1
|
Alghoul I, Hussain T, Nazir S, Tit N. Efficient detection of gastric cancer biomarkers on functionalized carbon nanoribbons using DFT analysis. Sci Rep 2025; 15:13173. [PMID: 40240795 PMCID: PMC12003821 DOI: 10.1038/s41598-025-97518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Early diagnosis of gastric cancer (GC) is crucially important to initiate a therapy plan aiming at rescue and cure. In this regard, the detection of volatile organic compounds (VOCs), related to GC in the patient's exhaled breath, is known to be an efficient and cost-effective technique for early diagnosis. The scope of the present study is to develop a nano-biosensor with great sensitivity and suitable selectivity towards specific VOCs related to GC, such as 2-pentanone, butanone, isoprene, methylglyoxal, N-decanal, N-pentanal, and pyridine. We employed van der Waals corrected density functional theory (DFT) to study the adsorption properties of the mentioned VOCs along with interfering air molecules (N2, O2, H2O, CO2) using recently synthesized carbon nanoribbons (CNRs). We found that pristine CNRs weakly adsorbed the VOCs with adsorption energies ([Formula: see text]), which is not suitable for practical sensing applications. However, the incorporation of selected transition metals (Co, Fe, Mn, Ni) in nitrogen-functionalized CNRs (N-CNRs) enhanced the [Formula: see text] values to -0.802, -0.899, -1.566, -1.260, -1.482, -1.057, and - 0.674 eV for 2-pentanone, butanone, isoprene, methylglyoxal, N-decanal, N-pentanal, and pyridine, respectively. Appropriate [Formula: see text] values along with distinct variations in the electronic and magnetic properties, measured through band structures, density of states, work function and charge transfer analysis, validated the potential of TM-doped N-CNRs as efficient biosensors towards GC-related VOCs. Consequently, the TM-doped N-CNRs are proposed as candidates for platforms of nano biosensors to detect GC biomarkers with high selectivity.
Collapse
Affiliation(s)
- Ibrahim Alghoul
- Department of Physics, College of Science, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates
- National Water and Energy Center, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Tanveer Hussain
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - Nacir Tit
- Department of Physics, College of Science, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates.
- National Water and Energy Center, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
2
|
Lai W, Li D, Wang J, Geng Q, Xia Y, Fu Y, Li W, Feng Y, Jin L, Yang R, Huang Z, Lin Y, Zhang H, Chen S, Chen L. Exhaled breath is feasible for mild cognitive impairment detection: A diagnostic study with portable micro-gas chromatography. J Alzheimers Dis 2025; 104:751-762. [PMID: 39956982 DOI: 10.1177/13872877251319553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BackgroundMild cognitive impairment (MCI) is an important prodromal stage of Alzheimer's disease (AD), affecting 69 million individuals worldwide. At present, there is a lack of a community-applicable tool for MCI screening. Exhaled breath volatile organic compounds (VOCs) have been used to distinguish MCI from cognitively normal (CN) individuals only in small sample size studies and the efficacy has not been compared with blood biomarkers.ObjectiveThis diagnostic study aimed to assess the feasibility of using exhaled breath VOCs detection by a portable micro-gas chromatography (μGC) device as a screening tool to discriminate MCI from CN individuals in a community population.MethodsA detection model was developed and optimized from five distinct machine learning algorithms based on the differential VOCs between 240 MCI and 241 CN individuals. Among these 481 participants, five plasma biomarkers were measured in 397 individuals (166 MCI and 231 CN).ResultsThe final model (481 individuals) incorporating eight differential VOCs showed good performance with an area under the receiver-operating characteristic curve (AUC) of 0.84 (95% confidence interval (95% CI): 0.83-0.85). The AUC of the VOC model (0.80, 95% CI: 0.69-0.90) was higher than that of the plasma model (0.77, 95% CI: 0.65-0.88) (397 individuals).ConclusionsThe detection of exhaled breath VOCs by a portable μGC device is feasible for MCI screening in community populations, potentially facilitating early detection and intervention strategies for individuals at high risk.
Collapse
Affiliation(s)
- Wanlin Lai
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Debo Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Junqi Wang
- Jingjinji National Center of Technology Innovation, Beijing, P. R. China
- GBA Institute of Collaborative Innovation, Sino-Singapore Guangzhou Knowledge City, Guangzhou, Guangdong, P. R. China
| | - Qian Geng
- GBA Institute of Collaborative Innovation, Sino-Singapore Guangzhou Knowledge City, Guangzhou, Guangdong, P. R. China
| | - Yilin Xia
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yutong Fu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Wanling Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yong Feng
- GBA Institute of Collaborative Innovation, Sino-Singapore Guangzhou Knowledge City, Guangzhou, Guangdong, P. R. China
| | - Ling Jin
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ruiqi Yang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Zijie Huang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yuhang Lin
- GBA Institute of Collaborative Innovation, Sino-Singapore Guangzhou Knowledge City, Guangzhou, Guangdong, P. R. China
| | - Han Zhang
- GBA Institute of Collaborative Innovation, Sino-Singapore Guangzhou Knowledge City, Guangzhou, Guangdong, P. R. China
| | - Sitong Chen
- GBA Institute of Collaborative Innovation, Sino-Singapore Guangzhou Knowledge City, Guangzhou, Guangdong, P. R. China
| | - Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
- Joint Research Institution of Altitude Health, West China Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
3
|
Capuano R, Ciotti M, Catini A, Bernardini S, Di Natale C. Clinical applications of volatilomic assays. Crit Rev Clin Lab Sci 2025; 62:45-64. [PMID: 39129534 DOI: 10.1080/10408363.2024.2387038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The study of metabolomics is revealing immense potential for diagnosis, therapy monitoring, and understanding of pathogenesis processes. Volatilomics is a subcategory of metabolomics interested in the detection of molecules that are small enough to be released in the gas phase. Volatile compounds produced by cellular processes are released into the blood and lymph, and can reach the external environment through different pathways, such as the blood-air interface in the lung that are detected in breath, or the blood-water interface in the kidney that leads to volatile compounds detected in urine. Besides breath and urine, additional sources of volatile compounds such as saliva, blood, feces, and skin are available. Volatilomics traces its roots back over fifty years to the pioneering investigations in the 1970s. Despite extensive research, the field remains in its infancy, hindered by a lack of standardization despite ample experimental evidence. The proliferation of analytical instrumentations, sample preparations and methods of volatilome sampling still make it difficult to compare results from different studies and to establish a common standard approach to volatilomics. This review aims to provide an overview of volatilomics' diagnostic potential, focusing on two key technical aspects: sampling and analysis. Sampling poses a challenge due to the susceptibility of human samples to contamination and confounding factors from various sources like the environment and lifestyle. The discussion then delves into targeted and untargeted approaches in volatilomics. Some case studies are presented to exemplify the results obtained so far. Finally, the review concludes with a discussion on the necessary steps to fully integrate volatilomics into clinical practice.
Collapse
Affiliation(s)
- Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| | - Marco Ciotti
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Paleczek A, Grochala J, Grochala D, Słowik J, Pihut M, Loster JE, Rydosz A. Noninvasive Total Cholesterol Level Measurement Using an E-Nose System and Machine Learning on Exhaled Breath Samples. ACS Sens 2024; 9:6630-6637. [PMID: 39577863 PMCID: PMC11686513 DOI: 10.1021/acssensors.4c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
In this paper, the first e-nose system coupled with machine learning algorithm for noninvasive measurement of total cholesterol level based on exhaled air sample was proposed. The study was conducted with the participation of 151 people, from whom a breath sample was collected, and the level of total cholesterol was measured. The breath sample was examined using e-nose and gas sensors, such as TGS1820, TGS2620, TGS2600, MQ3, Semeatech 7e4 NO2 and 7e4 H2S, SGX_NO2, SGX_H2S, K33, AL-03P, and AL-03S. The LGBMRegressor algorithm was used to predict cholesterol level based on the breath sample. Machine learning algorithms were developed for the entire measurement range and for the norm range ≤200 mg/dL achieving MAPE 13.7% and 8%, respectively. The results show that it is possible to develop a noninvasive device to measure total cholesterol level from breath.
Collapse
Affiliation(s)
- Anna Paleczek
- AGH
University of Krakow, Faculty of Computer Science Electronics and
Telecommunications, Institute of Electronics, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Justyna Grochala
- Department
of Prosthodontics and Orthodontics, Dental Institute, Faculty of Medicine, Jagiellonian University Medical College, ul. św. Anny 12, Kraków 31-008, Poland
| | - Dominik Grochala
- AGH
University of Krakow, Faculty of Computer Science Electronics and
Telecommunications, Institute of Electronics, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Jakub Słowik
- AGH
University of Krakow, Faculty of Computer Science Electronics and
Telecommunications, Institute of Electronics, al. A. Mickiewicza 30, Krakow 30-059, Poland
- University
Clinical Hospital in Opole, Institute of
Medical Sciences, University of Opole, aleja Wincentego Witosa 26, Opole 46-020, Poland
| | - Małgorzata Pihut
- Department
of Prosthodontics and Orthodontics, Dental Institute, Faculty of Medicine, Jagiellonian University Medical College, ul. św. Anny 12, Kraków 31-008, Poland
| | - Jolanta E. Loster
- Professor
Loster’s Orthodontics, Private practice, Faculty of Medicine, Jagiellonian University Medical College, Bartłomieja Nowodworskiego
4, Krakow 30-433, Poland
| | - Artur Rydosz
- AGH
University of Krakow, Faculty of Computer Science Electronics and
Telecommunications, Institute of Electronics, al. A. Mickiewicza 30, Krakow 30-059, Poland
- The
University Hospital in Krakow, Laboratory
of Functional and Virtual Medical 3D Imaging [3D-vFMi(maging)/3D-FM], Jakubowskiego 2 Street, Krakow 30-688, Poland
| |
Collapse
|
5
|
Marzoog BA, Chomakhidze P, Gognieva D, Gagarina NV, Silantyev A, Suvorov A, Fominykha E, Mustafina M, Natalya E, Gadzhiakhmedova A, Kopylov P. Machine Learning Model Discriminate Ischemic Heart Disease Using Breathome Analysis. Biomedicines 2024; 12:2814. [PMID: 39767720 PMCID: PMC11673773 DOI: 10.3390/biomedicines12122814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Ischemic heart disease (IHD) impacts the quality of life and is the most frequently reported cause of morbidity and mortality globally. Aims: To assess the changes in the exhaled volatile organic compounds (VOCs) in patients with vs. without ischemic heart disease (IHD) confirmed by stress computed tomography myocardial perfusion (CTP) imaging. Objectives: IHD early diagnosis and management remain underestimated due to the poor diagnostic and therapeutic strategies including the primary prevention methods. Materials and Methods: A single center observational study included 80 participants. The participants were aged ≥ 40 years and given an informed written consent to participate in the study and publish any associated figures. Both groups, G1 (n = 31) with and G2 (n = 49) without post stress-induced myocardial perfusion defect, passed cardiologist consultation, anthropometric measurements, blood pressure and pulse rate measurements, echocardiography, real time breathing at rest into PTR-TOF-MS-1000, cardio-ankle vascular index, bicycle ergometry, and immediately after performing bicycle ergometry repeating the breathing analysis into the PTR-TOF-MS-1000, and after three minutes from the end of the second breath, repeat the breath into the PTR-TOF-MS-1000, then performing CTP. LASSO regression with nested cross-validation was used to find the association between the exhaled VOCs and existence of myocardial perfusion defect. Statistical processing performed with R programming language v4.2 and Python v.3.10 [^R], STATISTICA program v.12, and IBM SPSS v.28. Results: The VOCs specificity 77.6% [95% confidence interval (CI); 0.666; 0.889], sensitivity 83.9% [95% CI; 0.692; 0.964], and diagnostic accuracy; area under the curve (AUC) 83.8% [95% CI; 0.73655857; 0.91493173]. Whereas the AUC of the bicycle ergometry 50.7% [95% CI; 0.388; 0.625], specificity 53.1% [95% CI; 0.392; 0.673], and sensitivity 48.4% [95% CI; 0.306; 0.657]. Conclusions: The VOCs analysis appear to discriminate individuals with vs. without IHD using machine learning models. Other: The exhaled breath analysis reflects the myocardiocytes metabolomic signature and related intercellular homeostasis changes and regulation perturbances. Exhaled breath analysis poses a promise result to improve the diagnostic accuracy of the physical stress tests using machine learning models.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Peter Chomakhidze
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Daria Gognieva
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Nina Vladimirovna Gagarina
- University Clinical Hospital Number 1, Radiology Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Artemiy Silantyev
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Alexander Suvorov
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Ekaterina Fominykha
- University Clinical Hospital Number 1, Radiology Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Malika Mustafina
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Ershova Natalya
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Aida Gadzhiakhmedova
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Philipp Kopylov
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
6
|
Al-Difaie ZJJ, Scheepers MHMC, Engelen SME, Lubbers T, Havekes B, Bouvy ND. Volatile organic compounds in exhaled breath, blood, and urine detected in patients with thyroid carcinoma using gas chromatography-ion mobility spectrometry -a pilot study. J Breath Res 2024; 19:016009. [PMID: 39437815 DOI: 10.1088/1752-7163/ad89ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
The differentiation between malignant and benign thyroid nodules represents a significant challenge for clinicians globally. The identification of volatile organic compounds (VOCs) has emerged as a novel approach in the field of cancer diagnosis. This prospective pilot study aims to identify VOCs in exhaled breath, blood, and urine that can differentiate benign from malignant thyroid nodules using gas chromatography-ion mobility spectrometry (GC-IMS). Patients with thyroid nodules scheduled for surgery were enrolled at the Maastricht University Medical Center (MUMC+). Breath samples were analyzed using a BreathSpec GC-IMS machine (G.A.S. Dortmund, Germany), specifically designed for breath analysis. All blood and urine samples were analyzed using a separate GC-IMS device, the FlavourSpec® (G.A.S., Dortmund, Germany). In this proof-of-concept study, 70 consecutive patients undergoing thyroid surgery at MUMC+ were included. Of these patients, 29 were confirmed to have thyroid cancer after surgical resection. The overall analysis did not reveal statistically significant differences in VOCs in breath, urine and blood, between patients with benign and malignant thyroid cancer. This proof-of-concept study demonstrated that GC-IMS could not effectively differentiate between the VOC profiles of malignant and benign thyroid nodules. However, due to the small sample size of this study, larger prospective studies are needed to investigate the potential of using VOCs to distinguish between benign and malignant thyroid nodules. Additionally, future research should focus on identifying potential confounding factors that may influence patient VOC profiles. (NCT04883294).
Collapse
Affiliation(s)
- Zaid J J Al-Difaie
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Max H M C Scheepers
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Sanne M E Engelen
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim Lubbers
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bas Havekes
- Department of Internal Medicine, Division of Endocrinology, Maastricht University Medical Center, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Nicole D Bouvy
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
7
|
Liu X, Chen Q, Xu S, Wu J, Zhao J, He Z, Pan A, Wu J. A Prototype of Graphene E-Nose for Exhaled Breath Detection and Label-Free Diagnosis of Helicobacter Pylori Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401695. [PMID: 38965802 PMCID: PMC11425842 DOI: 10.1002/advs.202401695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Helicobacter pylori (HP), a common microanaerobic bacteria that lives in the human mouth and stomach, is reported to infect ≈50% of the global population. The current diagnostic methods for HP are either invasive, time-consuming, or harmful. Therefore, a noninvasive and label-free HP diagnostic method needs to be developed urgently. Herein, reduced graphene oxide (rGO) is composited with different metal-based materials to construct a graphene-based electronic nose (e-nose), which exhibits excellent sensitivity and cross-reactive response to several gases in exhaled breath (EB). Principal component analysis (PCA) shows that four typical types of gases in EB can be well discriminated. Additionally, the potential of the e-nose in label-free detection of HP infection is demonstrated through the measurement and analysis of EB samples. Furthermore, a prototype of an e-nose device is designed and constructed for automatic EB detection and HP diagnosis. The accuracy of the prototype machine integrated with the graphene-based e-nose can reach 92% and 91% in the training and validation sets, respectively. These results demonstrate that the highly sensitive graphene-based e-nose has great potential for the label-free diagnosis of HP and may become a novel tool for non-invasive disease screening and diagnosis.
Collapse
Affiliation(s)
- Xuemei Liu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Qiaofen Chen
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
- Will‐think Sensing Technology Co., LTDHangzhou310030China
| | - Shiyuan Xu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Jiaying Wu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Zhengfu He
- Department of Thoracic SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Aiwu Pan
- Department of Internal MedicineThe Second Affiliated Hospital of Zhejiang UniversityHangzhou310003China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| |
Collapse
|
8
|
Ma TT, Chang Z, Zhang N, Xu H. Application of electronic nose technology in the diagnosis of gastrointestinal diseases: a review. J Cancer Res Clin Oncol 2024; 150:401. [PMID: 39192027 PMCID: PMC11349790 DOI: 10.1007/s00432-024-05925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Electronic noses (eNoses) are electronic bionic olfactory systems that use sensor arrays to produce response patterns to different odors, thereby enabling the identification of various scents. Gastrointestinal diseases have a high incidence rate and occur in 9 out of 10 people in China. Gastrointestinal diseases are characterized by a long course of symptoms and are associated with treatment difficulties and recurrence. This review offers a comprehensive overview of volatile organic compounds, with a specific emphasis on those detected via the eNose system. Furthermore, this review describes the application of bionic eNose technology in the diagnosis and screening of gastrointestinal diseases based on recent local and international research progress and advancements. Moreover, the prospects of bionic eNose technology in the field of gastrointestinal disease diagnostics are discussed.
Collapse
Affiliation(s)
- Tan-Tan Ma
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
9
|
Zheng W, Pang K, Min Y, Wu D. Prospect and Challenges of Volatile Organic Compound Breath Testing in Non-Cancer Gastrointestinal Disorders. Biomedicines 2024; 12:1815. [PMID: 39200279 PMCID: PMC11351786 DOI: 10.3390/biomedicines12081815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Breath analysis, despite being an overlooked biomatrix, has a rich history in disease diagnosis. However, volatile organic compounds (VOCs) have yet to establish themselves as clinically validated biomarkers for specific diseases. As focusing solely on late-stage or malignant disease biomarkers may have limited relevance in clinical practice, the objective of this review is to explore the potential of VOC breath tests for the diagnosis of non-cancer diseases: (1) Precancerous conditions like gastro-esophageal reflux disease (GERD) and Barrett's esophagus (BE), where breath tests can complement endoscopic screening; (2) endoluminal diseases associated with autoinflammation and dysbiosis, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and coeliac disease, which currently rely on biopsy and symptom-based diagnosis; (3) chronic liver diseases like cirrhosis, hepatic encephalopathy, and non-alcoholic fatty liver disease, which lack non-invasive diagnostic tools for disease progression monitoring and prognostic assessment. A literature search was conducted through EMBASE, MEDLINE, and Cochrane databases, leading to an overview of 24 studies. The characteristics of these studies, including analytical platforms, disorder type and stage, group size, and performance evaluation parameters for diagnostic tests are discussed. Furthermore, how VOCs can be utilized as non-invasive diagnostic tools to complement existing gold standards is explored. By refining study designs, sampling procedures, and comparing VOCs in urine and blood, we can gain a deeper understanding of the metabolic pathways underlying VOCs. This will establish breath analysis as an effective non-invasive method for differential diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Weiyang Zheng
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
| | - Ke Pang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (K.P.); (Y.M.)
| | - Yiyang Min
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (K.P.); (Y.M.)
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
Allegretto JA, Dostalek J. Metal-Organic Frameworks in Surface Enhanced Raman Spectroscopy-Based Analysis of Volatile Organic Compounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401437. [PMID: 38868917 PMCID: PMC11321619 DOI: 10.1002/advs.202401437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Indexed: 06/14/2024]
Abstract
Volatile Organic Compounds (VOC) are a major class of environmental pollutants hazardous to human health, but also highly relevant in other fields including early disease diagnostics and organoleptic perception of aliments. Therefore, accurate analysis of VOC is essential, and a need for new analytical methods is witnessed for rapid on-site detection without complex sample preparation. Surface-Enhanced Raman Spectroscopy (SERS) offers a rapidly developing versatile analytical platform for the portable detection of chemical species. Nonetheless, the need for efficient docking of target analytes at the metallic surface significantly narrows the applicability of SERS. This limitation can be circumvented by interfacing the sensor surface with Metal-Organic Frameworks (MOF). These materials featuring chemical and structural versatility can efficiently pre-concentrate low molecular weight species such as VOC through their ordered porous structure. This review presents recent trends in the development of MOF-based SERS substrates with a focus on elucidating respective design rules for maximizing analytical performance. An overview of the status of the detection of harmful VOC is discussed in the context of industrial and environmental monitoring. In addition, a survey of the analysis of VOC biomarkers for medical diagnosis and emerging applications in aroma and flavor profiling is included.
Collapse
Affiliation(s)
- Juan A. Allegretto
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and DentistryDanube Private UniversityKrems3500Austria
| | - Jakub Dostalek
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and DentistryDanube Private UniversityKrems3500Austria
- FZU‐Institute of PhysicsCzech Academy of SciencesNa Slovance 2Prague82021Czech Republic
| |
Collapse
|
11
|
Picciariello A, Dezi A, Vincenti L, Spampinato MG, Zang W, Riahi P, Scott J, Sharma R, Fan X, Altomare DF. Colorectal Cancer Diagnosis through Breath Test Using a Portable Breath Analyzer-Preliminary Data. SENSORS (BASEL, SWITZERLAND) 2024; 24:2343. [PMID: 38610554 PMCID: PMC11014225 DOI: 10.3390/s24072343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Screening methods available for colorectal cancer (CRC) to date are burdened by poor reliability and low patient adherence and compliance. An altered pattern of volatile organic compounds (VOCs) in exhaled breath has been proposed as a non-invasive potential diagnostic tool for distinguishing CRC patients from healthy controls (HC). The aim of this study was to evaluate the reliability of an innovative portable device containing a micro-gas chromatograph in enabling rapid, on-site CRC diagnosis through analysis of patients' exhaled breath. In this prospective trial, breath samples were collected in a tertiary referral center of colorectal surgery, and analysis of the chromatograms was performed by the Biomedical Engineering Department. The breath of patients with CRC and HC was collected into Tedlar bags through a Nafion filter and mouthpiece with a one-way valve. The breath samples were analyzed by an automated portable gas chromatography device. Relevant volatile biomarkers and discriminant chromatographic peaks were identified through machine learning, linear discriminant analysis and principal component analysis. A total of 68 subjects, 36 patients affected by histologically proven CRC with no evidence of metastases and 32 HC with negative colonoscopies, were enrolled. After testing a training set (18 CRC and 18 HC) and a testing set (18 CRC and 14 HC), an overall specificity of 87.5%, sensitivity of 94.4% and accuracy of 91.2% in identifying CRC patients was found based on three VOCs. Breath biopsy may represent a promising non-invasive method of discriminating CRC patients from HC.
Collapse
Affiliation(s)
| | - Agnese Dezi
- Department of Precision and Regenerative Medicine and Ionian Area and Interdepartmental Research Center for Pelvic Floor Diseases (CIRPAP), University Aldo Moro of Bari, 70124 Bari, Italy
| | - Leonardo Vincenti
- Surgical Unit, IRCCS de Bellis, Castellana Grotte, 70013 Bari, Italy;
| | | | - Wenzhe Zang
- Biomedical Engineering Department, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA; (W.Z.); (J.S.); (R.S.); (X.F.)
| | - Pamela Riahi
- Biomedical Engineering Department, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA; (W.Z.); (J.S.); (R.S.); (X.F.)
| | - Jared Scott
- Biomedical Engineering Department, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA; (W.Z.); (J.S.); (R.S.); (X.F.)
| | - Ruchi Sharma
- Biomedical Engineering Department, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA; (W.Z.); (J.S.); (R.S.); (X.F.)
| | - Xudong Fan
- Biomedical Engineering Department, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA; (W.Z.); (J.S.); (R.S.); (X.F.)
| | - Donato F. Altomare
- Department of Precision and Regenerative Medicine and Ionian Area and Interdepartmental Research Center for Pelvic Floor Diseases (CIRPAP), University Aldo Moro of Bari, 70124 Bari, Italy
| |
Collapse
|
12
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
13
|
Tiankanon K, Pungpipattrakul N, Sukaram T, Chaiteerakij R, Rerknimitr R. Identification of breath volatile organic compounds to distinguish pancreatic adenocarcinoma, pancreatic cystic neoplasm, and patients without pancreatic lesions. World J Gastrointest Oncol 2024; 16:894-906. [PMID: 38577457 PMCID: PMC10989381 DOI: 10.4251/wjgo.v16.i3.894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Volatile organic compounds (VOCs) are a promising potential biomarker that may be able to identify the presence of cancers. AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocarcinoma (PDAC) from intraductal papillary mucinous neoplasm (IPMN) and healthy volunteers. METHODS We collected exhaled breath from histologically proven PDAC patients, radiological diagnosis IPMN, and healthy volunteers using the ReCIVA® device between 10/2021-11/2022. VOCs were identified by thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry and compared between groups. RESULTS A total of 156 participants (44% male, mean age 62.6 ± 10.6) were enrolled (54 PDAC, 42 IPMN, and 60 controls). Among the nine VOCs identified, two VOCs that showed differences between groups were dimethyl sulfide [0.73 vs 0.74 vs 0.94 arbitrary units (AU), respectively; P = 0.008] and acetone dimers (3.95 vs 4.49 vs 5.19 AU, respectively; P < 0.001). After adjusting for the imbalance parameters, PDAC showed higher dimethyl sulfide levels than the control and IPMN groups, with adjusted odds ratio (aOR) of 6.98 (95%CI: 1.15-42.17) and 4.56 (1.03-20.20), respectively (P < 0.05 both). Acetone dimer levels were also higher in PDAC compared to controls and IPMN (aOR: 5.12 (1.80-14.57) and aOR: 3.35 (1.47-7.63), respectively (P < 0.05 both). Acetone dimer, but not dimethyl sulfide, performed better than CA19-9 in PDAC diagnosis (AUROC 0.910 vs 0.796). The AUROC of acetone dimer increased to 0.936 when combined with CA19-9, which was better than CA19-9 alone (P < 0.05). CONCLUSION Dimethyl sulfide and acetone dimer are VOCs that potentially distinguish PDAC from IPMN and healthy participants. Additional prospective studies are required to validate these findings.
Collapse
Affiliation(s)
- Kasenee Tiankanon
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Nuttanit Pungpipattrakul
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanikan Sukaram
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roongruedee Chaiteerakij
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Malik M, Demetrowitsch T, Schwarz K, Kunze T. New perspectives on 'Breathomics': metabolomic profiling of non-volatile organic compounds in exhaled breath using DI-FT-ICR-MS. Commun Biol 2024; 7:258. [PMID: 38431745 PMCID: PMC10908792 DOI: 10.1038/s42003-024-05943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Breath analysis offers tremendous potential for diagnostic approaches, since it allows for easy and non-invasive sample collection. "Breathomics" as one major research field comprehensively analyses the metabolomic profile of exhaled breath providing insights into various (patho)physiological processes. Recent research, however, primarily focuses on volatile compounds. This is the first study that evaluates the non-volatile organic compounds (nVOCs) in breath following an untargeted metabolomic approach. Herein, we developed an innovative method utilizing a filter-based device for metabolite extraction. Breath samples of 101 healthy volunteers (female n = 50) were analysed using DI-FT-ICR-MS and biostatistically evaluated. The characterisation of the non-volatile core breathome identified more than 1100 metabolites including various amino acids, organic and fatty acids and conjugates thereof, carbohydrates as well as diverse hydrophilic and lipophilic nVOCs. The data shows gender-specific differences in metabolic patterns with 570 significant metabolites. Male and female metabolomic profiles of breath were distinguished by a random forest approach with an out-of-bag error of 0.0099. Additionally, the study examines how oral contraceptives and various lifestyle factors, like alcohol consumption, affect the non-volatile breathome. In conclusion, the successful application of a filter-based device combined with metabolomics-analyses delineate a non-volatile breathprint laying the foundation for discovering clinical biomarkers in exhaled breath.
Collapse
Affiliation(s)
- Madiha Malik
- Department of Clinical Pharmacy, Institute of Pharmacy, Kiel University, Kiel, Germany.
| | - Tobias Demetrowitsch
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, Kiel, Germany
| | - Thomas Kunze
- Department of Clinical Pharmacy, Institute of Pharmacy, Kiel University, Kiel, Germany.
| |
Collapse
|
15
|
Li M, He X, Wu C, Wang L, Zhang X, Gong X, Zeng X, Huang Y. Deep Learning Enabled SERS Identification of Gaseous Molecules on Flexible Plasmonic MOF Nanowire Films. ACS Sens 2024; 9:979-987. [PMID: 38299870 DOI: 10.1021/acssensors.3c02519] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Through the capture of a target molecule at the metal surface with a highly confined electromagnetic field induced by surface plasmon, surface enhanced Raman spectroscopy (SERS) emerges as a spectral analysis technology with high sensitivity. However, accurate SERS identification of a gaseous molecule with low density and high velocity is still a challenge due to its difficulty in capture. In this work, a flexible paper-based plasmonic metal-organic framework (MOF) film consisting of Ag nanowires@ZIF-8 (AgNWs@ZIF-8) is fabricated for SERS detection of gaseous molecules. Benefiting from its micronanopores generated by the nanowire network and ZIF-8 shell, the effective capture of the gaseous molecule is achieved, and its SERS spectrum is obtained in this paper-based flexible plasmonic MOF nanowire film. With optimal structure parameters, spectra of gaseous 4-aminothiophenol, 4-mercaptophenol, and dithiohydroquinone demonstrate that this film has good SERS performance, which could maintain obvious Raman signals within 30 days during reproducible detection. To realize SERS identification of gaseous molecules, deep learning is performed based on the SERS spectra of the mixed gaseous analyte obtained in this flexible porous film. The results point out that an artificial neural network algorithm could identify gaseous aldehydes (gaseous biomarker of colorectal cancer) in simulated exhaled breath with high accuracy at 93.7%. The integration of the flexible paper-based film sensors with deep learning offers a promising new approach for noninvasive colorectal cancer screening. Our work explores SERS applications in gaseous analyte detection and has broad potential in clinical medicine, food safety, environmental monitoring, etc.
Collapse
Affiliation(s)
- Minghong Li
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China
| | - Xi He
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China
| | - Chaolin Wu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China
| | - Li Wang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China
| | - Xin Zhang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China
- Chongqing Industry Polytechnic College, Chongqing 401120, China
| | - Xiangnan Gong
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Xiping Zeng
- Shenzhen Huake-Tek Company Limited, Shenzhen, Guangdong 518116, China
| | - Yingzhou Huang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China
| |
Collapse
|
16
|
Aerts R, Feys S, Mercier T, Lagrou K. Microbiological Diagnosis of Pulmonary Aspergillus Infections. Semin Respir Crit Care Med 2024; 45:21-31. [PMID: 38228164 DOI: 10.1055/s-0043-1776777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
As microbiological tests play an important role in our diagnostic algorithms and clinical approach towards patients at-risk for pulmonary aspergillosis, a good knowledge of the diagnostic possibilities and especially their limitations is extremely important. In this review, we aim to reflect critically on the available microbiological diagnostic modalities for diagnosis of pulmonary aspergillosis and formulate some future prospects. Timely start of adequate antifungal treatment leads to a better patient outcome, but overuse of antifungals should be avoided. Current diagnostic possibilities are expanding, and are mainly driven by enzyme immunoassays and lateral flow device tests for the detection of Aspergillus antigens. Most of these tests are directed towards similar antigens, but new antibodies towards different targets are under development. For chronic forms of pulmonary aspergillosis, anti-Aspergillus IgG antibodies and precipitins remain the cornerstone. More studies on the possibilities and limitations of molecular testing including targeting resistance markers are ongoing. Also, metagenomic next-generation sequencing is expanding our future possibilities. It remains important to combine different test results and interpret them in the appropriate clinical context to improve performance. Test performances may differ according to the patient population and test results may be influenced by timing, the tested matrix, and prophylactic and empiric antifungal therapy. Despite the increasing armamentarium, a simple blood or urine test for the diagnosis of aspergillosis in all patient populations at-risk is still lacking. Research on diagnostic tools is broadening from a pathogen focus on biomarkers related to the patient and its immune system.
Collapse
Affiliation(s)
- Robina Aerts
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Toine Mercier
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Oncology-Hematology, AZ Sint-Maarten, Mechelen, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Marzoog B. Breathomics Detect the Cardiovascular Disease: Delusion or Dilution of the Metabolomic Signature. Curr Cardiol Rev 2024; 20:e020224226647. [PMID: 38318837 PMCID: PMC11327829 DOI: 10.2174/011573403x283768240124065853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Volatile organic compounds (VOCs) can be subdivided into exogenous and endogenous categories based on their origin. Analyzing the endogenous VOCs can provide insights into maintaining the internal organs' homeostasis. Despite the ongoing development and the current understanding, studies have suggested a link between cardiovascular metabolic alterations in patients with ischemic heart disease and elevated levels of ethane and isoprene detectable through exhaled breath analysis. Conversely, patients with chronic heart failure exhibit elevated acetone and pentane in their exhaled air. These substances originate from disturbances in the heart tissue, including cellular and subcellular modulations. Hypothetically, ethane levels in the exhaled breath analysis can demonstrate the severity of ischemic heart disease and, consequently, the risk of death in the next 10 years due to cardiovascular disease (CVD). Real-time direct mass spectrometry is the preferred method for assessing VOCs in exhaled breath analysis. The accuracy of this analysis depends on several factors, including the selection of the relevant breath fraction, the type of breath collection container (if used), and the pre-concentration technique.
Collapse
Affiliation(s)
- Basheer Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
18
|
Marzoog BA. Volatilome is Inflammasome- and Lipidome-dependent in Ischemic Heart Disease. Curr Cardiol Rev 2024; 20:e190724232038. [PMID: 39039680 PMCID: PMC11440324 DOI: 10.2174/011573403x302934240715113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Ischemic heart disease (IHD) is a pathology of global interest because it is widespread and has high morbidity and mortality. IHD pathophysiology involves local and systemic changes, including lipidomic, proteomic, and inflammasome changes in serum plasma. The modulation in these metabolites is viable in the pre-IHD, during the IHD period, and after management of IHD in all forms, including lifestyle changes and pharmacological and surgical interventions. Therefore, these biochemical markers (metabolite changes; lipidome, inflammasome, proteome) can be used for early prevention, treatment strategy, assessment of the patient's response to the treatment, diagnosis, and determination of prognosis. Lipidomic changes are associated with the severity of inflammation and disorder in the lipidome component, and correlation is related to disturbance of inflammasome components. Main inflammasome biomarkers that are associated with coronary artery disease progression include IL-1β, Nucleotide-binding oligomerization domain- like receptor family pyrin domain containing 3 (NLRP3), and caspase-1. Meanwhile, the main lipidome biomarkers related to coronary artery disease development involve plasmalogen lipids, lysophosphatidylethanolamine (LPE), and phosphatidylethanolamine (PE). The hypothesis of this paper is that the changes in the volatile organic compounds associated with inflammasome and lipidome changes in patients with coronary artery disease are various and depend on the severity and risk factor for death from cardiovascular disease in the time span of 10 years. In this paper, we explore the potential origin and pathway in which the lipidome and or inflammasome molecules could be excreted in the exhaled air in the form of volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
19
|
Gallos IK, Tryfonopoulos D, Shani G, Amditis A, Haick H, Dionysiou DD. Advancing Colorectal Cancer Diagnosis with AI-Powered Breathomics: Navigating Challenges and Future Directions. Diagnostics (Basel) 2023; 13:3673. [PMID: 38132257 PMCID: PMC10743128 DOI: 10.3390/diagnostics13243673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Early detection of colorectal cancer is crucial for improving outcomes and reducing mortality. While there is strong evidence of effectiveness, currently adopted screening methods present several shortcomings which negatively impact the detection of early stage carcinogenesis, including low uptake due to patient discomfort. As a result, developing novel, non-invasive alternatives is an important research priority. Recent advancements in the field of breathomics, the study of breath composition and analysis, have paved the way for new avenues for non-invasive cancer detection and effective monitoring. Harnessing the utility of Volatile Organic Compounds in exhaled breath, breathomics has the potential to disrupt colorectal cancer screening practices. Our goal is to outline key research efforts in this area focusing on machine learning methods used for the analysis of breathomics data, highlight challenges involved in artificial intelligence application in this context, and suggest possible future directions which are currently considered within the framework of the European project ONCOSCREEN.
Collapse
Affiliation(s)
- Ioannis K. Gallos
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| | - Dimitrios Tryfonopoulos
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| | - Gidi Shani
- Laboratory for Nanomaterial-Based Devices, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (G.S.); (H.H.)
| | - Angelos Amditis
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| | - Hossam Haick
- Laboratory for Nanomaterial-Based Devices, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (G.S.); (H.H.)
| | - Dimitra D. Dionysiou
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| |
Collapse
|
20
|
Xing Q, Zhang L, Liu H, Zhu C, Yao M. Exhaled VOC Biomarkers from Rats Injected with PMs from Thirty-One Major Cities in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20510-20520. [PMID: 38039547 DOI: 10.1021/acs.est.3c06074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Particulate matter (PMs) of different origins can cause diverse health effects. Here, a homemade box was used to facilitate real-time measurements of breath-borne volatile organic compounds (VOCs) by gas chromatography-ion mobility spectrometry. We have tracked exhaled VOC changes in 228 Wistar rats that were injected with water-soluble PM suspension filtrates (after 0.45 μm) from 31 China cities for 1 h to up to 1-6 days during the experiments. Rats exposed to the filtrates exhibited significant changes in breath-borne VOCs within hours, featuring dynamic fluctuations in the levels of acetone, butan-2-one, heptan-2-one-M, acetic acid-M, and ethanol. Subsequently, on the fifth to sixth day after the injection, there was a notable increase in the proportion of aldehydes (including hexanal-M, hexanal-D, pentanal, heptanal-M, and (E)-2-hexenal). The 10 dynamic VOC fingerprint patterns mentioned earlier showcased the capability to indirectly differentiate urban PM toxicity and categorize the 31 cities into four distinct groups based on their health effects. This study provides valuable insights into the mechanisms of exhaled VOCs and underscores their critical role as biomarkers for differentiating the toxicity of different PMs and detecting the early signs of potential diseases. The results from this work also provide a scientific basis for city-specific air pollution control and policy development.
Collapse
Affiliation(s)
- Qisong Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huaying Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyu Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Gashimova EM, Temerdashev AZ, Perunov DV, Porkhanov VA, Polyakov IS, Dmitrieva EV. Selectivity of Exhaled Breath Biomarkers of Lung Cancer in Relation to Cancer of Other Localizations. Int J Mol Sci 2023; 24:13350. [PMID: 37686155 PMCID: PMC10488072 DOI: 10.3390/ijms241713350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer is a leading cause of death worldwide, mostly due to diagnostics in the advanced stage. Therefore, the development of a quick, simple, and non-invasive diagnostic tool to identify cancer is essential. However, the creation of a reliable diagnostic tool is possible only in case of selectivity to other diseases, particularly, cancer of other localizations. This paper is devoted to the study of the variability of exhaled breath samples among patients with lung cancer and cancer of other localizations, such as esophageal, breast, colorectal, kidney, stomach, prostate, cervix, and skin. For this, gas chromatography-mass spectrometry (GC-MS) was used. Two classification models were built. The first model separated patients with lung cancer and cancer of other localizations. The second model classified patients with lung, esophageal, breast, colorectal, and kidney cancer. Mann-Whitney U tests and Kruskal-Wallis H tests were applied to identify differences in investigated groups. Discriminant analysis (DA), gradient-boosted decision trees (GBDT), and artificial neural networks (ANN) were applied to create the models. In the case of classifying lung cancer and cancer of other localizations, average sensitivity and specificity were 68% and 69%, respectively. However, the accuracy of classifying groups of patients with lung, esophageal, breast, colorectal, and kidney cancer was poor.
Collapse
Affiliation(s)
- Elina M. Gashimova
- Department of Analytical Chemistry, Kuban State University, Stavropol’skaya St. 149, Krasnodar 350040, Russia; (A.Z.T.); (E.V.D.)
| | - Azamat Z. Temerdashev
- Department of Analytical Chemistry, Kuban State University, Stavropol’skaya St. 149, Krasnodar 350040, Russia; (A.Z.T.); (E.V.D.)
| | - Dmitry V. Perunov
- Research Institute—Regional Clinical Hospital N° 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar 350086, Russia; (D.V.P.); (V.A.P.); (I.S.P.)
| | - Vladimir A. Porkhanov
- Research Institute—Regional Clinical Hospital N° 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar 350086, Russia; (D.V.P.); (V.A.P.); (I.S.P.)
| | - Igor S. Polyakov
- Research Institute—Regional Clinical Hospital N° 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar 350086, Russia; (D.V.P.); (V.A.P.); (I.S.P.)
| | - Ekaterina V. Dmitrieva
- Department of Analytical Chemistry, Kuban State University, Stavropol’skaya St. 149, Krasnodar 350040, Russia; (A.Z.T.); (E.V.D.)
| |
Collapse
|
22
|
Bhandari MP, Polaka I, Vangravs R, Mezmale L, Veliks V, Kirshners A, Mochalski P, Dias-Neto E, Leja M. Volatile Markers for Cancer in Exhaled Breath-Could They Be the Signature of the Gut Microbiota? Molecules 2023; 28:molecules28083488. [PMID: 37110724 PMCID: PMC10141340 DOI: 10.3390/molecules28083488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
It has been shown that the gut microbiota plays a central role in human health and disease. A wide range of volatile metabolites present in exhaled breath have been linked with gut microbiota and proposed as a non-invasive marker for monitoring pathological conditions. The aim of this study was to examine the possible correlation between volatile organic compounds (VOCs) in exhaled breath and the fecal microbiome by multivariate statistical analysis in gastric cancer patients (n = 16) and healthy controls (n = 33). Shotgun metagenomic sequencing was used to characterize the fecal microbiota. Breath-VOC profiles in the same participants were identified by an untargeted gas chromatography-mass spectrometry (GC-MS) technique. A multivariate statistical approach involving a canonical correlation analysis (CCA) and sparse principal component analysis identified the significant relationship between the breath VOCs and fecal microbiota. This relation was found to differ between gastric cancer patients and healthy controls. In 16 cancer cases, 14 distinct metabolites identified from the breath belonging to hydrocarbons, alcohols, aromatics, ketones, ethers, and organosulfur compounds were highly correlated with 33 fecal bacterial taxa (correlation of 0.891, p-value 0.045), whereas in 33 healthy controls, 7 volatile metabolites belonging to alcohols, aldehydes, esters, phenols, and benzamide derivatives correlated with 17 bacterial taxa (correlation of 0.871, p-value 0.0007). This study suggested that the correlation between fecal microbiota and breath VOCs was effective in identifying exhaled volatile metabolites and the functional effects of microbiome, thus helping to understand cancer-related changes and improving the survival and life expectancy in gastric cancer patients.
Collapse
Affiliation(s)
| | - Inese Polaka
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Arnis Kirshners
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Pawel Mochalski
- Institute of Chemistry, Jan Kochanowski University of Kielce, PL-25406 Kielce, Poland
- Institute for Breath Research, University of Innsbruck, A-6850 Dornbirn, Austria
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Digestive Diseases Center GASTRO, LV-1079 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| |
Collapse
|