1
|
Gong X, Ye Z, Shen Y, Song B. Enhancing the role of MRI in rectal cancer: advances from staging to prognosis prediction. Eur Radiol 2025:10.1007/s00330-025-11463-x. [PMID: 40045072 DOI: 10.1007/s00330-025-11463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/17/2025]
Abstract
Rectal cancer (RC) is one of the major health challenges worldwide. Accurate staging, restaging, invasiveness assessment, and treatment efficacy evaluation are crucial for its clinical management. Magnetic resonance imaging (MRI) plays a significant role in these processes. However, standard MRI techniques, including T2-weighted and diffusion-weighted imaging, have uncertainties in identifying early-stage tumors, high-risk nodules, extramural vascular invasion, and treatment efficacy, potentially leading to inappropriate treatment. Recent advances suggest that the integration of traditional MRI methods, including diffusion-weighted imaging, opposed-phase or contrast-enhanced T1-weighted imaging, as well as emerging synthetic MRI, could address these challenges. Additionally, improvements in imaging technology have spurred research into advanced functional MRI techniques such as diffusion kurtosis imaging and amide proton transfer weighted MRI, yielding promising results in RC assessment. Total neoadjuvant therapy has emerged as a new treatment paradigm for locally advanced RC, with neoadjuvant immunotherapy and chemotherapy offering viable alternatives to neoadjuvant chemoradiotherapy. However, the lack of standards for the early prediction of patient survival and tumor response to neoadjuvant therapy highlights a critical unmet need in matching therapies to suitable patients. Furthermore, organ preservation strategies after neoadjuvant therapy provide personalized options based on tumor response and patient preferences, yet traditional MRI assessments show significant variability. Radiomics and artificial intelligence hold promise for revealing complex patterns in MRI images associated with patient prognosis and treatment response. This review provides an overview of current MRI advancements in RC assessment and emphasizes how future research can refine tailored treatment strategies to improve patient outcomes. KEY POINTS: Question The accurate diagnosis of early-stage rectal tumors, high-risk nodules, treatment responses, and the early prediction of patient survival and therapeutic outcomes remain an unmet need. Findings Visual MRI has improved staging, restaging, and invasiveness evaluation. Advanced MRI, radiomics and artificial intelligence provide significant potential for tumor characterization and outcome prediction. Clinical relevance Advances in visual MRI are improving routine imaging protocols and radiomics and artificial intelligence show promise in enhancing treatment decisions through precise tumor characterization and outcome prediction.
Collapse
Affiliation(s)
- Xiaoling Gong
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Ye
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Shen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Department of Radiology, Sanya People's Hospital, Sanya, China.
| |
Collapse
|
2
|
Qin S, Liu K, Chen Y, Zhou Y, Zhao W, Yan R, Xin P, Zhu Y, Wang H, Lang N. Prediction of pathological response and lymph node metastasis after neoadjuvant therapy in rectal cancer through tumor and mesorectal MRI radiomic features. Sci Rep 2024; 14:21927. [PMID: 39304726 DOI: 10.1038/s41598-024-72916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Establishing predictive models for the pathological response and lymph node metastasis in locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (nCRT) based on MRI radiomic features derived from the tumor and mesorectal compartment (MC). This study included 209 patients with LARC who underwent rectal MRI both before and after nCRT. The patients were divided into a training set (n = 146) and a test set (n = 63). Regions of interest (ROIs) for the tumor and MC were delineated on both pre- and post-nCRT MRI images. Radiomic features were extracted, and delta radiomic features were computed. The predictive endpoints were pathological complete response (pCR), pathological good response (pGR), and lymph node metastasis (LNM). Feature selection for various models involved sequentially removing features with a correlation coefficient > 0.9, and features with P-values ≥ 0.05 in univariate analysis, followed by LASSO regression on the remaining features. Logistic regression models were developed, and their performance was evaluated using the area under the receiver operating characteristic curve (AUC). Among the 209 LARC patients, the number of patients achieving pCR, pGR, and LNM were 44, 118, and 40, respectively. The optimal model for predicting each endpoint is the combined model that incorporates pre- and delta-radiomics features for both the tumor and MC. These models exhibited superior performance with AUC values of 0.874 (for pCR), 0.801 (for pGR), and 0.826 (for LNM), outperforming the MRI tumor regression grade (mrTRG) which yielded AUC values of 0.800, 0.715, and 0.603, respectively. The results demonstrate the potential utility of the tumor and MC radiomics features, in predicting treatment efficacy among LARC patients undergoing nCRT.
Collapse
Affiliation(s)
- Siyuan Qin
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Ke Liu
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yongye Chen
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yan Zhou
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Weili Zhao
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Ruixin Yan
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Peijin Xin
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yupeng Zhu
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Hao Wang
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing, China
| | - Ning Lang
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
3
|
Curcean S, Curcean A, Martin D, Fekete Z, Irimie A, Muntean AS, Caraiani C. The Role of Predictive and Prognostic MRI-Based Biomarkers in the Era of Total Neoadjuvant Treatment in Rectal Cancer. Cancers (Basel) 2024; 16:3111. [PMID: 39272969 PMCID: PMC11394290 DOI: 10.3390/cancers16173111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The role of magnetic resonance imaging (MRI) in rectal cancer management has significantly increased over the last decade, in line with more personalized treatment approaches. Total neoadjuvant treatment (TNT) plays a pivotal role in the shift from traditional surgical approach to non-surgical approaches such as 'watch-and-wait'. MRI plays a central role in this evolving landscape, providing essential morphological and functional data that support clinical decision-making. Key MRI-based biomarkers, including circumferential resection margin (CRM), extramural venous invasion (EMVI), tumour deposits, diffusion-weighted imaging (DWI), and MRI tumour regression grade (mrTRG), have proven valuable for staging, response assessment, and patient prognosis. Functional imaging techniques, such as dynamic contrast-enhanced MRI (DCE-MRI), alongside emerging biomarkers derived from radiomics and artificial intelligence (AI) have the potential to transform rectal cancer management offering data that enhance T and N staging, histopathological characterization, prediction of treatment response, recurrence detection, and identification of genomic features. This review outlines validated morphological and functional MRI-derived biomarkers with both prognostic and predictive significance, while also exploring the potential of radiomics and artificial intelligence in rectal cancer management. Furthermore, we discuss the role of rectal MRI in the 'watch-and-wait' approach, highlighting important practical aspects in selecting patients for non-surgical management.
Collapse
Affiliation(s)
- Sebastian Curcean
- Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
- Department of Radiation Oncology, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Andra Curcean
- Department of Imaging, Affidea Center, 15c Ciresilor Street, 400487 Cluj-Napoca, Romania
| | - Daniela Martin
- Department of Radiation Oncology, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Zsolt Fekete
- Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
- Department of Radiation Oncology, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Oncological Surgery and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
- Department of Oncological Surgery, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Alina-Simona Muntean
- Department of Radiation Oncology, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Cosmin Caraiani
- Department of Medical Imaging and Nuclear Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Sun Y, Lu Z, Yang H, Jiang P, Zhang Z, Liu J, Zhou Y, Li P, Zeng Q, Long Y, Li L, Du B, Zhang X. Prediction of lateral lymph node metastasis in rectal cancer patients based on MRI using clinical, deep transfer learning, radiomic, and fusion models. Front Oncol 2024; 14:1433190. [PMID: 39099685 PMCID: PMC11294238 DOI: 10.3389/fonc.2024.1433190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Lateral lymph node (LLN) metastasis in rectal cancer significantly affects patient treatment and prognosis. This study aimed to comprehensively compare the performance of various predictive models in predicting LLN metastasis. Methods In this retrospective study, data from 152 rectal cancer patients who underwent lateral lymph node (LLN) dissection were collected. The cohort was divided into a training set (n=86) from Tianjin Union Medical Center (TUMC), and two testing cohorts: testing cohort (TUMC) (n=37) and testing cohort from Gansu Provincial Hospital (GSPH) (n=29). A clinical model was established using clinical data; deep transfer learning models and radiomics models were developed using MRI images of the primary tumor (PT) and largest short-axis LLN (LLLN), visible LLN (VLLN) areas, along with a fusion model that integrates features from both deep transfer learning and radiomics. The diagnostic value of these models for LLN metastasis was analyzed based on postoperative LLN pathology. Results Models based on LLLN image information generally outperformed those based on PT image information. Rradiomics models based on LLLN demonstrated improved robustness on external testing cohorts compared to those based on VLLN. Specifically, the radiomics model based on LLLN imaging achieved an AUC of 0.741 in the testing cohort (TUMC) and 0.713 in the testing cohort (GSPH) with the extra trees algorithm. Conclusion Data from LLLN is a more reliable basis for predicting LLN metastasis in rectal cancer patients with suspicious LLN metastasis than data from PT. Among models performing adequately on the internal test set, all showed declines on the external test set, with LLLN_Rad_Models being less affected by scanning parameters and data sources.
Collapse
Affiliation(s)
- Yi Sun
- Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| | - Zhongxiang Lu
- The First Clinical College of Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Hongjie Yang
- Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| | | | - Zhichun Zhang
- Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| | - Jiafei Liu
- Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| | - Yuanda Zhou
- Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| | - Peng Li
- Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| | - Qingsheng Zeng
- Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| | - Yu Long
- Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| | - Laiyuan Li
- Gansu Provincial Hospital, Gansu Clinical Medical Research Center for Anorectal Diseases, Lanzhou, Gansu, China
| | - Binbin Du
- Gansu Provincial Hospital, Gansu Clinical Medical Research Center for Anorectal Diseases, Lanzhou, Gansu, China
| | - Xipeng Zhang
- Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| |
Collapse
|
5
|
Abbaspour E, Karimzadhagh S, Monsef A, Joukar F, Mansour-Ghanaei F, Hassanipour S. Application of radiomics for preoperative prediction of lymph node metastasis in colorectal cancer: a systematic review and meta-analysis. Int J Surg 2024; 110:3795-3813. [PMID: 38935817 PMCID: PMC11175807 DOI: 10.1097/js9.0000000000001239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) stands as the third most prevalent cancer globally, projecting 3.2 million new cases and 1.6 million deaths by 2040. Accurate lymph node metastasis (LNM) detection is critical for determining optimal surgical approaches, including preoperative neoadjuvant chemoradiotherapy and surgery, which significantly influence CRC prognosis. However, conventional imaging lacks adequate precision, prompting exploration into radiomics, which addresses this shortfall by converting medical images into reproducible, quantitative data. METHODS Following PRISMA, Supplemental Digital Content 1 (http://links.lww.com/JS9/C77) and Supplemental Digital Content 2 (http://links.lww.com/JS9/C78), and AMSTAR-2 guidelines, Supplemental Digital Content 3 (http://links.lww.com/JS9/C79), we systematically searched PubMed, Web of Science, Embase, Cochrane Library, and Google Scholar databases until 11 January 2024, to evaluate radiomics models' diagnostic precision in predicting preoperative LNM in CRC patients. The quality and bias risk of the included studies were assessed using the Radiomics Quality Score (RQS) and the modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Subsequently, statistical analyses were conducted. RESULTS Thirty-six studies encompassing 8039 patients were included, with a significant concentration in 2022-2023 (20/36). Radiomics models predicting LNM demonstrated a pooled area under the curve (AUC) of 0.814 (95% CI: 0.78-0.85), featuring sensitivity and specificity of 0.77 (95% CI: 0.69, 0.84) and 0.73 (95% CI: 0.67, 0.78), respectively. Subgroup analyses revealed similar AUCs for CT and MRI-based models, and rectal cancer models outperformed colon and colorectal cancers. Additionally, studies utilizing cross-validation, 2D segmentation, internal validation, manual segmentation, prospective design, and single-center populations tended to have higher AUCs. However, these differences were not statistically significant. Radiologists collectively achieved a pooled AUC of 0.659 (95% CI: 0.627, 0.691), significantly differing from the performance of radiomics models (P<0.001). CONCLUSION Artificial intelligence-based radiomics shows promise in preoperative lymph node staging for CRC, exhibiting significant predictive performance. These findings support the integration of radiomics into clinical practice to enhance preoperative strategies in CRC management.
Collapse
Affiliation(s)
- Elahe Abbaspour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sahand Karimzadhagh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Monsef
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Ye YX, Yang L, Kang Z, Wang MQ, Xie XD, Lou KX, Bao J, Du M, Li ZX. Magnetic resonance imaging-based lymph node radiomics for predicting the metastasis of evaluable lymph nodes in rectal cancer. World J Gastrointest Oncol 2024; 16:1849-1860. [PMID: 38764830 PMCID: PMC11099437 DOI: 10.4251/wjgo.v16.i5.1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Lymph node (LN) staging in rectal cancer (RC) affects treatment decisions and patient prognosis. For radiologists, the traditional preoperative assessment of LN metastasis (LNM) using magnetic resonance imaging (MRI) poses a challenge. AIM To explore the value of a nomogram model that combines Conventional MRI and radiomics features from the LNs of RC in assessing the preoperative metastasis of evaluable LNs. METHODS In this retrospective study, 270 LNs (158 nonmetastatic, 112 metastatic) were randomly split into training (n = 189) and validation sets (n = 81). LNs were classified based on pathology-MRI matching. Conventional MRI features [size, shape, margin, T2-weighted imaging (T2WI) appearance, and CE-T1-weighted imaging (T1WI) enhancement] were evaluated. Three radiomics models used 3D features from T1WI and T2WI images. Additionally, a nomogram model combining conventional MRI and radiomics features was developed. The model used univariate analysis and multivariable logistic regression. Evaluation employed the receiver operating characteristic curve, with DeLong test for comparing diagnostic performance. Nomogram performance was assessed using calibration and decision curve analysis. RESULTS The nomogram model outperformed conventional MRI and single radiomics models in evaluating LNM. In the training set, the nomogram model achieved an area under the curve (AUC) of 0.92, which was significantly higher than the AUCs of 0.82 (P < 0.001) and 0.89 (P < 0.001) of the conventional MRI and radiomics models, respectively. In the validation set, the nomogram model achieved an AUC of 0.91, significantly surpassing 0.80 (P < 0.001) and 0.86 (P < 0.001), respectively. CONCLUSION The nomogram model showed the best performance in predicting metastasis of evaluable LNs.
Collapse
Affiliation(s)
- Yong-Xia Ye
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Liu Yang
- Department of Colorectal Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Zheng Kang
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Mei-Qin Wang
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Xiao-Dong Xie
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Ke-Xin Lou
- Department of Pathology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Jun Bao
- Colorectal Center, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Mei Du
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Zhe-Xuan Li
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| |
Collapse
|
7
|
Yan H, Yang H, Jiang P, Dong L, Zhang Z, Zhou Y, Zeng Q, Li P, Sun Y, Zhu S. A radiomics model based on T2WI and clinical indexes for prediction of lateral lymph node metastasis in rectal cancer. Asian J Surg 2024; 47:450-458. [PMID: 37833219 DOI: 10.1016/j.asjsur.2023.09.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE The aim of this study was to explore the clinical value of a radiomics prediction model based on T2-weighted imaging (T2WI) and clinical indexes in predicting lateral lymph node (LLN) metastasis in rectal cancer patients. METHODS This was a retrospective analysis of 106 rectal cancer patients who had undergone LLN dissection. The clinical risk factors for LLN metastasis were selected by multivariable logistic regression analysis of the clinical indicators of the patients. The LLN radiomics features were extracted from the pelvic T2WI of the patients. The least absolute shrinkage and selection operator algorithm and backward stepwise regression method were adopted for feature selection. Three LLN metastasis prediction models were established through logistic regression analysis based on the clinical risk factors and radiomics features. Model performance was assessed in terms of discriminability and decision curve analysis in the training, verification and test sets. RESULTS The model based on the combined T2WI radiomics features and clinical risk factors demonstrated the highest accuracy, surpassing the models based solely on either T2WI radiomics features or clinical risk factors. Specifically, the model achieved an AUC value of 0.836 in the test set. Decision curve analysis revealed that this model had the greatest clinical utility for the vast majority of the threshold probability range from 0.4 to 1.0. CONCLUSION Combining T2WI radiomics features with clinical risk factors holds promise for the noninvasive assessment of the biological characteristics of the LLNs in rectal cancer, potentially aiding in therapeutic decision-making and optimizing patient outcomes.
Collapse
Affiliation(s)
- Hao Yan
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121, China
| | - Hongjie Yang
- Nankai University, Tianjin, 300071, China; The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | | | - Longchun Dong
- Department of Radiology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Zhichun Zhang
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Yuanda Zhou
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Qingsheng Zeng
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Peng Li
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Yi Sun
- Nankai University, Tianjin, 300071, China; The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.
| | - Siwei Zhu
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121, China; Nankai University, Tianjin, 300071, China; The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.
| |
Collapse
|
8
|
Miranda J, Horvat N, Araujo-Filho JAB, Albuquerque KS, Charbel C, Trindade BMC, Cardoso DL, de Padua Gomes de Farias L, Chakraborty J, Nomura CH. The Role of Radiomics in Rectal Cancer. J Gastrointest Cancer 2023; 54:1158-1180. [PMID: 37155130 PMCID: PMC11301614 DOI: 10.1007/s12029-022-00909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2022] [Indexed: 05/10/2023]
Abstract
PURPOSE Radiomics is a promising method for advancing imaging assessment in rectal cancer. This review aims to describe the emerging role of radiomics in the imaging assessment of rectal cancer, including various applications of radiomics based on CT, MRI, or PET/CT. METHODS We conducted a literature review to highlight the progress of radiomic research to date and the challenges that need to be addressed before radiomics can be implemented clinically. RESULTS The results suggest that radiomics has the potential to provide valuable information for clinical decision-making in rectal cancer. However, there are still challenges in terms of standardization of imaging protocols, feature extraction, and validation of radiomic models. Despite these challenges, radiomics holds great promise for personalized medicine in rectal cancer, with the potential to improve diagnosis, prognosis, and treatment planning. Further research is needed to validate the clinical utility of radiomics and to establish its role in routine clinical practice. CONCLUSION Overall, radiomics has emerged as a powerful tool for improving the imaging assessment of rectal cancer, and its potential benefits should not be underestimated.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA.
| | - Jose A B Araujo-Filho
- Department of Radiology, Hospital Sirio-Libanes, 91 Adma Jafet, Sao Paulo, SP, 01308-050, Brazil
| | - Kamila S Albuquerque
- Department of Radiology, Hospital Beneficência Portuguesa, 637 Maestro Cardim, Sao Paulo, SP, 01323-001, Brazil
| | - Charlotte Charbel
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Bruno M C Trindade
- Department of Radiology, University of Sao Paulo, 75 Dr. Ovídio Pires de Campos, Sao Paulo, SP, 05403-010, Brazil
| | - Daniel L Cardoso
- Department of Radiology, Hospital Sirio-Libanes, 91 Adma Jafet, Sao Paulo, SP, 01308-050, Brazil
| | | | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, 75 Dr. Ovídio Pires de Campos, Sao Paulo, SP, 05403-010, Brazil
| |
Collapse
|
9
|
Li K, Zhang S, Hu Y, Cai A, Ao Y, Gong J, Liang M, Yang S, Chen X, Li M, Tian J, Shan H. Radiomics Nomogram with Added Nodal Features Improves Treatment Response Prediction in Locally Advanced Esophageal Squamous Cell Carcinoma: A Multicenter Study. Ann Surg Oncol 2023; 30:8231-8243. [PMID: 37755566 DOI: 10.1245/s10434-023-14253-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE We aimed to develop and validate a radiomics nomogram and determine the value of radiomic features from lymph nodes (LNs) for predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced esophageal squamous cell carcinoma (ESCC). METHODS In this multicenter retrospective study, eligible participants who had undergone NCRT followed by radical esophagectomy were consecutively recruited. Three radiomics models (modelT, modelLN, and modelTLN) based on tumor and LN features, alone and combined, were developed in the training cohort. The radiomics nomogram was developed by incorporating the prediction value of the radiomics model and clinicoradiological risk factors using multivariate logistic regression, and was evaluated using the receiver operating characteristic curve, validated in two external validation cohorts. RESULTS Between October 2011 and December 2018, 116 patients were included in the training cohort. Between June 2015 and October 2020, 51 and 27 patients from two independent hospitals were included in validation cohorts 1 and 2, respectively. The radiomics modelTLN performed better than the radiomics modelT for predicting pCR. The radiomics nomogram incorporating the predictive value of the radiomics modelTLN and heterogeneous after NCRT outperformed the clinicoradiological model, with an area under the curve (95% confidence interval) of 0.833 (0.765-0.894) versus 0.764 (0.686-0.833) [p = 0.088, DeLong test], 0.824 (0.718-0.909) versus 0.692 (0.554-0.809) [p = 0.012], and 0.902 (0.794-0.984) versus 0.696 (0.526-0.857) [p = 0.024] in all three cohorts. CONCLUSIONS Radiomic features from LNs could provide additional value for predicting pCR in ESCC patients, and the radiomics nomogram provided an accurate prediction of pCR, which might aid treatment decision.
Collapse
Affiliation(s)
- Kunwei Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Shuaitong Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yi Hu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Aiqun Cai
- Department of Radiology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yong Ao
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Jun Gong
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Mingzhu Liang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Songlin Yang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Xiangmeng Chen
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, Guangdong Province, People's Republic of China
| | - Man Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China.
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, People's Republic of China.
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Yang H, Jiang P, Dong L, Li P, Sun Y, Zhu S. Diagnostic value of a radiomics model based on CT and MRI for prediction of lateral lymph node metastasis of rectal cancer. Updates Surg 2023; 75:2225-2234. [PMID: 37556079 DOI: 10.1007/s13304-023-01618-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
This study aimed to develop a radiomics model for predicting lateral lymph node (LLN) metastasis in rectal cancer patients using MR-T2WI and CT images, and assess its clinical value. This prospective study included rectal cancer patients with complete MR-T2WI and portal enhanced CT images who underwent LLN dissection at Tianjin Union Medical Center between June 2017 and November 2022. Primary lesions and LLN were segmented using 3D slicer. Radiomics features were extracted from the region of interest using pyradiomics in Python. Least absolute shrinkage and selection operator algorithm and backward stepwise regression were employed for feature selection. Three LLN metastasis radiomics prediction models were established via multivariable logistic regression analysis. The performance of the model was evaluated using receiver operating characteristic curve analysis, and the area under the curve (AUC), sensitivity, specificity were calculated for the training, validation, and test sets. A nomogram was constructed for visualization, and decision curve analysis (DCA) was performed to evaluate clinical value. We included 94 eligible patients in the analysis. For each patient, we extracted a total of 1344 radiomics features. The CT combined with MR-T2WI model had the highest AUC for all sets compared to CT and MR-T2WI models. AUC values for the CT combined with MR-T2WI model in the training, validation, and test sets were 0.957, 0.901, and 0.936, respectively. DCA revealed high prediction value for the combined MR-T2WI and CT model. A radiomics model based on CT and MR-T2WI data effectively predicted LLN metastasis in rectal cancer patients preoperatively.
Collapse
Affiliation(s)
- Hongjie Yang
- Nankai University, Tianjin, 300071, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | | | - Longchun Dong
- Department of Radiology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Peng Li
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Yi Sun
- Nankai University, Tianjin, 300071, China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.
| | - Siwei Zhu
- Nankai University, Tianjin, 300071, China.
- Department of Oncology, Tianjin Union Medical Center, Tianjin, 300121, China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.
| |
Collapse
|
11
|
Zhang S, Tang B, Yu M, He L, Zheng P, Yan C, Li J, Peng Q. Development and Validation of a Radiomics Model Based on Lymph-Node Regression Grading After Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Int J Radiat Oncol Biol Phys 2023; 117:821-833. [PMID: 37230433 DOI: 10.1016/j.ijrobp.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE The response to neoadjuvant chemoradiotherapy (nCRT) varies among patients with locally advanced rectal cancer (LARC), and the treatment response of lymph nodes (LNs) to nCRT is critical in implementing a watch-and-wait strategy. A robust predictive model may help personalize treatment plans to increase the chance that patients achieve a complete response. This study investigated whether radiomics features based on prenCRT magnetic resonance imaging nodes could predict treatment response in preoperative LARC LNs. METHODS AND MATERIALS The study included 78 patients with clinical stage T3-T4, N1-2, and M0 rectal adenocarcinoma who received long-course neoadjuvant radiotherapy before surgery. Pathologists evaluated 243 LNs, of which 173 and 70 were assigned to training and validation cohorts, respectively. For each LN, 3641 radiomics features were extracted from the region of interest in high-resolution T2WI magnetic resonance imaging before nCRT. The least absolute shrinkage and selection operator regression model was used for feature selection and radiomics signature building. A prediction model based on multivariate logistic analysis, combining radiomics signature and selected LN morphologic characteristics, was developed and visualized by drawing a nomogram. The model's performance was assessed by receiver operating characteristic curve analysis and calibration curves. RESULTS The radiomics signature consists of 5 selected features that were effectively discriminated within the training cohort (area under the curve [AUC], 0.908; 95% CI, 0.857%-0.958%) and the validation cohort (AUC, 0.865; 95% CI, 0.757%-0.973%). The nomogram, which consisted of radiomics signature and LN morphologic characteristics (short-axis diameter and border contours), showed better calibration and discrimination in the training and validation cohorts (AUC, 0.925; 95% CI, 0.880%-0.969% and AUC, 0.918; 95% CI, 0.854%-0.983%, respectively). The decision curve analysis confirmed that the nomogram had the highest clinical utility. CONCLUSIONS The nodal-based radiomics model effectively predicts LNs treatment response in patients with LARC after nCRT, which could help personalize treatment plans and guide the implementation of the watch-and-wait approach in these patients.
Collapse
Affiliation(s)
- SiYu Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Bin Tang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - MingRong Yu
- College of Physical Education, Sichuan Agricultural University, Yaan, China
| | - Lei He
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Zheng
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - ChuanJun Yan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Qian Peng
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
12
|
Peng W, Qiao H, Mo L, Guo Y. Progress in the diagnosis of lymph node metastasis in rectal cancer: a review. Front Oncol 2023; 13:1167289. [PMID: 37519802 PMCID: PMC10374255 DOI: 10.3389/fonc.2023.1167289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Historically, the chief focus of lymph node metastasis research has been molecular and clinical studies of a few essential pathways and genes. Recent years have seen a rapid accumulation of massive omics and imaging data catalyzed by the rapid development of advanced technologies. This rapid increase in data has driven improvements in the accuracy of diagnosis of lymph node metastasis, and its analysis further demands new methods and the opportunity to provide novel insights for basic research. In fact, the combination of omics data, imaging data, clinical medicine, and diagnostic methods has led to notable advances in our basic understanding and transformation of lymph node metastases in rectal cancer. Higher levels of integration will require a concerted effort among data scientists and clinicians. Herein, we review the current state and future challenges to advance the diagnosis of lymph node metastases in rectal cancer.
Collapse
Affiliation(s)
- Wei Peng
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Huimin Qiao
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Linfeng Mo
- School of Health and Medicine, Guangzhou Huashang Vocational College, Guangzhou, Guangdong, China
| | - You Guo
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
13
|
Di Costanzo G, Ascione R, Ponsiglione A, Tucci AG, Dell’Aversana S, Iasiello F, Cavaglià E. Artificial intelligence and radiomics in magnetic resonance imaging of rectal cancer: a review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:406-421. [PMID: 37455833 PMCID: PMC10344900 DOI: 10.37349/etat.2023.00142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/01/2023] [Indexed: 07/18/2023] Open
Abstract
Rectal cancer (RC) is one of the most common tumours worldwide in both males and females, with significant morbidity and mortality rates, and it accounts for approximately one-third of colorectal cancers (CRCs). Magnetic resonance imaging (MRI) has been demonstrated to be accurate in evaluating the tumour location and stage, mucin content, invasion depth, lymph node (LN) metastasis, extramural vascular invasion (EMVI), and involvement of the mesorectal fascia (MRF). However, these features alone remain insufficient to precisely guide treatment decisions. Therefore, new imaging biomarkers are necessary to define tumour characteristics for staging and restaging patients with RC. During the last decades, RC evaluation via MRI-based radiomics and artificial intelligence (AI) tools has been a research hotspot. The aim of this review was to summarise the achievement of MRI-based radiomics and AI for the evaluation of staging, response to therapy, genotyping, prediction of high-risk factors, and prognosis in the field of RC. Moreover, future challenges and limitations of these tools that need to be solved to favour the transition from academic research to the clinical setting will be discussed.
Collapse
Affiliation(s)
- Giuseppe Di Costanzo
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Raffaele Ascione
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Giacoma Tucci
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Serena Dell’Aversana
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Francesca Iasiello
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Enrico Cavaglià
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| |
Collapse
|
14
|
Inchingolo R, Maino C, Cannella R, Vernuccio F, Cortese F, Dezio M, Pisani AR, Giandola T, Gatti M, Giannini V, Ippolito D, Faletti R. Radiomics in colorectal cancer patients. World J Gastroenterol 2023; 29:2888-2904. [PMID: 37274803 PMCID: PMC10237092 DOI: 10.3748/wjg.v29.i19.2888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
The main therapeutic options for colorectal cancer are surgical resection and adjuvant chemotherapy in non-metastatic disease. However, the evaluation of the overall adjuvant chemotherapy benefit in patients with a high risk of recurrence is challenging. Radiological images can represent a source of data that can be analyzed by using automated computer-based techniques, working on numerical information coded within Digital Imaging and Communications in Medicine files: This image numerical analysis has been named "radiomics". Radiomics allows the extraction of quantitative features from radiological images, mainly invisible to the naked eye, that can be further analyzed by artificial intelligence algorithms. Radiomics is expanding in oncology to either understand tumor biology or for the development of imaging biomarkers for diagnosis, staging, and prognosis, prediction of treatment response and diseases monitoring and surveillance. Several efforts have been made to develop radiomics signatures for colorectal cancer patient using computed tomography (CT) images with different aims: The preoperative prediction of lymph node metastasis, detecting BRAF and RAS gene mutations. Moreover, the use of delta-radiomics allows the analysis of variations of the radiomics parameters extracted from CT scans performed at different timepoints. Most published studies concerning radiomics and magnetic resonance imaging (MRI) mainly focused on the response of advanced tumors that underwent neoadjuvant therapy. Nodes status is the main determinant of adjuvant chemotherapy. Therefore, several radiomics model based on MRI, especially on T2-weighted images and ADC maps, for the preoperative prediction of nodes metastasis in rectal cancer has been developed. Current studies mostly focused on the applications of radiomics in positron emission tomography/CT for the prediction of survival after curative surgical resection and assessment of response following neoadjuvant chemoradiotherapy. Since colorectal liver metastases develop in about 25% of patients with colorectal carcinoma, the main diagnostic tasks of radiomics should be the detection of synchronous and metachronous lesions. Radiomics could be an additional tool in clinical setting, especially in identifying patients with high-risk disease. Nevertheless, radiomics has numerous shortcomings that make daily use extremely difficult. Further studies are needed to assess performance of radiomics in stratifying patients with high-risk disease.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Cesare Maino
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Federica Vernuccio
- Institute of Radiology, University Hospital of Padova, Padova 35128, Italy
| | - Francesco Cortese
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Michele Dezio
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Antonio Rosario Pisani
- Interdisciplinary Department of Medicine, Section of Nuclear Medicine, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Teresa Giandola
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Davide Ippolito
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| |
Collapse
|
15
|
Fang Z, Pu H, Chen XL, Yuan Y, Zhang F, Li H. MRI radiomics signature to predict lymph node metastasis after neoadjuvant chemoradiation therapy in locally advanced rectal cancer. Abdom Radiol (NY) 2023; 48:2270-2283. [PMID: 37085730 DOI: 10.1007/s00261-023-03910-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
PURPOSE To investigative the performance of MRI-radiomics analysis derived from T2WI and apparent diffusion coefficients (ADC) images before and after neoadjuvant chemoradiation therapy (nCRT) separately or simultaneously for predicting post-nCRT lymph node status in patients with locally advanced rectal cancer (LARC). MATERIALS AND METHODS: Eighty-three patients (training cohort, n = 57; validation cohort, n = 26) with LARC between June 2017 and December 2022 were retrospectively enrolled. All the radiomics features were extracted from volume of interest on T2WI and ADC images from baseline and post-nCRT MRI. Delta-radiomics features were defined as the difference between radiomics features before and after nCRT. Seven clinical-radiomics models were constructed by combining the most predictive radiomics signatures and clinical parameters selected from support vector machine. Receiver operating characteristic curve (ROC) was used to evaluate the performance of models. The optimum model-based LNM was applied to assess 5-years disease-free survival (DFS) using Kaplan-Meier analysis. The end point was clinical or radiological locoregional recurrence or distant metastasis during postoperative follow-up. RESULTS Clinical-deltaADC radiomics combined model presented good performance for predicting post-CRT LNM in the training (AUC = 0.895,95%CI:0.838-0.953) and validation cohort (AUC = 0.900,95%CI:0.771-1.000). Clinical-deltaADC radiomics-postT2WI radiomics combined model also showed good performances (AUC = 0.913,95%CI:0.838-0.953) in the training and (AUC = 0.912,95%CI:0.771-1.000) validation cohort. As for subgroup analysis, clinical-deltaADC radiomics combined model showed good performance predicting LNM in ypT0-T2 (AUC = 0.827;95%CI:0.649-1.000) and ypT3-T4 stage (AUC = 0.934;95%CI:0.864-1.000). In ypT0-T2 stage, clinical-deltaADC radiomics combined model-based LNM could assess 5-years DFS (P = 0.030). CONCLUSION Clinical-deltaADC radiomics combined model could predict post-nCRT LNM, and this combined model-based LNM was associated with 5-years DFS in ypT0-T2 stage.
Collapse
Affiliation(s)
- Zhu Fang
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32# Second Section of First Ring Road, Qingyang District, Chengdu, 610070, Sichuan, China
| | - Hong Pu
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32# Second Section of First Ring Road, Qingyang District, Chengdu, 610070, Sichuan, China
| | - Xiao-Li Chen
- Department of Radiology, Affiliated Cancer Hospital of Medical School, University of Electronic Science and Technology of China, Sichuan Cancer Hospital, 55#Four Section of South Renmin Road, Wuhou District, Chengdu, 610000, China
| | - Yi Yuan
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32# Second Section of First Ring Road, Qingyang District, Chengdu, 610070, Sichuan, China
| | - Feng Zhang
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32# Second Section of First Ring Road, Qingyang District, Chengdu, 610070, Sichuan, China
| | - Hang Li
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32# Second Section of First Ring Road, Qingyang District, Chengdu, 610070, Sichuan, China.
| |
Collapse
|
16
|
Tabari A, Chan SM, Omar OMF, Iqbal SI, Gee MS, Daye D. Role of Machine Learning in Precision Oncology: Applications in Gastrointestinal Cancers. Cancers (Basel) 2022; 15:cancers15010063. [PMID: 36612061 PMCID: PMC9817513 DOI: 10.3390/cancers15010063] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancers, consisting of a wide spectrum of pathologies, have become a prominent health issue globally. Despite medical imaging playing a crucial role in the clinical workflow of cancers, standard evaluation of different imaging modalities may provide limited information. Accurate tumor detection, characterization, and monitoring remain a challenge. Progress in quantitative imaging analysis techniques resulted in "radiomics", a promising methodical tool that helps to personalize diagnosis and treatment optimization. Radiomics, a sub-field of computer vision analysis, is a bourgeoning area of interest, especially in this era of precision medicine. In the field of oncology, radiomics has been described as a tool to aid in the diagnosis, classification, and categorization of malignancies and to predict outcomes using various endpoints. In addition, machine learning is a technique for analyzing and predicting by learning from sample data, finding patterns in it, and applying it to new data. Machine learning has been increasingly applied in this field, where it is being studied in image diagnosis. This review assesses the current landscape of radiomics and methodological processes in GI cancers (including gastric, colorectal, liver, pancreatic, neuroendocrine, GI stromal, and rectal cancers). We explain in a stepwise fashion the process from data acquisition and curation to segmentation and feature extraction. Furthermore, the applications of radiomics for diagnosis, staging, assessment of tumor prognosis and treatment response according to different GI cancer types are explored. Finally, we discussed the existing challenges and limitations of radiomics in abdominal cancers and investigate future opportunities.
Collapse
Affiliation(s)
- Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| | - Shin Mei Chan
- Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
| | - Omar Mustafa Fathy Omar
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Shams I. Iqbal
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Michael S. Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
MRI-based radiomics to predict neoadjuvant chemoradiotherapy outcomes in locally advanced rectal cancer: A multicenter study. Clin Transl Radiat Oncol 2022; 38:175-182. [DOI: 10.1016/j.ctro.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
|
18
|
Zhang YC, Li M, Jin YM, Xu JX, Huang CC, Song B. Radiomics for differentiating tumor deposits from lymph node metastasis in rectal cancer. World J Gastroenterol 2022; 28:3960-3970. [PMID: 36157536 PMCID: PMC9367222 DOI: 10.3748/wjg.v28.i29.3960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tumor deposits (TDs) are not equivalent to lymph node (LN) metastasis (LNM) but have become independent adverse prognostic factors in patients with rectal cancer (RC). Although preoperatively differentiating TDs and LNMs is helpful in designing individualized treatment strategies and achieving improved prognoses, it is a challenging task. AIM To establish a computed tomography (CT)-based radiomics model for preoperatively differentiating TDs from LNM in patients with RC. METHODS This study retrospectively enrolled 219 patients with RC [TDs+LNM- (n = 89); LNM+ TDs- (n = 115); TDs+LNM+ (n = 15)] from a single center between September 2016 and September 2021. Single-positive patients (i.e., TDs+LNM- and LNM+TDs-) were classified into the training (n = 163) and validation (n = 41) sets. We extracted numerous features from the enhanced CT (region 1: The main tumor; region 2: The largest peritumoral nodule). After deleting redundant features, three feature selection methods and three machine learning methods were used to select the best-performing classifier as the radiomics model (Rad-score). After validating Rad-score, its performance was further evaluated in the field of diagnosing double-positive patients (i.e., TDs+LNM+) by outlining all peritumoral nodules with diameter (short-axis) > 3 mm. RESULTS Rad-score 1 (radiomics signature of the main tumor) had an area under the curve (AUC) of 0.768 on the training dataset and 0.700 on the validation dataset. Rad-score 2 (radiomics signature of the largest peritumoral nodule) had a higher AUC (training set: 0.940; validation set: 0.918) than Rad-score 1. Clinical factors, including age, gender, location of RC, tumor markers, and radiological features of the largest peritumoral nodule, were excluded by logistic regression. Thus, the combined model was comprised of Rad-scores of 1 and 2. Considering that the combined model had similar AUCs with Rad-score 2 (P = 0.134 in the training set and 0.594 in the validation set), Rad-score 2 was used as the final model. For the diagnosis of double-positive patients in the mixed group [TDs+LNM+ (n = 15); single-positive (n = 15)], Rad-score 2 demonstrated moderate performance (sensitivity, 73.3%; specificity, 66.6%; and accuracy, 70.0%). CONCLUSION Radiomics analysis based on the largest peritumoral nodule can be helpful in preoperatively differentiating between TDs and LNM.
Collapse
Affiliation(s)
- Yong-Chang Zhang
- Department of Radiology, Chengdu Seventh People’s Hospital, Chengdu 610213, Sichuan Province, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mou Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu-Mei Jin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jing-Xu Xu
- Department of Research Collaboration, R&D center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing 100080, China
| | - Chen-Cui Huang
- Department of Research Collaboration, R&D center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing 100080, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
19
|
Xue K, Liu L, Liu Y, Guo Y, Zhu Y, Zhang M. Radiomics model based on multi-sequence MR images for predicting preoperative immunoscore in rectal cancer. LA RADIOLOGIA MEDICA 2022; 127:702-713. [PMID: 35829980 DOI: 10.1007/s11547-022-01507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE To establish and validate a radiomics model based on multi-sequence magnetic resonance (MR) images for preoperative prediction of immunoscore in rectal cancer. MATERIALS AND METHODS This retrospective study included 133 patients with pathologically confirmed rectal cancer after surgical resection who underwent MR examination before treatment within two weeks. All patients were randomly divided into training cohort (n = 92) and validation (n = 41) cohort according to a ratio of 7:3. The volumes of interest were manually delineated in the T2-weighted images (T2WI) and apparent diffusion coefficient (ADC) images, from which a total of 804 radiomics features were extracted. Thereafter, we used Spearman correlation analysis and gradient boosting decision tree (GBDT) algorithm to select the strongest features, and the radiomics scores were established using multivariate logistic regression algorithm, including two single-mode models and two dual-mode models. The predictive performance and the clinical usefulness of the model were assessed by the receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis (DCA). RESULTS Integrated model A based on T2WI and ADC images showed a better predictive performance, which yielded an AUC of 0.770 (95% CI 0.673-0.867) in the training cohort and 0.768 (95% CI 0.619-0.917) in the validation cohort. Calibration curve showed good agreement between predicted results of the model and actual events, and DCA indicated good clinical usefulness. Moreover, stratification analysis proved that the integrated model A had strong robustness. CONCLUSIONS Integrated model A based on T2WI and ADC images has the potential to be used as a non-invasive tool for preoperative prediction of immunoscore in rectal cancer. It may be useful in evaluating prognosis and guiding individualized immunotherapy of patients.
Collapse
Affiliation(s)
- Kaiming Xue
- Department of Radiology, China-Japan Union Hospital of Jilin University, NO. 126 Xiantai Street, Changchun, 130033, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, NO. 126 Xiantai Street, Changchun, 130033, China
| | - Yunxia Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, NO. 126 Xiantai Street, Changchun, 130033, China
| | - Yan Guo
- GE Healthcare, Beijing, China
| | - Yuhang Zhu
- Department of Radiology, China-Japan Union Hospital of Jilin University, NO. 126 Xiantai Street, Changchun, 130033, China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, NO. 126 Xiantai Street, Changchun, 130033, China.
| |
Collapse
|
20
|
Borgheresi A, De Muzio F, Agostini A, Ottaviani L, Bruno A, Granata V, Fusco R, Danti G, Flammia F, Grassi R, Grassi F, Bruno F, Palumbo P, Barile A, Miele V, Giovagnoni A. Lymph Nodes Evaluation in Rectal Cancer: Where Do We Stand and Future Perspective. J Clin Med 2022; 11:2599. [PMID: 35566723 PMCID: PMC9104021 DOI: 10.3390/jcm11092599] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
The assessment of nodal involvement in patients with rectal cancer (RC) is fundamental in disease management. Magnetic Resonance Imaging (MRI) is routinely used for local and nodal staging of RC by using morphological criteria. The actual dimensional and morphological criteria for nodal assessment present several limitations in terms of sensitivity and specificity. For these reasons, several different techniques, such as Diffusion Weighted Imaging (DWI), Intravoxel Incoherent Motion (IVIM), Diffusion Kurtosis Imaging (DKI), and Dynamic Contrast Enhancement (DCE) in MRI have been introduced but still not fully validated. Positron Emission Tomography (PET)/CT plays a pivotal role in the assessment of LNs; more recently PET/MRI has been introduced. The advantages and limitations of these imaging modalities will be provided in this narrative review. The second part of the review includes experimental techniques, such as iron-oxide particles (SPIO), and dual-energy CT (DECT). Radiomics analysis is an active field of research, and the evidence about LNs in RC will be discussed. The review also discusses the different recommendations between the European and North American guidelines for the evaluation of LNs in RC, from anatomical considerations to structured reporting.
Collapse
Affiliation(s)
- Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
| | - Letizia Ottaviani
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale IRCCS di Napoli, 80131 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Federica Flammia
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Francesca Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Abruzzo Health Unit 1, Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, 67100 L’Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| |
Collapse
|
21
|
Zhu Z, Xu B, Shao J, Wang S, Jin R, Weng T, Xia S, Zhang W, Yang M, Han C, Wang X. Use of the Braden Scale to Predict Injury Severity in Mass Burn Casualties. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e934039. [PMID: 35105848 PMCID: PMC8820233 DOI: 10.12659/msm.934039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background Mass burn casualties impose an enormous burden on triage systems. The triage capacity of the Braden Scale for detecting injury severity has not been evaluated in mass burn casualties. Material/Methods The New Injury Severity Score (NISS) was used to dichotomize the injury severity of patients. The Braden Scale and other potentially indicative measurement tools were evaluated using univariate analysis and multivariate logistic regression. The relationships between the Braden Scale and other continuous variables with injury severity were further explored by correlation analysis and fitted with regression models. Receiver operating characteristic (ROC) curve analysis was used to validate triage capacity and compare prognostic accuracy. Results A total of 160 hospitalized patients were included in our study; 37 were severely injured, and 123 were not. Injury severity was independently associated with the Numerical Rating Scale (adjusted OR, 1.816; 95% CI, 1.035–3.187) and Braden Scale (adjusted OR, 0.693; 95% CI, 0.564–0.851). The ROC curve of the fitted quadratic model of the Braden Scale was 0.896 (0.840–0.953), and the cut-off value was 17. The sensitivity was 81.08% (64.29–91.44%) and the specificity was 82.93% (74.85–88.89%). Comparison of ROC curves demonstrated an infinitesimal difference between the Braden Scale and NISS for predicting 30-day hospital discharge (Z=0.291, P=0.771) and Intensive Care Unit admission (Z=2.016, P=0.044). Conclusions The Braden Scale is a suitable triage tool for predicting injury severity and forecasting disability-related outcomes in patients affected by mass burn casualty incidents.
Collapse
Affiliation(s)
- Zhikang Zhu
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (mainland).,College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Bin Xu
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (mainland).,College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jiaming Shao
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (mainland).,College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Shuangshuang Wang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (mainland).,College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland).,Wenling First People's Hospital, Taizhou, Zhejiang, China (mainland)
| | - Ronghua Jin
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (mainland).,College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Tingting Weng
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (mainland).,College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Sizhan Xia
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (mainland).,College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Wei Zhang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (mainland).,College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Min Yang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (mainland).,College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chunmao Han
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (mainland).,College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Xingang Wang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China (mainland).,College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
22
|
Bedrikovetski S, Dudi-Venkata NN, Kroon HM, Seow W, Vather R, Carneiro G, Moore JW, Sammour T. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis. BMC Cancer 2021; 21:1058. [PMID: 34565338 PMCID: PMC8474828 DOI: 10.1186/s12885-021-08773-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Background Artificial intelligence (AI) is increasingly being used in medical imaging analysis. We aimed to evaluate the diagnostic accuracy of AI models used for detection of lymph node metastasis on pre-operative staging imaging for colorectal cancer. Methods A systematic review was conducted according to PRISMA guidelines using a literature search of PubMed (MEDLINE), EMBASE, IEEE Xplore and the Cochrane Library for studies published from January 2010 to October 2020. Studies reporting on the accuracy of radiomics models and/or deep learning for the detection of lymph node metastasis in colorectal cancer by CT/MRI were included. Conference abstracts and studies reporting accuracy of image segmentation rather than nodal classification were excluded. The quality of the studies was assessed using a modified questionnaire of the QUADAS-2 criteria. Characteristics and diagnostic measures from each study were extracted. Pooling of area under the receiver operating characteristic curve (AUROC) was calculated in a meta-analysis. Results Seventeen eligible studies were identified for inclusion in the systematic review, of which 12 used radiomics models and five used deep learning models. High risk of bias was found in two studies and there was significant heterogeneity among radiomics papers (73.0%). In rectal cancer, there was a per-patient AUROC of 0.808 (0.739–0.876) and 0.917 (0.882–0.952) for radiomics and deep learning models, respectively. Both models performed better than the radiologists who had an AUROC of 0.688 (0.603 to 0.772). Similarly in colorectal cancer, radiomics models with a per-patient AUROC of 0.727 (0.633–0.821) outperformed the radiologist who had an AUROC of 0.676 (0.627–0.725). Conclusion AI models have the potential to predict lymph node metastasis more accurately in rectal and colorectal cancer, however, radiomics studies are heterogeneous and deep learning studies are scarce. Trial registration PROSPERO CRD42020218004. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08773-w.
Collapse
Affiliation(s)
- Sergei Bedrikovetski
- Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia. .,Department of Surgery, Colorectal Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| | - Nagendra N Dudi-Venkata
- Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Department of Surgery, Colorectal Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Hidde M Kroon
- Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Department of Surgery, Colorectal Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Warren Seow
- Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ryash Vather
- Department of Surgery, Colorectal Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Gustavo Carneiro
- Australian Institute for Machine Learning, School of Computer Science, University of Adelaide, Adelaide, South Australia, Australia
| | - James W Moore
- Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Department of Surgery, Colorectal Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Tarik Sammour
- Discipline of Surgery, Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Department of Surgery, Colorectal Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Stanzione A, Verde F, Romeo V, Boccadifuoco F, Mainenti PP, Maurea S. Radiomics and machine learning applications in rectal cancer: Current update and future perspectives. World J Gastroenterol 2021; 27:5306-5321. [PMID: 34539134 PMCID: PMC8409167 DOI: 10.3748/wjg.v27.i32.5306] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The high incidence of rectal cancer in both sexes makes it one of the most common tumors, with significant morbidity and mortality rates. To define the best treatment option and optimize patient outcome, several rectal cancer biological variables must be evaluated. Currently, medical imaging plays a crucial role in the characterization of this disease, and it often requires a multimodal approach. Magnetic resonance imaging is the first-choice imaging modality for local staging and restaging and can be used to detect high-risk prognostic factors. Computed tomography is widely adopted for the detection of distant metastases. However, conventional imaging has recognized limitations, and many rectal cancer characteristics remain assessable only after surgery and histopathology evaluation. There is a growing interest in artificial intelligence applications in medicine, and imaging is by no means an exception. The introduction of radiomics, which allows the extraction of quantitative features that reflect tumor heterogeneity, allows the mining of data in medical images and paved the way for the identification of potential new imaging biomarkers. To manage such a huge amount of data, the use of machine learning algorithms has been proposed. Indeed, without prior explicit programming, they can be employed to build prediction models to support clinical decision making. In this review, current applications and future perspectives of artificial intelligence in medical imaging of rectal cancer are presented, with an imaging modality-based approach and a keen eye on unsolved issues. The results are promising, but the road ahead for translation in clinical practice is rather long.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| | - Francesco Verde
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| | - Francesca Boccadifuoco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| | - Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging, National Council of Research, Napoli 80131, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| |
Collapse
|
24
|
Zhu HT, Zhang XY, Shi YJ, Li XT, Sun YS. A Deep Learning Model to Predict the Response to Neoadjuvant Chemoradiotherapy by the Pretreatment Apparent Diffusion Coefficient Images of Locally Advanced Rectal Cancer. Front Oncol 2020; 10:574337. [PMID: 33194680 PMCID: PMC7658629 DOI: 10.3389/fonc.2020.574337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Pretreatment prediction of the response to neoadjuvant chemoradiotherapy (NCRT) helps to determine the subsequent plans for the patients with locally advanced rectal cancer (LARC). If the good responders (GR) and non-good responders (non-GR) can be accurately predicted, they can choose to intensify the neoadjuvant chemoradiotherapy to decrease the risk of tumor progression during NCRT and increase the chance of organ preservation. Compared with radiomics methods, deep learning (DL) may adaptively extract features from the images without the need of feature definition. However, DL suffers from limited training samples and signal discrepancy among different scanners. This study aims to construct a DL model to predict GRs by training apparent diffusion coefficient (ADC) images from different scanners. Methods The study retrospectively recruited 700 participants, chronologically divided into a training group (n = 500) and a test group (n = 200). Deep convolutional neural networks were constructed to classify GRs and non-GRs. The networks were designed with a max-pooling layer parallelized by a center-cropping layer to extract features from both the macro and micro scale. ADC images and T2-weighted images were collected at 1.5 Tesla and 3.0 Tesla. The networks were trained by the image patches delineated by radiologists in ADC images and T2-weighted images, respectively. Pathological results were used as the ground truth. The deep learning models were evaluated on the test group and compared with the prediction by mean ADC value. Results Area under curve (AUC) of receiver operating characteristic (ROC) is 0.851 (95% CI: 0.789–0.914) for DL model with ADC images (DL_ADC), significantly larger (P = 0.018, Z = 2.367) than that of mean ADC with AUC = 0.723 (95% CI: 0.637–0.809). The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of DL_ADC model are 94.3%, 68.3%, 87.4% and 83.7%, respectively. The DL model with T2-weighted images (DL_T2) produces an AUC of 0.721 (95% CI: 0.640–0.802), significantly (P = 0.000, Z = 3.554) lower than that of DL_ADC model. Conclusion Deep learning model reveals the potential of pretreatment apparent diffusion coefficient images for the prediction of good responders to neoadjuvant chemoradiotherapy.
Collapse
Affiliation(s)
- Hai-Tao Zhu
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Yan Zhang
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan-Jie Shi
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Ting Li
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ying-Shi Sun
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
25
|
Nakanishi R, Akiyoshi T, Toda S, Murakami Y, Taguchi S, Oba K, Hanaoka Y, Nagasaki T, Yamaguchi T, Konishi T, Matoba S, Ueno M, Fukunaga Y, Kuroyanagi H. Radiomics Approach Outperforms Diameter Criteria for Predicting Pathological Lateral Lymph Node Metastasis After Neoadjuvant (Chemo)Radiotherapy in Advanced Low Rectal Cancer. Ann Surg Oncol 2020; 27:4273-4283. [PMID: 32767224 DOI: 10.1245/s10434-020-08974-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Advanced low rectal cancer has a non-negligible risk of lateral pelvic lymph node (LPLN) metastasis (LPLNM) and lateral local recurrence (LR) after neoadjuvant (chemo)radiotherapy and total mesorectal excision. LPLN dissection (LPLND) reduces LR but increases postoperative complications and sexual/urinary dysfunction. OBJECTIVE The aim of this study was to develop a new radiomics-based prediction model for LPLNM in patients with rectal cancer. METHODS A total of 247 patients with rectal cancer and enlarged LPLNs treated by (chemo)radiotherapy and LPLND were enrolled in this retrospective, multicenter study. LPLN radiomic features were extracted from pretreatment portal venous-phase computed tomography images. A radiomics score of LPLN was constructed based on the least absolute shrinkage and selection operator regression in a primary cohort of 175 patients. Model performance was assessed in terms of discrimination, calibration, and decision curve analysis, and was externally validated in 72 patients. RESULTS The radiomics score showed significantly better discrimination compared with pretreatment short-axis diameter measurements in both the primary (area under the curve [AUC] 0.91 vs. 0.83, p = 0.0015) and validation (AUC 0.90 vs. 0.80, p = 0.0298) cohorts. Decision curve analysis also indicated the superiority of the radiomics score. In a subanalysis of patients with a short-axis diameter ≥ 7 mm, the radiomics nomogram, incorporating the radiomics score and LPLN shrinkage to ≤ 4 mm, had better discrimination compared with a model incorporating only LPLN shrinkage in both cohorts. CONCLUSIONS Radiomics-based prediction modeling provides individualized risk estimation of LPLNM in rectal cancer patients treated with (chemo)radiotherapy, and outperforms measurements of pretreatment LPLN diameter.
Collapse
Affiliation(s)
- Ryota Nakanishi
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Akiyoshi
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Shigeo Toda
- Department of Colorectal Surgery, Toranomon Hospital, Tokyo, Japan
| | - Yu Murakami
- Department of Radiation Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Senzo Taguchi
- Department of Radiation Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koji Oba
- Department of Biostatistics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Hanaoka
- Department of Colorectal Surgery, Toranomon Hospital, Tokyo, Japan
| | - Toshiya Nagasaki
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomohiro Yamaguchi
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Konishi
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shuichiro Matoba
- Department of Colorectal Surgery, Toranomon Hospital, Tokyo, Japan
| | - Masashi Ueno
- Department of Colorectal Surgery, Toranomon Hospital, Tokyo, Japan
| | - Yosuke Fukunaga
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | |
Collapse
|