Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. May 15, 2025; 17(5): 103804
Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.103804
Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.103804
Table 1 Extracted characteristics of the included articles
Ref. | Country | Data source | Samples | Pre-processing | Feature selection | Survival | Data types | Machine learning algorithms | Validation | Evaluation | Hyperparameter tuning |
Rahman et al[19] (2021) | United Kingdom | NOGCA (2012-2018) | 2931 | Yes | Yes | OS | Clinical | RF | Internal | AUC, C-index, Brier-score, Calibration | No |
Chen et al[20] (2019) | China | TANRICTCGA | 134 | Yes | Yes | OS, DFS | Clinical, molecular | SVM | Internal | C-index, AUC | Yes |
Tian et al[21] (2024) | China | Zhongshan Hospital | 1120 | Yes | No | OS, DFS | Clinical, image | DL | Internal, external | C-index, AUC | Yes |
Islam et al[29] (2024) | United States | Fujian Medical University Union Hospital | 135 | Yes | Yes | OS | Image | RF, SVM, KNN, NB | Internal | AUC, accuracy,sensitivity, specificity, F1-score | Yes |
Chen et al[22] (2024) | China | TCGA | Not reported | Yes | Yes | OS | Clinical, molecular | Multiple machine earning | External | C-Index, AUC, calibration | Yes |
Kuwayama et al[30] (2023) | Japan | Chiba Cancer Center (2007-2016) | 1687 | Yes | Yes | OS | Clinical | LR, GB, DL, RF | Internal | AUC, accuracy | No |
Zeng et al[27] (2024) | China | SEER (2000-2019) | 11076 | Yes | Yes | OS | Clinical | RF, DL | Internal, external | C-Index, AUC, Brier-score, Calibration | Yes |
Wu et al[25] (2024) | China | SEER | 11414 | Yes | Yes | OS | Clinical | DL, RF LR | Internal, external | C-Index, AUC, calibration, decision curve analysis | Yes |
Li et al[26] (2022) | China | Nanfang Hospital (2004-2016) | 695 | Yes | Yes | OS, DFS | Clinical | SVM | Internal, external | AUC | No |
Aznar-Gimeno et al[32] (2024) | Spain | 16 general hospitals (2023-2012) | 1246 | Yes | Yes | OS | Clinical, molecular | RF, XGboost, DL, SVM | External | Index, Brier-score | Yes |
Jiang et al[34] (2022) | China | Nanfang Hospital (2005-2012) | 510 | No | No | DFS | Clinical CT | DL | Internal, external | C-index, AUC, Brier-score, Calibration | Yes |
Li et al[28] (2024) | China | TCGA | 325 | Yes | Yes | OS | Clinical, molecular | Multiple machine learning | External | C-index, AUC, Calibration | Yes |
Liao et al[33] (2024) | China | SEER (2000–2019) | 775 | Yes | Yes | CSS | Clinical | Multiple machine learning | Internal | AUC, Calibration | Yes |
Wei et al[23] (2022) | China | TCGA | 357 | Yes | Yes | OS | Clinical, molecular, image | MultiDeepCox-SC | External | C-index, AUC | Yes |
Afrash et al[31] (2023) | Iran | Ayatollah Talleghani Hospital (2010-2017) | 974 | Yes | Yes | OS | Clinical | XGBoost, HGB, SVM | Internal | Accuracy, specificity, sensitivity, AUC, F1-score | Yes |
Zeng et al[27] (2023) | China | SEER (2000-2019) | 14177 | Yes | Yes | OS | Clinical | RF, DL | Internal | C-index, AUC, Brier-score, Calibration, IBS | Yes |
Table 2 Classification of the features of the included articles
Characteristics | Categories | Number (n) | ||
OS | CSS | DFS | ||
Dataset sources | Hospitals | 6 | - | 3 |
SEER | 3 | 1 | - | |
TCGA | 4 | - | 1 | |
NOGCA | 1 | - | - | |
TANRIC | 1 | - | 1 | |
Dataset privacy | Public | 8 | 1 | 1 |
Private | 6 | - | 3 | |
Data source | Single | 6 | 1 | 1 |
Multiple | 8 | - | 3 | |
Preprocessing | Yes | 14 | 1 | 3 |
No | - | - | 1 | |
Feature selection | Yes | 13 | 1 | 2 |
No | 1 | - | 2 | |
Models | One | 5 | - | 4 |
Two or more | 9 | 1 | - | |
Models type | GB | 1 | - | - |
HGB | 1 | - | - | |
KNN | 1 | - | - | |
LR | 2 | - | - | |
NB | 1 | - | - | |
RF | 6 | - | - | |
SVM | 5 | - | 2 | |
XGboost | 2 | - | - | |
DL | 6 | - | 2 | |
MultiDeepCox-SC | 1 | - | - | |
Ensemble learning | 2 | 1 | - | |
Validation | Internal | 14 | 1 | 3 |
External | 8 | - | 2 | |
Evaluation | C-index | 10 | - | 3 |
AUC | 13 | 1 | 4 | |
Calibration | 6 | 1 | 1 | |
Brier-score | 4 | - | 1 | |
Accuracy | 3 | - | - | |
Specificity | 2 | - | - | |
Sensitivity | 2 | - | - | |
F1-score | 2 | - | - | |
IBS | 1 | - | - | |
Data types | Clinical | 7 | 1 | 1 |
Image | 1 | - | - | |
Clinical + Image | 1 | - | 2 | |
Clinical + Molecular | 4 | - | 1 | |
Clinical + Molecular + Image | 1 | - | - |
Table 3 Risk of bias and applicability assessment of included articles based on the Prediction Model Risk of Bias Assessment Tool criteria
Ref. | Risk of bias | Concern regarding applicability | Overall | ||||||
Participant | Predictors | Outcomes | Analysis | Participant | Predictors | Outcomes | Risk of bias | Concern regarding applicability | |
Rahman et al[19] (2021) | Low | Low | Low | Low | Low | Moderate | Low | Low | Moderate |
Chen et al[20] (2019) | Low | Low | Moderate | Low | Low | Low | Moderate | Moderate | Moderate |
Tian et al[21] (2024) | Low | Low | Low | High | Moderate | Low | Low | High | Moderate |
Islam et al[29] (2024) | Low | Low | Low | Low | Low | Low | Low | Low | Low |
Chen et al[22] (2024) | High | Low | Low | High | Moderate | Low | Low | High | Moderate |
Kuwayama et al[30] (2023) | Low | Low | Low | Moderate | Moderate | Low | Low | Moderate | Moderate |
Zeng et al[27] (2024) | Low | Low | Low | Low | Low | Low | Low | Low | Low |
Wu et al[25] (2024) | Moderate | Low | Low | Low | Moderate | Moderate | Low | Moderate | Moderate |
Li et al[26] (2022) | Low | Low | Low | Low | Moderate | Low | Low | Low | Low |
Aznar-Gimeno et al[32] (2024) | Low | Low | Low | Low | Moderate | Moderate | Low | Low | Moderate |
Jiang et al[34] (2022) | Low | Low | Low | High | Low | Low | Low | High | Low |
Li et al[28] (2024) | Low | Low | Low | Low | Low | Low | Low | Low | Low |
Liao et al[33] (2024) | Low | Low | Low | Moderate | Low | Moderate | Low | Moderate | Moderate |
Wei et al[23] (2022) | Low | Low | Low | Low | Low | Low | Low | Low | Low |
Afrash et al[31] (2023) | Moderate | Low | Low | Moderate | Low | Moderate | Low | Moderate | Moderate |
Zeng et al[27] (2023) | Low | Low | Low | Low | Moderate | Low | Low | Low | Moderate |
Table 4 Classification of the used evaluation indicators into types of survival from the lowest to the highest
Evaluation method | OS | CSS | DFS | |||
Min (%) | Max (%) | Min (%) | Max (%) | Min (%) | Max (%) | |
AUC | 66.90 | 98.00 | 92.00 | 96.00 | 71.00 | 85.60 |
C-index | 63.00 | 0.84.00 | - | - | 65.40 | 71.00 |
Brier-score | 13.70 | 0.25.00 | - | - | - | - |
Accuracy | 89.10 | 0.92.00 | - | - | - | - |
Specificity | 87.15 | 0.90.00 | - | - | - | - |
Sensitivity | 89.42 | 0.94.00 | - | - | - | - |
F1-score | 90.80 | 92.00 | - | - | - | - |
IBS | 14.20 | 15.10 | - | - | - | - |
Table 5 Predictive variables for survival types extracted from the articles
Selected features | Number (n) | Percentage (%) |
Age | 7 | 87.5 |
Stage | 7 | 87.5 |
Grade | 6 | 75.0 |
Treatment modality | 6 | 75.0 |
Primary tumor site | 5 | 62.5 |
Sex | 4 | 50.0 |
Tumor size | 4 | 50.0 |
Race | 3 | 37.5 |
Histopathology type | 3 | 37.5 |
Marital status | 3 | 37.5 |
Positive lymph node numbers | 2 | 25.0 |
Lymph node metastasis | 2 | 25.0 |
Metastasis status | 2 | 25.0 |
Regional nodes examined | 1 | 12.5 |
Lymph node dissection | 1 | 12.5 |
ASA grade | 1 | 12.5 |
History of other cancers | 1 | 12.5 |
Blood markers | 1 | 12.5 |
Lauren type | 1 | 12.5 |
Lymphovascular invasion | 1 | 12.5 |
Months from diagnosis to treatment | 1 | 12.5 |
Body weight | 1 | 12.5 |
- Citation: Wang HN, An JH, Wang FQ, Hu WQ, Zong L. Predicting gastric cancer survival using machine learning: A systematic review. World J Gastrointest Oncol 2025; 17(5): 103804
- URL: https://www.wjgnet.com/1948-5204/full/v17/i5/103804.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i5.103804