1
|
Dou S, Huo Y, Gao M, Li Q, Kou B, Chai M, Liu X. Patient-derived xenograft model: Applications and challenges in liver cancer. Chin Med J (Engl) 2025:00029330-990000000-01551. [PMID: 40387157 DOI: 10.1097/cm9.0000000000003480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 05/20/2025] Open
Abstract
ABSTRACT Liver cancer is one of the most common malignant tumors worldwide. Currently, the available treatment methods cannot fully control its recurrence and mortality rate. Establishing appropriate animal models for liver cancer is crucial for developing new treatment technologies and strategies. The patient-derived xenograft (PDX) model preserves the tumor's microenvironment and heterogeneity, which makes it advantageous for biological research, drug evaluation, personalized medicine, and other purposes. This article reviews the development, preparation techniques, application fields, and challenges of PDX models in liver cancer, providing insights for the research and exploration of PDX models in diagnostic and therapeutic strategies of liver cancer.
Collapse
Affiliation(s)
- Shuangshuang Dou
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | |
Collapse
|
2
|
Benderski K, Lammers T, Sofias AM. Analysis of multi-drug cancer nanomedicine. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01932-1. [PMID: 40374796 DOI: 10.1038/s41565-025-01932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2025] [Indexed: 05/18/2025]
Abstract
Multi-drug nanomedicine is gaining momentum for co-delivering more than one drug to the same site at the same time. Our analysis of 273 pre-clinical tumour growth inhibition studies shows that multi-drug nanotherapy outperforms single-drug therapy, multi-drug combination therapy, and single-drug nanotherapy by 43, 29 and 30%, respectively. Combination nanotherapy also results in the best overall survival rates, with 56% of studies demonstrating complete or partial survival, versus 20-37% for control regimens. Within the multi-drug nanomedicine groups, we analysed the effect of (co-)administration schedule and strategy, passive versus active targeting, nanocarrier material and the type of therapeutic agent. Most importantly, it was found that co-encapsulating two different drugs in the same nanoformulation reduces tumour growth by a further 19% compared with the combination of two individually encapsulated nanomedicines. We finally show that the benefit of multi-drug nanotherapy is consistently observed across different cancer types, in sensitive and resistant tumours, and in xenograft and allograft models. Altogether, this meta-analysis substantiates the value of multi-drug nanomedicine as a potent strategy to improve cancer therapy.
Collapse
Affiliation(s)
- Karina Benderski
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany.
- Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Aachen, Germany.
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany.
- Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
3
|
Choi Y, Na D, Yoon G, Kim J, Min S, Yi H, Cho S, Cho JH, Lee C, Jang J. Prediction of Patient Drug Response via 3D Bioprinted Gastric Cancer Model Utilized Patient-Derived Tissue Laden Tissue-Specific Bioink. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411769. [PMID: 39748450 PMCID: PMC11905052 DOI: 10.1002/advs.202411769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Despite significant research progress, tumor heterogeneity remains elusive, and its complexity poses a barrier to anticancer drug discovery and cancer treatment. Response to the same drug varies across patients, and the timing of treatment is an important factor in determining prognosis. Therefore, development of patient-specific preclinical models that can predict a patient's drug response within a short period is imperative. In this study, a printed gastric cancer (pGC) model is developed for preclinical chemotherapy using extrusion-based 3D bioprinting technology and tissue-specific bioinks containing patient-derived tumor chunks. The pGC model retained the original tumor characteristics and enabled rapid drug evaluation within 2 weeks of its isolation from the patient. In fact, it is confirmed that the drug response-related gene profile of pGC tissues co-cultured with human gastric fibroblasts (hGaFibro) is similar to that of patient tissues. This suggested that the application of the pGC model can potentially overcome the challenges associated with accurate drug evaluation in preclinical models (e.g., patient-derived xenografts) owing to the deficiency of stromal cells derived from the patient. Consequently, the pGC model manifested a remarkable similarity with patients in terms of response to chemotherapy and prognostic predictability. Hence, it is considered a promising preclinical tool for personalized and precise treatments.
Collapse
Affiliation(s)
- Yoo‐mi Choi
- Center for 3D Organ Printing and Stem cells (COPS)Pohang University of Science and Technology (POSTECH)Pohang37666Republic of Korea
| | - Deukchae Na
- Ewha Institute of Convergence MedicineEwha Womans University Mokdong HospitalSeoul07985Republic of Korea
| | - Goeun Yoon
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37666Republic of Korea
| | - Jisoo Kim
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology (POSTECH)Pohang37666Republic of Korea
| | - Seoyeon Min
- Ewha Institute of Convergence MedicineEwha Womans University Mokdong HospitalSeoul07985Republic of Korea
| | - Hee‐Gyeong Yi
- Department of Rural and Biosystems EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Soo‐Jeong Cho
- Department of Internal MedicineLiver Research InstituteSeoul National University HospitalSeoul03080Republic of Korea
| | - Jae Hee Cho
- Department of Internal MedicineGangnam Severance HospitalYonsei University College of MedicineSeoul06273Republic of Korea
| | - Charles Lee
- Ewha Institute of Convergence MedicineEwha Womans University Mokdong HospitalSeoul07985Republic of Korea
- The Jackson Laboratory for Genomic MedicineFarmingtonCT06032USA
| | - Jinah Jang
- Center for 3D Organ Printing and Stem cells (COPS)Pohang University of Science and Technology (POSTECH)Pohang37666Republic of Korea
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37666Republic of Korea
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology (POSTECH)Pohang37666Republic of Korea
- Department of Convergence IT EngineeringPohang University of Science and Technology (POSTECH)Pohang37666Republic of Korea
- Institute for Convergence Research and Education in Advanced TechnologyYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
4
|
Katt WP, Balkman CE, Butler SD, Byron M, Carney PC, Todd-Donato AB, Drozd ME, Duhamel GE, Evans JM, Fiani N, Ford JC, Grenier JK, Hayward JJ, Heikinheimo K, Hume KR, Moore ES, Puri R, Sylvester SR, Warshaw SL, Webb SM, White AC, Wright AL, Cerione RA, Peralta S. The MEK inhibitor trametinib is effective in inhibiting the growth of canine oral squamous cell carcinoma. Sci Rep 2025; 15:7069. [PMID: 40016294 PMCID: PMC11868584 DOI: 10.1038/s41598-025-90574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Oral tumors are relatively common in dogs, and canine oral squamous cell carcinoma (COSCC) is the most prevalent oral malignancy of epithelial origin. COSCC is locally aggressive with up to 20% of patients showing regional or distant metastasis at the time of diagnosis. The treatment of choice most typically involves wide surgical excision. Although long-term remission is possible, treatments are associated with considerable morbidity and can negatively impact functionality and quality of life. OSCCs have substantial upregulation of the RAS-RAF-MEK-MAPK signaling axis, and we had previously hypothesized that small-molecule inhibitors that target RAS signaling might effectively inhibit tumor growth and progression. Here, we demonstrate that the MEK inhibitor trametinib, an FDA-approved drug for human cancers, substantially inhibits the growth of six COSCC cell lines established from current patient tumor samples. We further show preliminary clinical evidence that the drug is able to cause ~ 40% and ~ 80% tumor regression in two out of four patients with spontaneously occurring COSCC, a partial response according to commonly used RECIST criteria. Given the limited treatment options available and the number of dogs for which standard of care is not acceptable, these preliminary findings provide new hope that more suitable treatment options may soon enter the veterinary clinic.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.
| | - Cheryl E Balkman
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Scott D Butler
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Michael Byron
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Patrick C Carney
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Amy B Todd-Donato
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Matthew E Drozd
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Gerald E Duhamel
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Jacquelyn M Evans
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Nadine Fiani
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Jordan C Ford
- Genomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Jennifer K Grenier
- Genomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Jessica J Hayward
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Kristiina Heikinheimo
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku and Turku University Hospital, Turku, Finland
| | - Kelly R Hume
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Elizabeth S Moore
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Rishi Puri
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | | | | | - Suzin M Webb
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Andrew C White
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | | | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Santiago Peralta
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Márton É, Varga A, Domoszlai D, Buglyó G, Balázs A, Penyige A, Balogh I, Nagy B, Szilágyi M. Non-Coding RNAs in Cancer: Structure, Function, and Clinical Application. Cancers (Basel) 2025; 17:579. [PMID: 40002172 PMCID: PMC11853212 DOI: 10.3390/cancers17040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
We are on the brink of a paradigm shift in both theoretical and clinical oncology. Genomic and transcriptomic profiling, alongside personalized approaches that account for individual patient variability, are increasingly shaping discourse. Discussions on the future of personalized cancer medicine are mainly dominated by the potential of non-coding RNAs (ncRNAs), which play a prominent role in cancer progression and metastasis formation by regulating the expression of oncogenic or tumor suppressor proteins at transcriptional and post-transcriptional levels; furthermore, their cell-free counterparts might be involved in intercellular communication. Non-coding RNAs are considered to be promising biomarker candidates for early diagnosis of cancer as well as potential therapeutic agents. This review aims to provide clarity amidst the vast body of literature by focusing on diverse species of ncRNAs, exploring the structure, origin, function, and potential clinical applications of miRNAs, siRNAs, lncRNAs, circRNAs, snRNAs, snoRNAs, eRNAs, paRNAs, YRNAs, vtRNAs, and piRNAs. We discuss molecular methods used for their detection or functional studies both in vitro and in vivo. We also address the challenges that must be overcome to enter a new era of cancer diagnosis and therapy that will reshape the future of oncology.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Dóra Domoszlai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Anita Balázs
- Department of Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary;
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| |
Collapse
|
6
|
Wang L, Yan J, XinyuWang, Xu Y, Pan D, Chen C, Shao Y, Song X, Qi K, Yang M, Tu J. Evaluation of chicken chorioallantoic membrane model for tumor imaging and drug development: Promising findings. Animal Model Exp Med 2025; 8:287-294. [PMID: 38230452 PMCID: PMC11871095 DOI: 10.1002/ame2.12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND The chicken chorioallantoic membrane (CAM) model is a potential alternative to the mouse model based on the 3R principles. However, its value for determination of the in vivo behaviors of radiolabeled peptides through positron emission tomography (PET) imaging needed investigation. Herein, the chicken CAM tumor models were established, and their feasibility was evaluated for evaluating the imaging properties of radiolabeled peptides using a 68Ga-labeled HER2 affibody. METHODS Two human breast cancer cell lines were inoculated into chicken CAM and mice, respectively. The tumor-targeting potential and pharmacokinetic profile of a 68Ga-labeled affibody, 68Ga-MZHER, in both tumor models were also determined. RESULTS The tumor-formation time in chicken CAM model was shorter than that of mouse model. The uptake values of human epithelial growth factor receptor-2 (HER2)-positive Bcap37 tumors in chicken CAM and mouse models were 5.36 ± 0.26% ID/g and 5.26 ± 0.43% ID/g at 30 min postinjection of 68Ga-MZHER, respectively. At the same time points, the uptake values of HER2-negative MDA-MB-231 tumors in the chicken CAM models and mouse models were 1.57 ± 0.15% ID/g and 1.67 ± 0.25% ID/g, respectively. Ex vivo biodistribution confirmed that more radioactivity accumulated in Bcap37 tumors than in MDA-MD-231 tumors in both CAM and mouse models. CONCLUSION In this study, the CAM tumor model was successfully prepared. The chicken CAM model is a novel tool for quickly determining the in vivo properties of radiolabeled peptides targeting biomarkers. It may be beneficial for early monitoring of the therapeutic effect of a new drug through PET imaging with specific peptides.
Collapse
Affiliation(s)
- Lizhen Wang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio‐safetyCollege of Animal Science and Technology, Anhui Agricultural UniversityHefeiChina
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - XinyuWang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Chongyang Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Ying Shao
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio‐safetyCollege of Animal Science and Technology, Anhui Agricultural UniversityHefeiChina
| | - Xiangjun Song
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio‐safetyCollege of Animal Science and Technology, Anhui Agricultural UniversityHefeiChina
| | - Kezong Qi
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio‐safetyCollege of Animal Science and Technology, Anhui Agricultural UniversityHefeiChina
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Jian Tu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio‐safetyCollege of Animal Science and Technology, Anhui Agricultural UniversityHefeiChina
| |
Collapse
|
7
|
Gallo M, Ferrari E, Brugnoli F, Terrazzan A, Ancona P, Volinia S, Bertagnolo V, Bergamini CM, Spisni A, Pertinhez TA, Bianchi N. Metabolic Profiling of Breast Cancer Cell Lines: Unique and Shared Metabolites. Int J Mol Sci 2025; 26:969. [PMID: 39940737 PMCID: PMC11816582 DOI: 10.3390/ijms26030969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Breast Cancer (BrCa) exhibits a high phenotypic heterogeneity, leading to the emergence of aggressive clones and the development of drug resistance. Considering the BrCa heterogeneity and that metabolic reprogramming is a cancer hallmark, we selected seven BrCa cell lines with diverse subtypes to provide their comprehensive metabolome characterization: five lines commonly used (SK-Br-3, T-47D, MCF-7, MDA-MB-436, and MDA-MB-231), and two patient-derived xenografts (Hbcx39 and Hbcx9). We characterized their endometabolomes using 1H-NMR spectroscopy. We found distinct metabolite profiles, with certain metabolites being common but differentially accumulated across the selected BrCa cell lines. High levels of glycine, lactate, glutamate, and formate, metabolites known to promote invasion and metastasis, were detected in all BrCa cells. In our experiment setting were identified unique metabolites to specific cell lines: xanthine and 2-oxoglutarate in SK-Br-3, 2-oxobutyrate in T-47D, cystathionine and glucose-1-phosphate in MCF-7, NAD+ in MDA-MB-436, isocitrate in MDA-MB-231, and NADP+ in Hbcx9. The unique and enriched metabolites enabled us to identify the metabolic pathways modulated in a cell-line-specific manner, which may represent potential candidate targets for therapeutic intervention. We believe this study may contribute to the functional characterization of BrCa cells and assist in selecting appropriate cell lines for drug-response studies.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Carlo M. Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Thelma A. Pertinhez
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| |
Collapse
|
8
|
Khairani AF, Harmonia S, Chou Y, Alfarafisa NM, Ramadhanti J. Optimizing Xenograft Models for Breast Cancer: A Comparative Analysis of Cell-Derived and Patient-Derived Implantation Techniques in Pre-Clinical Research. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:1-10. [PMID: 39811602 PMCID: PMC11727321 DOI: 10.2147/bctt.s490532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
Purpose The high mortality rate of breast cancer motivates researchers to search for effective treatments. Due to their ability to simulate human conditions, xenograft models such as CDX (Cell line-Derived Xenografts) and PDX (Patient-Derived Xenografts) have gained popularity in pre-clinical research. The choice of xenograft technique is influenced by the type of tumor employed, particularly in more aggressive tumor models like TNBC with metastases. Subcutaneous or orthotopic implantation may influence tumor engraftment rates and the applicability of the models for drug testing. To optimize xenograft models and support the development of breast cancer drugs, selecting a suitable transplantation technique is essential to attaining the best results. Methods This scoping review used PRISMA-Scr methodology to summarize findings from eleven articles published between 2012 and 2024 on pre-clinical trials related to xenograft models for breast cancer considering PDX began traction after 2010. Using specific criteria, the review included studies from electronic platforms. The inclusion criteria ensured relevant English sources were available in full text, while the exclusion criteria eliminated certain types of articles and inadequately comprehensive studies. Results Subcutaneous and orthotopic implantation are critical methods for xenograft models in cancer research. Subcutaneous implantation is less invasive and more manageable but does not fully mimic the tumor's natural environment. Orthotopic implantation accurately mimic the migration, invasion, and molecular characteristics of the original tumor, although the procedure is more complex and requires specialized techniques. The specific research objectives determine their choice, the need for accurate tumor replication, and the testing convenience. Conclusion Orthotopic implantation is the preferable method for developing PDX and CDX models of breast cancer because it closely mimics the tumor microenvironment and metastatic behavior, yielding clinically relevant results for drug testing. Subcutaneous implantation may result in higher engraftment rates, but it cannot accurately represent the complexity of tumors.
Collapse
Affiliation(s)
- Astrid Feinisa Khairani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Shella Harmonia
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Yoan Chou
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Nayla Majeda Alfarafisa
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Julia Ramadhanti
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
9
|
Perez JM, Duda JM, Ryu J, Shetty M, Mehta S, Jagtap PD, Nelson AC, Winterhoff B, Griffin TJ, Starr TK, Thomas SN. Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer. Sci Rep 2025; 15:813. [PMID: 39755759 PMCID: PMC11700199 DOI: 10.1038/s41598-024-84874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer. We demonstrate that the utilization of patient-specific databases guided by transcriptional profiles increases the depth of human protein identification in PDX models. Our data show that human proteomes of serially passaged PDXs differ significantly from their patient-derived tumor of origin. Analysis of differentially abundant proteins revealed enrichment of distinct biological pathways with major downregulated processes including extracellular matrix organization and the immune system. Finally, we investigated the relative abundances of ovarian cancer-related proteins identified from the Cancer Gene Census across serially passaged PDXs, and found their protein levels to be unstable across PDX models. Our findings highlight features of distinct and dynamic proteomes of serially-passaged PDX models of ovarian cancer.
Collapse
Affiliation(s)
- Jesenia M Perez
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Jolene M Duda
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Joohyun Ryu
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Subina Mehta
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Pratik D Jagtap
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA
| | - Boris Winterhoff
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Timothy J Griffin
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Timothy K Starr
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefani N Thomas
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Chen J, Cheng S, Gu L, Huang Z, Zhang C, Sun C, Chen S. Establishment and characterization of a sigmoid colon cancer organoid with spinal metastasis. Front Cell Dev Biol 2025; 12:1510264. [PMID: 39830210 PMCID: PMC11739105 DOI: 10.3389/fcell.2024.1510264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
Background Sigmoid colon cancer with spinal metastases is rare in distant metastasis. In addition, the prognosis of colon cancer patients with spinal metastases is extremely poor. In order to find effective therapeutic agents, we need to know the biological characteristics of such patients from related models. Methods We collected sigmoid colon cancer tissue from a young female subject who was diagnosed with sigmoid colon cancer with multiple spinal metastases. We successfully established a sigmoid colon cancer organoid using this tissue and investigated drug screening in the patient. HE staining, immunohistochemistry, and DNA sequencing were utilized to compare the biological characteristics between the original tumor and the organoid. Furthermore, we investigated the drug screening of the sigmoid colon cancer organoid in vitro. Results A colon cancer organoid from sigmoid colon cancer with spinal metastases was successfully established. The organoid culture maintained the morphological features, histological features, and genomic landscape of the corresponding sigmoid colon cancer cells. Moreover, we performed drug screening tests to evaluate the effects of chemotherapeutic drugs and targeted drugs. Conclusion The sigmoid colon cancer organoid with spinal metastases was a favorable preclinical model to explore the clinicopathologic characteristics of colon cancer patients with spinal metastases.
Collapse
Affiliation(s)
- Jingyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shumin Cheng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Liang Gu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhangsen Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chunhui Sun
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Songyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
11
|
Steel C, James ER, Matthews JD, Turner SD. Establishing Patient-Derived Xenograft (PDX) Models of Lymphomas. Methods Mol Biol 2025; 2865:429-448. [PMID: 39424736 DOI: 10.1007/978-1-0716-4188-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Patient-derived xenograft (PDX) models of lymphoma typically involve the injection of human tumor cells into an immunocompromised murine host. PDXs have the advantage that the tumor cells grow in a 3D environment within the mouse, meaning the selection pressure of in vitro establishment is avoided and the tumor cells better maintain their genetic heterogeneity. Here, we outline a method for producing and maintaining a PDX model of lymphoma. We describe three different methods to isolate a single cell suspension of the primary patient tumor, followed by either subcutaneous or intraperitoneal injection into an immunocompromised mouse. We then detail how to monitor tumor growth and how to harvest, passage, and store the tumors once they have grown. We highlight and discuss important protocol considerations including technical hints as well as the advantages and disadvantages of the methods described.
Collapse
Affiliation(s)
| | - Emily R James
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Yao QY, Hou XY, Jian WZ, Wang TY, Luo PY, Xue JS, Chen R, Zhou TY. Model-based analysis for investigating the impact of tumor size, lymphocyte and neutrophil on the survival of breast cancer 4T1 tumor-bearing mice. Toxicol Appl Pharmacol 2025; 494:117176. [PMID: 39615798 DOI: 10.1016/j.taap.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/28/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Survival is one of the foremost endpoints in cancer therapy, and parametric survival analysis could comprehensively demonstrate the overall result of various different baseline and longitudinal factors. In this study, the survival of triple negative breast cancer 4T1 tumor-bearing mice treated by gemcitabine (GEM) and dexamethasone (DEX) was investigated with model-based analysis. The tumor size, lymphocyte (LY) and neutrophil (NE) of 4T1 tumor-bearing BALB/c mice were collected, and the PK/PD models of these longitudinal data were established in a sequential manner, respectively. The parametric time-to-event (TTE) model of survival was developed and the PK/PD models were tested and integrated as time-varying prognostic factors. The final model was evaluated and externally validated. LY and NE influence the survival directly, while tumor size showed its indirect impact on survival by affecting LY. The exposure of GEM significantly improved the survival results but DEX did not bring extra benefit. The models established in this study quantitatively characterized the abnormal increasing of LY and NE due to tumor progression in T1 tumor-bearing mice and also demonstrate their relationship with survival outcomes, and further provide a modeling framework to demonstrate potential prognostic factors of survival and evaluate the efficacy of different therapies.
Collapse
Affiliation(s)
- Qing-Yu Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Xin-Yu Hou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei-Zhe Jian
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tian-Yu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ping-Yao Luo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jun-Sheng Xue
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tian-Yan Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China.
| |
Collapse
|
13
|
Korns J, Wicker CA, Lehn M, Shyamsunder S, Thompson S, Lester C, Wise-Draper TM, Waltz SE, Takiar V. Telaglenastat as an alternative to cisplatin as a radiosensitizer in the treatment of head and neck squamous cell carcinoma. Cancer Lett 2024; 606:217320. [PMID: 39489210 PMCID: PMC11583984 DOI: 10.1016/j.canlet.2024.217320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The efficacy of radiation treatment (RT) of head and neck squamous cell carcinoma (HNSCC) is limited by radioresistance and the toxicity of FDA approved radiosensitizers. In extension to our previous research where we demonstrated that telaglenastat (CB839) increased efficacy of RT in in vitro and in vivo HNSCC models, here, we examine the radiosensitizing effects of telaglenastat in comparison to cisplatin's, as cisplatin is currently the standard of care for concurrent therapy. Combination of telaglenastat with RT reduced tumor volume in a HNSCC patient derived xenograft mouse model. The efficacy of telaglenastat with RT in reducing cell survival and increasing apoptosis was similar if not greater than that of cisplatin with RT in Cal27 and HN5 HNSCC cells. The addition of telaglenastat increased reactive oxygen species and reduced the antioxidant glutathione in both Cal27 and HN5 cells. Reverse Phase Protein Array analyses revealed alterations in cell death and DNA damage response proteins. This study provides the scientific underpinnings for the use of telaglenastat as a radiosensitizer in the treatment of HNSCC either as an alternative to cisplatin or in cisplatin-ineligible patients.
Collapse
Affiliation(s)
- Julianna Korns
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Christina A Wicker
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Maria Lehn
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Shreya Shyamsunder
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Samuel Thompson
- Cincinnati Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Carissa Lester
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Trisha M Wise-Draper
- Department of Internal Medicine, Division of Hematology Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA; Research Service, Cincinnati Veteran's Affairs Medical Center, Cincinnati, OH, USA
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA; Research Service, Cincinnati Veteran's Affairs Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Crouigneau R, Li YF, Auxillos J, Goncalves-Alves E, Marie R, Sandelin A, Pedersen SF. Mimicking and analyzing the tumor microenvironment. CELL REPORTS METHODS 2024; 4:100866. [PMID: 39353424 PMCID: PMC11573787 DOI: 10.1016/j.crmeth.2024.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
The tumor microenvironment (TME) is increasingly appreciated to play a decisive role in cancer development and response to therapy in all solid tumors. Hypoxia, acidosis, high interstitial pressure, nutrient-poor conditions, and high cellular heterogeneity of the TME arise from interactions between cancer cells and their environment. These properties, in turn, play key roles in the aggressiveness and therapy resistance of the disease, through complex reciprocal interactions between the cancer cell genotype and phenotype, and the physicochemical and cellular environment. Understanding this complexity requires the combination of sophisticated cancer models and high-resolution analysis tools. Models must allow both control and analysis of cellular and acellular TME properties, and analyses must be able to capture the complexity at high depth and spatial resolution. Here, we review the advantages and limitations of key models and methods in order to guide further TME research and outline future challenges.
Collapse
Affiliation(s)
- Roxane Crouigneau
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yan-Fang Li
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jamie Auxillos
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Eliana Goncalves-Alves
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Zhang Q, Zhang M. Recent advances in lung cancer organoid (tumoroid) research (Review). Exp Ther Med 2024; 28:383. [PMID: 39161616 PMCID: PMC11332118 DOI: 10.3892/etm.2024.12672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/01/2024] [Indexed: 08/21/2024] Open
Abstract
Lung cancer is the most critical type of malignant tumor that threatens human health. Traditional preclinical models have certain defects; for example, they cannot accurately reflect the characteristics of lung cancer and their development is costly and time-consuming. Through self-organization, cancer stem cells (CSCs) generate cancer organoids that have a structure similar to that of lung cancer tissues, overcoming to some extent the aforementioned challenges, thus enabling them to have broader application prospects. Lung cancer organoid (LCO) development methods can be divided into three broad categories based on the source of cells, which include cell lines, patient-derived xenografts and patient tumor tissue/pleural effusion. There are 17 different methods that have been described for the development of LCOs. These methods can be further merged into six categories based on the source of cells, the pre-treatment method used, the composition of the medium and the culture scaffold. These categories are: i) CSCs induced by defined transcription factors; ii) suspension culture; iii) relative optimal culture medium; iv) suboptimal culture medium; v) mechanical digestion and suboptimal culture medium; and vi) hydrogel scaffold. In the current review, the advantages and disadvantages of each of the aforementioned methods are summarized, and references for supporting studies are cited.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Mingyang Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
16
|
Janitri V, ArulJothi KN, Ravi Mythili VM, Singh SK, Prasher P, Gupta G, Dua K, Hanumanthappa R, Karthikeyan K, Anand K. The roles of patient-derived xenograft models and artificial intelligence toward precision medicine. MedComm (Beijing) 2024; 5:e745. [PMID: 39329017 PMCID: PMC11424683 DOI: 10.1002/mco2.745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Patient-derived xenografts (PDX) involve transplanting patient cells or tissues into immunodeficient mice, offering superior disease models compared with cell line xenografts and genetically engineered mice. In contrast to traditional cell-line xenografts and genetically engineered mice, PDX models harbor the molecular and biologic features from the original patient tumor and are generationally stable. This high fidelity makes PDX models particularly suitable for preclinical and coclinical drug testing, therefore better predicting therapeutic efficacy. Although PDX models are becoming more useful, the several factors influencing their reliability and predictive power are not well understood. Several existing studies have looked into the possibility that PDX models could be important in enhancing our knowledge with regard to tumor genetics, biomarker discovery, and personalized medicine; however, a number of problems still need to be addressed, such as the high cost and time-consuming processes involved, together with the variability in tumor take rates. This review addresses these gaps by detailing the methodologies to generate PDX models, their application in cancer research, and their advantages over other models. Further, it elaborates on how artificial intelligence and machine learning were incorporated into PDX studies to fast-track therapeutic evaluation. This review is an overview of the progress that has been done so far in using PDX models for cancer research and shows their potential to be further improved in improving our understanding of oncogenesis.
Collapse
Affiliation(s)
| | - Kandasamy Nagarajan ArulJothi
- Department of Genetic Engineering, College of Engineering and TechnologySRM Institute of Science and TechnologyChengalpattuTamil NaduIndia
| | - Vijay Murali Ravi Mythili
- Department of Genetic Engineering, College of Engineering and TechnologySRM Institute of Science and TechnologyChengalpattuTamil NaduIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Parteek Prasher
- Department of ChemistryUniversity of Petroleum & Energy Studies, Energy AcresDehradunIndia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative, MedicineUniversity of Technology SydneyUltimoNSWAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNSWAustralia
| | - Rakshith Hanumanthappa
- JSS Banashankari Arts, Commerce, and SK Gubbi Science CollegeKarnatak UniversityDharwadKarnatakaIndia
| | - Karthikeyan Karthikeyan
- Centre of Excellence in PCB Design and Analysis, Department of Electronics and Communication EngineeringM. Kumarasamy College of EngineeringKarurTamil NaduIndia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Office of the Dean, Faculty of Health SciencesUniversity of the Free StateBloemfonteinSouth Africa
| |
Collapse
|
17
|
Besser E, Gelfand A, Procaccia S, Berman P, Meiri D. Cannabinoid combination targets NOTCH1-mutated T-cell acute lymphoblastic leukemia through the integrated stress response pathway. eLife 2024; 12:RP90854. [PMID: 39258755 PMCID: PMC11390110 DOI: 10.7554/elife.90854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
In T-cell acute lymphoblastic leukemia (T-ALL), more than 50% of cases display autoactivation of Notch1 signaling, leading to oncogenic transformation. We have previously identified a specific chemovar of Cannabis that induces apoptosis by preventing Notch1 maturation in leukemia cells. Here, we isolated three cannabinoids from this chemovar that synergistically mimic the effects of the whole extract. Two were previously known, cannabidiol (CBD) and cannabidivarin (CBDV), whereas the third cannabinoid, which we termed 331-18A, was identified and fully characterized in this study. We demonstrated that these cannabinoids act through cannabinoid receptor type 2 and TRPV1 to activate the integrated stress response pathway by depleting intracellular Ca2+. This is followed by increased mRNA and protein expression of ATF4, CHOP, and CHAC1, which is hindered by inhibiting the upstream initiation factor eIF2α. The increased abundance of CHAC1 prevents Notch1 maturation, thereby reducing the levels of the active Notch1 intracellular domain, and consequently decreasing cell viability and increasing apoptosis. Treatment with the three isolated molecules resulted in reduced tumor size and weight in vivo and slowed leukemia progression in mice models. Altogether, this study elucidated the mechanism of action of three distinct cannabinoids in modulating the Notch1 pathway, and constitutes an important step in the establishment of a new therapy for treating NOTCH1-mutated diseases and cancers such as T-ALL.
Collapse
Affiliation(s)
- Elazar Besser
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Anat Gelfand
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Shiri Procaccia
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Paula Berman
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - David Meiri
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
18
|
Mehmood A, Ali MS, Li D, Kaushik AC, Wei DQ. Unveiling the Therapeutic Potential of Paclitaxel Combinations Against Breast Carcinoma and Identification of In Vivo Biomarkers. Chem Biol Drug Des 2024; 104:e14627. [PMID: 39317691 DOI: 10.1111/cbdd.14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
Breast cancer (BC) is one of the leading causes of high mortality rates in women worldwide. Although advancements have been made in the design of therapeutic strategies and drug discovery, drug resistance remains one of the key challenges. One of the ways to overcome drug resistance is finding potential drug combinations since the efficacy of combined drugs is higher than their individual efficacies if the combination is a synergistic pair. Therefore, the current study uses a BC patient-derived xenograft (PDX) dataset to evaluate the effects of various cancer drugs on breast cancer in vivo models. The drug effects are further validated by four machine learning models, namely Elastic Net, Least Absolute Shrinkage and Selection (LASSO), Support Vector Machine (SVM), Random Forests (RF), as well as exploring the shortlisted drugs in combination with paclitaxel, a baseline drug for enhanced efficacy on tumor volume reduction. Additionally, the study also shortlists the top 50 in vivo biomarkers correlated with the effects of the drugs. The outcomes could be significantly important for the design of an effective anti-breast cancer therapy.
Collapse
Affiliation(s)
- Aamir Mehmood
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Daixi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Peng Cheng Laboratory, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
19
|
Jo SY, Lee JD, Won J, Park J, Kweon T, Jo S, Sohn J, Kim SI, Kim S, Park HS. Reversion of pathogenic BRCA1 L1780P mutation confers resistance to PARP and ATM inhibitor in breast cancer. iScience 2024; 27:110469. [PMID: 39156639 PMCID: PMC11326956 DOI: 10.1016/j.isci.2024.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/12/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
This study investigates the molecular characteristics and therapeutic implications of the BRCA1 L1780P mutation, a rare variant prevalent among Korean hereditary breast cancer patients. Using patient-derived xenograft (PDX) models and cell lines (PDX-derived cell line) from carriers, sequencing analyses revealed loss of heterozygosity (LOH) at the BRCA1 locus, with one patient losing the wild-type allele and the other mutated allele. This reversion mutation may cf. resistance to homologous recombination deficiency (HRD)-targeting drugs such as PARP inhibitors (PARPi) and ATM inhibitors (ATMi). Although HRDetect and CHORD analyses confirmed a strong association between the L1780P mutation and HRD, effective initially, drug resistance developed in cases with reversion mutations. These findings underscore the complexity of using HRD prediction in personalized treatment strategies for breast cancer patients with BRCA1/2 mutations, as resistance may arise in reversion cases despite high HRD scores.
Collapse
Affiliation(s)
- Se-Young Jo
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Dong Lee
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jeongsoo Won
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jiho Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Taeyong Kweon
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seongyeon Jo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Hyung Seok Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Shmuel S, Monette S, Ibrahim D, Pereira PMR. PDX Models in Theranostic Applications: Generation and Screening for B Cell Lymphoma of Human Origin. Mol Imaging Biol 2024; 26:569-576. [PMID: 38649626 PMCID: PMC11577570 DOI: 10.1007/s11307-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
This MIB guide briefly summarizes the generation of patient-derived xenografts (PDXs) and highlights the importance of validating PDX models for the presence of B cell lymphoma of human origin before their use in radiotheranostic applications. The use of this protocol will allow researchers to learn different methods for screening PDX models for Epstein-Barr virus (EBV)-infected B cell lymphoma.
Collapse
Affiliation(s)
- Shayla Shmuel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sébastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY, USA
| | - Dina Ibrahim
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patrícia M R Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
21
|
Cigliano A, Liao W, Deiana GA, Rizzo D, Chen X, Calvisi DF. Preclinical Models of Hepatocellular Carcinoma: Current Utility, Limitations, and Challenges. Biomedicines 2024; 12:1624. [PMID: 39062197 PMCID: PMC11274649 DOI: 10.3390/biomedicines12071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant primary liver tumor, remains one of the most lethal cancers worldwide, despite the advances in therapy in recent years. In addition to the traditional chemically and dietary-induced HCC models, a broad spectrum of novel preclinical tools have been generated following the advent of transgenic, transposon, organoid, and in silico technologies to overcome this gloomy scenario. These models have become rapidly robust preclinical instruments to unravel the molecular pathogenesis of liver cancer and establish new therapeutic approaches against this deadly disease. The present review article aims to summarize and discuss the commonly used preclinical models for HCC, evaluating their strengths and weaknesses.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Weiting Liao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Giovanni A. Deiana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Davide Rizzo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| |
Collapse
|
22
|
Li H, Li Y, Zhang L, Wang N, Lu D, Tang D, Lv Y, Zhang J, Yan H, Gong H, Zhang M, Nie K, Hou Y, Yu Y, Xiao H, Liu C. Prodrug-inspired adenosine triphosphate-activatable celastrol-Fe(III) chelate for cancer therapy. SCIENCE ADVANCES 2024; 10:eadn0960. [PMID: 38996025 PMCID: PMC11244545 DOI: 10.1126/sciadv.adn0960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Celastrol (CEL), an active compound isolated from the root of Tripterygium wilfordii, exhibits broad anticancer activities. However, its poor stability, narrow therapeutic window and numerous adverse effects limit its applications in vivo. In this study, an adenosine triphosphate (ATP) activatable CEL-Fe(III) chelate was designed, synthesized, and then encapsulated with a reactive oxygen species (ROS)-responsive polymer to obtain CEL-Fe nanoparticles (CEL-Fe NPs). In normal tissues, CEL-Fe NPs maintain structural stability and exhibit reduced systemic toxicity, while at the tumor site, an ATP-ROS-rich tumor microenvironment, drug release is triggered by ROS, and antitumor potency is restored by competitive binding of ATP. This intelligent CEL delivery system improves the biosafety and bioavailability of CEL for cancer therapy. Such a CEL-metal chelate strategy not only mitigates the challenges associated with CEL but also opens avenues for the generation of CEL derivatives, thereby expanding the therapeutic potential of CEL in clinical settings.
Collapse
Affiliation(s)
- Hanrong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingpu Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Nan Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Lu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinbo Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Heben Yan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - He Gong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing 102206,China
| | - Kaili Nie
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
23
|
Cheng C, Hsu SK, Chen YC, Liu W, Shu ED, Chien CM, Chiu CC, Chang WT. Burning down the house: Pyroptosis in the tumor microenvironment of hepatocellular carcinoma. Life Sci 2024; 347:122627. [PMID: 38614301 DOI: 10.1016/j.lfs.2024.122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
A high mortality rate makes hepatocellular carcinoma (HCC) a difficult cancer to treat. When surgery is not possible, liver cancer patients are treated with chemotherapy. However, HCC management and treatment are difficult. Sorafenib, which is a first-line treatment for hepatocellular carcinoma, initially slows disease progression. However, sorafenib resistance limits patient survival. Recent studies have linked HCC to programmed cell death, which has increased researcher interest in therapies targeting cell death. Pyroptosis, which is an inflammatory mode of programmed cell death, may be targeted to treat HCC. Pyroptosis pathways, executors, and effects are examined in this paper. This review summarizes how pyroptosis affects the tumor microenvironment (TME) in HCC, including the role of cytokines such as IL-1β and IL-18 in regulating immune responses. The use of chemotherapies and their ability to induce cancer cell pyroptosis as alternative treatments and combining them with other drugs to reduce side effects is also discussed. In conclusion, we highlight the potential of inducing pyroptosis to treat HCC and suggest ways to improve patient outcomes. Studies on cancer cell pyroptosis may lead to new HCC treatments.
Collapse
Affiliation(s)
- Chi Cheng
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Chun Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - En-De Shu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Ming Chien
- Department of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; The Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
24
|
Chen Q, Sun X, Li Y, Yang X, Yang X, Xu H, Cai H, Hu J. The potential of organoids in renal cell carcinoma research. BMC Urol 2024; 24:120. [PMID: 38858665 PMCID: PMC11165752 DOI: 10.1186/s12894-024-01511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Renal cell carcinoma, a leading cause of death in urological malignancies, arises from the nephron. Its characteristics include diversity in disease biology, varied clinical behaviors, different prognoses, and diverse responses to systemic therapies. The term 'organoids' is used to describe structures resembling tissues created through the three-dimensional cultivation of stem cells in vitro. These organoids, when derived from tumor tissues, can retain the diversity of the primary tumor, mirror its spatial tissue structure, and replicate similar organ-like functions. In contrast to conventional two-dimensional cell cultures and the transplantation of tumor tissues into other organisms, organoids derived from tumors maintain the complexity and microenvironment of the original tumor tissue. This fidelity makes them a more reliable model for the development of cancer drugs, potentially accelerating the translation of these drugs to clinical use and facilitating personalized treatment options for patients. This review aims to summarize the recent advancements in the use of organoids for studying renal cell carcinoma, focusing on their cultivation, potential applications, and inherent limitations.
Collapse
Affiliation(s)
- Qiuyang Chen
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Sun
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yubei Li
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyue Yang
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejian Yang
- Department of Urology, Suqian First Hospital, Suqian, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital, Nantong, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Jun Hu
- Department of Nursing, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
25
|
Liu YY, Wu DK, Chen JB, Tang YM, Jiang F. Advances in the study of gastric organoids as disease models. World J Gastrointest Oncol 2024; 16:1725-1736. [PMID: 38764838 PMCID: PMC11099456 DOI: 10.4251/wjgo.v16.i5.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 05/09/2024] Open
Abstract
Gastric organoids are models created in the laboratory using stem cells and sophisticated three-dimensional cell culture techniques. These models have shown great promise in providing valuable insights into gastric physiology and advanced disease research. This review comprehensively summarizes and analyzes the research advances in culture methods and techniques for adult stem cells and induced pluripotent stem cell-derived organoids, and patient-derived organoids. The potential value of gastric organoids in studying the pathogenesis of stomach-related diseases and facilitating drug screening is initially discussed. The construction of gastric organoids involves several key steps, including cell extraction and culture, three-dimensional structure formation, and functional expression. Simulating the structure and function of the human stomach by disease modeling with gastric organoids provides a platform to study the mechanism of gastric cancer induction by Helicobacter pylori. In addition, in drug screening and development, gastric organoids can be used as a key tool to evaluate drug efficacy and toxicity in preclinical trials. They can also be used for precision medicine according to the specific conditions of patients with gastric cancer, to assess drug resistance, and to predict the possibility of adverse reactions. However, despite the impressive progress in the field of gastric organoids, there are still many unknowns that need to be addressed, especially in the field of regenerative medicine. Meanwhile, the reproducibility and consistency of organoid cultures are major challenges that must be overcome. These challenges have had a significant impact on the development of gastric organoids. Nonetheless, as technology continues to advance, we can foresee more comprehensive research in the construction of gastric organoids. Such research will provide better solutions for the treatment of stomach-related diseases and personalized medicine.
Collapse
Affiliation(s)
- Yi-Yang Liu
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - De-Kun Wu
- Teaching Experiment and Training Center, Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Ji-Bing Chen
- Central Laboratory, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - You-Ming Tang
- Department of Digestive Disease, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Feng Jiang
- AIDS Research Center, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
26
|
Peralta S, Katt W, Balkman C, Butler S, Carney P, Todd-Donato A, Drozd M, Duhamel G, Fiani N, Ford J, Grenier J, Hayward J, Heikinheimo K, Hume K, Moore E, Puri R, Sylvester S, Warshaw S, Webb S, White A, Wright A, Cerione R. Opportunities for targeted therapies: trametinib as a therapeutic approach to canine oral squamous cell carcinomas. RESEARCH SQUARE 2024:rs.3.rs-4289451. [PMID: 38746473 PMCID: PMC11092801 DOI: 10.21203/rs.3.rs-4289451/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Oral tumors are relatively common in dogs, and canine oral squamous cell carcinoma (COSCC) is the most prevalent oral malignancy of epithelial origin. COSCC is locally aggressive with up to 20% of patients showing regional or distant metastasis at the time of diagnosis. The treatment of choice most typically involves wide surgical excision. Although long-term remission is possible, treatments are associated with significant morbidity and can negatively impact functionality and quality of life. OSCCs have significant upregulation of the RAS-RAF-MEK-MAPK signaling axis, and we had previously hypothesized that small-molecule inhibitors that target RAS signaling might effectively inhibit tumor growth and progression. Here, we demonstrate that the MEK inhibitor trametinib, an FDA-approved drug for human cancers, significantly blocks the growth of several COSCC cell lines established from current patient tumor samples. We further show clinical evidence that the drug is able to cause significant tumor regression in some patients with spontaneously occurring COSCC. Given the limited treatment options available and the high rate of owner rejection of these offered options, these findings provide new hope that more acceptable treatment options may soon enter the veterinary clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jennifer Grenier
- RNA Sequencing Core and Center for Reproductive Genomics. Cornell University, Ithaca, NY
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Soufizadeh P, Mansouri V, Ahmadbeigi N. A review of animal models utilized in preclinical studies of approved gene therapy products: trends and insights. Lab Anim Res 2024; 40:17. [PMID: 38649954 PMCID: PMC11034049 DOI: 10.1186/s42826-024-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 04/25/2024] Open
Abstract
Scientific progress heavily relies on rigorous research, adherence to scientific standards, and transparent reporting. Animal models play a crucial role in advancing biomedical research, especially in the field of gene therapy. Animal models are vital tools in preclinical research, allowing scientists to predict outcomes and understand complex biological processes. The selection of appropriate animal models is critical, considering factors such as physiological and pathophysiological similarities, availability, and ethical considerations. Animal models continue to be indispensable tools in preclinical gene therapy research. Advancements in genetic engineering and model selection have improved the fidelity and relevance of these models. As gene therapy research progresses, careful consideration of animal models and transparent reporting will contribute to the development of effective therapies for various genetic disorders and diseases. This comprehensive review explores the use of animal models in preclinical gene therapy studies for approved products up to September 2023. The study encompasses 47 approved gene therapy products, with a focus on preclinical trials. This comprehensive analysis serves as a valuable reference for researchers in the gene therapy field, aiding in the selection of suitable animal models for their preclinical investigations.
Collapse
Affiliation(s)
- Parham Soufizadeh
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Biomedical Research Institute, University of Tehran, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Fűr GM, Nemes K, Magó É, Benő AÁ, Topolcsányi P, Moldvay J, Pongor LS. Applied models and molecular characteristics of small cell lung cancer. Pathol Oncol Res 2024; 30:1611743. [PMID: 38711976 PMCID: PMC11070512 DOI: 10.3389/pore.2024.1611743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive type of cancer frequently diagnosed with metastatic spread, rendering it surgically unresectable for the majority of patients. Although initial responses to platinum-based therapies are often observed, SCLC invariably relapses within months, frequently developing drug-resistance ultimately contributing to short overall survival rates. Recently, SCLC research aimed to elucidate the dynamic changes in the genetic and epigenetic landscape. These have revealed distinct subtypes of SCLC, each characterized by unique molecular signatures. The recent understanding of the molecular heterogeneity of SCLC has opened up potential avenues for precision medicine, enabling the development of targeted therapeutic strategies. In this review, we delve into the applied models and computational approaches that have been instrumental in the identification of promising drug candidates. We also explore the emerging molecular diagnostic tools that hold the potential to transform clinical practice and patient care.
Collapse
Affiliation(s)
- Gabriella Mihalekné Fűr
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Kolos Nemes
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Éva Magó
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Alexandra Á. Benő
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Petronella Topolcsányi
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Judit Moldvay
- Department of Pulmonology, Szeged University Szent-Gyorgyi Albert Medical School, Szeged, Hungary
- 1st Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Lőrinc S. Pongor
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| |
Collapse
|
29
|
Sousa ACDS, Fernandes BLNC, da Silva JPA, Stevanato Filho PR, Coimbra LBDCT, de Oliveira Beserra A, Alvarenga AL, Maida G, Guimaraes CT, Nakamuta IM, Marchi FA, Alves C, Lichtenfels M, de Farias CB, Kupper BEC, Costa FD, de Mello CAL, Carraro DM, Torrezan GT, Lopes A, dos Santos TG. A Case Study of a Rare Undifferentiated Spindle Cell Sarcoma of the Penis: Establishment and Characterization of Patient-Derived Models. Genes (Basel) 2024; 15:424. [PMID: 38674359 PMCID: PMC11049969 DOI: 10.3390/genes15040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Rare sarcomas present significant treatment challenges compared to more prevalent soft tissue sarcomas due to limited treatment options and a poor understanding of their biology. This study investigates a unique case of penile sarcoma, providing a comprehensive morphological and molecular analysis. Through the creation of experimental patient-derived models-including patient-derived xenograft (PDX), 3D, and monolayer primary cultures-we successfully replicated crucial molecular traits observed in the patient's tumor, such as smooth muscle actin and CD99 expression, along with specific mutations in genes like TSC2 and FGFR4. These models are helpful in assessing the potential for an in-depth exploration of this tumor's biology. This comprehensive approach holds promise in identifying potential therapeutic avenues for managing this exceedingly rare soft tissue sarcoma.
Collapse
Affiliation(s)
- Ariane Cavalcante dos Santos Sousa
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
- Graduate Program of A.C.Camargo Cancer Center, Sao Paulo 01508-020, Brazil;
| | | | | | - Paulo Roberto Stevanato Filho
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
| | - Luiza Bitencourt de Carvalho Terci Coimbra
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Adriano de Oliveira Beserra
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
- Graduate Program of A.C.Camargo Cancer Center, Sao Paulo 01508-020, Brazil;
| | - Ana Luiza Alvarenga
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Giovanna Maida
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Camila Tokumoto Guimaraes
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Ingrid Martinez Nakamuta
- Graduate Program of A.C.Camargo Cancer Center, Sao Paulo 01508-020, Brazil;
- Heart Institute of School of Medicine, University of Sao Paulo, Sao Paulo 05403-900, Brazil
| | - Fabio Albuquerque Marchi
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo (ICESP), Clinical Hospital of the University of Sao Paulo Medical School (HCFMUSP), Sao Paulo 01246-000, Brazil;
| | - Camila Alves
- Ziel Biosciences, Department of Translational Research, Porto Alegre 90050-170, Brazil; (C.A.); (M.L.); (C.B.d.F.)
| | - Martina Lichtenfels
- Ziel Biosciences, Department of Translational Research, Porto Alegre 90050-170, Brazil; (C.A.); (M.L.); (C.B.d.F.)
| | - Caroline Brunetto de Farias
- Ziel Biosciences, Department of Translational Research, Porto Alegre 90050-170, Brazil; (C.A.); (M.L.); (C.B.d.F.)
| | - Bruna Elisa Catin Kupper
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
| | - Felipe D’Almeida Costa
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
- Anatomic Pathology Department, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil
| | - Celso Abdon Lopes de Mello
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
| | - Dirce Maria Carraro
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Giovana Tardin Torrezan
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Ademar Lopes
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
| | - Tiago Goss dos Santos
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| |
Collapse
|
30
|
Zacharias NM, Segarra L, Akagi K, Fowlkes NW, Chen H, Alaniz A, de la Cerda C, Pesquera P, Xi Y, Wang J, Chahoud J, Lu X, Rao P, Martinez-Ferrer M, Pettaway CA. Transcriptomic, Proteomic, and Genomic Mutational Fraction Differences Based on HPV Status Observed in Patient-Derived Xenograft Models of Penile Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:1066. [PMID: 38473423 PMCID: PMC10930474 DOI: 10.3390/cancers16051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Metastatic penile squamous cell carcinoma (PSCC) has only a 50% response rate to first-line combination chemotherapies and there are currently no targeted-therapy approaches. Therefore, we have an urgent need in advanced-PSCC treatment to find novel therapies. Approximately half of all PSCC cases are positive for high-risk human papillomavirus (HR-HPV). Our objective was to generate HPV-positive (HPV+) and HPV-negative (HPV-) patient-derived xenograft (PDX) models and to determine the biological differences between HPV+ and HPV- disease. We generated four HPV+ and three HPV- PSCC PDX animal models by directly implanting resected patient tumor tissue into immunocompromised mice. PDX tumor tissue was found to be similar to patient tumor tissue (donor tissue) by histology and short tandem repeat fingerprinting. DNA mutations were mostly preserved in PDX tissues and similar APOBEC (apolipoprotein B mRNA editing catalytic polypeptide) mutational fractions in donor tissue and PDX tissues were noted. A higher APOBEC mutational fraction was found in HPV+ versus HPV- PDX tissues (p = 0.044), and significant transcriptomic and proteomic expression differences based on HPV status included p16 (CDKN2A), RRM2, and CDC25C. These models will allow for the direct testing of targeted therapies in PSCC and determine their response in correlation to HPV status.
Collapse
Affiliation(s)
- Niki M. Zacharias
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.S.); (P.P.)
- MD Anderson UTHealth Graduate School, Houston, TX 77030, USA
| | - Luis Segarra
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.S.); (P.P.)
- MD Anderson UTHealth Graduate School, Houston, TX 77030, USA
| | - Keiko Akagi
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Natalie Wall Fowlkes
- Department of Veterinary Medicine & Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Huiqin Chen
- Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Angelita Alaniz
- Center for Health Promotion and Prevention Research, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Carolyn de la Cerda
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pedro Pesquera
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.S.); (P.P.)
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (J.W.)
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (J.W.)
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Norte Dame, IN 46556, USA;
| | - Priya Rao
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Magaly Martinez-Ferrer
- Department of Pharmaceutical Sciences, University of Puerto Rico Medical Sciences Campus & Cancer Biology, UPR Comprehensive Cancer Center, San Juan, PR 00936, USA;
| | - Curtis A. Pettaway
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.S.); (P.P.)
| |
Collapse
|
31
|
Choi D, Gonzalez‐Suarez AM, Dumbrava MG, Medlyn M, de Hoyos‐Vega JM, Cichocki F, Miller JS, Ding L, Zhu M, Stybayeva G, Gaspar‐Maia A, Billadeau DD, Ma WW, Revzin A. Microfluidic Organoid Cultures Derived from Pancreatic Cancer Biopsies for Personalized Testing of Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303088. [PMID: 38018486 PMCID: PMC10837378 DOI: 10.1002/advs.202303088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Patient-derived cancer organoids (PDOs) hold considerable promise for personalizing therapy selection and improving patient outcomes. However, it is challenging to generate PDOs in sufficient numbers to test therapies in standard culture platforms. This challenge is particularly acute for pancreatic ductal adenocarcinoma (PDAC) where most patients are diagnosed at an advanced stage with non-resectable tumors and where patient tissue is in the form of needle biopsies. Here the development and characterization of microfluidic devices for testing therapies using a limited amount of tissue or PDOs available from PDAC biopsies is described. It is demonstrated that microfluidic PDOs are phenotypically and genotypically similar to the gold-standard Matrigel organoids with the advantages of 1) spheroid uniformity, 2) minimal cell number requirement, and 3) not relying on Matrigel. The utility of microfluidic PDOs is proven by testing PDO responses to several chemotherapies, including an inhibitor of glycogen synthase kinase (GSKI). In addition, microfluidic organoid cultures are used to test effectiveness of immunotherapy comprised of NK cells in combination with a novel biologic. In summary, our microfluidic device offers considerable benefits for personalizing oncology based on cancer biopsies and may, in the future, be developed into a companion diagnostic for chemotherapy or immunotherapy treatments.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | | | - Mihai G. Dumbrava
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Michael Medlyn
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | | | - Frank Cichocki
- Department of MedicineUniversity of MinnesotaMinneapolisMN55455USA
| | | | - Li Ding
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Mojun Zhu
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | - Alexandre Gaspar‐Maia
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Daniel D. Billadeau
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Wen Wee Ma
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Alexander Revzin
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| |
Collapse
|
32
|
Trucillo P. Biomaterials for Drug Delivery and Human Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:456. [PMID: 38255624 PMCID: PMC10817481 DOI: 10.3390/ma17020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biomaterials embody a groundbreaking paradigm shift in the field of drug delivery and human applications. Their versatility and adaptability have not only enriched therapeutic outcomes but also significantly reduced the burden of adverse effects. This work serves as a comprehensive overview of biomaterials, with a particular emphasis on their pivotal role in drug delivery, classifying them in terms of their biobased, biodegradable, and biocompatible nature, and highlighting their characteristics and advantages. The examination also delves into the extensive array of applications for biomaterials in drug delivery, encompassing diverse medical fields such as cancer therapy, cardiovascular diseases, neurological disorders, and vaccination. This work also explores the actual challenges within this domain, including potential toxicity and the complexity of manufacturing processes. These challenges emphasize the necessity for thorough research and the continuous development of regulatory frameworks. The second aim of this review is to navigate through the compelling terrain of recent advances and prospects in biomaterials, envisioning a healthcare landscape where they empower precise, targeted, and personalized drug delivery. The potential for biomaterials to transform healthcare is staggering, as they promise treatments tailored to individual patient needs, offering hope for improved therapeutic efficacy, fewer side effects, and a brighter future for medical practice.
Collapse
Affiliation(s)
- Paolo Trucillo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale V. Tecchio, 80, 80125 Naples, Italy
| |
Collapse
|
33
|
Savel H, Meyer-Losic F, Proust-Lima C, Richert L. Statistical classification of treatment responses in mouse clinical trials for stratified medicine in oncology drug discovery. Sci Rep 2024; 14:934. [PMID: 38195626 PMCID: PMC10776864 DOI: 10.1038/s41598-023-51055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
Translational oncology research strives to explore a new aspect: identifying subgroups that exhibit treatment response even during pre-clinical phases. In this study, we focus on PDX models and their implementation in mouse clinical trials (MCT). Our primary objective was to identify subgroups with different treatment responses using Latent Class Mixed Model (LCMM).We used a public dataset and focused on one treatment, encorafenib, and two indications, melanoma and colorectal cancer, for which efficacy depends on a specific mutation BRAF V600E. One LCMM per indication was implemented to classify treatment responses at the PDX level, analyzing the growth kinetics of treated tumors and matched controls within the PDX models. A simulation study was carried out to explore the performance of LCMM in this context. For both applications, LCMM identified classes for which the higher the proportion of mutated BRAF V600E PDX models the greater the treatment effect, which is aligned with encorafenib use recommendations. The simulation study showed that LCMM could identify classes with large differences in treatment effects. LCMM is a suitable tool for MCT to explore treatment response subgroups of PDX. Once these subgroups are defined, characterization of their phenotypes/genotypes could be performed to explore treatment response predictors.
Collapse
Affiliation(s)
- Hélène Savel
- U1219, Inserm Bordeaux Population Health Research Centre, Department of Public Health, Université de Bordeaux, 33000, Bordeaux, France
- Ipsen Innovation, 5 Avenue du Canada, 91940, Les Ulis, France
- Inria, SISTM, 33400, Talence, France
| | | | - Cécile Proust-Lima
- U1219, Inserm Bordeaux Population Health Research Centre, Department of Public Health, Université de Bordeaux, 33000, Bordeaux, France
- Institut Bergonié, CHU de Bordeaux, INSERM, Université de Bordeaux, CIC-EC 1401, 33000, Bordeaux, France
| | - Laura Richert
- U1219, Inserm Bordeaux Population Health Research Centre, Department of Public Health, Université de Bordeaux, 33000, Bordeaux, France.
- Institut Bergonié, CHU de Bordeaux, INSERM, Université de Bordeaux, CIC-EC 1401, 33000, Bordeaux, France.
- Inria, SISTM, 33400, Talence, France.
- Université de Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
34
|
Xiu Z, Yang Q, Xie F, Han F, He W, Liao W. Revolutionizing digestive system tumor organoids research: Exploring the potential of tumor organoids. J Tissue Eng 2024; 15:20417314241255470. [PMID: 38808253 PMCID: PMC11131411 DOI: 10.1177/20417314241255470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Digestive system tumors are the leading cause of cancer-related deaths worldwide. Despite ongoing research, our understanding of their mechanisms and treatment remain inadequate. One promising tool for clinical applications is the use of gastrointestinal tract tumor organoids, which serve as an important in vitro model. Tumor organoids exhibit a genotype similar to the patient's tumor and effectively mimic various biological processes, including tissue renewal, stem cell, and ecological niche functions, and tissue response to drugs, mutations, or injury. As such, they are valuable for drug screening, developing novel drugs, assessing patient outcomes, and supporting immunotherapy. In addition, innovative materials and techniques can be used to optimize tumor organoid culture systems. Several applications of digestive system tumor organoids have been described and have shown promising results in related aspects. In this review, we discuss the current progress, limitations, and prospects of this model for digestive system tumors.
Collapse
Affiliation(s)
- Zhian Xiu
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fusheng Xie
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weiwei He
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| |
Collapse
|
35
|
Rossi Herling B, Chen MZ, McLeod VM. Assessing Protein Expression in Patient-Derived Xenografts Using Western Blotting. Methods Mol Biol 2024; 2806:209-218. [PMID: 38676805 DOI: 10.1007/978-1-0716-3858-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
The use of patient-derived xenografts (PDXs) in cancer research is increasing due to their ability to closely mimic the features of patient tumors. The ability to quickly and robustly measure protein expression levels in these tissues is a key methodology required in a broad range of experimental designs. Western blotting (WB) is a cost effective and simple tool that is highly specific and sensitive for detecting and quantifying individual proteins, posttranslational modifications and aberrant signaling pathways. Here, we described a method to assess protein expression in PDX tissues using WB to detect proteins involved in cell growth signaling pathways.
Collapse
Affiliation(s)
- Bruna Rossi Herling
- Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Moore Zhe Chen
- Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Victoria M McLeod
- Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
36
|
Ba D, Li H, Liu R, Zhang P, Tang Y. Exploratory study on the efficacy of bortezomib combining mitoxantrone or CD22-CAR T therapy targeting CD19-negative relapse after CD19-CAR T cell therapy with a simpler cell-line-based model. Apoptosis 2023; 28:1534-1545. [PMID: 37243774 DOI: 10.1007/s10495-023-01853-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Target-negative relapse after CD19 chimeric antigen receptor engineered (CAR) T cell therapy for patients with B lineage acute lymphoblastic leukemia (B-ALL) presents limited treatment options with dismal outcomes. Although CD22-CAR T cells mediate similarly potent antineoplastic effects in patients with CD19dim or even CD19-negative relapse following CD19-directed immunotherapy, a high rate of relapse associated with diminished CD22 cell surface expression has also been observed. Therefore, it is unclear whether any other therapeutic options are available. Mitoxantrone has shown significant antineoplastic activity in patients with relapsed or refractory leukemia over the past decades, and in some cases, the addition of bortezomib to conventional chemotherapeutic agents has demonstrated improved response rates. However, whether this mitoxantrone and bortezomib combination therapy is effective for those patients who have relapsed B-ALL after receiving CD19-CAR T cell therapy remains to be elucidated. In this study, we established a cellular model system using a CD19-positive B-ALL cell line Nalm-6 to investigate the treatment options for CD19-negative relapsed B-ALL after CD19-CAR T cell therapy. In addition to CD22-CAR T therapy, we observed that the combination of bortezomib and mitoxantrone exhibited effective anti-leukemia activity in the CD19-negative Nalm-6 cell line by downregulating p-AKT and p-mTOR. These results suggest that this combination therapy is a possible option for target-negative refractory leukemia cells after CAR-T cell treatment.
Collapse
Affiliation(s)
- Diandian Ba
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Hongzhe Li
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Rongrong Liu
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Ping Zhang
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Yongmin Tang
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China.
| |
Collapse
|
37
|
Lee EJ, Noh SJ, Choi H, Kim MW, Kim SJ, Seo YA, Jeong JE, Shin I, Kim JS, Choi JK, Cho DY, Chang S. Comparative RNA-Seq Analysis Revealed Tissue-Specific Splicing Variations during the Generation of the PDX Model. Int J Mol Sci 2023; 24:17001. [PMID: 38069324 PMCID: PMC10707456 DOI: 10.3390/ijms242317001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Tissue-specific gene expression generates fundamental differences in the function of each tissue and affects the characteristics of the tumors that are created as a result. However, it is unclear how much the tissue specificity is conserved during grafting of the primary tumor into an immune-compromised mouse model. Here, we performed a comparative RNA-seq analysis of four different primary-patient derived xenograft (PDX) tumors. The analysis revealed a conserved RNA biotype distribution of primary-PDX pairs, as revealed by previous works. Interestingly, we detected significant changes in the splicing pattern of PDX, which was mainly comprised of skipped exons. This was confirmed by splicing variant-specific RT-PCR analysis. On the other hand, the correlation analysis for the tissue-specific genes indicated overall strong positive correlations between the primary and PDX tumor pairs, with the exception of gastric cancer cases, which showed an inverse correlation. These data propose a tissue-specific change in splicing events during PDX formation as a variable factor that affects primary-PDX integrity.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Seung-Jae Noh
- PentaMedix Co., Ltd., Seongnam 13449, Republic of Korea; (S.-J.N.); (H.C.); (D.-Y.C.)
| | - Huiseon Choi
- PentaMedix Co., Ltd., Seongnam 13449, Republic of Korea; (S.-J.N.); (H.C.); (D.-Y.C.)
| | - Min Woo Kim
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Su Jin Kim
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Yeon Ah Seo
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Ji Eun Jeong
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Inkyung Shin
- PentaMedix Co., Ltd., Seongnam 13449, Republic of Korea; (S.-J.N.); (H.C.); (D.-Y.C.)
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.-S.K.); (J.-K.C.)
| | - Jong-Kwon Choi
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.-S.K.); (J.-K.C.)
| | - Dae-Yeon Cho
- PentaMedix Co., Ltd., Seongnam 13449, Republic of Korea; (S.-J.N.); (H.C.); (D.-Y.C.)
| | - Suhwan Chang
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| |
Collapse
|
38
|
Hernández Guerrero T, Baños N, del Puerto Nevado L, Mahillo-Fernandez I, Doger De-Speville B, Calvo E, Wick M, García-Foncillas J, Moreno V. Patient Characteristics Associated with Growth of Patient-Derived Tumor Implants in Mice (Patient-Derived Xenografts). Cancers (Basel) 2023; 15:5402. [PMID: 38001663 PMCID: PMC10670531 DOI: 10.3390/cancers15225402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Background: patient-derived xenografts (PDXs) have defined the field of translational cancer research in recent years, becoming one of the most-used tools in early drug development. The process of establishing cancer models in mice has turned out to be challenging, since little research focuses on evaluating which factors impact engraftment success. We sought to determine the clinical, pathological, or molecular factors which may predict better engraftment rates in PDXs. Methods: between March 2017 and January 2021, tumor samples obtained from patients with primary or metastatic cancer were implanted into athymic nude mice. A full comprehensive evaluation of baseline factors associated with the patients and patients' tumors was performed, with the goal of potentially identifying predictive markers of engraftment. We focused on clinical (patient factors) pathological (patients' tumor samples) and molecular (patients' tumor samples) characteristics, analyzed either by immunohistochemistry (IHC) or next-generation sequencing (NGS), which were associated with the likelihood of final engraftment, as well as with tumor growth rates in xenografts. Results: a total of 585 tumor samples were collected and implanted. Twenty-one failed to engraft, due to lack of malignant cells. Of 564 tumor-positive samples, 187 (33.2%) grew at time of analysis. The study was able to find correlation and predictive value for engraftment for the following: the use of systemic antibiotics by the patient within 2 weeks of sampling (38.1% (72/189) antibiotics- group vs. 30.7% (115/375) no-antibiotics) (p = 0.048), and the administration of systemic steroids to the patients within 2 weeks of sampling (41.5% (34/48) steroids vs. 31.7% (153/329), no-steroids) (p = 0.049). Regarding patient's baseline tests, we found certain markers could help predict final engraftment success: for lactate dehydrogenase (LDH) levels, 34.1% (140/411) of tumors derived from patients with baseline blood LDH levels above the upper limit of normality (ULN) achieved growth, against 30.7% (47/153) with normal LDH (p = 0.047). Histological tumor characteristics, such as grade of differentiation, were also correlated. Grade 1: 25.4% (47/187), grade 2: 34.8% (65/187) and grade 3: 40.1% (75/187) tumors achieved successful growth (p = 0.043), suggesting the higher the grade, the higher the likelihood of success. Similarly, higher ki67 levels were also correlated with better engraftment rates: low (Ki67 < 15%): 8.9% (9/45) achieved growth vs. high (Ki67 ≥ 15%): 31% (35/113) (p: 0.002). Other markers of aggressiveness such as the presence of lymphovascular invasion in tumor sample of origin was also predictive: 42.2% (97/230) with lymphovascular vs. 26.9% (90/334) of samples with no invasion (p = 0.0001). From the molecular standpoint, mismatch-repair-deficient (MMRd) tumors showed better engraftment rates: 62.1% (18/29) achieved growth vs. 40.8% (75/184) of proficient tumors (p = 0.026). A total of 84 PDX were breast models, among which 57.9% (11/19) ER-negative models grew, vs. 15.4% (10/65) of ER-positive models (p = 0.0001), also consonant with ER-negative tumors being more aggressive. BRAFmut cancers are more likely to achieve engraftment during the development of PDX models. Lastly, tumor growth rates during first passages can help establish a cutoff point for the decision-making process during PDX development, since the higher the tumor grades, the higher the likelihood of success. Conclusions: tumors with higher grade and Ki67 protein expression, lymphovascular and/or perineural invasion, with dMMR and are negative for ER expression have a higher probability of achieving growth in the process of PDX development. The use of steroids and/or antibiotics in the patient prior to sampling can also impact the likelihood of success in PDX development. Lastly, establishing a cutoff point for tumor growth rates could guide the decision-making process during PDX development.
Collapse
Affiliation(s)
| | - Natalia Baños
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
| | | | - Ignacio Mahillo-Fernandez
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
- Translational Oncology Division, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain;
| | - Bernard Doger De-Speville
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
| | - Emiliano Calvo
- START Madrid—CIOCC HM Sanchinarro, C. de Oña, 10, 28050 Madrid, Spain;
| | - Michael Wick
- XENOStart START San Antonio, 4383 Medical Dr, San Antonio, TX 78229, USA;
| | - Jesús García-Foncillas
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
- Translational Oncology Division, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain;
| | - Victor Moreno
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
| |
Collapse
|
39
|
Courcier J, Leguerney I, Benatsou B, Pochon S, Tardy I, Albiges L, Cournède PH, De La Taille A, Lassau N, Ingels A. BR55 Ultrasound Molecular Imaging of Clear Cell Renal Cell Carcinoma Reflects Tumor Vascular Expression of VEGFR-2 in a Patient-Derived Xenograft Model. Int J Mol Sci 2023; 24:16211. [PMID: 38003400 PMCID: PMC10671137 DOI: 10.3390/ijms242216211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Standard imaging cannot reliably predict the nature of renal tumors. Among malignant renal tumors, clear cell renal cell carcinoma (ccRCC) is the most common histological subtype, in which the vascular endothelial growth factor 2 (VEGFR-2) is highly expressed in the vascular endothelium. BR55, a contrast agent for ultrasound imaging, consists of gas-core lipid microbubbles that specifically target and bind to the extracellular portion of the VEGFR-2. The specific information provided by ultrasound molecular imaging (USMI) using BR55 was compared with the vascular tumor expression of the VEGFR-2 by immunohistochemical (IHC) staining in a preclinical model of ccRCC. Patients' ccRCCs were orthotopically grafted onto Nod-Scid-Gamma (NSG) mice to generate patient-derived xenografts (PdX). Mice were divided into four groups to receive either vehicle or axitinib an amount of 2, 7.5 or 15 mg/kg twice daily. Perfusion parameters and the BR55 ultrasound contrast signal on PdX renal tumors were analyzed at D0, D1, D3, D7 and D11, and compared with IHC staining for the VEGFR-2 and CD34. Significant Pearson correlation coefficients were observed between the area under the curve (AUC) and the CD34 (0.84, p < 10-4), and between the VEGFR-2-specific signal obtained by USMI and IHC (0.72, p < 10-4). USMI with BR55 could provide instant, quantitative information on tumor VEGFR-2 expression to characterize renal masses non-invasively.
Collapse
Affiliation(s)
- Jean Courcier
- Department of Urology, Henri Mondor Hospital, University of Paris Est Créteil (UPEC), 94000 Créteil, France
- Biomaps, UMR1281, INSERM, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique (CEA), Université Paris Saclay, 94800 Villejuif, France
| | - Ingrid Leguerney
- Biomaps, UMR1281, INSERM, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique (CEA), Université Paris Saclay, 94800 Villejuif, France
- Department of Imaging, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Baya Benatsou
- Biomaps, UMR1281, INSERM, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique (CEA), Université Paris Saclay, 94800 Villejuif, France
- Department of Imaging, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | | | | | - Laurence Albiges
- Department of Urological Oncology, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Paul-Henry Cournède
- Laboratory of Mathematics and Computer Science (MICS), CentraleSupélec, Université Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Alexandre De La Taille
- Department of Urology, Henri Mondor Hospital, University of Paris Est Créteil (UPEC), 94000 Créteil, France
| | - Nathalie Lassau
- Biomaps, UMR1281, INSERM, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique (CEA), Université Paris Saclay, 94800 Villejuif, France
- Department of Imaging, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Alexandre Ingels
- Department of Urology, Henri Mondor Hospital, University of Paris Est Créteil (UPEC), 94000 Créteil, France
- Biomaps, UMR1281, INSERM, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique (CEA), Université Paris Saclay, 94800 Villejuif, France
| |
Collapse
|
40
|
Iqbal W, Wang Y, Sun P, Zhou X. Modeling Liver Development and Disease in a Dish. Int J Mol Sci 2023; 24:15921. [PMID: 37958904 PMCID: PMC10650907 DOI: 10.3390/ijms242115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Historically, biological research has relied primarily on animal models. While this led to the understanding of numerous human biological processes, inherent species-specific differences make it difficult to answer certain liver-related developmental and disease-specific questions. The advent of 3D organoid models that are either derived from pluripotent stem cells or generated from healthy or diseased tissue-derived stem cells have made it possible to recapitulate the biological aspects of human organs. Organoid technology has been instrumental in understanding the disease mechanism and complements animal models. This review underscores the advances in organoid technology and specifically how liver organoids are used to better understand human-specific biological processes in development and disease. We also discuss advances made in the application of organoid models in drug screening and personalized medicine.
Collapse
Affiliation(s)
- Waqas Iqbal
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Yaru Wang
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
41
|
Liang F, Xu H, Cheng H, Zhao Y, Zhang J. Patient-derived tumor models: a suitable tool for preclinical studies on esophageal cancer. Cancer Gene Ther 2023; 30:1443-1455. [PMID: 37537209 DOI: 10.1038/s41417-023-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Esophageal cancer (EC) is the tenth most common cancer worldwide and has high morbidity and mortality. Its main subtypes include esophageal squamous cell carcinoma and esophageal adenocarcinoma, which are usually diagnosed during their advanced stages. The biological defects and inability of preclinical models to summarize completely the etiology of multiple factors, the complexity of the tumor microenvironment, and the genetic heterogeneity of tumors severely limit the clinical treatment of EC. Patient-derived models of EC not only retain the tissue structure, cell morphology, and differentiation characteristics of the original tumor, they also retain tumor heterogeneity. Therefore, compared with other preclinical models, they can better predict the efficacy of candidate drugs, explore novel biomarkers, combine with clinical trials, and effectively improve patient prognosis. This review discusses the methods and animals used to establish patient-derived models and genetically engineered mouse models, especially patient-derived xenograft models. It also discusses their advantages, applications, and limitations as preclinical experimental research tools to provide an important reference for the precise personalized treatment of EC and improve the prognosis of patients.
Collapse
Affiliation(s)
- Fan Liang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hongyan Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hongwei Cheng
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yabo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
42
|
Martinez-Ruiz L, López-Rodríguez A, Florido J, Rodríguez-Santana C, Rodríguez Ferrer JM, Acuña-Castroviejo D, Escames G. Patient-derived tumor models in cancer research: Evaluation of the oncostatic effects of melatonin. Biomed Pharmacother 2023; 167:115581. [PMID: 37748411 DOI: 10.1016/j.biopha.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The development of new anticancer therapies tends to be very slow. Although their impact on potential candidates is confirmed in preclinical studies, ∼95 % of these new therapies are not approved when tested in clinical trials. One of the main reasons for this is the lack of accurate preclinical models. In this context, there are different patient-derived models, which have emerged as a powerful oncological tool: patient-derived xenografts (PDXs), patient-derived organoids (PDOs), and patient-derived cells (PDCs). Although all these models are widely applied, PDXs, which are created by engraftment of patient tumor tissues into mice, is considered more reliable. In fundamental research, the PDX model is used to evaluate drug-sensitive markers and, in clinical practice, to select a personalized therapeutic strategy. Melatonin is of particular importance in the development of innovative cancer treatments due to its oncostatic impact and lack of adverse effects. However, the literature regarding the oncostatic effect of melatonin in patient-derived tumor models is scant. This review aims to describe the important role of patient-derived models in the development of anticancer treatments, focusing, in particular, on PDX models, as well as their use in cancer research. This review also summarizes the existing literature on the anti-tumoral effect of melatonin in patient-derived models in order to propose future anti-neoplastic clinical applications.
Collapse
Affiliation(s)
- Laura Martinez-Ruiz
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Alba López-Rodríguez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Javier Florido
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Cesar Rodríguez-Santana
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - José M Rodríguez Ferrer
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Darío Acuña-Castroviejo
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Germaine Escames
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain.
| |
Collapse
|
43
|
Wu Q, Yu Y, Yu X, Du Q, Gou L, Tan L, Fu C, Ren X, Ren J, Xiao K, Meng X. Engineering liquid metal-based nanozyme for enhancing microwave dynamic therapy in breast cancer PDX model. J Nanobiotechnology 2023; 21:399. [PMID: 37904235 PMCID: PMC10617232 DOI: 10.1186/s12951-023-02121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/21/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUNDS The novel concept of microwave dynamic therapy (MDT) solves the problem of incomplete tumor eradication caused by non-selective heating and uneven temperature distribution of microwave thermal therapy (MWTT) in clinic, but the poor delivery of microwave sensitizer and the obstacle of tumor hypoxic microenvironment limit the effectiveness of MDT. RESULTS Herein, we engineer a liquid metal-based nanozyme LM@ZIF@HA (LZH) with eutectic Gallium Indium (EGaIn) as the core, which is coated with CoNi-bimetallic zeolite imidazole framework (ZIF) and hyaluronic acid (HA). The flexibility of the liquid metal and the targeting of HA enable the nanozyme to be effectively endocytosed by tumor cells, solving the problem of poor delivery of microwave sensitizers. Due to the catalase-like activity, the nanozyme catalyze excess H2O2 in the tumor microenvironment to generate O2, alleviating the restriction of the tumor hypoxic microenvironment and promoting the production of ROS under microwave irradiation. In vitro cell experiments, the nanozyme has remarkable targeting effect, oxygen production capacity, and microwave dynamic effect, which effectively solves the defects of MDT. In the constructed patient-derived xenograft (PDX) model, the nanozyme achieves excellent MDT effect, despite the heterogeneity and complexity of the tumor model that is similar to the histological and pathological features of the patient. The tumor volume in the LZH + MW group is only about 1/20 of that in the control group, and the tumor inhibition rate is as high as 95%. CONCLUSION The synthesized nanozyme effectively solves the defects of MDT, improves the targeted delivery of microwave sensitizers while regulating the hypoxic microenvironment of tumors, and achieves excellent MDT effect in the constructed PDX model, providing a new strategy for clinical cancer treatment.
Collapse
Affiliation(s)
- Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongnian Yu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaorui Yu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qijun Du
- Sichuan Kangcheng Biotechnology Co., LTD, No.28 Gaopeng Avenue, High-tech Zone, Chengdu, 610000, China
- Precision Medicine Research Center & Sichuan Provincial Key Laboratory of Precision Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Gou
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kai Xiao
- Precision Medicine Research Center & Sichuan Provincial Key Laboratory of Precision Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
44
|
Daneshdoust D, Luo M, Li Z, Mo X, Alothman S, Kallakury B, Schlegel R, Zhang J, Guo D, Furth PA, Liu X, Li J. Unlocking Translational Potential: Conditionally Reprogrammed Cells in Advancing Breast Cancer Research. Cells 2023; 12:2388. [PMID: 37830602 PMCID: PMC10572051 DOI: 10.3390/cells12192388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Preclinical in vitro models play an important role in studying cancer cell biology and facilitating translational research, especially in the identification of drug targets and drug discovery studies. This is particularly relevant in breast cancer, where the global burden of disease is quite high based on prevalence and a relatively high rate of lethality. Predictive tools to select patients who will be responsive to invasive or morbid therapies (radiotherapy, chemotherapy, immunotherapy, and/or surgery) are relatively lacking. To be clinically relevant, a model must accurately replicate the biology and cellular heterogeneity of the primary tumor. Addressing these requirements and overcoming the limitations of most existing cancer cell lines, which are typically derived from a single clone, we have recently developed conditional reprogramming (CR) technology. The CR technology refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. This innovative approach fulfills many of these needs and offers an alternative that surpasses the deficiencies associated with traditional cancer cell lines. These CR cells (CRCs) can be reprogrammed to maintain a highly proliferative state and reproduce the genomic and histological characteristics of the parental tissue. Therefore, CR technology may be a clinically relevant model to test and predict drug sensitivity, conduct gene profile analysis and xenograft research, and undertake personalized medicine. This review discusses studies that have applied CR technology to conduct breast cancer research.
Collapse
Affiliation(s)
- Danyal Daneshdoust
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mingjue Luo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Zaibo Li
- Departments of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biostatics and Bioinformatics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Sahar Alothman
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Richard Schlegel
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Junran Zhang
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla A. Furth
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology, and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
45
|
Lang Y, Lyu Y, Tan Y, Hu Z. Progress in construction of mouse models to investigate the pathogenesis and immune therapy of human hematological malignancy. Front Immunol 2023; 14:1195194. [PMID: 37646021 PMCID: PMC10461088 DOI: 10.3389/fimmu.2023.1195194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Hematological malignancy is a disease arisen by complicate reasons that seriously endangers human health. The research on its pathogenesis and therapies depends on the usage of animal models. Conventional animal model cannot faithfully mirror some characteristics of human features due to the evolutionary divergence, whereas the mouse models hosting human hematological malignancy are more and more applied in basic as well as translational investigations in recent years. According to the construction methods, they can be divided into different types (e.g. cell-derived xenograft (CDX) and patient-derived xenograft model (PDX) model) that have diverse characteristics and application values. In addition, a variety of strategies have been developed to improve human hematological malignant cell engraftment and differentiation in vivo. Moreover, the humanized mouse model with both functional human immune system and autologous human hematological malignancy provides a unique tool for the evaluation of the efficacy of novel immunotherapeutic drugs/approaches. Herein, we first review the evolution of the mouse model of human hematological malignancy; Then, we analyze the characteristics of different types of models and summarize the ways to improve the models; Finally, the way and value of humanized mouse model of human immune system in the immunotherapy of human hematological malignancy are discussed.
Collapse
Affiliation(s)
- Yue Lang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
- Department of Dermatology, The First Hospital, Jilin University, Changchun, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Yehui Tan
- Department of Hematology, The First Hospital, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
46
|
Kayser C, Brauer A, Susanne S, Wandmacher AM. The challenge of making the right choice: patient avatars in the era of cancer immunotherapies. Front Immunol 2023; 14:1237565. [PMID: 37638045 PMCID: PMC10449253 DOI: 10.3389/fimmu.2023.1237565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Immunotherapies are a key therapeutic strategy to fight cancer. Diverse approaches are used to activate tumor-directed immunity and to overcome tumor immune escape. The dynamic interplay between tumor cells and their tumor(immune)microenvironment (T(I)ME) poses a major challenge to create appropriate model systems. However, those model systems are needed to gain novel insights into tumor (immune) biology and a prerequisite to accurately develop and test immunotherapeutic approaches which can be successfully translated into clinical application. Several model systems have been established and advanced into so-called patient avatars to mimic the patient´s tumor biology. All models have their advantages but also disadvantages underscoring the necessity to pay attention in defining the rationale and requirements for which the patient avatar will be used. Here, we briefly outline the current state of tumor model systems used for tumor (immune)biological analysis as well as evaluation of immunotherapeutic agents. Finally, we provide a recommendation for further development to make patient avatars a complementary tool for testing and predicting immunotherapeutic strategies for personalization of tumor therapies.
Collapse
Affiliation(s)
- Charlotte Kayser
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Annika Brauer
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Sebens Susanne
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Anna Maxi Wandmacher
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
- Department of Internal Medicine II, University Hospital Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
47
|
Sen C, Koloff CR, Kundu S, Wilkinson DC, Yang JM, Shia DW, Meneses LK, Rickabaugh TM, Gomperts BN. Development of a small cell lung cancer organoid model to study cellular interactions and survival after chemotherapy. Front Pharmacol 2023; 14:1211026. [PMID: 37608896 PMCID: PMC10441219 DOI: 10.3389/fphar.2023.1211026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/19/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Small-cell-lung-cancer (SCLC) has the worst prognosis of all lung cancers because of a high incidence of relapse after therapy. While lung cancer is the second most common malignancy in the US, only about 10% of cases of lung cancer are SCLC, therefore, it is categorized as a rare and recalcitrant disease. Therapeutic discovery for SCLC has been challenging and the existing pre-clinical models often fail to recapitulate actual tumor pathophysiology. To address this, we developed a bioengineered 3-dimensional (3D) SCLC co-culture organoid model as a phenotypic tool to study SCLC tumor kinetics and SCLC-fibroblast interactions after chemotherapy. Method: We used functionalized alginate microbeads as a scaffold to mimic lung alveolar architecture and co-cultured SCLC cell lines with primary adult lung fibroblasts (ALF). We found that SCLCs in the model proliferated extensively, invaded the microbead scaffold and formed tumors within just 7 days. We compared the bioengineered tumors with patient tumors and found them to recapitulate the pathology and immunophenotyping of the patient tumors. When treated with standard chemotherapy drugs, etoposide and cisplatin, we observed that some of the cells survived the chemotherapy and reformed the tumor in the organoid model. Result and Discussion: Co-culture of the SCLC cells with ALFs revealed that the fibroblasts play a key role in inducing faster and more robust SCLC cell regrowth in the model. This is likely due to a paracrine effect, as conditioned media from the same fibroblasts could also support this accelerated regrowth. This model can be used to study cell-cell interactions and the response to chemotherapy in SCLC and is also scalable and amenable to high throughput phenotypic or targeted drug screening to find new therapeutics for SCLC.
Collapse
Affiliation(s)
- Chandani Sen
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital, University of California, Los Angeles, CA, United States
| | - Caroline R. Koloff
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital, University of California, Los Angeles, CA, United States
| | | | - Dan C. Wilkinson
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital, University of California, Los Angeles, CA, United States
| | - Juliette M. Yang
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital, University of California, Los Angeles, CA, United States
| | - David W. Shia
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital, University of California, Los Angeles, CA, United States
| | - Luisa K. Meneses
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital, University of California, Los Angeles, CA, United States
| | - Tammy M. Rickabaugh
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital, University of California, Los Angeles, CA, United States
| | - Brigitte N. Gomperts
- Department of Pediatrics, David Geffen School of Medicine, UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital, University of California, Los Angeles, CA, United States
- Pulmonary Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, United States
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, United States
| |
Collapse
|
48
|
Lee H, Jung S, Gong G, Lim B, Lee HJ. Association of cyclooxygenase-2 expression with endoplasmic reticulum stress and autophagy in triple-negative breast cancer. PLoS One 2023; 18:e0289627. [PMID: 37540709 PMCID: PMC10403079 DOI: 10.1371/journal.pone.0289627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Cyclooxygenase-2 plays a role in oncogenesis and its overexpression is associated with triple-negative breast cancer. However, the mechanisms whereby cyclooxygenase-2 contribute to breast cancer are complex and not well understood. Cyclooxygenase-2 overexpression causes hypoxia, oxidative stress, and endoplasmic reticulum stress. The aim of this study is to investigate the correlations among cyclooxygenase-2 expression, endoplasmic reticulum stress-associated molecules, and autophagy-associated molecules in triple-negative breast cancer. Surgical specimens from two cohorts of triple-negative breast cancer patients without neoadjuvant systemic therapy were analyzed: cohorts 1 and 2 consisted of 218 cases from 2004 to 2006 and 221 cases from 2007 to 2009, respectively. Specimens were evaluated by immunohistochemical examination of cyclooxygenase-2, endoplasmic reticulum stress markers, and autophagy markers expression using tissue microarrays. Cyclooxygenase-2 was overexpressed in 29.8% and 23.9% of cases in cohorts 1 and 2, respectively; and it was positively correlated with two out of three endoplasmic reticulum stress-associated molecules (XBP1, p = 0.025 and p = 0.003 in cohort 1 and cohort 2, respectively; PERK, p < 0.001 in both cohorts). Cyclooxygenase-2 was also positively correlated with two out of three autophagy markers (p62, p = 0.002 and p = 0.003 in cohort 1 and cohort 2, respectively; beclin1, p < 0.001 in both cohorts). Although cyclooxygenase-2 was not an independent prognostic factor for distant metastasis free survival and overall survival, its expression was associated with the expression of endoplasmic reticulum stress and autophagy molecules in triple-negative breast cancer.
Collapse
Affiliation(s)
- Haechan Lee
- University of Ulsan College of Medicine, Seoul, Korea
| | - SungWook Jung
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bora Lim
- Department of Hematology and Oncology, Baylor College of Medicine, Houston, TX, United States of America
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
He Y, Mei J, Hao H, Liu F, Yi Y, Hu C, Zou F, Lu X. Selinexor demonstrates anti-tumor efficacy in paired patient-derived xenograft models and hydrogel-embedded histoculture drug sensitivity test of penile cancer. J Cancer Res Clin Oncol 2023; 149:6931-6941. [PMID: 36840755 DOI: 10.1007/s00432-023-04618-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/27/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Penile cancer is a rare malignancy with a poor prognosis, even with various treatment options. Considering the little progress in the study of the pathogenesis and treatment of penile cancer because of the lack of models that mimic the biological properties of the tumor, we have developed a patient-derived xenograft (PDX) model and paired hydrogel-embedded histoculture drug sensitivity test (HDST) to screen for drugs that can inhibit tumors. The increased expression of XPO1, as a key nuclear export protein involved in the transport of various tumor suppressors and cell cycle regulatory proteins, is associated with the prognosis of a variety of tumors [World J Uroly 27(2):141-150, 2009]. Selinexor is an inhibitor of XPO1, which can treat cancers, such as multiple myeloma, gastric cancer, triple-negative breast cancer, and non-small cell carcinoma [Transl Androl Urol 6(5):785-790, 2017; OncoTargets Therapy 13:6405-6416, 2020]. However, whether XPO1 inhibition has a role in penile cancer remains unknown. Therefore, this article used the PDX and HDST models to investigate whether the inhibition of XPO1 has an effect on penile cancer and its underlying mechanism. METHODS We used penile cancer tumor tissues to construct a PDX model of penile cancer and paired PDXE model and confirmed the consistency of PDX tumor tissues in source patients. Then, we assessed the ability of Selinexor to inhibit penile cancer tissues in vivo using a PDX model and in vitro by HDST. We also examined the potential mechanism of XPO1 action on penile cancer by IHC and TUNEL. Finally, we assessed the safety of the drug treatment by H&E and biochemical blood analysis. RESULTS Result showed that the penile cancer PDX model and patient penile cancer tissues were clinically consistent in morphological characteristics and protein expression. In addition, Selinexor could inhibit tumor growth in PDX models and HDST. We found that P53, P21 expression was upregulated; Cyclin D1 expression was downregulated, and apoptosis of tumor cells was increased in the Selinexor-treated PDX model. Moreover, it had no significant effect on liver, kidney, and cardiac function. CONCLUSION The PDX model of penile cancer was a powerful tool for penile cancer research and new drug development. It showed that Selinexor can effectively inhibit penile cancer in vitro and in vivo. In addition, XPO1 may affect P53, P21, and Cyclin D1 expression to regulate the growth and apoptosis of penile carcinoma.
Collapse
Affiliation(s)
- Yuanqiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Laboratory Animal, Nanchang, 330031, China
- Nanchang Royo Biotechnology, Nanchang, 330006, China
| | - Jiaqi Mei
- The First Clinical Medical College, Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Hua Hao
- Department of Pathology, School of Medicine, Yangpu Hospital, Tongji University, Shanghai, 200090, China
| | - Fanrong Liu
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Yun Yi
- Center of Biobank, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Chao Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Fangxing Zou
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Xiongbing Lu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| |
Collapse
|
50
|
Farzaneh M, Nasrolahi A, Ghaedrahmati F, Masoodi T, Najafi S, Sheykhi-Sabzehpoush M, Dari MAG, Radoszkiewicz K, Uddin S, Azizidoost S, Khoshnam SE. Potential roles of lncRNA-XIST/miRNAs/mRNAs in human cancer cells. Clin Transl Oncol 2023; 25:2015-2042. [PMID: 36853400 DOI: 10.1007/s12094-023-03110-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs that contain more than 200 nucleotides but do not code for proteins. In tumorigenesis, lncRNAs can have both oncogenic and tumor-suppressive properties. X inactive-specific transcript (XIST) is a known lncRNA that has been implicated in X chromosome silencing in female cells. Dysregulation of XIST is associated with an increased risk of various cancers. Therefore, XIST can be a beneficial prognostic biomarker for human malignancies. In this review, we attempt to summarize the emerging roles of XIST in human cancers.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, 26999, Doha, Qatar
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|