binding potential with COVID-19 related targets. CONCLUSIONS These results suggest that Benin herbal medicine and Chinese herbal medicine overlap in compounds, targets, and pathways to a certain extent. Among the commonly used plants in Benin, C. aurantiifolia and M. charantia may have a good curative effect on the treatment of mild COVID-19, while for severe COVID-19, A. indica can be added on this basis.
Collapse
Affiliation(s)
- Elisabeth A Houeze
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qian Zhou
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Han Zhang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiaoying Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
49
|
Moin H, Shafi R, Ishtiaq A, Liaquat A, Majeed S, Zaidi NN. Effectiveness of analog of Humanin in ameliorating streptozotocin-induced diabetic nephropathy in Sprague Dawley rats. Peptides 2023; 165:171014. [PMID: 37119975 DOI: 10.1016/j.peptides.2023.171014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Diabetes mellitus(DM) is associated with numerous complications, including nephropathy, which principally occur due to hyperglycemia-induced oxidative stress and inflammation. Humanin(HN), a novel peptide generated from mitochondria, has anti-oxidant and anti-inflammatory potential as observed in different disease models. However, role of HN in diabetic nephropathy (DN) has not yet been explored. This study aimed to evaluate biochemical and molecular aspects of the effects of HN analog, Humanin-glycine([S14G]-humanin) on streptozotocin (STZ)-induced rat model of DN. Ninety Sprague Dawley (SD) rats were randomly segregated into three groups - A (control), B (disease control) and C (treatment). DM type-I was induced in group B and C via single intra-peritoneal dose of STZ (45mg/Kg). Seven days following STZ injection, rats were deemed diabetic if their blood glucose level was >250mg/dL. Subsequently, diabetic rats in group C were injected with [S14G]-humanin intra-peritoneally (0.4mg/Kg/day) for sixteen weeks. Biochemical analysis revealed that diabetic rats had markedly elevated levels of serum glucose, creatinine, BUN, TNF-α, and kidney tissue SOD. Whereas, significant decline was detected in serum insulin and albumin levels. All these parameters were significantly reversed in group C after administering [S14G]-humanin. Moreover, qRT-PCR analysis displayed up-regulation of pro-inflammatory (IL-18, IL-6, IL-1α, IL-1β, TNF-α) and down-regulation of anti-inflammatory cytokines (IL-10, IL-1RN, IL-4) in diabetic rats (group B). [S14G]-humanin treatment significantly reversed the expression IL-18 and IL-1α, however, change in relative expression of IL-6, IL-1β, TNF-α and anti-inflammatory cytokines was insignificant(group C). Conclusively, the findings of this study depicted potential therapeutic role of [S14G]-humanin in pre-clinical rodent model of DN.
Collapse
Affiliation(s)
- Hira Moin
- Department of Physiology, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan.
| | - Riffat Shafi
- Department of Physiology, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan.
| | - Ayesha Ishtiaq
- Signal Transduction Lab, Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Afrose Liaquat
- Dr. Qamar Alam Research Lab, Department of Biochemistry, Shifa College of Medicine Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan.
| | - Sadaf Majeed
- Department of Physiology, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan.
| | - Nilofar Nasir Zaidi
- Department of Physiology, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan.
| |
Collapse
|
50
|
Dos Santos Haber JF, Barbalho SM, Sgarbi JA, de Argollo Haber RS, de Labio RW, Laurindo LF, Chagas EFB, Payão SLM. The Relationship between Type 1 Diabetes Mellitus, TNF-α, and IL-10 Gene Expression. Biomedicines 2023; 11:biomedicines11041120. [PMID: 37189738 DOI: 10.3390/biomedicines11041120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is one of the major chronic diseases in children worldwide. This study aimed to investigate interleukin-10 (IL-10) gene expression and tumor necrosis factor-alpha (TNF-α) in T1DM. A total of 107 patients were included, 15 were T1DM in ketoacidosis, 30 patients had T1DM and HbA1c ≥ 8%; 32 patients had T1DM and presented HbA1c < 8%; and 30 were controls. The expression of peripheral blood mononuclear cells was performed using the reverse transcriptase-polymerase chain reaction in real time. The cytokines gene expression was higher in patients with T1DM. The IL-10 gene expression increased substantially in patients with ketoacidosis, and there was a positive correlation with HbA1c. A negative correlation was found for IL-10 expression and the age of patients with diabetes, and the time of diagnosis of the disease. There was a positive correlation between TNF-α expression with age. The expression of IL-10 and TNF-α genes showed a significant increase in DM1 patients. Once current T1DM treatment is based on exogenous insulin, there is a need for other therapies, and inflammatory biomarkers could bring new possibilities to the therapeutic approach of the patients.
Collapse
Affiliation(s)
- Jesselina Francisco Dos Santos Haber
- School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-160, Brazil
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| | - Sandra Maria Barbalho
- School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-160, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Jose Augusto Sgarbi
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
- Division of Endocrinology and Metabolism, Department of Medicine, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| | | | - Roger William de Labio
- Department of Genetics, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| | - Lucas Fornari Laurindo
- School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-160, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Spencer Luiz Marques Payão
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
- Department of Genetics, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| |
Collapse
|