1
|
Yao Z, Song P, Jiao W. Pathogenic role of super-enhancers as potential therapeutic targets in lung cancer. Front Pharmacol 2024; 15:1383580. [PMID: 38681203 PMCID: PMC11047458 DOI: 10.3389/fphar.2024.1383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Lung cancer is still one of the deadliest malignancies today, and most patients with advanced lung cancer pass away from disease progression that is uncontrollable by medications. Super-enhancers (SEs) are large clusters of enhancers in the genome's non-coding sequences that actively trigger transcription. Although SEs have just been identified over the past 10 years, their intricate structure and crucial role in determining cell identity and promoting tumorigenesis and progression are increasingly coming to light. Here, we review the structural composition of SEs, the auto-regulatory circuits, the control mechanisms of downstream genes and pathways, and the characterization of subgroups classified according to SEs in lung cancer. Additionally, we discuss the therapeutic targets, several small-molecule inhibitors, and available treatment options for SEs in lung cancer. Combination therapies have demonstrated considerable advantages in preclinical models, and we anticipate that these drugs will soon enter clinical studies and benefit patients.
Collapse
Affiliation(s)
- Zhiyuan Yao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Song
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Ren J. Bromodomain-containing protein 4 inhibition improves the efficacy of cisplatin and radiotherapy in oral squamous cell carcinoma by suppressing programmed cell death-ligand 1 expression. Basic Clin Pharmacol Toxicol 2024; 134:272-283. [PMID: 38014458 DOI: 10.1111/bcpt.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/16/2023] [Indexed: 11/29/2023]
Abstract
The bromodomain-containing protein 4 (BRD4) is highly expressed in oral squamous cell carcinoma (OSCC) and plays a crucial role in tumour progression. However, the impact of BRD4 on the efficacy of chemotherapy and radiotherapy by regulating the expression of programmed cell death-ligand 1 (PD-L1) in OSCC remains unclear. In this study, we found that the BRD4 inhibitor JQ1 effectively enhanced the inhibitory effects of cisplatin and radiotherapy on cell proliferation and promoted the apoptosis of OSCC cells by cisplatin and radiotherapy. Furthermore, treatment with JQ1 reversed the increase of the expression of PD-L1 by cisplatin and radiotherapy, whereas the overexpression of PD-L1 partially countered the beneficial effects of JQ1 on the anticancer efficacy of cisplatin and radiotherapy. These results demonstrate that the inhibition of BRD4 improves the anticancer effect of chemotherapy and radiotherapy by suppressing the expression of PD-L1 in OSCC, suggesting that targeting BRD4 could be a promising therapeutic approach for chemo/radioresistant OSCC.
Collapse
Affiliation(s)
- Jiajie Ren
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Gasimli K, Raab M, Mandal R, Krämer A, Peña-Llopis S, Tahmasbi Rad M, Becker S, Strebhardt K, Sanhaji M. Synergistic Sensitization of High-Grade Serous Ovarian Cancer Cells Lacking Caspase-8 Expression to Chemotherapeutics Using Combinations of Small-Molecule BRD4 and CDK9 Inhibitors. Cancers (Basel) 2023; 16:107. [PMID: 38201534 PMCID: PMC10778249 DOI: 10.3390/cancers16010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers worldwide, with approximately 70% of cases diagnosed in advanced stages. This late diagnosis results from the absence of early warning symptoms and is associated with an unfavorable prognosis. A standard treatment entails a combination of primary chemotherapy with platinum and taxane agents. Tumor recurrence following first-line chemotherapy with Carboplatin and Paclitaxel is detected in 80% of advanced ovarian cancer patients, with disease relapse occurring within 2 years of initial treatment. Platinum-resistant ovarian cancer is one of the biggest challenges in treating patients. Second-line treatments involve PARP or VEGF inhibitors. Identifying novel biomarkers and resistance mechanisms is critical to overcoming resistance, developing newer treatment strategies, and improving patient survival. In this study, we have determined that low Caspase-8 expression in ovarian cancer patients leads to poor prognosis. High-Grade Serous Ovarian Cancer (HGSOC) cells lacking Caspase-8 expression showed an altered composition of the RNA Polymerase II-containing transcriptional elongation complex leading to increased transcriptional activity. Caspase-8 knockout cells display increased BRD4 expression and CDK9 activity and reduced sensitivities to Carboplatin and Paclitaxel. Based on our work, we are proposing three potential therapeutic approaches to treat advanced ovarian cancer patients who exhibit low Caspase-8 expression and resistance to Carboplatin and/or Paclitaxel-combinations of (1) Carboplatin with small-molecule BRD4 inhibitors; (2) Paclitaxel with small-molecule BRD4 inhibitors, and (3) small-molecule BRD4 and CDK9 inhibitors. In addition, we are also proposing two predictive markers of chemoresistance-BRD4 and pCDK9.
Collapse
Affiliation(s)
- Khayal Gasimli
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| | - Monika Raab
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| | - Ranadip Mandal
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| | - Andrea Krämer
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| | - Samuel Peña-Llopis
- Translational Genomics, Department of Ophthalmology, University Hospital Essen, 45147 Essen, Germany;
- German Cancer Consortium (DKTK), 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Morva Tahmasbi Rad
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| | - Sven Becker
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| | - Klaus Strebhardt
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
- German Cancer Consortium (DKTK), 60590 Frankfurt am Main, Germany
| | - Mourad Sanhaji
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| |
Collapse
|
4
|
Chai X, Meng Y, Ge W, Wang J, Li F, Wang XJ, Wang X. A novel synthesized prodrug of gemcitabine based on oxygen-free radical sensitivity inhibited the growth of lung cancer cells. J Biomed Res 2023; 37:355-366. [PMID: 37705111 PMCID: PMC10541775 DOI: 10.7555/jbr.37.20230022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 09/15/2023] Open
Abstract
In the present study, we introduced the H 2O 2-sensitive thiazolidinone moiety at the 4th amino group of gemcitabine (GEM) to synthesize a new target compound named GEM-ZZQ, and then we confirmed its chemical structure by nuclear magnetic resonance spectroscopy. We further confirmed that GEM-ZZQ had a good chemical stability in different pH solutions in vitro and that it could be activated by H 2O 2 to release GEM. Pharmacodynamic studies revealed that the growth inhibition of human normal epithelial cells was weaker by GEM-ZZQ than by GEM treatment and that the inhibition of various lung cancer cell lines by GEM-ZZQ was similar to that of GEM. For the lung cancer cell lines that are resistant to the epidermal growth factor receptor (EGFR)-targeting inhibitor osimertinib, GEM-ZZQ showed less growth inhibition than GEM; however, GEM-ZZQ in combination with cisplatin showed better synergistic effects than GEM in the low-dose groups. In summary, we provided a new anti-cancer compound GEM-ZZQ for treating lung cancer by modifying the GEM structure.
Collapse
Affiliation(s)
- Xinlu Chai
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuting Meng
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Ge
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Juan Wang
- Department of Pharmacology, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Fei Li
- Department of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xue Jun Wang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
5
|
To KKW, Xing E, Larue RC, Li PK. BET Bromodomain Inhibitors: Novel Design Strategies and Therapeutic Applications. Molecules 2023; 28:molecules28073043. [PMID: 37049806 PMCID: PMC10096006 DOI: 10.3390/molecules28073043] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The mammalian bromodomain and extra-terminal domain (BET) family of proteins consists of four conserved members (Brd2, Brd3, Brd4, and Brdt) that regulate numerous cancer-related and immunity-associated genes. They are epigenetic readers of histone acetylation with broad specificity. BET proteins are linked to cancer progression due to their interaction with numerous cellular proteins including chromatin-modifying factors, transcription factors, and histone modification enzymes. The spectacular growth in the clinical development of small-molecule BET inhibitors underscores the interest and importance of this protein family as an anticancer target. Current approaches targeting BET proteins for cancer therapy rely on acetylation mimics to block the bromodomains from binding chromatin. However, bromodomain-targeted agents are suffering from dose-limiting toxicities because of their effects on other bromodomain-containing proteins. In this review, we provided an updated summary about the evolution of small-molecule BET inhibitors. The design of bivalent BET inhibitors, kinase and BET dual inhibitors, BET protein proteolysis-targeting chimeras (PROTACs), and Brd4-selective inhibitors are discussed. The novel strategy of targeting the unique C-terminal extra-terminal (ET) domain of BET proteins and its therapeutic significance will also be highlighted. Apart from single agent treatment alone, BET inhibitors have also been combined with other chemotherapeutic modalities for cancer treatment demonstrating favorable clinical outcomes. The investigation of specific biomarkers for predicting the efficacy and resistance of BET inhibitors is needed to fully realize their therapeutic potential in the clinical setting.
Collapse
|
6
|
Sulewska A, Pilz L, Manegold C, Ramlau R, Charkiewicz R, Niklinski J. A Systematic Review of Progress toward Unlocking the Power of Epigenetics in NSCLC: Latest Updates and Perspectives. Cells 2023; 12:cells12060905. [PMID: 36980246 PMCID: PMC10047383 DOI: 10.3390/cells12060905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Epigenetic research has the potential to improve our understanding of the pathogenesis of cancer, specifically non-small-cell lung cancer, and support our efforts to personalize the management of the disease. Epigenetic alterations are expected to have relevance for early detection, diagnosis, outcome prediction, and tumor response to therapy. Additionally, epi-drugs as therapeutic modalities may lead to the recovery of genes delaying tumor growth, thus increasing survival rates, and may be effective against tumors without druggable mutations. Epigenetic changes involve DNA methylation, histone modifications, and the activity of non-coding RNAs, causing gene expression changes and their mutual interactions. This systematic review, based on 110 studies, gives a comprehensive overview of new perspectives on diagnostic (28 studies) and prognostic (25 studies) epigenetic biomarkers, as well as epigenetic treatment options (57 studies) for non-small-cell lung cancer. This paper outlines the crosstalk between epigenetic and genetic factors as well as elucidates clinical contexts including epigenetic treatments, such as dietary supplements and food additives, which serve as anti-carcinogenic compounds and regulators of cellular epigenetics and which are used to reduce toxicity. Furthermore, a future-oriented exploration of epigenetic studies in NSCLC is presented. The findings suggest that additional studies are necessary to comprehend the mechanisms of epigenetic changes and investigate biomarkers, response rates, and tailored combinations of treatments. In the future, epigenetics could have the potential to become an integral part of diagnostics, prognostics, and personalized treatment in NSCLC.
Collapse
Affiliation(s)
- Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| | - Lothar Pilz
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Manegold
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| |
Collapse
|
7
|
Moreno V, Vieito M, Sepulveda JM, Galvao V, Hernández-Guerrero T, Doger B, Saavedra O, Carlo-Stella C, Michot JM, Italiano A, Magagnoli M, Carpio C, Pinto A, Sarmiento R, Amoroso B, Aronchik I, Filvaroff E, Hanna B, Wei X, Nikolova Z, Braña I. BET inhibitor trotabresib in heavily pretreated patients with solid tumors and diffuse large B-cell lymphomas. Nat Commun 2023; 14:1359. [PMID: 36914652 PMCID: PMC10011554 DOI: 10.1038/s41467-023-36976-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Bromodomain and extraterminal proteins (BET) play key roles in regulation of gene expression, and may play a role in cancer-cell proliferation, survival, and oncogenic progression. CC-90010-ST-001 (NCT03220347) is an open-label phase I study of trotabresib, an oral BET inhibitor, in heavily pretreated patients with advanced solid tumors and relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Primary endpoints were the safety, tolerability, maximum tolerated dose, and RP2D of trotabresib. Secondary endpoints were clinical benefit rate (complete response [CR] + partial response [PR] + stable disease [SD] of ≥4 months' duration), objective response rate (CR + PR), duration of response or SD, progression-free survival, overall survival, and the pharmacokinetics (PK) of trotabresib. In addition, part C assessed the effects of food on the PK of trotabresib as a secondary endpoint. The dose escalation (part A) showed that trotabresib was well tolerated, had single-agent activity, and determined the recommended phase 2 dose (RP2D) and schedule for the expansion study. Here, we report long-term follow-up results from part A (N = 69) and data from patients treated with the RP2D of 45 mg/day 4 days on/24 days off or an alternate RP2D of 30 mg/day 3 days on/11 days off in the dose-expansion cohorts (parts B [N = 25] and C [N = 41]). Treatment-related adverse events (TRAEs) are reported in almost all patients. The most common severe TRAEs are hematological. Toxicities are generally manageable, allowing some patients to remain on treatment for ≥2 years, with two patients receiving ≥3 years of treatment. Trotabresib monotherapy shows antitumor activity, with an ORR of 13.0% (95% CI, 2.8-33.6) in patients with R/R DLBCL (part B) and an ORR of 0.0% (95% CI, 0.0-8.6) and a CBR of 31.7% (95% CI, 18.1-48.1) in patients with advanced solid tumors (part C). These results support further investigation of trotabresib in combination with other anticancer agents.
Collapse
Affiliation(s)
- Victor Moreno
- START Madrid-FJD, Hospital Universitario Fundación Jimenez Diaz, Madrid, Spain.
| | - Maria Vieito
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Vladimir Galvao
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Bernard Doger
- START Madrid-FJD, Hospital Universitario Fundación Jimenez Diaz, Madrid, Spain
| | - Omar Saavedra
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Carmelo Carlo-Stella
- Department of Biological Sciences, Humanitas University, Rozzano, Milano, Italy
- Department of Oncology and Hematology, Humanitas Research Hospital - IRCCS, Rozzano, Milano, Italy
| | | | - Antoine Italiano
- Institut Bergonie Centre Regional de Lutte Contre Le Cancer de Bordeaux et Sud Ouest, Bordeaux, France
| | - Massimo Magagnoli
- Department of Oncology and Hematology, Humanitas Research Hospital - IRCCS, Rozzano, Milano, Italy
| | - Cecilia Carpio
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Antonio Pinto
- Hematology-Oncology & Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, Naples, Italy
| | - Rafael Sarmiento
- Centre for Innovation and Translational Research Europe, a Bristol Myers Squibb Company, Seville, Spain
| | - Barbara Amoroso
- Centre for Innovation and Translational Research Europe, a Bristol Myers Squibb Company, Seville, Spain
| | | | | | | | - Xin Wei
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Zariana Nikolova
- Centre for Innovation and Translational Research Europe, a Bristol Myers Squibb Company, Seville, Spain
| | - Irene Braña
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
8
|
Liu XM, Xia SY, Long W, Li HJ, Yang GQ, Sun W, Li SY, Du XH. Potent bromodomain and extraterminal domain inhibitor JAB-8263 suppresses MYC expression and exerts anti-tumor activity in colorectal cancer models. World J Gastrointest Oncol 2023; 15:332-342. [PMID: 36908321 PMCID: PMC9994054 DOI: 10.4251/wjgo.v15.i2.332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND The overexpression of the MYC gene plays an important role in the occurrence, development and evolution of colorectal cancer (CRC). Bromodomain and extraterminal domain (BET) inhibitors can decrease the function BET by recognizing acetylated lysine residues, thereby downregulating the expression of MYC.
AIM To investigate the inhibitory effect and mechanism of a BET inhibitor on CRC cells.
METHODS The effect of the BET inhibitor JAB-8263 on the proliferation of various CRC cell lines was studied by CellTiter-Glo method and colony formation assay. The effect of JAB-8263 on the cell cycle and apoptosis of CRC cells was studied by propidium iodide staining and Annexin V/propidium iodide flow assay, respectively. The effect of JAB-8263 on the expression of c-MYC, p21 and p16 in CRC cells was detected by western blotting assay. The anti-tumor effect of JAB-8263 on CRC cells in vivo and evaluation of the safety of the compound was predicted by constructing a CRC cell animal tumor model.
RESULTS JAB-8263 dose-dependently suppressed CRC cell proliferation and colony formation in vitro. The MYC signaling pathway was dose-dependently inhibited by JAB-8263 in human CRC cell lines. JAB-8263 dose-dependently induced cell cycle arrest and apoptosis in the MC38 cell line. SW837 xenograft model was treated with JAB-8263 (0.3 mg/kg for 29 d), and the average tumor volume was significantly decreased compared to the vehicle control group (P < 0.001). The MC38 syngeneic murine model was treated with JAB-8263 (0.2 mg/kg for 29 d), and the average tumor volume was significantly decreased compared to the vehicle control group (P = 0.003).
CONCLUSION BET could be a potential effective drug target for suppressing CRC growth, and the BET inhibitor JAB-8263 can effectively suppress c-MYC expression and exert anti-tumor activity in CRC models.
Collapse
Affiliation(s)
- Xin-Mo Liu
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100039, China
- Medical School of Chinese PLA, Beijing 100039, China
| | - Shao-You Xia
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100039, China
- Medical School of Chinese PLA, Beijing 100039, China
| | - Wei Long
- Department of Chemistry, Jacobio Pharmaceuticals, Beijing 102600, China
| | - Hai-Jun Li
- Department of Chemistry, Jacobio Pharmaceuticals, Beijing 102600, China
| | - Gui-Qun Yang
- Department of Pharmacology, Jacobio Pharmaceuticals, Beijing 102600, China
| | - Wen Sun
- Department of Anesthesiology, the Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Song-Yan Li
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100039, China
- Medical School of Chinese PLA, Beijing 100039, China
| | - Xiao-Hui Du
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100039, China
- Medical School of Chinese PLA, Beijing 100039, China
| |
Collapse
|
9
|
Celano M, Gagliardi A, Maggisano V, Ambrosio N, Bulotta S, Fresta M, Russo D, Cosco D. Co-Encapsulation of Paclitaxel and JQ1 in Zein Nanoparticles as Potential Innovative Nanomedicine. MICROMACHINES 2022; 13:1580. [PMID: 36295933 PMCID: PMC9609127 DOI: 10.3390/mi13101580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The manuscript describes the development of zein nanoparticles containing paclitaxel (PTX) and the bromo-and extra-terminal domain inhibitor (S)-tertbutyl2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno(3,2-f)(1,2,4)triazolo(4,3-a)(1,4)diazepin-6-yl)acetate (JQ1) together with their cytotoxicity on triple-negative breast cancer cells. The rationale of this association is that of exploiting different types of cancer cells as targets in order to obtain increased pharmacological activity with respect to that exerted by the single agents. Zein, a protein found in the endosperm of corn, was used as a biomaterial to obtain multidrug carriers characterized by mean sizes of ˂200 nm, a low polydispersity index (0.1-0.2) and a negative surface charge. An entrapment efficiency of ~35% of both the drugs was obtained when 0.3 mg/mL of the active compounds were used during the nanoprecipitation procedure. No adverse phenomena such as sedimentation, macro-aggregation or flocculation occurred when the nanosystems were heated to 37 °C. The multidrug nanoformulation demonstrated significant in vitro cytototoxic activity against MDA-MB-157 and MDA-MB-231 cancer cells by MTT-test and adhesion assay which was stronger than that of the compounds encapsulated as single agents. The results evidence the potential application of zein nanoparticles containing PTX and JQ1 as a novel nanomedicine.
Collapse
Affiliation(s)
- Marilena Celano
- Correspondence: (M.C.); (D.C.); Tel.: +39-0961-369-4099 (M.C.); +39-0961-369-4119 (D.C.)
| | | | | | | | | | | | | | - Donato Cosco
- Correspondence: (M.C.); (D.C.); Tel.: +39-0961-369-4099 (M.C.); +39-0961-369-4119 (D.C.)
| |
Collapse
|