1
|
Lopes SR, Martins C, Santos IC, Teixeira M, Gamito É, Alves AL. Colorectal cancer screening: A review of current knowledge and progress in research. World J Gastrointest Oncol 2024; 16:1119-1133. [PMID: 38660635 PMCID: PMC11037045 DOI: 10.4251/wjgo.v16.i4.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide, being the third most commonly diagnosed malignancy and the second leading cause of cancer-related deaths globally. Despite the progress in screening, early diagnosis, and treatment, approximately 20%-25% of CRC patients still present with metastatic disease at the time of their initial diagnosis. Furthermore, the burden of disease is still expected to increase, especially in individuals younger than 50 years old, among whom early-onset CRC incidence has been increasing. Screening and early detection are pivotal to improve CRC-related outcomes. It is well established that CRC screening not only reduces incidence, but also decreases deaths from CRC. Diverse screening strategies have proven effective in decreasing both CRC incidence and mortality, though variations in efficacy have been reported across the literature. However, uncertainties persist regarding the optimal screening method, age intervals and periodicity. Moreover, adherence to CRC screening remains globally low. In recent years, emerging technologies, notably artificial intelligence, and non-invasive biomarkers, have been developed to overcome these barriers. However, controversy exists over the actual impact of some of the new discoveries on CRC-related outcomes and how to effectively integrate them into daily practice. In this review, we aim to cover the current evidence surrounding CRC screening. We will further critically assess novel approaches under investigation, in an effort to differentiate promising innovations from mere novelties.
Collapse
Affiliation(s)
- Sara Ramos Lopes
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Claudio Martins
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Inês Costa Santos
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Madalena Teixeira
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Élia Gamito
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Ana Luisa Alves
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| |
Collapse
|
2
|
Wang T, Jin Y, Wang M, Chen B, Sun J, Zhang J, Yang H, Deng X, Cao X, Wang L, Tang Y. SALL4 in gastrointestinal tract cancers: upstream and downstream regulatory mechanisms. Mol Med 2024; 30:46. [PMID: 38584262 PMCID: PMC11000312 DOI: 10.1186/s10020-024-00812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Effective therapeutic targets and early diagnosis are major challenges in the treatment of gastrointestinal tract (GIT) cancers. SALL4 is a well-known transcription factor that is involved in organogenesis during embryonic development. Previous studies have revealed that SALL4 regulates cell proliferation, survival, and migration and maintains stem cell function in mature cells. Additionally, SALL4 overexpression is associated with tumorigenesis. Despite its characterization as a biomarker in various cancers, the role of SALL4 in GIT cancers and the underlying mechanisms are unclear. We describe the functions of SALL4 in GIT cancers and discuss its upstream/downstream genes and pathways associated with each cancer. We also consider the possibility of targeting these genes or pathways as potential therapeutic options for GIT cancers.
Collapse
Affiliation(s)
- Tairan Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yan Jin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mengyao Wang
- First Clinical Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Boya Chen
- First Clinical Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jinyu Sun
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jiaying Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xinyao Deng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xingyue Cao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Bagheri R, Ghorbian M, Ghorbian S. Tumor circulating biomarkers in colorectal cancer. Cancer Treat Res Commun 2023; 38:100787. [PMID: 38194840 DOI: 10.1016/j.ctarc.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
CRC is a major global health concern and is responsible for a significant number of cancer-related deaths each year. The successful treatment of CRC becomes more difficult when it goes undetected until it has advanced to a later stage. Diagnostic biomarkers can play a critical role in the early detection of CRC, which leads to improved patient outcomes and increased survival rates. It is important to develop reliable biomarkers for the early detection of CRC to enable timely diagnosis and treatment. To date, CRC detection methods such as endoscopy, blood, and stool tests are imperfect and often only identify cases in the later stages of the disease. To overcome these limitations, researchers are turning to molecular biomarkers as a promising avenue for improving CRC detection. Diagnostic information can be provided more reliably through a noninvasive approach using biomarkers such as mRNA, circulating cell-free DNA, micro-RNA, long non-coding RNA, and proteins. These biomarkers can be found in blood, tissue, feces, and volatile organic compounds. The identification of molecular biomarkers with high sensitivity and specificity for early detection of CRC that are safe, cost-effective, and easily measurable remains a significant challenge for researchers. In this article, we will explore the latest advancements in blood-based diagnostic biomarkers for CRC and their potential impact on improving patient survival rates.
Collapse
Affiliation(s)
- Raana Bagheri
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Mohsen Ghorbian
- Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
| |
Collapse
|
4
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
5
|
Moein S, Tenen DG, Amabile G, Chai L. SALL4: An Intriguing Therapeutic Target in Cancer Treatment. Cells 2022; 11:cells11162601. [PMID: 36010677 PMCID: PMC9406946 DOI: 10.3390/cells11162601] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Spalt-Like Transcription Factor 4 (SALL4) is a critical factor for self-renewal ability and pluripotency of stem cells. On the other hand, various reports show tight relation of SALL4 to cancer occurrence and metastasis. SALL4 exerts its effects not only by inducing gene expression but also repressing a large cluster of genes through interaction with various epigenetic modifiers. Due to high expression of SALL4 in cancer cells and its silence in almost all adult tissues, it is an ideal target for cancer therapy. However, targeting SALL4 meets various challenges. SALL4 is a transcription factor and designing appropriate drug to inhibit this intra-nucleus component is challenging. On the other hand, due to lack of our knowledge on structure of the protein and the suitable active sites, it becomes more difficult to reach the appropriate drugs against SALL4. In this review, we have focused on approaches applied yet to target this oncogene and discuss the potential of degrader systems as new therapeutics to target oncogenes.
Collapse
Affiliation(s)
- Shiva Moein
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Daniel G. Tenen
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| | - Giovanni Amabile
- Believer Pharmaceuticals, Inc., Wilmington, DE 19801, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| | - Li Chai
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| |
Collapse
|
6
|
SALL Proteins; Common and Antagonistic Roles in Cancer. Cancers (Basel) 2021; 13:cancers13246292. [PMID: 34944911 PMCID: PMC8699250 DOI: 10.3390/cancers13246292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Transcription factors play essential roles in regulating gene expression, impacting the cell phenotype and function, and in the response of cells to environmental conditions. Alterations in transcription factors, including gene amplification or deletion, point mutations, and expression changes, are implicated in carcinogenesis, cancer progression, metastases, and resistance to cancer treatments. Not surprisingly, transcription factor activity is altered in numerous cancers, representing a unique class of cancer drug targets. This review updates and integrates information on the SALL family of transcription factors, highlighting the synergistic and/or antagonistic functions they perform in various cancer types. Abstract SALL proteins are a family of four conserved C2H2 zinc finger transcription factors that play critical roles in organogenesis during embryonic development. They regulate cell proliferation, survival, migration, and stemness; consequently, they are involved in various human genetic disorders and cancer. SALL4 is a well-recognized oncogene; however, SALL1–3 play dual roles depending on the cancer context and stage of the disease. Current reviews of SALLs have focused only on SALL2 or SALL4, lacking an integrated view of the SALL family members in cancer. Here, we update the recent advances of the SALL members in tumor development, cancer progression, and therapy, highlighting the synergistic and/or antagonistic functions they perform in similar cancer contexts. We identified common regulatory mechanisms, targets, and signaling pathways in breast, brain, liver, colon, blood, and HPV-related cancers. In addition, we discuss the potential of the SALL family members as cancer biomarkers and in the cancer cells’ response to therapies. Understanding SALL proteins’ function and relationship will open new cancer biology, clinical research, and therapy perspectives.
Collapse
|
7
|
Wang T, Tian K, Ji X, Song F. A 6 transcription factors-associated nomogram predicts the recurrence-free survival of thyroid papillary carcinoma. Medicine (Baltimore) 2021; 100:e27308. [PMID: 34622829 PMCID: PMC8500572 DOI: 10.1097/md.0000000000027308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/06/2021] [Indexed: 01/05/2023] Open
Abstract
Various researches demonstrated that transcription factors (TFs) played a crucial role in the progression and prognosis of cancer. However, few studies indicated that TFs were independent biomarkers for the prognosis of thyroid papillary carcinoma (TPC). Our aim was to establish and validate a novel TF signature for the prediction of TPC patients' recurrence-free survival (RFS) from The Cancer Genome Atlas (TCGA) database to improve the prediction of survival in TPC patients.The genes expression data and corresponding clinical information for TPC were obtained from TCGA database. In total, 722 TFs and 545 TPC patients with eligible clinical information were determined to build a novel TF signature. All TFs were included in a univariate Cox regression model. Then, the least absolute shrinkage and selection operator Cox regression model was employed to identify candidate TFs relevant to TPC patients' RFS. Finally, multivariate Cox regression was conducted via the candidate TFs for the selection of the TF signatures in the RFS assessment of TPC patients.We identified 6 TFs that were related to TPC patients' RFS. Receiver operating characteristic analysis was performed in training, validation, and whole datasets, we verified the high capacity of the 6-TF panel for predicting TPC patients' RFS (AUC at 1, 3, and 5 years were 0.880, 0.934, and 0.868, respectively, in training dataset; 0.760, 0.737, and 0.726, respectively, in validation dataset; and 0.777, 0.776, and 0.761, respectively, in entire dataset). The result of Kaplan-Meier analysis suggested that the TPC patients with low scores had longer RFS than the TPC patients with high score (P = .003). A similar outcome was displayed in the validation dataset (P = .001) and the entire dataset (P = 2e-05). In addition, a nomogram was conducted through risk score, cancer status, C-index, receiver operating characteristic, and the calibration plots analysis implied good value and clinical utility of the nomogram.We constructed and validated a novel 6-TF signature-based nomogram for predicting the RFS of TPC patients.
Collapse
|
8
|
Ouban A. Expression of SALL4 stemness marker in laryngeal squamous cell carcinomas (LSCCs) and its clinical significance. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1972349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Abderrahman Ouban
- Department of Pathology, Alfaisal University College of Medicine, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Druce P, Calanzani N, Snudden C, Milley K, Boscott R, Behiyat D, Martinez-Gutierrez J, Saji S, Oberoi J, Funston G, Messenger M, Walter FM, Emery J. Identifying Novel Biomarkers Ready for Evaluation in Low-Prevalence Populations for the Early Detection of Lower Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. Adv Ther 2021; 38:3032-3065. [PMID: 33907946 PMCID: PMC8078393 DOI: 10.1007/s12325-021-01645-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/30/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Lower gastrointestinal (GI) cancers are a major cause of cancer deaths worldwide. Prognosis improves with earlier diagnosis, and non-invasive biomarkers have the potential to aid with early detection. Substantial investment has been made into the development of biomarkers; however, studies are often carried out in specialist settings and few have been evaluated for low-prevalence populations. METHODS We aimed to identify novel biomarkers for the detection of lower GI cancers that have the potential to be evaluated for use in primary care. MEDLINE, Embase, Emcare and Web of Science were systematically searched for studies published in English from January 2000 to October 2019. Reference lists of included studies were also assessed. Studies had to report on measures of diagnostic performance for biomarkers (single or in panels) used to detect colorectal or anal cancers. We included all designs and excluded studies with fewer than 50 cases/controls. Data were extracted from published studies on types of biomarkers, populations and outcomes. Narrative synthesis was used, and measures of specificity and sensitivity were meta-analysed where possible. RESULTS We identified 142 studies reporting on biomarkers for lower GI cancers, for 24,844 cases and 45,374 controls. A total of 378 unique biomarkers were identified. Heterogeneity of study design, population type and sample source precluded meta-analysis for all markers except methylated septin 9 (mSEPT9) and pyruvate kinase type tumour M2 (TuM2-PK). The estimated sensitivity and specificity of mSEPT9 was 80.6% (95% CI 76.6-84.0%) and 88.0% (95% CI 79.1-93.4%) respectively; TuM2-PK had an estimated sensitivity of 81.6% (95% CI 75.2-86.6%) and specificity of 80.1% (95% CI 76.7-83.0%). CONCLUSION Two novel biomarkers (mSEPT9 and TuM2-PK) were identified from the literature with potential for use in lower-prevalence populations. Further research is needed to validate these biomarkers in primary care for screening and assessment of symptomatic patients.
Collapse
Affiliation(s)
- Paige Druce
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Melbourne, VIC, Australia.
| | - Natalia Calanzani
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Claudia Snudden
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kristi Milley
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Melbourne, VIC, Australia
| | - Rachel Boscott
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dawnya Behiyat
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Javiera Martinez-Gutierrez
- Department of Family Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Smiji Saji
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jasmeen Oberoi
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Melbourne, VIC, Australia
| | - Garth Funston
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mike Messenger
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Fiona M Walter
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Melbourne, VIC, Australia
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jon Emery
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Melbourne, VIC, Australia
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Ouban A. SALL4 stemness agent expression in oral squamous cell cancer and its clinical significance. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1914165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Abderrahman Ouban
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Chang S, Sun G, Zhang D, Li Q, Qian H. MiR-3622a-3p acts as a tumor suppressor in colorectal cancer by reducing stemness features and EMT through targeting spalt-like transcription factor 4. Cell Death Dis 2020; 11:592. [PMID: 32719361 PMCID: PMC7385142 DOI: 10.1038/s41419-020-02789-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs are a class of small non-coding RNAs which act as oncogenes or tumor suppressors through targeting specific mRNAs. Colorectal cancer (CRC) is one of the most common malignancies worldwide. MiR-3622a-3p is found to be decreased in colorectal cancer (CRC) by analyzing data from TCGA database and there are few reports about the role of miR-3622a-3p in cancers. Our research aimed to explore the effects of miR-3622a-3p on CRC. MiR-3622a-3p was found to be down-regulated in CRC tissues and cells by qRT-PCR. The effect of miR-3622a-3p on proliferation, apoptosis, cell cycle, migration and invasion of CRC cells were investigated by a serious of biological function assays and the results revealed that miR-3622a-3p could inhibit the malignant biological properties of CRC. We performed dual luciferase assay, RNA immunoprecipitation (RIP) assay and pull-down assay to confirm the interaction between miR-3622a-3p and spalt-like transcription factor 4 (SALL4). Western blot was carried out to determine the effects of miR-3622a-3p and SALL4 on stemness features and EMT. We found that miR-3622a-3p suppressed stemness features and EMT of CRC cells by SALL4 mRNA degradation. MiR-3622a-3p could inhibit CRC cell proliferation and metastasis in vivo with tumor xenograft model and in vivo metastasis model. The CRC organoid model was constructed with fresh CRC tissues and the growth of organoids was suppressed by miR-3622a-3p. Taken together, the results of our study indicate miR-3622a-3p exerts antioncogenic role in CRC by downregulation of SALL4. The research on miR-3622a-3p might provide a new insight into treatment of CRC.
Collapse
Affiliation(s)
- Shuchen Chang
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu province, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Dan Zhang
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu province, China
| | - Qing Li
- Medical College of Southeast University, Nanjing, 210009, Jiangsu province, China
| | - Haihua Qian
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu province, China.
| |
Collapse
|
12
|
Loktionov A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins? World J Gastrointest Oncol 2020; 12:124-148. [PMID: 32104546 PMCID: PMC7031146 DOI: 10.4251/wjgo.v12.i2.124] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/30/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global problem affecting millions of people worldwide. This disease is unique because of its slow progress that makes it preventable and often curable. CRC symptoms usually emerge only at advanced stages of the disease, consequently its early detection can be achieved only through active population screening, which markedly reduces mortality due to this cancer. CRC screening tests that employ non-invasively detectable biomarkers are currently being actively developed and, in most cases, samples of either stool or blood are used. However, alternative biological substances that can be collected non-invasively (colorectal mucus, urine, saliva, exhaled air) have now emerged as new sources of diagnostic biomarkers. The main categories of currently explored CRC biomarkers are: (1) Proteins (comprising widely used haemoglobin); (2) DNA (including mutations and methylation markers); (3) RNA (in particular microRNAs); (4) Low molecular weight metabolites (comprising volatile organic compounds) detectable by metabolomic techniques; and (5) Shifts in gut microbiome composition. Numerous tests for early CRC detection employing such non-invasive biomarkers have been proposed and clinically studied. While some of these studies generated promising early results, very few of the proposed tests have been transformed into clinically validated diagnostic/screening techniques. Such DNA-based tests as Food and Drug Administration-approved multitarget stool test (marketed as Cologuard®) or blood test for methylated septin 9 (marketed as Epi proColon® 2.0 CE) show good diagnostic performance but remain too expensive and technically complex to become effective CRC screening tools. It can be concluded that, despite its deficiencies, the protein (haemoglobin) detection-based faecal immunochemical test (FIT) today presents the most cost-effective option for non-invasive CRC screening. The combination of non-invasive FIT and confirmatory invasive colonoscopy is the current strategy of choice for CRC screening. However, continuing intense research in the area promises the emergence of new superior non-invasive CRC screening tests that will allow the development of improved disease prevention strategies.
Collapse
|
13
|
Small nucleolar RNA host gene 1: A new biomarker and therapeutic target for cancers. Pathol Res Pract 2018; 214:1247-1252. [PMID: 30107989 DOI: 10.1016/j.prp.2018.07.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/28/2018] [Accepted: 07/28/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs), a group of transcripts with length greater than 200 nucleotides, have been involved in multiple pathophysiological processes of the human body, especially in tumorigenesis and progression of cancers. The aberrant expression of lncRNAs processes crucial functions involved in proliferation, apoptosis and metastatic capacity of cancers. Recent studies have revealed that small nucleolar RNA host gene 1 (SNHG1), a long non-coding RNA transcribed from UHG, was located in chromosome 11. Aberrant expression of SNHG1 has been demonstrated to be associated with various sites of cancers such as glioma, esophageal cancer, gastric cancer and many others, and its deregulation could be related to survival and prognosis of cancer patients. Pertinent to clinical practice, SNHG1 might act as a prognostic biomarker for tumors and might even serve as potential target for therapy. In this review, we summarized current researches concerning the role of SNHG1 in tumor progression and discussed its mechanisms involved. MATERIALS AND METHODS In this review, we summarized and figured out recent studies concerning the expression and biological mechanisms of SNHG1in tumor development. The related studies were obtained through a systematic search of PubMed, Embase and Cochrane Library. RESULTS SNHG1 was a valuable cancer-related lncRNA that the expression level was up-regulation in a variety of malignancies, including glioma, esophageal cancer, lung cancer, gastric cancer, hepatocellular carcinoma, colorectal carcinoma, prostate cancer, cervical cancer, osteosarcoma, neuroblastoma, nasopharyngeal carcinoma. The aberrant expressions of SNHG1 have shown to contribute to proliferation, migration, and invasion of cancer cells. CONCLUSIONS SNHG1 represents promising novel biomarkers for various cancer types and have a great potential to be effectively used in clinical practice in the near future.
Collapse
|