Systematic Reviews
Copyright ©The Author(s) 2025.
World J Gastrointest Oncol. May 15, 2025; 17(5): 103804
Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.103804
Table 1 Extracted characteristics of the included articles
Ref.
Country
Data source
Samples
Pre-processing
Feature selection
Survival
Data types
Machine learning algorithms
Validation
Evaluation
Hyperparameter tuning
Rahman et al[19] (2021)United KingdomNOGCA (2012-2018)2931YesYesOSClinicalRFInternalAUC, C-index, Brier-score, CalibrationNo
Chen et al[20]
(2019)
ChinaTANRICTCGA134YesYesOS, DFSClinical, molecularSVMInternalC-index, AUCYes
Tian et al[21]
(2024)
ChinaZhongshan Hospital1120YesNoOS, DFSClinical, imageDLInternal, externalC-index, AUCYes
Islam et al[29] (2024)United StatesFujian Medical University Union Hospital135YesYesOSImageRF, SVM, KNN, NBInternalAUC, accuracy,sensitivity, specificity, F1-scoreYes
Chen et al[22] (2024)ChinaTCGANot reportedYesYesOSClinical, molecularMultiple machine earningExternalC-Index, AUC, calibrationYes
Kuwayama et al[30] (2023)JapanChiba Cancer Center (2007-2016)1687YesYesOSClinicalLR, GB, DL, RFInternalAUC, accuracyNo
Zeng et al[27] (2024)ChinaSEER (2000-2019)11076YesYesOSClinicalRF, DLInternal, externalC-Index, AUC, Brier-score, CalibrationYes
Wu et al[25] (2024)ChinaSEER11414YesYesOSClinicalDL, RF
LR
Internal, externalC-Index, AUC, calibration, decision curve analysisYes
Li et al[26] (2022)ChinaNanfang Hospital (2004-2016)695YesYesOS, DFSClinicalSVMInternal, externalAUCNo
Aznar-Gimeno et al[32] (2024)Spain16 general hospitals (2023-2012)1246YesYesOSClinical, molecularRF, XGboost, DL, SVMExternalIndex, Brier-scoreYes
Jiang et al[34] (2022)ChinaNanfang Hospital (2005-2012)510NoNoDFSClinical CTDLInternal, externalC-index, AUC, Brier-score, CalibrationYes
Li et al[28] (2024)ChinaTCGA325YesYesOSClinical, molecularMultiple machine learningExternalC-index, AUC, CalibrationYes
Liao et al[33] (2024)ChinaSEER (2000–2019)775YesYesCSSClinicalMultiple machine learningInternalAUC, CalibrationYes
Wei et al[23] (2022)ChinaTCGA357YesYesOSClinical, molecular, imageMultiDeepCox-SCExternalC-index, AUCYes
Afrash et al[31] (2023)IranAyatollah Talleghani Hospital (2010-2017)974YesYesOSClinicalXGBoost, HGB, SVMInternalAccuracy, specificity, sensitivity, AUC, F1-scoreYes
Zeng et al[27] (2023)ChinaSEER (2000-2019)14177YesYesOSClinicalRF, DLInternalC-index, AUC, Brier-score, Calibration, IBSYes
Table 2 Classification of the features of the included articles
CharacteristicsCategoriesNumber (n)


OS
CSS
DFS
Dataset sourcesHospitals6-3
SEER31-
TCGA4-1
NOGCA1--
TANRIC1-1
Dataset privacyPublic811
Private6-3
Data sourceSingle611
Multiple8-3
PreprocessingYes1413
No--1
Feature selectionYes1312
No1-2
ModelsOne5-4
Two or more91-
Models typeGB1--
HGB1--
KNN1--
LR2--
NB1--
RF6--
SVM5-2
XGboost2--
DL6-2
MultiDeepCox-SC1--
Ensemble learning21-
ValidationInternal1413
External8-2
EvaluationC-index10-3
AUC1314
Calibration611
Brier-score4-1
Accuracy3--
Specificity2--
Sensitivity2--
F1-score2--
IBS1--
Data typesClinical711
Image1--
Clinical + Image1-2
Clinical + Molecular4-1
Clinical + Molecular + Image1--
Table 3 Risk of bias and applicability assessment of included articles based on the Prediction Model Risk of Bias Assessment Tool criteria
Ref.Risk of bias
Concern regarding applicability
Overall
Participant
Predictors
Outcomes
Analysis
Participant
Predictors
Outcomes
Risk of bias
Concern regarding applicability
Rahman et al[19] (2021)LowLowLowLowLowModerateLowLowModerate
Chen et al[20]
(2019)
LowLowModerateLowLowLowModerateModerateModerate
Tian et al[21]
(2024)
LowLowLowHighModerateLowLowHighModerate
Islam et al[29] (2024)LowLowLowLowLowLowLowLowLow
Chen et al[22] (2024)HighLowLowHighModerateLowLowHighModerate
Kuwayama et al[30] (2023)LowLowLowModerateModerateLowLowModerateModerate
Zeng et al[27] (2024)LowLowLowLowLowLowLowLowLow
Wu et al[25] (2024)ModerateLowLowLowModerateModerateLowModerateModerate
Li et al[26] (2022)LowLowLowLowModerateLowLowLowLow
Aznar-Gimeno et al[32] (2024)LowLowLowLowModerateModerateLowLowModerate
Jiang et al[34] (2022)LowLowLowHighLowLowLowHighLow
Li et al[28] (2024)LowLowLowLowLowLowLowLowLow
Liao et al[33] (2024)LowLowLowModerateLowModerateLowModerateModerate
Wei et al[23] (2022)LowLowLowLowLowLowLowLowLow
Afrash et al[31] (2023)ModerateLowLowModerateLowModerateLowModerateModerate
Zeng et al[27] (2023)LowLowLowLowModerateLowLowLowModerate
Table 4 Classification of the used evaluation indicators into types of survival from the lowest to the highest
Evaluation methodOS

CSS

DFS


Min (%)
Max (%)
Min (%)
Max (%)
Min (%)
Max (%)
AUC66.9098.0092.0096.0071.0085.60
C-index63.000.84.00--65.4071.00
Brier-score13.700.25.00----
Accuracy89.100.92.00----
Specificity87.150.90.00----
Sensitivity89.420.94.00----
F1-score90.8092.00----
IBS14.2015.10----
Table 5 Predictive variables for survival types extracted from the articles
Selected features
Number (n)
Percentage (%)
Age787.5
Stage787.5
Grade675.0
Treatment modality675.0
Primary tumor site562.5
Sex450.0
Tumor size450.0
Race337.5
Histopathology type337.5
Marital status337.5
Positive lymph node numbers225.0
Lymph node metastasis225.0
Metastasis status225.0
Regional nodes examined112.5
Lymph node dissection112.5
ASA grade112.5
History of other cancers112.5
Blood markers112.5
Lauren type112.5
Lymphovascular invasion112.5
Months from diagnosis to treatment112.5
Body weight112.5