1
|
Dong J, Konopleva M. Preclinical targeting of leukemia-initiating cells in the development future biologics for acute myeloid leukemia. Expert Opin Ther Targets 2025; 29:223-237. [PMID: 40304258 DOI: 10.1080/14728222.2025.2500417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Leukemia-initiating cells (LICs) are a critical subset of cells driving acute myeloid leukemia (AML) relapse and resistance to therapy. They possess unique properties, including metabolic, epigenetic, and microenvironmental dependencies, making them promising therapeutic targets. AREAS COVERED This review summarizes preclinical advances in targeting AML LICs, including strategies to exploit metabolic vulnerabilities, such as the reliance on oxidative phosphorylation (OXPHOS), through the use of mitochondrial inhibitors; target epigenetic regulators like DOT1L (Disruptor of Telomeric Silencing 1-like) to disrupt LIC survival mechanisms; develop immunotherapies, including CAR (chimeric antigen receptor) T-cell therapy, and bispecific antibodies; and disrupt LIC interactions with the bone marrow microenvironment by inhibiting supportive niches. EXPERT OPINION LIC-targeted therapies hold significant promise for revolutionizing AML treatment by reducing relapse rates and improving long-term outcomes. However, challenges such as LIC heterogeneity, therapy resistance, and associated toxicity persist. Recent studies have illuminated the distinct biological characteristics of LICs, advancing our understanding of their behavior and vulnerabilities. These insights offer new opportunities to target LICs at earlier disease stages and to explore combination therapies with other targeted treatments, ultimately enhancing therapeutic efficacy and improving patient outcomes.
Collapse
Affiliation(s)
- Jiaxin Dong
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marina Konopleva
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Barbosa K, Deshpande AJ. Therapeutic targeting of leukemia stem cells in acute myeloid leukemia. Front Oncol 2023; 13:1204895. [PMID: 37601659 PMCID: PMC10437214 DOI: 10.3389/fonc.2023.1204895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
One of the distinguishing properties of hematopoietic stem cells is their ability to self-renew. Since self-renewal is important for the continuous replenishment of the hematopoietic stem cell pool, this property is often hijacked in blood cancers. Acute myeloid leukemia (AML) is believed to be arranged in a hierarchy, with self-renewing leukemia stem cells (LSCs) giving rise to the bulk tumor. Some of the earliest characterizations of LSCs were made in seminal studies that assessed the ability of prospectively isolated candidate AML stem cells to repopulate the entire heterogeneity of the tumor in mice. Further studies indicated that LSCs may be responsible for chemotherapy resistance and therefore act as a reservoir for secondary disease and leukemia relapse. In recent years, a number of studies have helped illuminate the complexity of clonality in bone marrow pathologies, including leukemias. Many features distinguishing LSCs from normal hematopoietic stem cells have been identified, and these studies have opened up diverse avenues for targeting LSCs, with an impact on the clinical management of AML patients. This review will discuss the role of self-renewal in AML and its implications, distinguishing characteristics between normal and leukemia stem cells, and opportunities for therapeutic targeting of AML LSCs.
Collapse
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
3
|
Bruserud Ø, Reikvam H. Casein Kinase 2 (CK2): A Possible Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:3711. [PMID: 37509370 PMCID: PMC10378128 DOI: 10.3390/cancers15143711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The protein kinase CK2 (also known as casein kinase 2) is one of the main contributors to the human phosphoproteome. It is regarded as a possible therapeutic strategy in several malignant diseases, including acute myeloid leukemia (AML), which is an aggressive bone marrow malignancy. CK2 is an important regulator of intracellular signaling in AML cells, especially PI3K-Akt, Jak-Stat, NFκB, Wnt, and DNA repair signaling. High CK2 levels in AML cells at the first time of diagnosis are associated with decreased survival (i.e., increased risk of chemoresistant leukemia relapse) for patients receiving intensive and potentially curative antileukemic therapy. However, it is not known whether these high CK2 levels can be used as an independent prognostic biomarker because this has not been investigated in multivariate analyses. Several CK2 inhibitors have been developed, but CX-4945/silmitasertib is best characterized. This drug has antiproliferative and proapoptotic effects in primary human AML cells. The preliminary results from studies of silmitasertib in the treatment of other malignancies suggest that gastrointestinal and bone marrow toxicities are relatively common. However, clinical AML studies are not available. Taken together, the available experimental and clinical evidence suggests that the possible use of CK2 inhibition in the treatment of AML should be further investigated.
Collapse
Affiliation(s)
- Øystein Bruserud
- Institute for Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Institute for Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
4
|
Williams MTS, Kim YM, Guzman ML. Editorial: New immunotherapeutic and pharmacological targets and strategies in haematological malignancies. Front Pharmacol 2023; 14:1161811. [PMID: 36891268 PMCID: PMC9987033 DOI: 10.3389/fphar.2023.1161811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Affiliation(s)
- Mark Thomas Shaw Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Yong-Mi Kim
- Children’s Hospital of Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, CA, United States
| | - Monica L. Guzman
- Weill Cornell Medicine, Cornell University, White Plains, NY, United States
| |
Collapse
|
5
|
Wei W, Yang D, Chen X, Liang D, Zou L, Zhao X. Chimeric antigen receptor T-cell therapy for T-ALL and AML. Front Oncol 2022; 12:967754. [PMID: 36523990 PMCID: PMC9745195 DOI: 10.3389/fonc.2022.967754] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/14/2022] [Indexed: 11/10/2023] Open
Abstract
Non-B-cell acute leukemia is a term that encompasses T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Currently, the therapeutic effectiveness of existing treatments for refractory or relapsed (R/R) non-B-cell acute leukemia is limited. In such situations, chimeric antigen receptor (CAR)-T cell therapy may be a promising approach to treat non-B-cell acute leukemia, given its promising results in B-cell acute lymphoblastic leukemia (B-ALL). Nevertheless, fratricide, malignant contamination, T cell aplasia for T-ALL, and specific antigen selection and complex microenvironment for AML remain significant challenges in the implementation of CAR-T therapy for T-ALL and AML patients in the clinic. Therefore, designs of CAR-T cells targeting CD5 and CD7 for T-ALL and CD123, CD33, and CLL1 for AML show promising efficacy and safety profiles in clinical trials. In this review, we summarize the characteristics of non-B-cell acute leukemia, the development of CARs, the CAR targets, and their efficacy for treating non-B-cell acute leukemia.
Collapse
Affiliation(s)
- Wenwen Wei
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dong Yang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Xi Chen
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dandan Liang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Meriç N, Kocabaş F. The Historical Relationship Between Meis1 and Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:127-144. [DOI: 10.1007/5584_2021_705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Daver N, Alotaibi AS, Bücklein V, Subklewe M. T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments. Leukemia 2021; 35:1843-1863. [PMID: 33953290 PMCID: PMC8257483 DOI: 10.1038/s41375-021-01253-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease linked to a broad spectrum of molecular alterations, and as such, long-term disease control requires multiple therapeutic approaches. Driven largely by an improved understanding and targeting of these molecular aberrations, AML treatment has rapidly evolved over the last 3-5 years. The stellar successes of immunotherapies that harness the power of T cells to treat solid tumors and an improved understanding of the immune systems of patients with hematologic malignancies have led to major efforts to develop immunotherapies for the treatment of patients with AML. Several immunotherapies that harness T cells against AML are in various stages of preclinical and clinical development. These include bispecific and dual antigen receptor-targeting antibodies (targeted to CD33, CD123, CLL-1, and others), chimeric antigen receptor (CAR) T-cell therapies, and T-cell immune checkpoint inhibitors (including those targeting PD-1, PD-L1, CTLA-4, and newer targets such as TIM3 and STING). The current and future directions of these T-cell-based immunotherapies in the treatment landscape of AML are discussed in this review.
Collapse
Affiliation(s)
- Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ahmad S Alotaibi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Veit Bücklein
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
CD44 loss of function sensitizes AML cells to the BCL-2 inhibitor venetoclax by decreasing CXCL12-driven survival cues. Blood 2021; 138:1067-1080. [PMID: 34115113 DOI: 10.1182/blood.2020006343] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) has a poor prognosis under the current standard of care. In recent years, venetoclax, a BCL-2 inhibitor, was approved to treat patients, ineligible for intensive induction chemotherapy. Complete remission rates with venetoclax-based therapies are, however, hampered by minimal residual disease (MRD) in a proportion of patients, leading to relapse. MRD is due to leukemic stem cells retained in bone marrow protective environments; activation of the CXCL12/CXCR4 pathway was shown to be relevant to this process. An important role is also played by cell adhesion molecules such as CD44, which has been shown to be crucial for AML development. Here we show that CD44 is involved in CXCL12 promotion of resistance to venetoclax-induced apoptosis in human AML cell lines and AML patient samples which could be abrogated by CD44 knockdown, knockout or blocking with an anti-CD44 antibody. Split-Venus biomolecular fluorescence complementation showed that CD44 and CXCR4 physically associate at the cell membrane upon CXCL12 induction. In the venetoclax-resistant OCI-AML3 cell line, CXCL12 promoted an increase in the proportion of cells expressing high levels of embryonic-stem-cell core transcription factors (ESC-TFs: Sox2, Oct4, Nanog), abrogated by CD44 knockdown. This ESC-TF-expressing subpopulation which could be selected by venetoclax treatment, exhibited a basally-enhanced resistance to apoptosis, and expressed higher levels of CD44. Finally, we developed a novel AML xenograft model in zebrafish, showing that CD44 knockout sensitizes OCI-AML3 cells to venetoclax treatment in vivo. Our study shows that CD44 is a potential molecular target to sensitize AML cells to venetoclax-based therapies.
Collapse
|
9
|
Wang F, Huang J, Guo T, Zheng Y, Zhang L, Zhang D, Wang F, Naren D, Cui Y, Liu X, Qu Y, Luo H, Yang Y, Wei H, Guo Y. Homoharringtonine synergizes with quizartinib in FLT3-ITD acute myeloid leukemia by targeting FLT3-AKT-c-Myc pathway. Biochem Pharmacol 2021; 188:114538. [PMID: 33831397 DOI: 10.1016/j.bcp.2021.114538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
Acute myeloid leukemia (AML) with FLT3 internal tandem duplication (FLT3-ITD) has a dismal prognosis. FLT3 inhibitors have been developed to treat patients with FLT3-ITD AML; however, when used alone, their efficacy is insufficient. FLT3 inhibitors combined with chemotherapy may be a promising treatment for FLT3-ITD AML. Homoharringtonine (HHT) is a classical anti-leukaemia drug with high sensitivity to FLT3-ITD AML cells. Here, we showed that HHT synergizes with a selective next-generation FLT3 inhibitor, quizartinib, to inhibit cell growth/viability and induce cell-cycle arrest and apoptosis in FLT3-ITD AML cells in vitro, significantly inhibit acute myeloid leukemia progression in vivo, and substantially prolong survival of mice-bearing human FLT3-ITD AML. Mechanistically, HHT and quizartinib cooperatively inhibit FLT3-AKT and its downstream targets GSK3β, c-Myc, and cyclin D1, cooperatively up-regulate the pro-apoptosis proteins Bim and Bax, and down-regulate the anti-apoptosis protein Mcl1. Most strikingly, HHT and quizartinib cooperatively reduce the numbers of side-population (SP) and aldehyde dehydrogenase (ALDH)-positive cells, which reportedly are rich in LSCs. In conclusion, HHT combined with quizartinib may be a promising treatment strategy for patients with FLT3-ITD AML.
Collapse
Affiliation(s)
- Fangfang Wang
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Jingcao Huang
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Tingting Guo
- Precision Medicine Research Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Yuhuan Zheng
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Li Zhang
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Dan Zhang
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Fujue Wang
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Duolan Naren
- Department of Hematology, The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yushan Cui
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyan Liu
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Qu
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongmei Luo
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Yang
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Haichen Wei
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Guo
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Lin G, Zhang Y, Yu L, Wu D. Cytotoxic effect of CLL‑1 CAR‑T cell immunotherapy with PD‑1 silencing on relapsed/refractory acute myeloid leukemia. Mol Med Rep 2021; 23:208. [PMID: 33495835 PMCID: PMC7830996 DOI: 10.3892/mmr.2021.11847] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/04/2020] [Indexed: 01/29/2023] Open
Abstract
The activation of chimeric antigen receptor (CAR)-T cells can lead to persistently high levels of programmed cell death 1 (PD-1) antigen and eventually causes the exhaustion of T cells. The effectiveness of CAR-T cells targeting C-type lectin-like molecule-1 (CLL-1) combined with PD-1 silencing therapy for acute myeloid leukemia (AML) was evaluated in the present study. CLL-1 levels in primary AML bone marrow samples was examined using flow cytometric analysis. We designed a CLL-1 CAR-T, containing CLL-1-specific single-chain variable fragment, CD28, OX40, CD8 hinge and TM and CD3-ζ signaling domains. CLL-1 CAR-T with PD-1 silencing was constructed. It was confirmed that CLL-1 is expressed on the surface of AML cells. CLL-1 CAR-T showed specific lysing activity against CLL-1+ AML cells. PD-1 silencing enhanced the killing ability of CLL-1 CAR-T. Furthermore, it was found that CAR-T derived from healthy donor T cells was more effective in killing THP-1 cells (a human acute monocytic leukemia cell line) than those from patient-derived T cells. These results indicated that CLL-1 CAR-T and PD-1 knockdown CLL-1 CAR-T could be used as a potential immunotherapy to treat relapsed or refractory AML.
Collapse
Affiliation(s)
- Guoqiang Lin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yanming Zhang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College, Huai'an Second People's Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200065, P.R. China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
11
|
Najafzadeh B, Asadzadeh Z, Motafakker Azad R, Mokhtarzadeh A, Baghbanzadeh A, Alemohammad H, Abdoli Shadbad M, Vasefifar P, Najafi S, Baradaran B. The oncogenic potential of NANOG: An important cancer induction mediator. J Cell Physiol 2020; 236:2443-2458. [PMID: 32960465 DOI: 10.1002/jcp.30063] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a unique population in the tumor, but they only comprise 2%-5% of the tumor bulk. Although CSCs share several features with embryonic stem cells, CSCs can give rise to the tumor cells. CSCs overexpress embryonic transcription factor NANOG, which is downregulated in differentiated tissues. This transcription factor confers CSC's stemness, unlimited self-renewal, metastasis, invasiveness, angiogenesis, and drug-resistance with the assistance of WNT, OCT4, SOX2, Hedgehog, BMI-1, and other complexes. NANOG facilitates CSCs development via multiple pathways, like angiogenesis and lessening E-cadherin expression levels, which paves the road for metastasis. Moreover, NANOG represses apoptosis and leads to drug-resistance. This review aims to highlight the pivotal role of NANOG and the pertained pathways in CSCs. Also, this current study intends to demonstrate that targeting NANOG can dimmish the CSCs, sensitize the tumor to chemotherapy, and eradicate the cancer cells.
Collapse
Affiliation(s)
- Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Mitchell K, Steidl U. Targeting Immunophenotypic Markers on Leukemic Stem Cells: How Lessons from Current Approaches and Advances in the Leukemia Stem Cell (LSC) Model Can Inform Better Strategies for Treating Acute Myeloid Leukemia (AML). Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036251. [PMID: 31451539 DOI: 10.1101/cshperspect.a036251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapies targeting cell-surface antigens in acute myeloid leukemia (AML) have been tested over the past 20 years with limited improvement in overall survival. Recent advances in the understanding of AML pathogenesis support therapeutic targeting of leukemia stem cells as the most promising avenue toward a cure. In this review, we provide an overview of the evolving leukemia stem cell (LSC) model, including evidence of the cell of origin, cellular and molecular disease architecture, and source of relapse in AML. In addition, we explore limitations of current targeted strategies utilized in AML and describe the various immunophenotypic antigens that have been proposed as LSC-directed therapeutic targets. We draw lessons from current approaches as well as from the (pre)-LSC model to suggest criteria that immunophenotypic targets should meet for more specific and effective elimination of disease-initiating clones, highlighting in detail a few targets that we suggest fit these criteria most completely.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, New York 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
13
|
Aqaqe N, Yassin M, Yassin AA, Ershaid N, Katz-Even C, Zipin-Roitman A, Kugler E, Lechman ER, Gan OI, Mitchell A, Dick JE, Izraeli S, Milyavsky M. An ERG Enhancer-Based Reporter Identifies Leukemia Cells with Elevated Leukemogenic Potential Driven by ERG-USP9X Feed-Forward Regulation. Cancer Res 2019; 79:3862-3876. [PMID: 31175119 DOI: 10.1158/0008-5472.can-18-3215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/21/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022]
Abstract
Acute leukemia is a rapidly progressing blood cancer with low survival rates. Unfavorable prognosis is attributed to insufficiently characterized subpopulations of leukemia stem cells (LSC) that drive chemoresistance and leukemia relapse. Here we utilized a genetic reporter that assesses stemness to enrich and functionally characterize LSCs. We observed heterogeneous activity of the ERG+85 enhancer-based fluorescent reporter in human leukemias. Cells with high reporter activity (tagBFPHigh) exhibited elevated expression of stemness and chemoresistance genes and demonstrated increased clonogenicity and resistance to chemo- and radiotherapy as compared with their tagBFPNeg counterparts. The tagBFPHigh fraction was capable of regenerating the original cellular heterogeneity and demonstrated increased invasive ability. Moreover, the tagBFPHigh fraction was enriched for leukemia-initiating cells in a xenograft assay. We identified the ubiquitin hydrolase USP9X as a novel ERG transcriptional target that sustains ERG+85-positive cells by controlling ERG ubiquitination. Therapeutic targeting of USP9X led to preferential inhibition of the ERG-dependent leukemias. Collectively, these results characterize human leukemia cell functional heterogeneity and suggest that targeting ERG via USP9X inhibition may be a potential treatment strategy in patients with leukemia. SIGNIFICANCE: This study couples a novel experimental tool with state-of-the-art approaches to delineate molecular mechanisms underlying stem cell-related characteristics in leukemia cells.
Collapse
Affiliation(s)
- Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abed Alkader Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nour Ershaid
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Katz-Even
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Zipin-Roitman
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eitan Kugler
- Department of Pediatric Hemato-Oncology, Schneider Children Medical Center Petah-Tikva, Israel.,The Gene Development and Environment Pediatric Research Institute, Pediatric Hemato-Oncology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shai Izraeli
- Department of Pediatric Hemato-Oncology, Schneider Children Medical Center Petah-Tikva, Israel.,The Gene Development and Environment Pediatric Research Institute, Pediatric Hemato-Oncology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Moshaver B, Wouters RF, Kelder A, Ossenkoppele GJ, Westra GAH, Kwidama Z, Rutten AR, Kaspers GJL, Zweegman S, Cloos J, Schuurhuis GJ. Relationship between CD34/CD38 and side population (SP) defined leukemia stem cell compartments in acute myeloid leukemia. Leuk Res 2019; 81:27-34. [PMID: 31002948 DOI: 10.1016/j.leukres.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
Leukemic stem cells (LSCs), defined by CD34/CD38 expression, are believed to be essential for leukemia initiation and therapy resistance in acute myeloid leukemia. In addition, the side population (SP), characterized by high Hoechst 33342 efflux, reflecting therapy resistance, has leukemia initiating ability. The purpose of this study is, in both CD34-positive and CD34-negative AML, to integrate both types of LSC compartment into a new more restricted definition. Different CD34/CD38/SP defined putative LSC and normal hematopoietic compartments, with neoplastic or normal nature, respectively, were thus identified after cell sorting, and confirmed by FISH/PCR. Stem cell activity was assessed in the long-term liquid culture stem cell assay. SP fractions harbored the strongest functional stem cell activity in both normal and neoplastic cells in both CD34-positive and CD34-negative AML. Overall, inclusion of SP fraction decreased the size of the putative CD34/CD38 defined LSC compartment by a factor >500. For example, for the important CD34+CD38- LSC compartment, the median SP/CD34+CD38- frequency was 5.1 per million WBC (CD34-positive AML), and median SP/CD34-CD38+ frequency (CD34-negative AML) was 1796 per million WBC. Improved detection of LSC may enable identification of therapy resistant clones, and thereby identification of novel LSC specific, HSC sparing, therapies.
Collapse
Affiliation(s)
- Bijan Moshaver
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Rolf F Wouters
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands; Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Angèle Kelder
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Guus A H Westra
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Zinia Kwidama
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands; Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Arjo R Rutten
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Gert J L Kaspers
- Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Sonja Zweegman
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands; Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Gerrit J Schuurhuis
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Leukemia Stem Cells in the Pathogenesis, Progression, and Treatment of Acute Myeloid Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:95-128. [DOI: 10.1007/978-981-13-7342-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Bill M, Aggerholm A, Kjeldsen E, Roug AS, Hokland P, Nederby L. Revisiting CLEC12A as leukaemic stem cell marker in AML: highlighting the necessity of precision diagnostics in patients eligible for targeted therapy. Br J Haematol 2018; 184:769-781. [DOI: 10.1111/bjh.15711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Marie Bill
- Department of Haematology; Aarhus University Hospital; Aarhus Denmark
| | - Anni Aggerholm
- Department of Haematology; Aarhus University Hospital; Aarhus Denmark
| | - Eigil Kjeldsen
- Department of Haematology; Aarhus University Hospital; Aarhus Denmark
| | - Anne S. Roug
- Department of Haematology; Aarhus University Hospital; Aarhus Denmark
- Department of Haematology; Aalborg University Hospital; Aalborg Denmark
| | - Peter Hokland
- Department of Haematology; Aarhus University Hospital; Aarhus Denmark
| | - Line Nederby
- Department of Haematology; Aarhus University Hospital; Aarhus Denmark
- Department of Clinical Immunology and Biochemistry; Lillebaelt Hospital; Vejle Denmark
| |
Collapse
|
17
|
Hartley G, Elmslie R, Murphy B, Hopkins L, Guth A, Dow S. Cancer stem cell populations in lymphoma in dogs and impact of cytotoxic chemotherapy. Vet Comp Oncol 2018; 17:69-79. [PMID: 30238600 DOI: 10.1111/vco.12447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Cancer relapse following chemotherapy has been attributed in part to the presence of cancer stem cells (CSC), which drive tumour growth and metastasis and are highly resistant to the effects of cytotoxic chemotherapy. As a result, treatment with cytotoxic chemotherapy selects for drug-resistant CSC populations that eventually drive tumour recurrence. Little is known currently regarding the role of CSC in dogs with lymphoma, nor the impact of chemotherapy on CSC populations. Therefore, we prospectively quantitated CSC populations in dogs with B-cell (BCL) and T-cell lymphoma (TCL), using tumour aspirates and flow cytometric analysis with a panel of CSC markers. In addition, in vitro studies were carried out to determine the impact of chemotherapy resistance on the stem cell phenotype and stem cell properties of lymphoma cells. We found that the percentages of tumour cells expressing CSC markers were significantly increased in dogs with BCL, compared with B cells from normal lymph nodes. Similar findings were observed in dogs with TCL. In vitro studies revealed that lymphoma cells selected for resistance to CHOP chemotherapy had significantly upregulated expression of CSC markers, formed spheroids in culture more readily, and expressed significantly greater aldehyde dehydrogenase activity compared with chemotherapy-sensitive tumour cells. Similar results were observed in tumour samples dogs with relapsed BCL. These findings suggest that cytotoxic chemotherapy can lead to a relative enrichment of tumour cells with CSC properties, which may be associated with lymphoma recurrence.
Collapse
Affiliation(s)
- Genevieve Hartley
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Robyn Elmslie
- Veterinary Specialty and Emergency Hospital, Englewood, Colorado
| | - Brent Murphy
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Leone Hopkins
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Amanda Guth
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Steven Dow
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
18
|
Lica JJ, Grabe GJ, Heldt M, Misiak M, Bloch P, Serocki M, Switalska M, Wietrzyk J, Baginski M, Hellmann A, Borowski E, Skladanowski A. Cell Density-Dependent Cytological Stage Profile and Its Application for a Screen of Cytostatic Agents Active Toward Leukemic Stem Cells. Stem Cells Dev 2018; 27:488-513. [PMID: 29431006 DOI: 10.1089/scd.2017.0245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proliferation and expansion of leukemia is driven by leukemic stem cells (LSCs). Multidrug resistance (MDR) of LSCs is one of the main reasons of failure and relapses in acute myeloid leukemia (AML) treatment. In this study, we show that maintaining HL-60 at low cell culture density or applying a 240-day treatment with anthrapyridazone (BS-121) increased the percentage of primitive cells, which include LSCs determining the overall stage profile. This change manifested in morphology, expression of both cell surface markers and redox-state proteins, as well as mitochondrial potential. Moreover, four sublines were generated, each with unique and characteristic stage profile and cytostatic sensitivity. Cell density-induced culture alterations (affecting stage profiles) were exploited in a screen of anthrapyridazones. Among the compound tested, C-123 was the most potent against primitive cell stages while generating relatively low amounts of reactive oxygen species (ROS). Furthermore, it had low toxicity in vivo and weakly affected blood morphology of healthy mice. The cell density-dependent stage profiles could be utilized in preliminary drug screens for activity against LSCs or in construction of patient-specific platforms to find drugs effective in case of AML relapse (drug extrapolation). The correlation between ROS generation in differentiated cells and toxic effect observed in HL-60 has a potential application in myelotoxicity predictions. The discovered properties of C-123 indicate its potential application in AML treatment, specifically in conditioned myeloablation preceding allogeneic transplantation and/or ex vivo treatment preceding autologous transplantation.
Collapse
Affiliation(s)
- Jan J Lica
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland
| | - Grzegorz J Grabe
- 2 Department of Medicine, Imperial College London , London, United Kingdom
| | - Mateusz Heldt
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland
| | - Majus Misiak
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland
| | - Patrycja Bloch
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland
| | - Marcin Serocki
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland .,3 Department of Biology and Pharmaceutical Botany, Medical University of Gdansk , Gdansk, Poland
| | - Marta Switalska
- 4 Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy , Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Wietrzyk
- 4 Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy , Polish Academy of Sciences, Wroclaw, Poland
| | - Maciej Baginski
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland
| | - Andrzej Hellmann
- 5 Department of Hematology and Transplantology, Medical University of Gdansk , Gdansk, Poland
| | - Edward Borowski
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland .,6 BLIRT S.A. (BioLab Innovative Research Technologies) , Gdansk, Poland
| | - Andrzej Skladanowski
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland
| |
Collapse
|
19
|
Laborda E, Mazagova M, Shao S, Wang X, Quirino H, Woods AK, Hampton EN, Rodgers DT, Kim CH, Schultz PG, Young TS. Development of A Chimeric Antigen Receptor Targeting C-Type Lectin-Like Molecule-1 for Human Acute Myeloid Leukemia. Int J Mol Sci 2017; 18:ijms18112259. [PMID: 29077054 PMCID: PMC5713229 DOI: 10.3390/ijms18112259] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
The treatment of patients with acute myeloid leukemia (AML) with targeted immunotherapy is challenged by the heterogeneity of the disease and a lack of tumor-exclusive antigens. Conventional immunotherapy targets for AML such as CD33 and CD123 have been proposed as targets for chimeric antigen receptor (CAR)-engineered T-cells (CAR-T-cells), a therapy that has been highly successful in the treatment of B-cell leukemia and lymphoma. However, CD33 and CD123 are present on hematopoietic stem cells, and targeting with CAR-T-cells has the potential to elicit long-term myelosuppression. C-type lectin-like molecule-1 (CLL1 or CLEC12A) is a myeloid lineage antigen that is expressed by malignant cells in more than 90% of AML patients. CLL1 is not expressed by healthy Hematopoietic Stem Cells (HSCs), and is therefore a promising target for CAR-T-cell therapy. Here, we describe the development and optimization of an anti-CLL1 CAR-T-cell with potent activity on both AML cell lines and primary patient-derived AML blasts in vitro while sparing healthy HSCs. Furthermore, in a disseminated mouse xenograft model using the CLL1-positive HL60 cell line, these CAR-T-cells completely eradicated tumor, thus supporting CLL1 as a promising target for CAR-T-cells to treat AML while limiting myelosuppressive toxicity.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Mice
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Mitogen/antagonists & inhibitors
- Receptors, Mitogen/immunology
- Recombinant Fusion Proteins
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Eduardo Laborda
- Department of Biology, California Institute for Biomedical Research (Calibr), La Jolla, CA 11119, USA.
| | - Magdalena Mazagova
- Department of Biology, California Institute for Biomedical Research (Calibr), La Jolla, CA 11119, USA.
| | - Sida Shao
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 11119, USA.
| | - Xinxin Wang
- Department of Biology, California Institute for Biomedical Research (Calibr), La Jolla, CA 11119, USA.
| | - Herlinda Quirino
- Department of Biology, California Institute for Biomedical Research (Calibr), La Jolla, CA 11119, USA.
| | - Ashley K Woods
- Department of Biology, California Institute for Biomedical Research (Calibr), La Jolla, CA 11119, USA.
| | - Eric N Hampton
- Department of Biology, California Institute for Biomedical Research (Calibr), La Jolla, CA 11119, USA.
| | - David T Rodgers
- Department of Biology, California Institute for Biomedical Research (Calibr), La Jolla, CA 11119, USA.
| | - Chan Hyuk Kim
- Department of Biology, California Institute for Biomedical Research (Calibr), La Jolla, CA 11119, USA.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Peter G Schultz
- Department of Biology, California Institute for Biomedical Research (Calibr), La Jolla, CA 11119, USA.
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 11119, USA.
| | - Travis S Young
- Department of Biology, California Institute for Biomedical Research (Calibr), La Jolla, CA 11119, USA.
| |
Collapse
|
20
|
Picot T, Aanei CM, Fayard A, Flandrin-Gresta P, Tondeur S, Gouttenoire M, Tavernier-Tardy E, Wattel E, Guyotat D, Campos L. Expression of embryonic stem cell markers in acute myeloid leukemia. Tumour Biol 2017; 39:1010428317716629. [PMID: 28718379 DOI: 10.1177/1010428317716629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Acute myeloid leukemia is driven by leukemic stem cells which can be identified by cross lineage expression or arrest of differentiation compared to normal hematopoietic stem cells. Self-renewal and lack of differentiation are also features of stem cells and have been associated with the expression of embryonic genes. The aim of our study was to evaluate the expression of embryonic antigens (OCT4, NANOG, SOX2, SSEA1, SSEA3) in hematopoietic stem cell subsets (CD34+CD38- and CD34+CD38+) from normal bone marrows and in samples from acute myeloid leukemia patients. We observed an upregulation of the transcription factors OCT4 and SOX2 in leukemic cells as compared to normal cells. Conversely, SSEA1 protein was downregulated in leukemic cells. The expression of OCT4, SOX2, and SSEA3 was higher in CD34+CD38- than in CD34+CD38+ subsets in leukemic cells. There was no correlation with biological characteristics of the leukemia. We evaluated the prognostic value of marker expression in 69 patients who received an intensive treatment. The rate of complete remission was not influenced by the level of expression of markers. Overall survival was significantly better for patients with high SOX2 levels, which was unexpected because of the inverse correlation with favorable genetic subtypes. These results prompt us to evaluate the potential role of these markers in leukemogenesis and to test their relevance for better leukemic stem cell identification.
Collapse
Affiliation(s)
- Tiphanie Picot
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Carmen Mariana Aanei
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Amandine Fayard
- 3 Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Pascale Flandrin-Gresta
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Sylvie Tondeur
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Marina Gouttenoire
- 3 Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Emmanuelle Tavernier-Tardy
- 2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France.,3 Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Eric Wattel
- 2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Denis Guyotat
- 2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France.,3 Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Lydia Campos
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| |
Collapse
|
21
|
Pruitt MM, Marin W, Waarts MR, de Jong JLO. Isolation of the Side Population in Myc-induced T-cell Acute Lymphoblastic Leukemia in Zebrafish. J Vis Exp 2017. [PMID: 28518092 DOI: 10.3791/55711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heterogeneous cell populations, from either healthy or malignant tissues, may contain a population of cells characterized by a differential ability to efflux the DNA-binding dye Hoechst 33342. This "side population" of cells can be identified using flow cytometric methods after the Hoechst 33342 dye is excited by an ultraviolet (UV) laser. The side population of many cell types contains stem- or progenitor-like cells. However, not all cell types have an identifiable side population. Danio rerio, zebrafish, have a robust in vivo model of T-cell acute lymphoblastic leukemia (T-ALL), but whether these zebrafish T-ALLs have a side population is unknown. The method described here outlines how to isolate the side population cells in zebrafish T-ALL. To begin, the T-ALL in zebrafish is generated via the microinjection of tol2 plasmids into one-cell stage embryos. Once the tumors have grown to a stage at which they expand into more than half of the animal's body, the T-ALL cells can be harvested. The cells are then stained with Hoechst 33342 and examined by flow cytometry for side population cells. This method has broad applications in zebrafish T-ALL research. While there are no known cell surface markers in zebrafish that confirm whether these side population cells are cancer stem cell-like, in vivo functional transplantation assays are possible. Furthermore, single-cell transcriptomics could be applied to identify the genetic features of these side population cells.
Collapse
Affiliation(s)
- Margaret M Pruitt
- Department of Pediatrics, Section of Hematology-Oncology, The University of Chicago; Department of Biology and Biotechnology, Worcester Polytechnic Institute
| | - Wilfredo Marin
- Department of Pediatrics, Section of Hematology-Oncology, The University of Chicago
| | - Michael R Waarts
- Department of Pediatrics, Section of Hematology-Oncology, The University of Chicago
| | - Jill L O de Jong
- Department of Pediatrics, Section of Hematology-Oncology, The University of Chicago;
| |
Collapse
|
22
|
Hanekamp D, Cloos J, Schuurhuis GJ. Leukemic stem cells: identification and clinical application. Int J Hematol 2017; 105:549-557. [PMID: 28357569 DOI: 10.1007/s12185-017-2221-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022]
Abstract
Leukemic stem cells (LSCs) in acute myeloid leukemia (AML) represent a low-frequency subpopulation of leukemia cells that possess stem cell properties distinct from the bulk leukemia cells, including self-renewal capacity and drug resistance. Due to these properties, LSCs are supposed to facilitate the development of relapse. The existence of LSCs is demonstrated by the ability to engraft and initiate human AML in immune-compromised mouse models. Although several lines of evidence suggest the complex heterogeneity of phenotypes displayed by LSC, many studies consider the CD34+/CD38- compartment as the most relevant. To increase the understanding of the true LSC, techniques such as multicolor flow cytometry, side-population assay and ALDH assay are utilized in many laboratories and could aid in this. A better understanding of different LSC phenotypes is necessary to enhance risk group classification, guide clinical decision-making and to identify new therapeutic targets. These efforts to eliminate LSC should ultimately improve the dismal AML outcome by preventing relapse development.
Collapse
Affiliation(s)
- Diana Hanekamp
- Department of Hematology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
- Department of Paediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gerrit Jan Schuurhuis
- Department of Hematology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Biology and relevance of human acute myeloid leukemia stem cells. Blood 2017; 129:1577-1585. [PMID: 28159741 DOI: 10.1182/blood-2016-10-696054] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research.
Collapse
|
24
|
Wang X, Huang S, Chen JL. Understanding of leukemic stem cells and their clinical implications. Mol Cancer 2017; 16:2. [PMID: 28137304 PMCID: PMC5282926 DOI: 10.1186/s12943-016-0574-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Since leukemic stem cells (LSCs) or cancer stem cells (CSCs) were found in acute myeloid leukemia (AML) in 1997, extensive studies have been contributed to identification and characterization of such cell populations in various tissues. LSCs are now generally recognized as a heterogeneous cell population that possesses the capacities of self-renewal, proliferation and differentiation. It has been shown that LSCs are regulated by critical surface antigens, microenvironment, intrinsic signaling pathways, and novel molecules such as some ncRNAs. To date, significant progress has been made in understanding of LSCs, leading to the development of numerous LSCs-targeted therapies. Moreover, various novel therapeutic agents targeting LSCs are undergoing clinical trials. Here, we review current knowledge of LSCs, and discuss the potential therapies and their challenges that are being tested in clinical trials for evaluation of their effects on leukemias.
Collapse
Affiliation(s)
- Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, China. .,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
25
|
An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood 2016; 129:609-618. [PMID: 27908880 DOI: 10.1182/blood-2016-08-735365] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/22/2016] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukemia (AML) is a major unmet medical need. Most patients have poor long-term survival, and treatment has not significantly changed in 40 years. Recently, bispecific antibodies that redirect the cytotoxic activity of effector T cells by binding to CD3, the signaling component of the T-cell receptor, and a tumor target have shown clinical activity. Notably, blinatumomab is approved to treat relapsed/refractory acute lymphoid leukemia. Here we describe the design, discovery, pharmacologic activity, pharmacokinetics, and safety of a CD3 T cell-dependent bispecific (TDB) full-length human IgG1 therapeutic antibody targeting CLL-1 that could potentially be used in humans to treat AML. CLL-1 is prevalent in AML and, unlike other targets such as CD33 and CD123, is not expressed on hematopoietic stem cells providing potential hematopoietic recovery. We selected a high-affinity monkey cross-reactive anti-CLL-1 arm and tested several anti-CD3 arms that varied in affinity, and determined that the high-affinity CD3 arms were up to 100-fold more potent in vitro. However, in mouse models, the efficacy differences were less pronounced, probably because of prolonged exposure to TDB found with lower-affinity CD3 TDBs. In monkeys, assessment of safety and target cell depletion by the high- and low-affinity TDBs revealed that only the low-affinity CD3/CLL1 TDB was well tolerated and able to deplete target cells. Our data suggest that an appropriately engineered CLL-1 TDB could be effective in the treatment of AML.
Collapse
|
26
|
Somasundaram V, Hemalatha SK, Pal K, Sinha S, Nair AS, Mukhopadhyay D, Srinivas P. Selective mode of action of plumbagin through BRCA1 deficient breast cancer stem cells. BMC Cancer 2016; 16:336. [PMID: 27229859 PMCID: PMC4882782 DOI: 10.1186/s12885-016-2372-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 05/19/2016] [Indexed: 12/16/2022] Open
Abstract
Background Studies over the past decade and half have identified cancer stem cells (CSCs) to be responsible for tumorigenesis, invasion, sustenance of metastatic disease, radio- and chemo-resistance and tumor relapse. Recent reports have described the plasticity of breast CSCs (BCSCs) to shift between the epithelial and mesenchymal phenotypes via Epithelial-Mesenchymal Transition (EMT) and Mesenchymal-Epithelial Transition (MET) states as the reason for their invasive capabilities. Additionally, BRCA1 has been found to be a mammary stem cell fate determinant. However, it is not clear what would be the best marker that can be used for identifying CSCs in BRCA1 mutated cancers. Also, anticancer agents that can reduce CSC population in a BRCA1 defective condition have not been addressed so far. Methods Putative BCSCs were identified based on Hoechst exclusion, CD44+/24–/low expression and Aldehyde Dehydrogenase 1 (ALDH1) positivity using flow cytometry. The ‘stemness’ of the isolated ALDH1+ cells were analysed by immunofluorescence, western blotting for stem cell and EMT markers as well as in vitro mammosphere assays. Induction of Reactive Oxygen Species (ROS) by Plumbagin (PB) in BCSCs was assayed by Dichloro-dihydro-fluorescein diacetate (DCF-DA) staining. Ovarian cancer xenografts treated with PB were subjected to immunohistochemical analysis to study the ability of PB to target CSCs. Results We have confirmed that ALDH1 positivity is the best marker for the identification of BCSCs in BRCA1-defective breast cancer cell lines when compared to the CD marker profile and Side Population (SP) analysis. BRCA1 status was observed to be a determinant of the abundance of epithelial-like (ALDH1+) or mesenchymal-like (CD44+/24–/low) BCSCs, and the reconstitution of a full length, wild type BRCA1 in HCC1937 breast cancer cells possessing a mutated BRCA1, transforms them from ‘stem-like’ to more ‘mesenchymal’. For the first time we have shown that Plumbagin (PB), a naturally occurring naphthoquinone which is predominantly a ROS inducer, could reduce BCSCs specifically in BRCA1-defective, basal-like cancer cells. Conclusions The best marker for identifying BCSCs in BRCA1 defective condition could be ALDH1 and that BRCA1 mutated BCSCs would be mostly ‘stem like’ than ‘mesenchymal’. Also ROS inducers like PB could reduce BCSCs in BRCA1 defective cancers. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2372-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veena Somasundaram
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.,Present address: Center for Cancer Research, National Cancer Institute, Building 567, Room 254, Frederick, MD, 21702-1201, USA
| | - Sreelatha K Hemalatha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Sutapa Sinha
- Department of Hematology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Asha S Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Priya Srinivas
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
27
|
Kasar S, Underbayev C, Hassan M, Ilev I, Degheidy H, Bauer S, Marti G, Lutz C, Raveche E, Batish M. Alterations in the mir-15a/16-1 Loci Impairs Its Processing and Augments B-1 Expansion in De Novo Mouse Model of Chronic Lymphocytic Leukemia (CLL). PLoS One 2016; 11:e0149331. [PMID: 26959643 PMCID: PMC4784815 DOI: 10.1371/journal.pone.0149331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
New Zealand Black (NZB) mice, a de novo model of CLL, share multiple characteristics with CLL patients, including decreased expression of miR-15a/16-1. We previously discovered a point mutation and deletion in the 3' flanking region of mir-16-1 of NZB and a similar mutation has been found in a small number of CLL patients. However, it was unknown whether the mutation is the cause for the reduced miR-15a/16-1 expression and CLL development. Using PCR and in vitro microRNA processing assays, we found that the NZB sequence alterations in the mir-15a/16-1 loci result in deficient processing of the precursor forms of miR-15a/16-1, in particular, we observe impaired conversion of pri-miR-15a/16-1 to pre-miR-15a/16-1. The in vitro data was further supported by derivation of congenic strains with replaced mir-15a/16-1 loci at one or both alleles: NZB congenic mice (NmiR+/-) and DBA congenic mice (DmiR-/-). The level of miR-15a/16-1 reflected the configuration of the mir-15a/16-1 loci with DBA congenic mice (DmiR-/-) showing reduced miR-15a levels compared to homozygous wild-type allele, while the NZB congenic mice (NmiR+/-) showed an increase in miR-15a levels relative to homozygous mutant allele. Similar to Monoclonal B-cell Lymphocytosis (MBL), the precursor stage of the human disease, an overall expansion of the B-1 population was observed in DBA congenic mice (DmiR-/-) relative to wild-type (DmiR+/+). These studies support our hypothesis that the mutations in the mir-15a/16-1 loci are responsible for decreased expression of this regulatory microRNA leading to B-1 expansion and CLL development.
Collapse
Affiliation(s)
- Siddha Kasar
- New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, United States of America
| | - Chingiz Underbayev
- New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, United States of America
| | | | - Ilko Ilev
- OSEL/CDRH/FDA White Oak, Maryland, United States of America
| | - Heba Degheidy
- CBER/FDA White Oak, Maryland, United States of America
| | - Steven Bauer
- CBER/FDA White Oak, Maryland, United States of America
| | - Gerald Marti
- OSEL/CDRH/FDA White Oak, Maryland, United States of America
| | - Carol Lutz
- New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, United States of America
| | - Elizabeth Raveche
- New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, United States of America
| | - Mona Batish
- New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, United States of America
| |
Collapse
|
28
|
A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia. Leukemia 2015; 30:439-46. [PMID: 26437777 DOI: 10.1038/leu.2015.252] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/30/2015] [Accepted: 09/07/2015] [Indexed: 01/01/2023]
Abstract
Relapses after initial successful treatment in acute myeloid leukemia are thought to originate from the outgrowth of leukemic stem cells. Their flow cytometrically assessed frequency is of importance for relapse prediction and is therefore assumed to be implemented in future risk group profiling. Since current detection methods are complex, time- and bone marrow consuming (multiple-tubes approach), it would be advantageous to have a broadly applicable approach that enables to quantify leukemia stem cells both at diagnosis and follow-up. We compared 15 markers in 131 patients concerning their prevalence, usefulness and stability in CD34(+)CD38(-) leukemic stem cell detection in healthy controls, acute myeloid leukemia diagnosis and follow-up samples. Ultimately, we designed a single 8-color detection tube including common markers CD45, CD34 and CD38, and specific markers CD45RA, CD123, CD33, CD44 and a marker cocktail (CLL-1/TIM-3/CD7/CD11b/CD22/CD56) in one fluorescence channel. Validation analyses in 31 patients showed that the single tube approach was as good as the multiple-tube approach. Our approach requires the least possible amounts of bone marrow, and is suitable for multi-institutional studies. Moreover, it enables detection of leukemic stem cells both at time of diagnosis and follow-up, thereby including initially low-frequency populations emerging under therapy pressure.
Collapse
|
29
|
Zhang R, Yang J, Zhou Y, Shami PJ, Kopeček J. N-(2-Hydroxypropyl)methacrylamide Copolymer-Drug Conjugates for Combination Chemotherapy of Acute Myeloid Leukemia. Macromol Biosci 2015. [PMID: 26222892 DOI: 10.1002/mabi.201500193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is a need for new treatment strategies of acute myeloid leukemia (AML). In this study, four different drugs, including cytarabine, daunorubicin, GDC-0980, and JS-K, were investigated in vitro for the two-drug combinations treatment of AML. The results revealed that cytarabine and GDC-0980 had the strongest synergism. In addition, cell cycle analysis was conducted to investigate the effect of the different combinations on cell division. For future in vivo application, N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-cytarabine and GDC-0980 conjugates were synthesized, respectively. In vitro studies demonstrated that both conjugates had potent cytotoxicity and their combination also showed strong synergy, suggesting a potential chemotherapeutic strategy for future AML treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA
| | - Yan Zhou
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA
| | - Paul J Shami
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA.,Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA. .,Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
30
|
Pelosi E, Castelli G, Testa U. Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells Mol Dis 2015; 55:336-46. [PMID: 26460257 DOI: 10.1016/j.bcmd.2015.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 02/08/2023]
Abstract
Studies of xenotransplantation of bone marrow and blood cells of AML patients have supported the existence of rare leukemic stem cells, able to initiate and maintain the leukemic process and bearing the typical leukemic abnormalities. LSCs possess self-renewal capacity and are responsible for the growth of the more differentiated leukemic progeny in the bone marrow and in the blood. These cells are more resistant than bulk leukemic cells to anti-leukemic drugs, thus survive to treatment and are, at a large extent, responsible for leukemia relapse. During the last two decades, considerable progresses have been made in the understanding of the peculiar cellular and molecular properties of LSCs. In this context, particularly relevant was the discovery of several membrane markers, selectively or preferentially expressed on LSCs. These membrane markers offer now unique opportunities to identify LSCs and to distinguish them from normal HSCs, to monitor the response of the various anti-leukemic treatments at the level of the LSC compartment, to identify relevant therapeutic targets. Concerning this last point, the most promising therapeutic targets are CD33 and CD123.
Collapse
Affiliation(s)
- Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Rome, Italy
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Rome, Italy
| |
Collapse
|
31
|
Chigaev A. Does aberrant membrane transport contribute to poor outcome in adult acute myeloid leukemia? Front Pharmacol 2015; 6:134. [PMID: 26191006 PMCID: PMC4489100 DOI: 10.3389/fphar.2015.00134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia in adults is a highly heterogeneous disease. Gene expression profiling performed using unsupervised algorithms can be used to distinguish specific groups of patients within a large patient cohort. The identified gene expression signatures can offer insights into underlying physiological mechanisms of disease pathogenesis. Here, the analysis of several related gene expression clusters associated with poor outcome, worst overall survival and highest rates of resistant disease and obtained from the patients at the time of diagnosis or from previously untreated individuals is presented. Surprisingly, these gene clusters appear to be enriched for genes corresponding to proteins involved in transport across membranes (transporters, carriers and channels). Several ideas describing the possible relationship of membrane transport activity and leukemic cell biology, including the "Warburg effect," the specific role of chloride ion transport, direct "import" of metabolic energy through uptake of creatine phosphate, and modification of the bone marrow niche microenvironment are discussed.
Collapse
Affiliation(s)
- Alexandre Chigaev
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico Albuquerque, NM, USA
| |
Collapse
|
32
|
Abstract
Wnt signaling plays an important role in development and disease. In this review we focus on the role of the canonical Wnt signaling pathway in somatic stem cell biology and its critical role in tissue homeostasis. We present current knowledge how Wnt/β-catenin signaling affects tissue stem cell behavior in various organ systems, including the gut, mammary gland, the hematopoietic and nervous system. We discuss evidence that canonical Wnt signaling can both maintain potency and an undifferentiated state as well as cause differentiation in somatic stem cells, depending on the cellular and environmental context. Based on studies by our lab and others, we will attempt to explain the dichotomous behavior of this signaling pathway in determining cell fate decisions and put special emphasis on the interaction of β-catenin with two highly homologous co-activator proteins, CBP and p300, to shed light on the their differential role in the outcome of Wnt/β-catenin signaling. Furthermore, we review current knowledge regarding the aberrant regulation of Wnt/β-catenin signaling in cancer biology, particularly its pivotal role in the context of cancer stem cells. Finally, we discuss data demonstrating that small molecule modulators of the β-catenin/co-activator interaction can be used to shift the balance between undifferentiated proliferation and differentiation, which potentially presents a promising therapeutic approach to stem cell based disease mechanisms.
Collapse
|
33
|
Reinisch A, Chan SM, Thomas D, Majeti R. Biology and Clinical Relevance of Acute Myeloid Leukemia Stem Cells. Semin Hematol 2015; 52:150-64. [PMID: 26111462 DOI: 10.1053/j.seminhematol.2015.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Evidence for the cancer stem cell model was first demonstrated in xenotransplanted blood and bone marrow samples from patients with acute myeloid leukemia (AML) almost two decades ago, supporting the concept that a rare clonal and mutated leukemic stem cell (LSC) population is sufficient to drive leukemic growth. The inability to eliminate LSCs with conventional therapies is thought to be the primary cause of disease relapse in AML patients, and as such, novel therapies with the ability to target this population are required to improve patient outcomes. An important step towards this goal is the identification of common immunophenotypic surface markers and biological properties that distinguish LSCs from normal hematopoietic stem and progenitor cells (HSPCs) across AML patients. This work has resulted in the development of a large number of potential LSC-selective therapies that target cell surface molecules, intracellular signaling pathways, and the bone marrow microenvironment. Here, we will review the basic biology, immunophenotypic detection, and clinical relevance of LSCs, as well as emerging biological and small-molecule strategies that either directly target LSCs or indirectly target these cells through modulation of their microenvironment.
Collapse
Affiliation(s)
- Andreas Reinisch
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Steven M Chan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Daniel Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA.
| |
Collapse
|
34
|
Maliyakkal N, Appadath Beeran A, Balaji SA, Udupa N, Ranganath Pai S, Rangarajan A. Effects of Withania somnifera and Tinospora cordifolia extracts on the side population phenotype of human epithelial cancer cells: toward targeting multidrug resistance in cancer. Integr Cancer Ther 2015; 14:156-171. [PMID: 25549922 DOI: 10.1177/1534735414564423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent reports suggest the existence of a subpopulation of stem-like cancer cells, termed as cancer stem cells (CSCs), which bear functional and phenotypic resemblance with the adult, tissue-resident stem cells. Side population (SP) assay based on differential efflux of Hoechst 33342 has been effectively used for the isolation of CSCs. The drug resistance properties of SP cells are typically due to the increased expression of ABC transporters leading to drug efflux. Conventionally used chemotherapeutic drugs may often leads to an enrichment of SP, revealing their inability to target the drug-resistant SP and CSCs. Thus, identification of agents that can reduce the SP phenotype is currently in vogue in cancer therapeutics. Withania somnifera (WS) and Tinospora cordifolia (TC) have been used in Ayurveda for treating various diseases, including cancer. In the current study, we have investigated the effects of ethanolic (ET) extracts of WS and TC on the cancer SP phenotype. Interestingly, we found significant decrease in SP on treatment with TC-ET, but not with WS-ET. The SP-inhibitory TC-ET was further fractionated into petroleum ether (TC-PET), dichloromethane (TC-DCM), and n-butyl alcohol (TC-nBT) fractions using bioactivity-guided fractionation. Our data revealed that TC-PET and TC-DCM, but not TC-nBT, significantly inhibited SP in a dose-dependent manner. Furthermore, flow cytometry-based functional assays revealed that TC-PET and TC-DCM significantly inhibited ABC-B1 and ABC-G2 transporters and sensitized cancer cells toward chemotherapeutic drug-mediated cytotoxicity. Thus, the TC-PET and TC-DCM may harbor phytochemicals with the potential to reverse the drug-resistant phenotype, thus improving the efficacy of cancer chemotherapy.
Collapse
Affiliation(s)
- Naseer Maliyakkal
- Indian Institute of Science (IISc), Bangalore, India Manipal University, Manipal, Karnataka, India
| | | | - Sai A Balaji
- Indian Institute of Science (IISc), Bangalore, India
| | | | | | | |
Collapse
|
35
|
Schulenburg A, Blatt K, Cerny-Reiterer S, Sadovnik I, Herrmann H, Marian B, Grunt TW, Zielinski CC, Valent P. Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J Hematol Oncol 2015; 8:16. [PMID: 25886184 PMCID: PMC4345016 DOI: 10.1186/s13045-015-0113-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 02/08/2023] Open
Abstract
Since their description and identification in leukemias and solid tumors, cancer stem cells (CSC) have been the subject of intensive research in translational oncology. Indeed, recent advances have led to the identification of CSC markers, CSC targets, and the preclinical and clinical evaluation of the CSC-eradicating (curative) potential of various drugs. However, although diverse CSC markers and targets have been identified, several questions remain, such as the origin and evolution of CSC, mechanisms underlying resistance of CSC against various targeted drugs, and the biochemical basis and function of stroma cell-CSC interactions in the so-called ‘stem cell niche.’ Additional aspects that have to be taken into account when considering CSC elimination as primary treatment-goal are the genomic plasticity and extensive subclone formation of CSC. Notably, various cell fractions with different combinations of molecular aberrations and varying proliferative potential may display CSC function in a given neoplasm, and the related molecular complexity of the genome in CSC subsets is considered to contribute essentially to disease evolution and acquired drug resistance. In the current article, we discuss new developments in the field of CSC research and whether these new concepts can be exploited in clinical practice in the future.
Collapse
Affiliation(s)
- Axel Schulenburg
- Bone Marrow Transplantation Unit, Department of Internal Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, A-1090, Wien, Austria. .,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Wien, Austria.
| | - Katharina Blatt
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Sabine Cerny-Reiterer
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Irina Sadovnik
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Harald Herrmann
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Radiation Therapy, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria.
| | - Brigitte Marian
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Institute for Cancer Research, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Thomas W Grunt
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Clinical Oncology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Christoph C Zielinski
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Clinical Oncology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Peter Valent
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| |
Collapse
|
36
|
Snauwaert S, Vandekerckhove B, Kerre T. Can immunotherapy specifically target acute myeloid leukemic stem cells? Oncoimmunology 2014; 2:e22943. [PMID: 23526057 PMCID: PMC3601163 DOI: 10.4161/onci.22943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence supports the role of leukemic stem cells (LSCs) in the high relapse rate of acute myeloid leukemia (AML) patients. The clinical relevance of LSCs, which were originally characterized in xenograft models, has recently been confirmed by the finding that stem cell-like gene expression signatures can predict the clinical outcome of AML patients. The targeted elimination of LSCs might hence constitute an efficient therapeutic approach to AML. Here, we review immunotherapeutic strategies that target LSC-associated antigens, including T cell-mediated and monoclonal antibody-based regimens. Attention is given to the issue of antigen specificity because this is relevant to the therapeutic window and determines the superiority of LSC-targeting immunotherapy.
Collapse
Affiliation(s)
- Sylvia Snauwaert
- Department of Clinical Chemistry, Microbiology and Immunology; Ghent University Hospital; Ghent, Belgium
| | | | | |
Collapse
|
37
|
Zhou J, Chng WJ. Identification and targeting leukemia stem cells: The path to the cure for acute myeloid leukemia. World J Stem Cells 2014; 6:473-484. [PMID: 25258669 PMCID: PMC4172676 DOI: 10.4252/wjsc.v6.i4.473] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/22/2014] [Accepted: 08/30/2014] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence support the notion that acute myeloid leukemia (AML) is organized in a hierarchical system, originating from a special proportion of leukemia stem cells (LSC). Similar to their normal counterpart, hematopoietic stem cells (HSC), LSC possess self-renewal capacity and are responsible for the continued growth and proliferation of the bulk of leukemia cells in the blood and bone marrow. It is believed that LSC are also the root cause for the treatment failure and relapse of AML because LSC are often resistant to chemotherapy. In the past decade, we have made significant advancement in identification and understanding the molecular biology of LSC, but it remains a daunting task to specifically targeting LSC, while sparing normal HSC. In this review, we will first provide a historical overview of the discovery of LSC, followed by a summary of identification and separation of LSC by either cell surface markers or functional assays. Next, the review will focus on the current, various strategies for eradicating LSC. Finally, we will highlight future directions and challenges ahead of our ultimate goal for the cure of AML by targeting LSC.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Jianbiao Zhou, Wee-Joo Chng, Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
| | - Wee-Joo Chng
- Jianbiao Zhou, Wee-Joo Chng, Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
| |
Collapse
|
38
|
Wouters R, Cucchi D, Kaspers GJL, Schuurhuis GJ, Cloos J. Relevance of leukemic stem cells in acute myeloid leukemia: heterogeneity and influence on disease monitoring, prognosis and treatment design. Expert Rev Hematol 2014; 7:791-805. [PMID: 25242511 DOI: 10.1586/17474086.2014.959921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute myeloid leukemia is a bone marrow disease characterized by a block in differentiation of the myeloid lineage with a concomitant uncontrolled high proliferation rate. Development of acute myeloid leukemia from stem cells with specific founder mutations, leads to an oligoclonal disease that progresses into a very heterogeneous leukemia at diagnosis. Measurement of leukemic stem cell load and characterization of these cells are essential for prediction of relapse and target identification, respectively. Prediction of relapse by monitoring the disease during minimal residual disease detection is challenged by clonal shifts during therapy. To overcome this, characterization of the potential relapse-initiating cells is required using both flow cytometry and molecular analysis since leukemic stem cells can be targeted both on extracellular features and on stem-cell specific signal transduction pathways.
Collapse
Affiliation(s)
- Rolf Wouters
- Departments of Pediatric Oncology/Hematology and Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Terwijn M, Zeijlemaker W, Kelder A, Rutten AP, Snel AN, Scholten WJ, Pabst T, Verhoef G, Löwenberg B, Zweegman S, Ossenkoppele GJ, Schuurhuis GJ. Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia. PLoS One 2014; 9:e107587. [PMID: 25244440 PMCID: PMC4171508 DOI: 10.1371/journal.pone.0107587] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/11/2014] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Treatment failure in acute myeloid leukemia is probably caused by the presence of leukemia initiating cells, also referred to as leukemic stem cells, at diagnosis and their persistence after therapy. Specific identification of leukemia stem cells and their discrimination from normal hematopoietic stem cells would greatly contribute to risk stratification and could predict possible relapses. RESULTS For identification of leukemic stem cells, we developed flow cytometric methods using leukemic stem cell associated markers and newly-defined (light scatter) aberrancies. The nature of the putative leukemic stem cells and normal hematopoietic stem cells, present in the same patient's bone marrow, was demonstrated in eight patients by the presence or absence of molecular aberrancies and/or leukemic engraftment in NOD-SCID IL-2Rγ-/- mice. At diagnosis (n=88), the frequency of the thus defined neoplastic part of CD34+CD38- putative stem cell compartment had a strong prognostic impact, while the neoplastic parts of the CD34+CD38+ and CD34- putative stem cell compartments had no prognostic impact at all. After different courses of therapy, higher percentages of neoplastic CD34+CD38- cells in complete remission strongly correlated with shorter patient survival (n=91). Moreover, combining neoplastic CD34+CD38- frequencies with frequencies of minimal residual disease cells (n=91), which reflect the total neoplastic burden, revealed four patient groups with different survival. CONCLUSION AND PERSPECTIVE Discrimination between putative leukemia stem cells and normal hematopoietic stem cells in this large-scale study allowed to demonstrate the clinical importance of putative CD34+CD38- leukemia stem cells in AML. Moreover, it offers new opportunities for the development of therapies directed against leukemia stem cells, that would spare normal hematopoietic stem cells, and, moreover, enables in vivo and ex vivo screening for potential efficacy and toxicity of new therapies.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Adolescent
- Adult
- Animals
- Antigens, CD34/metabolism
- Biomarkers
- Cell Count
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Immunophenotyping
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Middle Aged
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Prognosis
- Young Adult
Collapse
Affiliation(s)
- Monique Terwijn
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Angèle Kelder
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjo P. Rutten
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexander N. Snel
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gregor Verhoef
- Department of Hematology, University Hospital Leuven, Leuven, Belgium
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerrit J. Schuurhuis
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
40
|
Kim YM, Kahn M. The role of the Wnt signaling pathway in cancer stem cells: prospects for drug development. ACTA ACUST UNITED AC 2014; 4:1-12. [PMID: 26566491 PMCID: PMC4640466 DOI: 10.2147/rrbc.s53823] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs), also known as tumor initiating cells are now considered to be the root cause of most if not all cancers, evading treatment and giving rise to disease relapse. They have become a central focus in new drug development. Prospective identification, understanding the key pathways that maintain CSCs, and being able to target CSCs, particularly if the normal stem cell population could be spared, could offer an incredible therapeutic advantage. The Wnt signaling cascade is critically important in stem cell biology, both in homeostatic maintenance of tissues and organs through their respective somatic stem cells and in the CSC/tumor initiating cell population. Aberrant Wnt signaling is associated with a wide array of tumor types. Therefore, the ability to safely target the Wnt signaling pathway offers enormous promise to target CSCs. However, just like the sword of Damocles, significant risks and concerns regarding targeting such a critical pathway in normal stem cell maintenance and tissue homeostasis remain ever present. With this in mind, we review recent efforts in modulating the Wnt signaling cascade and critically analyze therapeutic approaches at various stages of development.
Collapse
Affiliation(s)
- Yong-Mi Kim
- Children's Hospital Los Angeles, Division of Hematology and Oncology, Department of Pediatrics and Pathology, Los Angeles, CA, USA
| | - Michael Kahn
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA ; Norris Comprehensive Cancer Research Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Side population cells as prototype of chemoresistant, tumor-initiating cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:517237. [PMID: 24294611 PMCID: PMC3834974 DOI: 10.1155/2013/517237] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/23/2013] [Indexed: 12/16/2022]
Abstract
Classically, isolation of CSCs from tumors exploits the detection of cell surface markers associated with normal stem cells. Invariable expression of these cell surface markers in almost all proliferating tumor cells that albeit impart specific functionality, the universality, and clinical credibility of CSC phenotype based on markers is still dubious. Side Population (SP) cells, as defined by Hoechst dye exclusion in flow cytometry, have been identified in many solid tumors and cell lines and the SP phenotype can be considered as an enriched source of stem cells as well as an alternative source for the isolation of cancer stem cells especially when molecular markers for stem cells are unknown. SP cells may be responsible for the maintenance and propagation of tumors and the proportion of SP cells may be a predictor of patient outcome. Several of these markers used in cell sorting have emerged as prognostic markers of disease progression though it is seen that the development of new CSC-targeted strategies is often hindered by poor understanding of their regulatory networks and functions. This review intends to appraise the experimental progress towards enhanced isolation and drug screening based on property of acquired chemoresistance of cancer stem cells.
Collapse
|
42
|
Kornblau SM, Qutub A, Yao H, York H, Qiu YH, Graber D, Ravandi F, Cortes J, Andreeff M, Zhang N, Coombes KR. Proteomic profiling identifies distinct protein patterns in acute myelogenous leukemia CD34+CD38- stem-like cells. PLoS One 2013; 8:e78453. [PMID: 24223100 PMCID: PMC3816767 DOI: 10.1371/journal.pone.0078453] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/10/2013] [Indexed: 01/10/2023] Open
Abstract
Acute myeloid leukemia (AML) is believed to arise from leukemic stem-like cells (LSC) making understanding the biological differences between LSC and normal stem cells (HSC) or common myeloid progenitors (CMP) crucial to understanding AML biology. To determine if protein expression patterns were different in LSC compared to other AML and CD34+ populations, we measured the expression of 121 proteins by Reverse Phase Protein Arrays (RPPA) in 5 purified fractions from AML marrow and blood samples: Bulk (CD3/CD19 depleted), CD34-, CD34+(CMP), CD34+CD38+ and CD34+CD38-(LSC). LSC protein expression differed markedly from Bulk (n=31 cases, 93/121 proteins) and CD34+ cells (n= 30 cases, 88/121 proteins) with 54 proteins being significantly different (31 higher, 23 lower) in LSC than in either Bulk or CD34+ cells. Sixty-seven proteins differed significantly between CD34+ and Bulk blasts (n=69 cases). Protein expression patterns in LSC and CD34+ differed markedly from normal CD34+ cells. LSC were distinct from CD34+ and Bulk cells by principal component and by protein signaling network analysis which confirmed individual protein analysis. Potential targetable submodules in LSC included the proteins PU.1(SP1), P27, Mcl1, HIF1α, cMET, P53, Yap, and phospho-Stats 1, 5 and 6. Protein expression and activation in LSC differs markedly from other blast populations suggesting that studies of AML biology should be performed in LSC.
Collapse
Affiliation(s)
- Steven M. Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| | - Amina Qutub
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Heather York
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Yi Hua Qiu
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - David Graber
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jorge Cortes
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael Andreeff
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Nianxiang Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kevin R. Coombes
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
43
|
Myeloprotection by cytidine deaminase gene transfer in antileukemic therapy. Neoplasia 2013; 15:239-48. [PMID: 23479503 DOI: 10.1593/neo.121954] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/22/2022] Open
Abstract
Gene transfer of drug resistance (CTX-R) genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O(6)-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C), gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD) represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine) in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.
Collapse
|
44
|
Ruben JM, Visser LL, Bontkes HJ, Westers TM, Ossenkoppele GJ, de Gruijl TD, van de Loosdrecht AA. Targeting the acute myeloid leukemic stem cell compartment by enhancing tumor cell-based vaccines. Immunotherapy 2013; 5:859-68. [DOI: 10.2217/imt.13.76] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Harvesting the potential of the immune system in order to eradicate (residual) acute myeloid leukemia (AML) cells is the long pursued goal of immunotherapy in AML. Strategies using apoptotic tumor cell vaccines have been explored for many years, without significant clinical improvements. In recent years insight has been gained into the mechanisms activating and interfering with tumor-directed immunity. With the arrival of novel immune-modulating agents allowing for the interference with regulatory molecules and interaction with immune-propelling mechanisms, new doors are opening for increasing vaccination efficacy. Combined with advances in the design of apoptotic tumor-based vaccines, we are on the verge of creating an effective AML vaccine strategy, offering a much needed novel therapeutic option for this devastating disease.
Collapse
Affiliation(s)
- Jurjen M Ruben
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Lindy L Visser
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Hetty J Bontkes
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Guddati AK, Shaheen S. Characterization of disease progression in ovarian cancer by utilizing 'chemograms' of ovarian cancer stem cells. J Chemother 2013; 25:184-91. [PMID: 23783145 DOI: 10.1179/1973947812y.0000000058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
INTRODUCTION Ovarian cancer is one of the leading causes of death in women with cancer. First-line chemotherapy with platinum compounds and taxane compounds has been effective, but most patients develop a relapse of the disease due to drug resistance. There is growing evidence that this resistance may be due to the presence of ovarian cancer stem cells. DISCUSSION Cells with properties of cancer stem cells have been isolated from the ascitic fluid of ovarian cancer patients. This subset of cells is highly tumourigenic compared to the rest of the cells in the ascitic fluid. They are known to exude harmful chemicals from their cytoplasm and have been found to be resistant to chemotherapeutic agents. This property has been utilized to purify them by fluorescence assisted cytometry to yield a subset of cells which are called 'side population'. These cells exhibit the properties of cancer stem cells and their role in disease progression is being currently investigated. The course of the disease can be potentially characterized at the cellular level by closely studying this cell population. They can also be cultured in different combinations of chemotherapeutic agents at varying concentrations to obtain 'chemograms' which are sensitivity charts. Chemotherapeutic agents which produce the most effective kill curves can then be rationally used as a second-line chemotherapy if the disease relapses. These sensitivity charts can provide insight into emerging patterns of chemoresistance and also help discover surface markers that accurately identify ovarian cancer stem cells. CONCLUSION The high rate of disease relapse in patients with ovarian cancer requires a new and different approach utilizing the sensitivity of cancer stem cells. Isolating and characterizing the resistance patterns of ovarian cancer stem cells may provide a rational approach towards an effective and individualized chemotherapeutic regimen.
Collapse
Affiliation(s)
- Achuta K Guddati
- Department of Internal Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, USA.
| | | |
Collapse
|
46
|
Barteneva NS, Ketman K, Fasler-Kan E, Potashnikova D, Vorobjev IA. Cell sorting in cancer research--diminishing degree of cell heterogeneity. Biochim Biophys Acta Rev Cancer 2013; 1836:105-22. [PMID: 23481260 DOI: 10.1016/j.bbcan.2013.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/18/2022]
Abstract
Increasing evidence of intratumor heterogeneity and its augmentation due to selective pressure of microenvironment and recent achievements in cancer therapeutics lead to the need to investigate and track the tumor subclonal structure. Cell sorting of heterogeneous subpopulations of tumor and tumor-associated cells has been a long established strategy in cancer research. Advancement in lasers, computer technology and optics has led to a new generation of flow cytometers and cell sorters capable of high-speed processing of single cell suspensions. Over the last several years cell sorting was used in combination with molecular biological methods, imaging and proteomics to characterize primary and metastatic cancer cell populations, minimal residual disease and single tumor cells. It was the principal method for identification and characterization of cancer stem cells. Analysis of single cancer cells may improve early detection of tumors, monitoring of circulating tumor cells, evaluation of intratumor heterogeneity and chemotherapeutic treatments. The aim of this review is to provide an overview of major cell sorting applications and approaches with new prospective developments such as microfluidics and microchip technologies.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
47
|
Abstract
The cancer stem cell (CSC) concept, which arose more than a decade ago, proposed that tumor growth is sustained by a subpopulation of highly malignant cancerous cells. These cells, termed CSCs, comprise the top of the tumor cell hierarchy and have been isolated from many leukemias and solid tumors. Recent work has discovered that this hierarchy is embedded within a genetically heterogeneous tumor, in which various related but distinct subclones compete within the tumor mass. Thus, genetically distinct CSCs exist on top of each subclone, revealing a highly complex cellular composition of tumors. The CSC concept has therefore evolved to better model the complex and highly dynamic processes of tumorigenesis, tumor relapse, and metastasis.
Collapse
Affiliation(s)
- Irène Baccelli
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, D-69120 Heidelberg, Germany
| | | |
Collapse
|
48
|
Martelli AM, Chiarini F, Evangelisti C, Cappellini A, Buontempo F, Bressanin D, Fini M, McCubrey JA. Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget 2012; 3:371-94. [PMID: 22564882 PMCID: PMC3380573 DOI: 10.18632/oncotarget.477] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) are two key components of the PI3K/Akt/mTOR signaling pathway. This signal transduction cascade regulates a wide range of physiological cell processes, that include differentiation, proliferation, apoptosis, autophagy, metabolism, motility, and exocytosis. However, constitutively active PI3K/Akt/mTOR signaling characterizes many types of tumors where it negatively influences response to therapeutic treatments. Hence, targeting PI3K/Akt/mTOR signaling with small molecule inhibitors may improve cancer patient outcome. The PI3K/Akt/mTOR signaling cascade is overactive in acute leukemias, where it correlates with enhanced drug-resistance and poor prognosis. The catalytic sites of PI3K and mTOR share a high degree of sequence homology. This feature has allowed the synthesis of ATP-competitive compounds targeting the catalytic site of both kinases. In preclinical models, dual PI3K/mTOR inhibitors displayed a much stronger cytotoxicity against acute leukemia cells than either PI3K inhibitors or allosteric mTOR inhibitors, such as rapamycin. At variance with rapamycin, dual PI3K/mTOR inhibitors targeted both mTOR complex 1 and mTOR complex 2, and inhibited the rapamycin-resistant phosphorylation of eukaryotic initiation factor 4E-binding protein 1, resulting in a marked inhibition of oncogenic protein translation. Therefore, they strongly reduced cell proliferation and induced an important apoptotic response. Here, we reviewed the evidence documenting that dual PI3K/mTOR inhibitors may represent a promising option for future targeted therapies of acute leukemia patients.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Human Anatomy, University of Bologna, Cellular Signalling Laboratory, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chow EKH, Fan LL, Chen X, Bishop JM. Oncogene-specific formation of chemoresistant murine hepatic cancer stem cells. Hepatology 2012; 56:1331-41. [PMID: 22505225 PMCID: PMC3418440 DOI: 10.1002/hep.25776] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/04/2012] [Indexed: 12/13/2022]
Abstract
UNLABELLED At least some cancer stem cells (CSCs) display intrinsic drug resistance that may thwart eradication of a malignancy by chemotherapy. We explored the genesis of such resistance by studying mouse models of liver cancer driven by either MYC or the combination of oncogenic forms of activation of v-akt murine thymoma viral oncogene homolog (AKT) and NRAS. A common manifestation of chemoresistance in CSCs is efflux of the DNA-binding dye Hoechst 33342. We found that only the MYC-driven tumors contained a subset of cells that efflux Hoechst 33342. This "side population" (SP) was enriched for CSCs when compared to non-SP tumor cells and exhibited markers of hepatic progenitor cells. The SP cells could differentiate into non-SP tumor cells, with coordinate loss of chemoresistance, progenitor markers, and the enrichment for CSCs. In contrast, non-SP cells did not give rise to SP cells. Exclusion of Hoechst 33342 is mediated by ATP binding cassette drug transporter proteins that also contribute to chemoresistance in cancer. We found that the multidrug resistance gene 1 (MDR1) transporter was responsible for the efflux of Hoechst from SP cells in our MYC-driven model. Accordingly, SP cells and their tumor-initiating subset were more resistant than non-SP cells to chemotherapeutics that are effluxed by MDR1. CONCLUSION The oncogenotype of a tumor can promote a specific mechanism of chemoresistance that can contribute to the survival of hepatic CSCs. Under circumstances that promote differentiation of CSCs into more mature tumor cells, the chemoresistance can be quickly lost. Elucidation of the mechanisms that govern chemoresistance in these mouse models may illuminate the genesis of chemoresistance in human liver cancer.
Collapse
Affiliation(s)
- Edward Kai-Hua Chow
- Department of Microbiology and Immunology, G. W. Hooper Research Foundation, University of California, San Francisco, CA 94143, USA.
| | - Ling-ling Fan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143, USA,Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143, USA
| | - J Michael Bishop
- Department of Microbiology and Immunology, G. W. Hooper Research Foundation, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
50
|
de la Cruz-Merino L, Lejeune M, Nogales Fernández E, Henao Carrasco F, Grueso López A, Illescas Vacas A, Pulla MP, Callau C, Álvaro T. Role of immune escape mechanisms in Hodgkin's lymphoma development and progression: a whole new world with therapeutic implications. Clin Dev Immunol 2012; 2012:756353. [PMID: 22927872 PMCID: PMC3426211 DOI: 10.1155/2012/756353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 06/05/2012] [Indexed: 12/31/2022]
Abstract
Hodgkin's lymphoma represents one of the most frequent lymphoproliferative syndromes, especially in young population. Although HL is considered one of the most curable tumors, a sizeable fraction of patients recur after successful upfront treatment or, less commonly, are primarily resistant. This work tries to summarize the data on clinical, histological, pathological, and biological factors in HL, with special emphasis on the improvement of prognosis and their impact on therapeutical strategies. The recent advances in our understanding of HL biology and immunology show that infiltrated immune cells and cytokines in the tumoral microenvironment may play different functions that seem tightly related with clinical outcomes. Strategies aimed at interfering with the crosstalk between tumoral Reed-Sternberg cells and their cellular partners have been taken into account in the development of new immunotherapies that target different cell components of HL microenvironment. This new knowledge will probably translate into a change in the antineoplastic treatments in HL in the next future and hopefully will increase the curability rates of this disease.
Collapse
Affiliation(s)
- Luis de la Cruz-Merino
- Clinical Oncology Department, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|