1
|
Adornetto A, Laganà ML, Satriano A, Licastro E, Corasaniti MT, Bagetta G, Russo R. The Antidepressant Drug Amitriptyline Affects Human SH-SY5Y Neuroblastoma Cell Proliferation and Modulates Autophagy. Int J Mol Sci 2024; 25:10415. [PMID: 39408742 PMCID: PMC11476963 DOI: 10.3390/ijms251910415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Amitriptyline is a tricyclic antidepressant commonly used for depressive disorders and is prescribed off-label for several neurological conditions like neuropathic pain, migraines and anxiety. Besides their action on the reuptake of monoaminergic neurotransmitters, tricyclic antidepressants interact with several additional targets that may contribute to either therapeutic or adverse effects. Here, we investigated the effects of amitriptyline on proliferation and autophagy (i.e., an evolutionarily conserved catabolic pathway responsible for the degradation and recycling of cytoplasmic material) in human SH-SY5Y neuroblastoma cell cultures. The dose and time-dependent upregulation of the autophagy marker LC3II and the autophagy receptor p62, with the accumulation of LAMP1 positive compartments, were observed in SH-SY5Y cells exposed to the amitriptyline. These effects were accompanied by reduced cell viability and decreased clonogenic capacity, without a significant induction of apoptosis. Decrease viability and clonogenic activity were still observed in autophagy deficient Atg5-/- MEF and following pre-treatment of SH-SY5Y culture with the autophagy inhibitor chloroquine, suggesting that they were independent from autophagy modulation. Our findings demonstrate that amitriptyline acts on pathways crucial for cell and tissue homeostasis (i.e., autophagy and proliferation) and pose the basis for further studies on the potential therapeutic application of amitriptyline, as well as the consequences of its use for long-term treatments.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Maria Luisa Laganà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Andrea Satriano
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Ester Licastro
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Maria Tiziana Corasaniti
- School of Hospital Pharmacy, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (A.A.); (G.B.)
| |
Collapse
|
2
|
Yan ZW, Liu YN, Xu Q, Yuan Y. Current trends and hotspots of depressive disorders with colorectal cancer: A bibliometric and visual study. World J Gastrointest Oncol 2024; 16:3687-3704. [PMID: 39171183 PMCID: PMC11334043 DOI: 10.4251/wjgo.v16.i8.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Depression is strongly associated with colorectal cancer (CRC). Few bibliometric analyses have systematically summarized the research focus and recent progress in this field. AIM To determine the research status and hotspots by bibliometric analysis of relevant publications on the relationship between CRC and depression. METHODS Articles on depression in CRC patients were collected from the Web of Science Core Collection. CiteSpace and VOSviewer software were used to visualize bibliometric networks. RESULTS From 2001 to 2022, Supportive Care in Cancer, the United States, Tilburg University, and Mols were the most productive and influential journal, country, institution, and author name. Co-occurrence cluster analysis of keywords placed quality of life, anxiety, and psychological stress in the center of the visual network diagram. Further clustering was performed for the clusters with studies of the relevant mechanism of action, which showed that: (1) Cytokines have a role essential for the occurrence and development of depressive disorders in CRC; (2) MicroRNAs have a role essential for the development of depressive disorders in CRC; (3) Some anticancer drugs have pro-depressant activity; and (4) Selective serotonin reuptake inhibitors have both antitumor and antidepressant activity. CONCLUSION Life quality and psychological nursing of the cancer population were key topics. The roles of cytokines and microRNAs, the pro-depression activity of anticancer drugs and their antitumor properties deserve in-depth study.
Collapse
Affiliation(s)
- Zi-Wei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ying-Nan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
3
|
Shih FC, Lin CF, Wu YC, Hsu CC, Chen BC, Chang YC, Lin YS, Satria RD, Lin PY, Chen CL. Desmethylclomipramine triggers mitochondrial damage and death in TGF-β-induced mesenchymal type of A549 cells. Life Sci 2024; 351:122817. [PMID: 38871113 DOI: 10.1016/j.lfs.2024.122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Lung cancer is the leading cause of cancer deaths, where the metastasis often causes chemodrug resistance and leads to recurrence after treatment. Desmethylclomipramine (DCMI), a bioactive metabolite of clomipramine, shows the therapeutic efficacy with antidepressive agency as well as potential cytostatic effects on lung cancer cells. Here, we demonstrated that DCMI effectively caused transforming growth factor (TGF)-β1-mediated mesenchymal type of A549 cells to undergo mitochondrial death via myeloid cell leukemia-1 (Mcl-1) suppression and activation of truncated Bid (tBid). TGF-β1 induced epithelial mesenchymal transition in A549 cells with the increase of fibronectin and decrease of E-cadherin, the activation of Akt/glycogen synthase kinase-3β (GSK-β)/Mcl-1 axis, and the hypo-responsiveness to cisplatin. DCMI initiated a dose-dependent cytotoxicity on TGF-β1-mediated mesenchymal type of A549 cells through inactivating Akt/GSK-β/Mcl-1 axis, in which mitochondria instability and caspase-9/3 activation also occurred concurrently. Pharmacological inhibition of caspase-8 and cathepsin B partly reversed tBid expression and mitochondrial damage to further attenuate DCMI-mediated cytotoxicity. Additionally, DCMI presented partial therapeutic effects in treating mesenchymal type of A549 tumor bearing nude mice through an acceleration of cancer cell death. Taken together, DCMI exerts antitumor effects via initiating the mechanisms of Akt/GSK-β/Mcl-1 inactivation and cathepsin B/caspase-8-regulated mitochondrial death, which suggests its potential role in mesenchymal type of cancer cell therapy.
Collapse
Affiliation(s)
- Fu-Chia Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Wu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chun Hsu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Syuan Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Division of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Rahmat Dani Satria
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta 55281, Indonesia
| | - Pei-Yun Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Anwar MM, Laila IMI. The ameliorating effect of Rutin on hepatotoxicity and inflammation induced by the daily administration of vortioxetine in rats. BMC Complement Med Ther 2024; 24:153. [PMID: 38581023 PMCID: PMC10996088 DOI: 10.1186/s12906-024-04447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Vortioxetine (VORTX) is a potent and selective type of selective serotonin reuptake inhibitor (SSRI) that is mainly prescribed for treating major depression along with mood disorders as the first drug of choice. Limited previous findings have indicated evidence of liver injury and hepatotoxicity associated with daily VORTX treatment. Rutin (RUT), which is known for its antioxidant properties, has demonstrated several beneficial health actions, including hepatoprotection. Therefore the current study aimed to evaluate and assess the ameliorative effect of RUT against the hepatotoxic actions of daily low and high-dose VORTX administration. METHODS The experimental design included six groups of rats, each divided equally. Control, rats exposed to RUT (25 mg/kg), rats exposed to VORTX (28 mg/kg), rats exposed to VORTX (28 mg/kg) + RUT (25 mg/kg), rats exposed to VORTX (80 mg/kg), and rats exposed to VORTX (80 mg/kg) + RUT (25 mg/kg). After 30 days from the daily exposure period, assessments were conducted for serum liver enzyme activities, hepatotoxicity biomarkers, liver antioxidant endogenous enzymes, DNA fragmentation, and histopathological studies of liver tissue. RESULTS Interestingly, the risk of liver damage and hepatotoxicity related to VORTX was attenuated by the daily co-administration of RUT. Significant improvements were observed among all detected liver functions, oxidative stress, and inflammatory biomarkers including aspartate aminotransferase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), albumin, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), glutathione S-transferase (GST), total protein, acid phosphatase, N-Acetyl-/β-glucosaminidase (β-NAG), β-Galactosidase (β-Gal), alpha-fetoprotein (AFP), caspase 3, and cytochrom-C along with histopathological studies, compared to the control and sole RUT group. CONCLUSION Thus, RUT can be considered a potential and effective complementary therapy in preventing hepatotoxicity and liver injury induced by the daily or prolonged administration of VORTX.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt.
| | - Ibrahim M Ibrahim Laila
- Department of Biotechnology &Molecular drug evaluation, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
5
|
Huang Q, Wu M, Pu Y, Zhou J, Zhang Y, Li R, Xia Y, Zhang Y, Ma Y. Inhibition of TNBC Cell Growth by Paroxetine: Induction of Apoptosis and Blockage of Autophagy Flux. Cancers (Basel) 2024; 16:885. [PMID: 38473249 DOI: 10.3390/cancers16050885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The strategy of drug repurposing has gained traction in the field of cancer therapy as a means of discovering novel therapeutic uses for established pharmaceuticals. Paroxetine (PX), a selective serotonin reuptake inhibitor typically utilized in the treatment of depression, has demonstrated promise as an agent for combating cancer. Nevertheless, the specific functions and mechanisms by which PX operates in the context of triple-negative breast cancer (TNBC) remain ambiguous. This study aimed to examine the impact of PX on TNBC cells in vitro as both a standalone treatment and in conjunction with other pharmaceutical agents. Cell viability was measured using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, apoptosis was assessed through flow cytometry, and the effects on signaling pathways were analyzed using RNA sequencing and Western blot techniques. Furthermore, a subcutaneous tumor model was utilized to assess the in vivo efficacy of combination therapy on tumor growth. The results of our study suggest that PX may activate the Ca2+-dependent mitochondria-mediated intrinsic apoptosis pathway in TNBC by potentially influencing the PI3K/AKT/mTOR pathway as well as by inducing cytoprotective autophagy. Additionally, the combination of PX and chemotherapeutic agents demonstrated moderate inhibitory effects on 4T1 tumor growth in an in vivo model. These findings indicate that PX may exert its effects on TNBC through modulation of critical molecular pathways, offering important implications for improving chemosensitivity and identifying potential therapeutic combinations for clinical use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yamin Pu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Junyou Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, China
- Department of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqian Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Chengdu 610041, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yimei Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Ge Y, Cao Y, Wang Q, Wang Y, Ma W. Impact of antidepressant use on survival outcomes in glioma patients: A systematic review and meta-analysis. Neurooncol Adv 2024; 6:vdae181. [PMID: 39582812 PMCID: PMC11582889 DOI: 10.1093/noajnl/vdae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Background Depression is common among glioma patients, and antidepressants are frequently prescribed to manage symptoms. Understanding the impact of antidepressants on glioma patient survival is crucial for informing treatment strategies. Methods A systematic search was conducted in PubMed and EMBASE databases for studies published from January 1994 to March 2024. The search strategy included terms related to overall survival, prognosis, antidepressants, and gliomas. A manual search was performed in the reference lists. According to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline, 2 authors independently extracted data. Statistical analysis was performed using Review Manager (version 5.4.1) software, employing a random effects model based on study heterogeneity. The primary outcome was overall survival (OS). Hazard ratios (HRs) were used to present survival differences between the 2 arms. HRs after correcting for confounders were prioritized for extraction. Results Seven retrospective cohort studies involving 5579 patients were analyzed. Selective serotonin reuptake inhibitors (SSRIs) showed no significant survival difference in all glioma patients (HR = 1.34, 95% confidence interval [CI]: 0.66-2.70) and in GBM patients (HR = 1.05, 95% CI: 0.45-2.46), while non-SSRIs had an unfavorable impact on OS in GBMs (HR = 3.54, 95% CI: 2.51-4.99). When considering LGG, both SSRIs and non-SSRIs usage demonstrated associations with poorer survival outcomes (SSRIs: HR = 3.26, 95%CI: 2.19-4.85; Non-SSRIs: HR = 7.71, 95% CI: 4.25-14.00). Conclusions Antidepressant use was not significantly associated with better survival outcomes, emphasizing the need for reconsidering the real effects of antidepressant medication. Future clinical research should address patient heterogeneity to better clarify the effects of antidepressants on glioma survival.
Collapse
Affiliation(s)
- Yulu Ge
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaning Cao
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Wang
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Revishchin AV, Pavlova GV. [Antidepressants as additional drugs for human brain gliomas]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:97-102. [PMID: 39670785 DOI: 10.17116/neiro20248806197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Glioblastoma (GB) is the most aggressive malignant brain tumor. To date, there is no optimal treatment approach for this disease. Antidepressants with antitumor effects are one of the new therapeutic directions. A distinctive feature of these drugs is their approval for clinical practice in the treatment of depressive disorders. OBJECTIVE To analyze available literature data on mechanisms of antitumor action and advisability of antidepressants for GB. MATERIAL AND METHODS We reviewed the databases using the keywords «glioma», «antidepressants», «drug repurposing». RESULTS According to numerous preclinical studies, activity of antidepressants at the cellular level is aimed at enhancing apoptosis and autophagy, inhibiting the cell cycle, differentiating and/or maintaining the stem cell status, as well as migrating tumor cells. CONCLUSION Available data can substantiate further experimental and clinical studies, as well as searching for therapeutic combinations using antidepressants for the treatment of human gliomas.
Collapse
Affiliation(s)
- A V Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| | - G V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
8
|
Daisy Precilla S, Kuduvalli SS, Biswas I, Bhavani K, Pillai AB, Thomas JM, Anitha TS. Repurposing synthetic and natural derivatives induces apoptosis in an orthotopic glioma-induced xenograft model by modulating WNT/β-catenin signaling. Fundam Clin Pharmacol 2023; 37:1179-1197. [PMID: 37458120 DOI: 10.1111/fcp.12932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Glioblastomas arise from multistep tumorigenesis of the glial cells. Despite the current state-of-art treatment, tumor recurrence is inevitable. Among the innovations blooming up against glioblastoma, drug repurposing could provide profound premises for treatment enhancement. While considering this strategy, the efficacy of the repurposed drugs as monotherapies were not up to par; hence, the focus has now shifted to investigate the multidrug combinations. AIM To investigate the efficacy of a quadruple-combinatorial treatment comprising temozolomide along with chloroquine, naringenin, and phloroglucinol in an orthotopic glioma-induced xenograft model. METHODS Antiproliferative effect of the drugs was assessed by immunostaining. The expression profiles of WNT/β-catenin and apoptotic markers were evaluated by qRT-PCR, immunoblotting, and ELISA. Patterns of mitochondrial depolarization was determined by flow cytometry. TUNEL assay was performed to affirm apoptosis induction. In vivo drug detection study was carried out by ESI-Q-TOF MS analysis. RESULTS The quadruple-drug treatment had significantly hampered glioma proliferation and had induced apoptosis by modulating the WNT/β-catenin signaling. Interestingly, the induction of apoptosis was associated with mitochondrial depolarization. The quadruple-drug cocktail had breached the blood-brain barrier and was detected in the brain tissue and plasma samples. CONCLUSION The quadruple-drug combination served as a promising adjuvant therapy to combat glioblastoma lethality in vivo and can be probed for translation from bench to bedside.
Collapse
Affiliation(s)
- Senthilathiban Daisy Precilla
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Shreyas S Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Krishnamurthy Bhavani
- Department of Pathology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Jisha Mary Thomas
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University, Puducherry, 605 014, India
| | - Thirugnanasambandhar Sivasubramanian Anitha
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India
| |
Collapse
|
9
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
10
|
Motafeghi F, Shahsavari R, Mortazavi P, Shokrzadeh M. Anticancer effect of paroxetine and amitriptyline on HT29 and A549 cell lines. Toxicol In Vitro 2023; 87:105532. [PMID: 36460226 DOI: 10.1016/j.tiv.2022.105532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Paroxetine is functionally classified as a selective serotonin reuptake inhibitor. Paroxetine can induce mitochondria-dependent apoptosis through the ROS-MAPK pathway.Amitriptyline is a tricyclic antidepressant. This drug induces the expression of p53, thereby activating caspase-3. Amitriptyline has also been studied as a potential candidate for inducing oxidative stress and cytotoxicity in cancer cells, which may be more effective than other chemotherapy drugs. This study aims to to investigate the anticancer effects of paroxetine and amitriptyline and their combination treatment on HT29 and A549 cell lines for the first time. METHODS In order to investigate the anticancer effect of two drugs, paroxetine and amitriptyline, on inhibiting the growth of A549 and HT29 cancer cells, oxidative stress factors and LDH enzyme and apoptosis tests were performed. RESULTS Two drugs, amitriptyline and paroxetine alone, inhibited the growth of cancer cells in such a way that the inhibitory effect of the cells increased with the increase in the dose of the drug. In the simultaneous exposure of these two drugs, the inhibitory effect was much greater than the effect of single drug exposure. Also, these two drugs have caused LDH leakage and induction of apoptosis. CONCLUSION According to the results of the study, it was found that these two drugs have the necessary ability to inhibit the growth of cancer cells by inducing apoptosis and LDH leakage and inducing oxidative stress.
Collapse
Affiliation(s)
- Farzaneh Motafeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Romina Shahsavari
- Department of Pharmacology and Toxicology, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parham Mortazavi
- Department of Pharmacology and Toxicology, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Ibrahim IM, Alsieni M, Almalki SG, Alqurashi YE, Kumar V. Comparative evaluation of natural neuroprotectives and their combinations on chronic immobilization stress-induced depression in experimental mice. 3 Biotech 2023; 13:22. [PMID: 36568496 PMCID: PMC9780413 DOI: 10.1007/s13205-022-03438-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The present study evaluates the potential of neuroprotective phytochemicals-rutin (R), resveratrol (Res), 17β-estradiol (17β-E2), and their different combinations against chronic immobilization stress (CIS)-induced depression-like behaviour in male albino mice. Here, the mice were exposed to stress via immobilization of their four limbs under a restrainer for 6 h daily until 7 days of the induction after 30 min of respective drug treatment in different mice groups. The result found the protective effect of these phytoconstituents and their combinations against CIS-induced depression due to their ability to suppress oxidative stress, restore mitochondria, HPA-axis modulation, neurotransmitter level, stress hormones, and inflammatory markers. Also, the combination drug regimens of these phytoconstituents showed synergistic results in managing the physiological and biochemical features of depression. Thus, these neuroprotective could be utilized well in combination to manage depression-like symptoms during episodic stress. Furthermore, such results could be well justified when administered in polyherbal formulation with these neuroprotective as major components. In addition, an advanced study can be designed at the molecular and epigenetics level using a formulation based on these neuroprotective.
Collapse
Affiliation(s)
- Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohammed Alsieni
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Sami G. Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952 Saudi Arabia
| | - Yaser E. Alqurashi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, 11952 Saudi Arabia
| | - Vinay Kumar
- Department of Pharmacology, KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| |
Collapse
|
12
|
Zheng Y, Chang X, Huang Y, He D. The application of antidepressant drugs in cancer treatment. Biomed Pharmacother 2023; 157:113985. [PMID: 36402031 DOI: 10.1016/j.biopha.2022.113985] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Antidepressants refer to psychotropic drugs which are used to treat mental illness with prominent emotional depression symptoms. It was reported that antidepressants had associated with anti-carcinogenic function which was associated with various signaling pathways and changing of microenvironment. Its mechanism includes cell apoptosis, antiproliferative effects, mitochondria-mediated oxidative stress, DNA damaging, changing of immune response and inflammatory conditions, and acting by inhibiting multidrug resistance of cancer cells. Accumulated studies showed that antidepressants influenced the metabolic pathway of tumor cells. This review summarized recent developments with the impacts and mechanisms of 10 kinds of antidepressants in carcinostasis. Antidepressants are also used in combination therapy with typical anti-tumor drugs which shows a synergic effect in anti-tumor. By contrast, the promotion roles of antidepressants in increasing cancer recurrence risk, mortality, and morbidity are also included. Further clinical experiments and mechanism analyses needed to be achieved. A full understanding of the underlying mechanisms of antidepressants-mediated anticarcinogenic effects may provide new clues for cancer prevention and clinical treatment.
Collapse
Affiliation(s)
- Yunxi Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Medical Collage of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xu Chang
- Medical Collage of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yuyang Huang
- Medical Collage of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Dingwen He
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
13
|
Hosseinalizadeh H, Ebrahimi A, Tavakoli A, Monavari SH. Glioblastoma as a Novel Drug Repositioning Target: Updated State. Anticancer Agents Med Chem 2023; 23:1253-1264. [PMID: 36733195 DOI: 10.2174/1871520623666230202163112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 02/04/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive form of adult brain tumor that can arise from a low-grade astrocytoma. In recent decades, several new conventional therapies have been developed that have significantly improved the prognosis of patients with GBM. Nevertheless, most patients have a limited long-term response to these treatments and survive < 1 year. Therefore, innovative anti-cancer drugs that can be rapidly approved for patient use are urgently needed. One way to achieve accelerated approval is drug repositioning, extending the use of existing drugs for new therapeutic purposes, as it takes less time to validate their biological activity as well as their safety in preclinical models. In this review, a comprehensive analysis of the literature search was performed to list drugs with antiviral, antiparasitic, and antidepressant properties that may be effective in GBM and their putative anti-tumor mechanisms in GBM cells.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ammar Ebrahimi
- Department of Biomedical Sciences, University of Lausanne, Rue Du Bugnon, Lausanne, Switzerland
| | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
14
|
Peng S, Zhou Y, Lu M, Wang Q. Review of Herbal Medicines for the Treatment of Depression. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Depression, a mental illness that is receiving increasing attention, is caused by multiple factors and genes and adversely affects social life and health. Several hypotheses have been proposed to clarify the pathogenesis of depression, and various synthetic antidepressants have been introduced to treat patients with depression. However, these drugs are effective only in a proportion of patients and fail to achieve complete remission. Recently, herbal medicines have received much attention as alternative treatments for depression because of their fewer side effects and lower costs. In this review, we have mainly focused on the herbal medicines that have been proven in clinical studies (especially randomized controlled trials and preclinical studies) to have antidepressant effects; we also describe the potential mechanisms of the antidepressant effects of those herbal medicines; the cellular and animal model of depression; and the development of novel drug delivery systems for herbal antidepressants. Finally, we objectively elaborate on the challenges of using herbal medicines as antidepressants and describe the benefits, adverse effects, and toxicity of these medicines.
Collapse
Affiliation(s)
- Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Lu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Hu Y, Deng F, Zhang L, Hu K, Liu S, Zhong S, Yang J, Zeng X, Peng X. Depression and Quality of Life in Patients with Gliomas: A Narrative Review. J Clin Med 2022; 11:jcm11164811. [PMID: 36013047 PMCID: PMC9410515 DOI: 10.3390/jcm11164811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
In patients with gliomas, depression is a common complication that may cause severe psychological barriers and deteriorate the patient’s quality of life (QoL). Currently, the Hospital Anxiety and Depression Scale (HADS) is the most commonly used tool to diagnose depression in patients with gliomas. Female sex, unmarried status, low education level, high tumor grade, and a history of mental illness may increase the risks of depression and depressive symptoms in patients with gliomas. The QoL of patients with gliomas can be directly reduced by depression. Therefore, the evaluation and intervention of mood disorders could improve the overall QoL of patients with gliomas. Antidepressant use has become a treatment strategy for patients with gliomas and comorbid depression. This narrative review summarizes the current issues related to depression in patients with gliomas, including the prevalence, risk factors, and diagnostic criteria of depression as well as changes in QoL caused by comorbid depression and antidepressant use. The purpose of this review is to guide clinicians to assess the psychological status of patients with gliomas and to provide clinicians and oncologists with a new treatment strategy to improve the prognosis of such patients.
Collapse
Affiliation(s)
- Yue Hu
- Department of Clinical Medicine, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410006, China
| | - Fang Deng
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 238 Shangmayuanling Lane, Changsha 410078, China
| | - Lupeng Zhang
- Department of Biochemistry and Molecular Biology, Jishou University School of Medicine, 120 Renmin South Road, Jishou 416000, China
| | - Keyue Hu
- Department of Clinical Medicine, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410006, China
| | - Shiqi Liu
- Department of Clinical Medicine, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410006, China
| | - Suye Zhong
- Department of Clinical Medicine, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410006, China
| | - Jun Yang
- Department of Clinical Medicine, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410006, China
| | - Xiaomin Zeng
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 238 Shangmayuanling Lane, Changsha 410078, China
- Correspondence: (X.Z.); (X.P.)
| | - Xiaoning Peng
- Department of Clinical Medicine, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410006, China
- Department of Biochemistry and Molecular Biology, Jishou University School of Medicine, 120 Renmin South Road, Jishou 416000, China
- Correspondence: (X.Z.); (X.P.)
| |
Collapse
|
16
|
Asensi-Cantó A, López-Abellán MD, Castillo-Guardiola V, Hurtado AM, Martínez-Penella M, Luengo-Gil G, Conesa-Zamora P. Antitumoral Effects of Tricyclic Antidepressants: Beyond Neuropathic Pain Treatment. Cancers (Basel) 2022; 14:cancers14133248. [PMID: 35805019 PMCID: PMC9265090 DOI: 10.3390/cancers14133248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Tricyclic antidepressants (TCAs) are old and known therapeutic agents whose good safety profile makes them good candidates for drug repurposing. As the relevance of nerves in cancer development and progression is being unveiled, attention now turns to the use of nerve-targeting drugs, such as TCAs, as an interesting approach to combat cancer. In this review, we discuss current evidence about the safety of TCAs, their application to treat neuropathic pain in cancer patients, and in vitro and in vivo demonstrations of the antitumoral effects of TCAs. Finally, the results of ongoing clinical trials and future directions are discussed. Abstract Growing evidence shows that nerves play an active role in cancer development and progression by altering crucial molecular pathways and cell functions. Conversely, the use of neurotropic drugs, such as tricyclic antidepressants (TCAs), may modulate these molecular signals with a therapeutic purpose based on a direct antitumoral effect and beyond the TCA use to treat neuropathic pain in oncology patients. In this review, we discuss the TCAs’ safety and their central effects against neuropathic pain in cancer, and the antitumoral effects of TCAs in in vitro and preclinical studies, as well as in the clinical setting. The current evidence points out that TCAs are safe and beneficial to treat neuropathic pain associated with cancer and chemotherapy, and they block different molecular pathways used by cancer cells from different locations for tumor growth and promotion. Likewise, ongoing clinical trials evaluating the antineoplastic effects of TCAs are discussed. TCAs are very biologically active compounds, and their repurposing as antitumoral drugs is a promising and straightforward approach to treat specific cancer subtypes and to further define their molecular targets, as well as an interesting starting point to design analogues with increased antitumoral activity.
Collapse
Affiliation(s)
- Antonio Asensi-Cantó
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Servicio de Farmacia Hospitalaria, Hospital Universitario Santa Lucía, 30202 Cartagena, Spain
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - María Dolores López-Abellán
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - Verónica Castillo-Guardiola
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - Ana María Hurtado
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Grupo de Investigación en Inmunobiología para la Acuicultura, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Mónica Martínez-Penella
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Servicio de Farmacia Hospitalaria, Hospital Universitario Santa Lucía, 30202 Cartagena, Spain
| | - Ginés Luengo-Gil
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Correspondence: (G.L.-G.); (P.C.-Z.); Tel.: +34-968-128-600 (ext. 951615) (G.L.-G. & P.C.-Z.)
| | - Pablo Conesa-Zamora
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Correspondence: (G.L.-G.); (P.C.-Z.); Tel.: +34-968-128-600 (ext. 951615) (G.L.-G. & P.C.-Z.)
| |
Collapse
|
17
|
Complex Effects of Sertraline and Citalopram on In Vitro Murine Breast Cancer Proliferation and on In Vivo Progression and Anxiety Level. Int J Mol Sci 2022; 23:ijms23052711. [PMID: 35269853 PMCID: PMC8910710 DOI: 10.3390/ijms23052711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/14/2023] Open
Abstract
Some selective serotonin reuptake inhibitors (SSRIs), primarily sertraline, demonstrate anti-proliferative activity in malignant cell-lines and in xenografted mouse models of colorectal tumor. There is, however, a paucity of comparative studies on the anti-tumor effects of SSRIs. We compared the in vitro and in vivo effects of sertraline and citalopram on murine 4T1 breast cancer. Grafted mice were used to determine the rate of tumor growth and survival as well as the impact of stress and antidepressant treatment on tumor progression and mortality and on pro-inflammatory cytokines. Sertraline, in the micromolar range, but not citalopram, induced a significant in vitro concentration-dependent inhibition of murine 4T1 cell proliferation and splenocyte viability. In contrast, sertraline (10 mg/kg/d), enhanced in vivo tumor growth. Contrary to the study's hypothesis, chronic mild stress did not modify tumor growth in grafted mice. The in vitro effects of sertraline on tumor growth seem to be the opposite of its in vivo effects. The impact of sertraline treatment on humans with breast cancer should be further investigated.
Collapse
|
18
|
Weeland CJ, Kasprzak S, de Joode NT, Abe Y, Alonso P, Ameis SH, Anticevic A, Arnold PD, Balachander S, Banaj N, Bargallo N, Batistuzzo MC, Benedetti F, Beucke JC, Bollettini I, Brecke V, Brem S, Cappi C, Cheng Y, Cho KIK, Costa DLC, Dallaspezia S, Denys D, Eng GK, Ferreira S, Feusner JD, Fontaine M, Fouche JP, Grazioplene RG, Gruner P, He M, Hirano Y, Hoexter MQ, Huyser C, Hu H, Jaspers-Fayer F, Kathmann N, Kaufmann C, Kim M, Koch K, Bin Kwak Y, Kwon JS, Lazaro L, Li CSR, Lochner C, Marsh R, Martínez-Zalacaín I, Mataix-Cols D, Menchón JM, Minnuzi L, Moreira PS, Morgado P, Nakagawa A, Nakamae T, Narayanaswamy JC, Nurmi EL, Ortiz AE, Pariente JC, Piacentini J, Picó-Pérez M, Piras F, Piras F, Pittenger C, Reddy YCJ, Rodriguez-Manrique D, Sakai Y, Shimizu E, Shivakumar V, Simpson HB, Soreni N, Soriano-Mas C, Sousa N, Spalletta G, Stern ER, Stevens MC, Stewart SE, Szeszko PR, Takahashi J, Tanamatis T, Tang J, Thorsen AL, Tolin D, van der Werf YD, van Marle H, van Wingen GA, Vecchio D, Venkatasubramanian G, Walitza S, Wang J, Wang Z, Watanabe A, Wolters LH, Xu X, Yun JY, Zhao Q, ENIGMA OCD Working Group, White T, Thompson PM, Stein DJ, van den Heuvel OA, et alWeeland CJ, Kasprzak S, de Joode NT, Abe Y, Alonso P, Ameis SH, Anticevic A, Arnold PD, Balachander S, Banaj N, Bargallo N, Batistuzzo MC, Benedetti F, Beucke JC, Bollettini I, Brecke V, Brem S, Cappi C, Cheng Y, Cho KIK, Costa DLC, Dallaspezia S, Denys D, Eng GK, Ferreira S, Feusner JD, Fontaine M, Fouche JP, Grazioplene RG, Gruner P, He M, Hirano Y, Hoexter MQ, Huyser C, Hu H, Jaspers-Fayer F, Kathmann N, Kaufmann C, Kim M, Koch K, Bin Kwak Y, Kwon JS, Lazaro L, Li CSR, Lochner C, Marsh R, Martínez-Zalacaín I, Mataix-Cols D, Menchón JM, Minnuzi L, Moreira PS, Morgado P, Nakagawa A, Nakamae T, Narayanaswamy JC, Nurmi EL, Ortiz AE, Pariente JC, Piacentini J, Picó-Pérez M, Piras F, Piras F, Pittenger C, Reddy YCJ, Rodriguez-Manrique D, Sakai Y, Shimizu E, Shivakumar V, Simpson HB, Soreni N, Soriano-Mas C, Sousa N, Spalletta G, Stern ER, Stevens MC, Stewart SE, Szeszko PR, Takahashi J, Tanamatis T, Tang J, Thorsen AL, Tolin D, van der Werf YD, van Marle H, van Wingen GA, Vecchio D, Venkatasubramanian G, Walitza S, Wang J, Wang Z, Watanabe A, Wolters LH, Xu X, Yun JY, Zhao Q, ENIGMA OCD Working Group, White T, Thompson PM, Stein DJ, van den Heuvel OA, Vriend C. The thalamus and its subnuclei-a gateway to obsessive-compulsive disorder. Transl Psychiatry 2022; 12:70. [PMID: 35190533 PMCID: PMC8861046 DOI: 10.1038/s41398-022-01823-2] [Show More Authors] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Larger thalamic volume has been found in children with obsessive-compulsive disorder (OCD) and children with clinical-level symptoms within the general population. Particular thalamic subregions may drive these differences. The ENIGMA-OCD working group conducted mega- and meta-analyses to study thalamic subregional volume in OCD across the lifespan. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2649 OCD patients and 2774 healthy controls across 29 sites (50 datasets) were processed using the FreeSurfer built-in ThalamicNuclei pipeline to extract five thalamic subregions. Volume measures were harmonized for site effects using ComBat before running separate multiple linear regression models for children, adolescents, and adults to estimate volumetric group differences. All analyses were pre-registered ( https://osf.io/73dvy ) and adjusted for age, sex and intracranial volume. Unmedicated pediatric OCD patients (<12 years) had larger lateral (d = 0.46), pulvinar (d = 0.33), ventral (d = 0.35) and whole thalamus (d = 0.40) volumes at unadjusted p-values <0.05. Adolescent patients showed no volumetric differences. Adult OCD patients compared with controls had smaller volumes across all subregions (anterior, lateral, pulvinar, medial, and ventral) and smaller whole thalamic volume (d = -0.15 to -0.07) after multiple comparisons correction, mostly driven by medicated patients and associated with symptom severity. The anterior thalamus was also significantly smaller in patients after adjusting for thalamus size. Our results suggest that OCD-related thalamic volume differences are global and not driven by particular subregions and that the direction of effects are driven by both age and medication status.
Collapse
Affiliation(s)
- Cees J. Weeland
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Selina Kasprzak
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Niels T. de Joode
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Yoshinari Abe
- grid.272458.e0000 0001 0667 4960Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Pino Alonso
- grid.411129.e0000 0000 8836 0780Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain ,grid.469673.90000 0004 5901 7501CIBERSAM, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Stephanie H. Ameis
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Ontario Canada ,grid.42327.300000 0004 0473 9646Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON Canada
| | - Alan Anticevic
- grid.47100.320000000419368710Departments of Psychiatry and Neuroscience, Yale University, New Haven, CT USA
| | - Paul D. Arnold
- grid.22072.350000 0004 1936 7697The Mathison Centre for Mental Health Research & Education, Departments of Psychiatry and Medical Genetics, Calgary, Canada ,grid.22072.350000 0004 1936 7697Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Srinivas Balachander
- grid.416861.c0000 0001 1516 2246OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Nerisa Banaj
- grid.417778.a0000 0001 0692 3437Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nuria Bargallo
- grid.10403.360000000091771775Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.410458.c0000 0000 9635 9413Image Diagnostic Center, Hospital Clinic, Barcelona, Spain
| | - Marcelo C. Batistuzzo
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP Brazil ,grid.11899.380000 0004 1937 0722Department of Methods and Techniques in Psychology, Pontificial Catholic University of Sao Paulo, Sao Paulo, SP Brazil
| | - Francesco Benedetti
- grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milano, Italy ,grid.18887.3e0000000417581884Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Jan C. Beucke
- grid.7468.d0000 0001 2248 7639Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden ,grid.461732.5Department of Medical Psychology, Medical School Hamburg, Hamburg, Germany ,grid.461732.5Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Irene Bollettini
- grid.18887.3e0000000417581884Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Vilde Brecke
- grid.412008.f0000 0000 9753 1393Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Silvia Brem
- grid.7400.30000 0004 1937 0650Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Carolina Cappi
- grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai Department of Psychiatry, New York, NY USA
| | - Yuqi Cheng
- grid.414902.a0000 0004 1771 3912Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kang Ik K. Cho
- grid.38142.3c000000041936754XPsychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.31501.360000 0004 0470 5905Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Daniel L. C. Costa
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP Brazil
| | - Sara Dallaspezia
- grid.18887.3e0000000417581884IRCCS Ospedale San Raffaele, Milano Italy Psychiatry, Milano, Italy
| | - Damiaan Denys
- grid.484519.5Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Goi Khia Eng
- grid.137628.90000 0004 1936 8753Department of Psychiatry, New York University School of Medicine, New York, NY USA ,grid.250263.00000 0001 2189 4777Clinical Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY USA
| | - Sónia Ferreira
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.512329.eClinical Academic Center - Braga, Braga, Portugal
| | - Jamie D. Feusner
- grid.17063.330000 0001 2157 2938Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada ,grid.19006.3e0000 0000 9632 6718Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA USA
| | - Martine Fontaine
- grid.21729.3f0000000419368729Columbia University Medical College, Columbia University, New York, NY USA
| | - Jean-Paul Fouche
- grid.7836.a0000 0004 1937 1151Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Rachael G. Grazioplene
- grid.47100.320000000419368710Department of Psychiatry, Yale University, New Haven, CT USA
| | - Patricia Gruner
- grid.47100.320000000419368710Department of Psychiatry, Yale University, New Haven, CT USA
| | - Mengxin He
- grid.414902.a0000 0004 1771 3912Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yoshiyuki Hirano
- grid.136304.30000 0004 0370 1101Research Center for Child Mental Development, Chiba University, Chiba, Japan ,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Marcelo Q. Hoexter
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Chaim Huyser
- Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, the Netherlands ,grid.509540.d0000 0004 6880 3010Amsterdam UMC, Department of Child and Adolescent Psychiatry, Amsterdam, the Netherlands
| | - Hao Hu
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fern Jaspers-Fayer
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, Canada ,grid.414137.40000 0001 0684 7788British Columbia Children’s Hospital Research Institute, Vancouver, Canada
| | - Norbert Kathmann
- grid.7468.d0000 0001 2248 7639Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Kaufmann
- grid.7468.d0000 0001 2248 7639Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Minah Kim
- grid.412484.f0000 0001 0302 820XSeoul National University Hospital, Department of Neuropsychiatry, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Seoul National University College of Medicine, Department of Psychiatry, Seoul, Republic of Korea
| | - Kathrin Koch
- grid.6936.a0000000123222966Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität, München, Germany ,grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Yoo Bin Kwak
- grid.31501.360000 0004 0470 5905Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Jun Soo Kwon
- grid.31501.360000 0004 0470 5905Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Seoul National University College of Medicine, Department of Psychiatry, Seoul, Republic of Korea ,grid.412484.f0000 0001 0302 820XDepartment of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic, IDIBAPS, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Christine Lochner
- grid.11956.3a0000 0001 2214 904XStellenbosch University, SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch, South Africa
| | - Rachel Marsh
- grid.21729.3f0000000419368729Columbia University Medical College, Columbia University, New York, NY USA
| | - Ignacio Martínez-Zalacaín
- grid.411129.e0000 0000 8836 0780Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - David Mataix-Cols
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden ,grid.467087.a0000 0004 0442 1056Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Jose M. Menchón
- grid.411129.e0000 0000 8836 0780Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain ,grid.469673.90000 0004 5901 7501CIBERSAM, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Luciano Minnuzi
- grid.25073.330000 0004 1936 8227Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario Canada ,Offord Centre for Child Studies, Hamilton, Ontario Canada
| | - Pedro Silva Moreira
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.10328.380000 0001 2159 175XPsychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Pedro Morgado
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.512329.eClinical Academic Center-Braga (2CA), Braga, Portugal ,grid.436922.80000 0004 4655 1975Hospital de Braga, Braga, Portugal
| | - Akiko Nakagawa
- grid.136304.30000 0004 0370 1101Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Takashi Nakamae
- grid.272458.e0000 0001 0667 4960Graduate School of Medical Science Kyoto Prefectural University of Medicine, Department of Psychiatry, Kyoto, Japan
| | - Janardhanan C. Narayanaswamy
- grid.416861.c0000 0001 1516 2246OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Erika L. Nurmi
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA USA
| | - Ana E. Ortiz
- grid.410458.c0000 0000 9635 9413Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic, Barcelona, Spain ,grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose C. Pariente
- grid.10403.360000000091771775Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - John Piacentini
- grid.19006.3e0000 0000 9632 6718UCLA Semel Institute, Division of Child and Adolescent Psychiatry, Los Angeles, CA USA
| | - Maria Picó-Pérez
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.512329.eClinical Academic Center - Braga, Braga, Portugal
| | - Fabrizio Piras
- grid.417778.a0000 0001 0692 3437Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- grid.417778.a0000 0001 0692 3437Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Christopher Pittenger
- grid.47100.320000000419368710Department of Psychiatry and Yale Child Study Center, Yale University, New Haven, CT USA
| | - Y. C. Janardhan Reddy
- grid.416861.c0000 0001 1516 2246OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Daniela Rodriguez-Manrique
- grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München, München, Germany ,grid.6936.a0000000123222966Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany ,grid.5252.00000 0004 1936 973XGraduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-Universität, Munich, Germany
| | - Yuki Sakai
- grid.272458.e0000 0001 0667 4960Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan ,grid.418163.90000 0001 2291 1583Department of Neural Computation for Decision-Making, Advanced Telecommunications Research Institute International Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Eiji Shimizu
- grid.136304.30000 0004 0370 1101Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Venkataram Shivakumar
- grid.416861.c0000 0001 1516 2246Department of Integrative Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Helen Blair Simpson
- grid.21729.3f0000000419368729Columbia University Irving Medical College, Columbia University, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA
| | - Noam Soreni
- grid.25073.330000 0004 1936 8227Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario Canada ,Pediatric OCD Consultation Team, Anxiety Treatment and Research Center, Hamilton, Ontario Canada
| | - Carles Soriano-Mas
- grid.411129.e0000 0000 8836 0780Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain ,grid.469673.90000 0004 5901 7501CIBERSAM, Barcelona, Spain ,grid.7080.f0000 0001 2296 0625Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuno Sousa
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.512329.eClinical Academic Center - Braga, Braga, Portugal
| | - Gianfranco Spalletta
- grid.417778.a0000 0001 0692 3437IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy ,grid.39382.330000 0001 2160 926XBaylor College of Medicine, Department of Psychiatry and Behavioral Sciences, Houston, TX USA
| | - Emily R. Stern
- grid.137628.90000 0004 1936 8753Department of Psychiatry, New York University School of Medicine, New York, NY USA ,grid.250263.00000 0001 2189 4777Clinical Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY USA
| | - Michael C. Stevens
- grid.277313.30000 0001 0626 2712Institute of Living, Hartford, CT USA ,grid.47100.320000000419368710Yale University School of Medicine, New Haven, CT USA
| | - S. Evelyn Stewart
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, Canada ,grid.414137.40000 0001 0684 7788British Columbia Children’s Hospital Research Institute, Vancouver, Canada ,grid.498716.50000 0000 8794 2105BC Mental Health and Substance Use Services Research Institute, Vancouver, Canada
| | - Philip R. Szeszko
- grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.274295.f0000 0004 0420 1184James J. Peters VA Medical Center, Mental Illness Research, Education and Clinical Center, Bronx, NY USA
| | - Jumpei Takahashi
- grid.411321.40000 0004 0632 2959Department of Child Psychiatry, Chiba University Hospital, Chiba, Japan
| | - Tais Tanamatis
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Jinsong Tang
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Anders Lillevik Thorsen
- grid.412008.f0000 0000 9753 1393Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Centre for Crisis Psychology, University of Bergen, Bergen, Norway
| | - David Tolin
- grid.47100.320000000419368710Yale University School of Medicine, New Haven, CT USA ,grid.277313.30000 0001 0626 2712Institute of Living/Hartford Hospital, Hartford, CT USA
| | - Ysbrand D. van der Werf
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Hein van Marle
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Guido A. van Wingen
- grid.484519.5Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Daniela Vecchio
- grid.417778.a0000 0001 0692 3437Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - G. Venkatasubramanian
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health And Neurosciences, Department of Psychiatry, Bengaluru, India
| | - Susanne Walitza
- grid.7400.30000 0004 1937 0650Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jicai Wang
- grid.414902.a0000 0004 1771 3912Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhen Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anri Watanabe
- grid.272458.e0000 0001 0667 4960Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Lidewij H. Wolters
- grid.509540.d0000 0004 6880 3010Amsterdam UMC, Department of Child and Adolescent Psychiatry, Amsterdam, the Netherlands ,Levvel, Academic Center for Child and Adolescent Psychiatry, Post Box 303, 1115 ZG Duivendrecht, the Netherlands
| | - Xiufeng Xu
- grid.414902.a0000 0004 1771 3912Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Je-Yeon Yun
- grid.412484.f0000 0001 0302 820XSeoul National University Hospital, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Qing Zhao
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Tonya White
- grid.5645.2000000040459992XErasmus Medical Center, Department of Child and Adolescent Psychiatry/Psychology, Wytemaweg 8, 3015 GD Rotterdam, the Netherlands ,grid.42505.360000 0001 2156 6853Department of Radiology and Nuclear Medicine, University of Southern California, Los Angeles, CA USA
| | - Paul M. Thompson
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Dan J. Stein
- grid.7836.a0000 0004 1937 1151SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Odile A. van den Heuvel
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Chris Vriend
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Chung JK, Ahn YM, Kim SA, Joo EJ. Differences in mitochondrial DNA copy number between patients with bipolar I and II disorders. J Psychiatr Res 2022; 145:325-333. [PMID: 33190840 DOI: 10.1016/j.jpsychires.2020.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 02/01/2023]
Abstract
Mitochondria play a critical role in energy metabolism. Genetic, postmortem brain, and brain imaging studies of bipolar disorder (BD) patients indicated that mitochondrial dysfunction might explain BD pathophysiology. Mitochondrial function can be indirectly evaluated by measuring mitochondrial DNA (mtDNA) copy numbers. We recruited 186 bipolar I disorder (BD1) and 95 bipolar II disorder (BD2) patients, and age- and sex-matched controls. MtDNA copy numbers in peripheral blood cells were measured via quantitative polymerase chain reaction. We explored parameters (including age and clinical features) that might affect mtDNA copy numbers. We found that BD1 patients had a lower mtDNA copy number than controls and that mtDNA copy number was negatively associated with the number of mood episodes. BD2 patients had a higher mtDNA copy number than controls. Thus, changes in mitochondrial function may influence BD pathophysiology. The opposite directions of the association with mtDNA copy number in BD1 and BD2 patients suggests that the difference in pathophysiology may be associated with mitochondrial function.
Collapse
Affiliation(s)
- Jae Kyung Chung
- Department of Psychiatry, Eumsung-somang Hospital, Eumsung, Republic of Korea
| | - Yong Min Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea.
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea; Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Cakil YD, Ozunal ZG, Kayali DG, Aktas RG, Saglam E. Anti-proliferative effects of paroxetine alone or in combination with sorafenib in HepG2 cells. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
21
|
Drug Repurposing for Glioblastoma and Current Advances in Drug Delivery-A Comprehensive Review of the Literature. Biomolecules 2021; 11:biom11121870. [PMID: 34944514 PMCID: PMC8699739 DOI: 10.3390/biom11121870] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with an extremely poor prognosis. There is a dire need to develop effective therapeutics to overcome the intrinsic and acquired resistance of GBM to current therapies. The process of developing novel anti-neoplastic drugs from bench to bedside can incur significant time and cost implications. Drug repurposing may help overcome that obstacle. A wide range of drugs that are already approved for clinical use for the treatment of other diseases have been found to target GBM-associated signaling pathways and are being repurposed for the treatment of GBM. While many of these drugs are undergoing pre-clinical testing, others are in the clinical trial phase. Since GBM stem cells (GSCs) have been found to be a main source of tumor recurrence after surgery, recent studies have also investigated whether repurposed drugs that target these pathways can be used to counteract tumor recurrence. While several repurposed drugs have shown significant efficacy against GBM cell lines, the blood–brain barrier (BBB) can limit the ability of many of these drugs to reach intratumoral therapeutic concentrations. Localized intracranial delivery may help to achieve therapeutic drug concentration at the site of tumor resection while simultaneously minimizing toxicity and side effects. These strategies can be considered while repurposing drugs for GBM.
Collapse
|
22
|
Baú-Carneiro JL, Akemi Guirao Sumida I, Gallon M, Zaleski T, Boia-Ferreira M, Bridi Cavassin F. Sertraline repositioning: an overview of its potential use as a chemotherapeutic agent after four decades of tumor reversal studies. Transl Oncol 2021; 16:101303. [PMID: 34911014 PMCID: PMC8681026 DOI: 10.1016/j.tranon.2021.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
Thirteen different neoplasms were shown to be susceptible to the antidepressant drug sertraline. The mechanisms of action through which sertraline can kill tumor cells are apoptosis, autophagy, and drug synergism. Sertraline inhibits TCTP, a tumor protein involved in cell survival pathways, responsible for reducing p53 levels. The testing of sertraline in vitro and in vivo resulted in reduced cell counting, shrinking of tumoral masses and increased survival rates. Dose extrapolation from animals to humans has shown a therapeutic index of sertraline that could support future clinical trials. Sertraline hydrochloride is a first-line antidepressant with potential antineoplastic properties because of its structural similarity with other drugs capable to inhibit the translation-controlled tumor protein (TCTP), a biomolecule involved in cell proliferation. Recent studies suggest it could be repositioned for cancer treatment. In this review, we systematically map the findings that repurpose sertraline as an antitumoral agent, including the mechanisms of action that support this hypotesis. From experimental in vivo and in vitro tumor models of thirteen different types of neoplasms, three mechanisms of action are proposed: apoptosis, autophagy, and drug synergism. The antidepressant is able to inhibit TCTP, modulate chemotherapeutical resistance and exhibit proper cytotoxicity, resulting in reduced cell counting (in vitro) and shrunken tumor masses (in vivo). A mathematical equation determined possible doses to be used in human beings, supporting that sertraline could be explored in clinical trials as a TCTP-inhibitor.
Collapse
Affiliation(s)
- João Luiz Baú-Carneiro
- Medical School Undergraduate Program, Faculdades Pequeno Príncipe (FPP), Curitiba, Brazil
| | | | - Malu Gallon
- Medical School Undergraduate Program, Faculdades Pequeno Príncipe (FPP), Curitiba, Brazil
| | - Tânia Zaleski
- Faculty of Medical Sciences, Faculdades Pequeno Príncipe (FPP), Curitiba, Brazil; Faculty of Biological Sciences, Universidade Estadual do Paraná (UNESPAR), Paranaguá, Brazil; Post Graduate Program of National Network's in Education, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Marianna Boia-Ferreira
- Postdoctoral Program of Cellular and Molecular Biology, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | | |
Collapse
|
23
|
Nykamp MJ, Zorumski CF, Reiersen AM, Nicol GE, Cirrito J, Lenze EJ. Opportunities for Drug Repurposing of Serotonin Reuptake Inhibitors: Potential Uses in Inflammation, Infection, Cancer, Neuroprotection, and Alzheimer's Disease Prevention. PHARMACOPSYCHIATRY 2021; 55:24-29. [PMID: 34875696 DOI: 10.1055/a-1686-9620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Serotonin reuptake inhibitors (SRIs) are safe and widely used for a variety of indications including depressive disorders, anxiety, and chronic pain. Besides inhibiting the serotonin transporter, these medications have broad-spectrum properties in many systems. Their roles have been studied in cancer, Alzheimer's disease, and infectious processes. The COVID-19 pandemic highlighted the importance of drug repurposing of medications already in use. We conducted a narrative review of current evidence and ongoing research on drug repurposing of SRIs, with a focus on immunomodulatory, antiproliferative, and neuroprotective activity. SRIs may have clinical use as repurposed agents for a wide variety of conditions including but not limited to COVID-19, Alzheimer's disease, and neoplastic processes. Further research, particularly randomized controlled trials, will be necessary to confirm the utility of SRIs for new indications.
Collapse
Affiliation(s)
- Madeline J Nykamp
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Angela M Reiersen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ginger E Nicol
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - John Cirrito
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
Wang Y, Wang X, Wang X, Wu D, Qi J, Zhang Y, Wang K, Zhou D, Meng QM, Nie E, Wang Q, Yu RT, Zhou XP. Imipramine impedes glioma progression by inhibiting YAP as a Hippo pathway independent manner and synergizes with temozolomide. J Cell Mol Med 2021; 25:9350-9363. [PMID: 34469035 PMCID: PMC8500960 DOI: 10.1111/jcmm.16874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with malignant glioma often suffered from depression, which leads to an increased risk of detrimental outcomes. Imipramine, an FDA‐approved tricyclic antidepressant, has been commonly used to relieve depressive symptoms in the clinic. Recently, imipramine has been reported to participate in the suppression of tumour progression in several human cancers, including prostate cancer, colon cancer and lymphomas. However, the effect of imipramine on malignant glioma is largely unclear. Here, we show that imipramine significantly retarded proliferation of immortalized and primary glioma cells. Mechanistically, imipramine suppressed tumour proliferation by inhibiting yes‐associated protein (YAP), a recognized oncogene in glioma, independent of Hippo pathway. In addition to inhibiting YAP transcription, imipramine also promoted the subcellular translocation of YAP from nucleus into cytoplasm. Consistently, imipramine administration significantly reduced orthotopic tumour progression and prolonged survival of tumour‐bearing mice. Moreover, exogenous overexpression of YAP partially restored the inhibitory effect of imipramine on glioma progression. Most importantly, compared with imipramine or temozolomide (TMZ) monotherapy, combination therapy with imipramine and TMZ exhibited enhanced inhibitory effect on glioma growth both in vitro and in vivo, suggesting the synergism of both agents. In conclusion, we found that tricyclic antidepressant imipramine impedes glioma progression by inhibiting YAP. In addition, combination therapy with imipramine and TMZ may potentially serve as promising anti‐glioma regimens, thus predicting a broad prospect of clinical application.
Collapse
Affiliation(s)
- Yan Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiang Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xu Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Di Wu
- Pathological Diagnosis Center, Xuzhou Central Hospital, Xuzhou, China
| | - Ji Qi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yu Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Kai Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Ding Zhou
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Qing-Ming Meng
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Er Nie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qiang Wang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ru-Tong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiu-Ping Zhou
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
25
|
Transcriptomic signatures of treatment response to the combination of escitalopram and memantine or placebo in late-life depression. Mol Psychiatry 2021; 26:5171-5179. [PMID: 32382137 PMCID: PMC9922535 DOI: 10.1038/s41380-020-0752-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Drugs that target glutamate neuronal transmission, such as memantine, offer a novel approach to the treatment of late-life depression, which is frequently comorbid with cognitive impairment. The results of our recently published double-blind, randomized, placebo-controlled trial of escitalopram or escitalopram/memantine in late-life depression with subjective memory complaints (NCT01902004) indicated no differences between treatments in depression remission, but additional benefits in cognition at 12-month follow-up with combination treatment. To identify pathways and biological functions uniquely induced by combination treatment that may explain cognitive improvements, we generated transcriptional profiles of remission compared with non-remission from whole blood samples. Remitters to escitalopram compared with escitalopram/memantine combination treatment display unique patterns of gene expression at baseline and 6 months after treatment initiation. Functional enrichment analysis demonstrates that escitalopram-based remission associates to functions related to cellular proliferation, apoptosis, and inflammatory response. Escitalopram/memantine-based remission, however, is characterized by processes related to cellular clearance, metabolism, and cytoskeletal dynamics. Both treatments modulate inflammatory responses, albeit via different effector pathways. Additional research is needed to understand the implications of these results in explaining the observed superior effects of combination treatment on cognition observed with prolonged treatment.
Collapse
|
26
|
Antoszczak M, Markowska A, Markowska J, Huczyński A. Antidepressants and Antipsychotic Agents as Repurposable Oncological Drug Candidates. Curr Med Chem 2021; 28:2137-2174. [PMID: 32895037 DOI: 10.2174/0929867327666200907141452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
Drug repurposing, also known as drug repositioning/reprofiling, is a relatively new strategy for the identification of alternative uses of well-known therapeutics that are outside the scope of their original medical indications. Such an approach might entail a number of advantages compared to standard de novo drug development, including less time needed to introduce the drug to the market, and lower costs. The group of compounds that could be considered as promising candidates for repurposing in oncology include the central nervous system drugs, especially selected antidepressant and antipsychotic agents. In this article, we provide an overview of some antidepressants (citalopram, fluoxetine, paroxetine, sertraline) and antipsychotics (chlorpromazine, pimozide, thioridazine, trifluoperazine) that have the potential to be repurposed as novel chemotherapeutics in cancer treatment, as they have been found to exhibit preventive and/or therapeutic action in cancer patients. Nevertheless, although drug repurposing seems to be an attractive strategy to search for oncological drugs, we would like to clearly indicate that it should not replace the search for new lead structures, but only complement de novo drug development.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Anna Markowska
- \Department of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznan, Poland
| | - Janina Markowska
- Department of Oncology, Poznań University of Medical Sciences, Poznan, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
27
|
Giménez-Palomo A, Dodd S, Anmella G, Carvalho AF, Scaini G, Quevedo J, Pacchiarotti I, Vieta E, Berk M. The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Front Psychiatry 2021; 12:546801. [PMID: 34295268 PMCID: PMC8291901 DOI: 10.3389/fpsyt.2021.546801] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are cellular organelles involved in several biological processes, especially in energy production. Several studies have found a relationship between mitochondrial dysfunction and mood disorders, such as major depressive disorder and bipolar disorder. Impairments in energy production are found in these disorders together with higher levels of oxidative stress. Recently, many agents capable of enhancing antioxidant defenses or mitochondrial functioning have been studied for the treatment of mood disorders as adjuvant therapy to current pharmacological treatments. A better knowledge of mitochondrial physiology and pathophysiology might allow the identification of new therapeutic targets and the development and study of novel effective therapies to treat these specific mitochondrial impairments. This could be especially beneficial for treatment-resistant patients. In this article, we provide a focused narrative review of the currently available evidence supporting the involvement of mitochondrial dysfunction in mood disorders, the effects of current therapies on mitochondrial functions, and novel targeted therapies acting on mitochondrial pathways that might be useful for the treatment of mood disorders.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Seetal Dodd
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Anmella
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Isabella Pacchiarotti
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Eduard Vieta
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- School of Medicine, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Solek P, Koszla O, Mytych J, Badura J, Chelminiak Z, Cuprys M, Fraczek J, Tabecka-Lonczynska A, Koziorowski M. Neuronal life or death linked to depression treatment: the interplay between drugs and their stress-related outcomes relate to single or combined drug therapies. Apoptosis 2020; 24:773-784. [PMID: 31278507 PMCID: PMC6711955 DOI: 10.1007/s10495-019-01557-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Depression is a serious medical condition, typically treated by antidepressants. Conventional monotherapy can be effective only in 60–80% of patients, thus modern psychiatry deals with the challenge of new methods development. At the same moment, interactions between antidepressants and the occurrence of potential side effects raise serious concerns, which are even more exacerbated by the lack of relevant data on exact molecular mechanisms. Therefore, the aims of the study were to provide up-to-date information on the relative mechanisms of action of single antidepressants and their combinations. In this study, we evaluated the effect of single and combined antidepressants administration on mouse hippocampal neurons after 48 and 96 h in terms of cellular and biochemical features in vitro. We show for the first time that co-treatment with amitriptyline/imipramine + fluoxetine initiates in cells adaptation mechanisms which allow cells to adjust to stress and finally exerts less toxic events than in cells treated with single antidepressants. Antidepressants treatment induces in neuronal cells oxidative and nitrosative stress, which leads to micronuclei and double-strand DNA brakes formation. At this point, two different mechanistic events are initiated in cells treated with single and combined antidepressants. Single antidepressants (amitriptyline, imipramine or fluoxetine) activate cell cycle arrest resulting in proliferation inhibition. On the other hand, treatment with combined antidepressants (amitriptyline/imipramine + fluoxetine) initiates p16-dependent cell cycle arrest, overexpression of telomere maintenance proteins and finally restoration of proliferation. In conclusion, our findings may pave the way to better understanding of the stress-related effects on neurons associated with mono- and combined therapy with antidepressants.
Collapse
Affiliation(s)
- Przemyslaw Solek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.
| | - Oliwia Koszla
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.,Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Chodzki 4A, 20-093, Lublin, Poland
| | - Jennifer Mytych
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Joanna Badura
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Zaneta Chelminiak
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Magdalena Cuprys
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Joanna Fraczek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Anna Tabecka-Lonczynska
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Marek Koziorowski
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| |
Collapse
|
29
|
Wu Z, Wang G, Wang H, Xiao L, Wei Y, Yang C. Fluoxetine exposure for more than 2 days decreases the neuronal plasticity mediated by CRMP2 in differentiated PC12 cells. Brain Res Bull 2020; 158:99-107. [PMID: 32070769 DOI: 10.1016/j.brainresbull.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent studies indicate that antidepressants treatment restores neuronal plasticity. In contrast, some researchers claim that serotonergic antidepressants, including fluoxetine (FLU), may exacerbate neuronal plasticity, which is contradictory and rarely studied. Since almost those studies exposed cells with drugs for 1-2 days as treatment models of antidepressants, it is possible that FLU exposure for longer periods would have opposite effects on neuronal plasticity. RESULTS In the present study, we examined the effects of FLU exposure (up to 3 days) on the neuronal plasticity in differentiated PC12 cells. The cell viability shown a slight decrease at day 2 (93.5 ± 3.5 %), followed by a highly significant decrease at day 3(71.4 ± 4.4 %). As previously reported, neuronal plasticity was significantly upregulated by FLU exposure at day 1. However, the neurite length, activity-regulated cytoskeleton-associated protein (Arc) and c-Fos mRNA were inhibited with FLU exposure at day 3. Similarly, the expression of tubulin, which play important roles in the neuronal plasticity, was the same result. Furthermore, we found α-tubulin interacted with collapsing response mediator protein 2(CRMP2), which is related to neuronal plasticity, and the regulation of CRMP2 activity influenced the neurite length, Arc, c-Fos and tubulin expression. CONCLUSIONS The results demonstrated that neuronal plasticity was increased by FLU exposure at day 1, but exposure with FLU for more than 2 days had opposite effect on it. The reduction in neuronal plasticity with FLU exposure for more than 2 days might be involved in some aspects of the therapeutic effect of antidepressant on depression.
Collapse
Affiliation(s)
- Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Yanyan Wei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Can Yang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| |
Collapse
|
30
|
Hwang S, Kim JK. Fluoxetine Induces Apoptotic and Oxidative Neuronal Death Associated with The Influx of Copper Ions in Cultured Neuronal Cells. Chonnam Med J 2020; 56:20-26. [PMID: 32021838 PMCID: PMC6976768 DOI: 10.4068/cmj.2020.56.1.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
We examined the effect of fluoxetine, a selective serotonin reuptake inhibitor antidepressant, on neuronal viability in mouse cortical near-pure neuronal cultures. Addition of fluoxetine to the media for 24 hours induced neuronal death in a concentration-dependent manner. To delineate the mechanisms of fluoxetine-induced neuronal death, we investigated the effects of trolox, cycloheximide (CHX), BDNF, z-VAD-FMK, and various metal-chelators on fluoxetine-induced neuronal death. Neuronal death was assessed by MTT assay. The addition of 20 µM fluoxetine to the media for 24 hours induced 60–70% neuronal death, which was associated with the hallmarks of apoptosis, chromatin condensation and DNA laddering. Fluoxetine-induced death was significantly attenuated by CHX, BDNF, or z-VAD-FMK. Treatment with antioxidants, trolox and ascorbate, also markedly attenuated fluoxetine-induced death. Interestingly, some divalent cation chelators (EGTA, Ca-EDTA, and Zn-EDTA) also markedly attenuated the neurotoxicity. Fluoxetine-induced reactive oxygen species (ROS) generation was measured using the fluorescent dye 2′,7′-dichlorofluorescin diacetate. Trolox and bathocuproine disulfonic acid (BCPS), a cell membrane impermeable copper ion chelator, markedly attenuated the ROS production and neuronal death. However, deferoxamine, an iron chelator, did not affect ROS generation or neurotoxicity. We examined the changes in intracellular copper concentration using a copper-selective fluorescent dye, Phen Green FL, which is quenched by free copper ions. Fluoxetine quenched the fluorescence in neuronal cells, and the quenching effect of fluoxetine was reversed by co-treatment with BCPS, however, not by deferoxamine. These findings demonstrate that fluoxetine could induce apoptotic and oxidative neuronal death associated with an influx of copper ions.
Collapse
Affiliation(s)
- Shinae Hwang
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Korea
| | - Jong-Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
31
|
Kurtoglu Ozdes E, Altunkaynak BZ, Deniz OG, Ilkaya F, Guzel H, Kokcu A. A stereological study of the effects of antidepressants on postmenopausal rat kidney. Biotech Histochem 2019; 95:262-267. [PMID: 31746664 DOI: 10.1080/10520295.2019.1680865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Many factors can cause depression including genes (DNA), brain chemistry or stress. Antidepressant drugs affect the brain, heart, liver and kidney. We investigated the effects of the antidepressant drugs, amitriptyline (AMI) and paroxetine (PARO) on kidney. We used 24 adult female rats that were ovariectomized bilaterally 7 days before the experiment. The ovariectomized (OVX) animals and healthy control rats were divided into four equal groups for 4 weeks: control group, OVX control group (sham), AMI group and PARO group. Following the experimental period, the Cavalieri method was applied to sections of the kidney. PARO produced adverse effects on distal and proximal tubule volume, but AMI had no effect on the volume of distal and proximal tubules. Both PARO and AMI decreased the volume of Bowman spaces. PARO also damaged the kidney tubules and cells.
Collapse
Affiliation(s)
- E Kurtoglu Ozdes
- Department of Gynaecology and Obstetrics, Memorial Hizmet Hospital, Istanbul, Turkey
| | - B Z Altunkaynak
- Department of Histology and Embryology, Medical Faculty, Istanbul Okan University, Istanbul, Turkey
| | - O G Deniz
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - F Ilkaya
- Department of Pharmacology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - H Guzel
- Department of Pharmacology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - A Kokcu
- Department of Gynaecology and Obstetrics, Medical Park Hospital, Samsun, Turkey
| |
Collapse
|
32
|
Interactive Effects of Sertraline and Diphenhydramine on Biochemical and Behavioral Responses in Crucian Carp ( Carassius auratus). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173137. [PMID: 31466416 PMCID: PMC6747225 DOI: 10.3390/ijerph16173137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/05/2023]
Abstract
The ecotoxicity of psychiatric pharmaceuticals to aquatic organisms is being increasingly recognized. However, current ecological studies focus on the effects of individual psychiatric pharmaceuticals, with little attention being given to their combined effects. In this study, the interactive effects of two psychiatric pharmaceuticals, sertraline (SER) and diphenhydramine (DPH), on bioconcentration and biochemical and behavioral responses were investigated in crucian carp (Carassius auratus) after seven days of exposure. DPH was found to increase the accumulation of SER in fish tissues relative to SER-alone exposure. In addition, the mixture of SER and DPH significantly changed the activities of antioxidant enzymes and led to significant increases in malondialdehyde content, relative to SER alone. Concerning the neurotoxicity, relative to SER-alone exposure, brain AChE activity was significantly enhanced in fish following the combined exposure. Regarding behavioral responses, swimming activity and shoaling behavior were significantly altered in co-exposure treatments compared with the SER alone. Moreover, the inhibition effects on the feeding rates were increased in co-exposure treatments compared to SER alone. Collectively, our results suggest that the mixtures of psychiatric pharmaceuticals may pose more severe ecological risks to aquatic organisms compared to these compounds individually.
Collapse
|
33
|
Keatley K, Stromei-Cleroux S, Wiltshire T, Rajala N, Burton G, Holt WV, Littlewood DTJ, Briscoe AG, Jung J, Ashkan K, Heales SJ, Pilkington GJ, Meunier B, McGeehan JE, Hargreaves IP, McGeehan RE. Integrated Approach Reveals Role of Mitochondrial Germ-Line Mutation F18L in Respiratory Chain, Oxidative Alterations, Drug Sensitivity, and Patient Prognosis in Glioblastoma. Int J Mol Sci 2019; 20:ijms20133364. [PMID: 31323957 PMCID: PMC6651022 DOI: 10.3390/ijms20133364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumour in adults, with a dismal prognosis. This is partly due to considerable inter- and intra-tumour heterogeneity. Changes in the cellular energy-producing mitochondrial respiratory chain complex (MRC) activities are a hallmark of glioblastoma relative to the normal brain, and associate with differential survival outcomes. Targeting MRC complexes with drugs can also facilitate anti-glioblastoma activity. Whether mutations in the mitochondrial DNA (mtDNA) that encode several components of the MRC contribute to these phenomena remains underexplored. We identified a germ-line mtDNA mutation (m. 14798T > C), enriched in glioblastoma relative to healthy controls, that causes an amino acid substitution F18L within the core mtDNA-encoded cytochrome b subunit of MRC complex III. F18L is predicted to alter corresponding complex III activity, and sensitivity to complex III-targeting drugs. This could in turn alter reactive oxygen species (ROS) production, cell behaviour and, consequently, patient outcomes. Here we show that, despite a heterogeneous mitochondrial background in adult glioblastoma patient biopsy-derived cell cultures, the F18L substitution associates with alterations in individual MRC complex activities, in particular a 75% increase in MRC complex II_III activity, and a 34% reduction in CoQ10, the natural substrate for MRC complex III, levels. Downstream characterisation of an F18L-carrier revealed an 87% increase in intra-cellular ROS, an altered cellular distribution of mitochondrial-specific ROS, and a 64% increased sensitivity to clomipramine, a repurposed MRC complex III-targeting drug. In patients, F18L-carriers that received the current standard of care treatment had a poorer prognosis than non-carriers (373 days vs. 415 days, respectively). Single germ-line mitochondrial mutations could predispose individuals to differential prognoses, and sensitivity to mitochondrial targeted drugs. Thus, F18L, which is present in blood could serve as a useful non-invasive biomarker for the stratification of patients into prognostically relevant groups, one of which requires a lower dose of clomipramine to achieve clinical effect, thus minimising side-effects.
Collapse
Affiliation(s)
- Kathleen Keatley
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Samuel Stromei-Cleroux
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Tammy Wiltshire
- Centre for Enzyme Innovation, Institute of Biological and Biomedical Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Nina Rajala
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Gary Burton
- Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
| | - William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield S10 2SF, UK
| | | | - Andrew G Briscoe
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Core Research Laboratories, Natural History Museum, London SW7 5BD, UK
| | - Josephine Jung
- Department of Neurosurgery, Kings College Hospital, London SE5 9RS, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, Kings College Hospital, London SE5 9RS, UK
| | - Simon J Heales
- Neurometabolic Unit, National Hospital for Neurology, London WC1N 3BG, UK
- Department of Chemical Pathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Geoffrey J Pilkington
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell, 91190 Gif-sur-Yvette, France
| | - John E McGeehan
- Centre for Enzyme Innovation, Institute of Biological and Biomedical Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, National Hospital for Neurology, London WC1N 3BG, UK.
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | - Rhiannon E McGeehan
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
34
|
Weissenrieder JS, Neighbors JD, Mailman RB, Hohl RJ. Cancer and the Dopamine D 2 Receptor: A Pharmacological Perspective. J Pharmacol Exp Ther 2019; 370:111-126. [PMID: 31000578 PMCID: PMC6558950 DOI: 10.1124/jpet.119.256818] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/16/2019] [Indexed: 01/12/2023] Open
Abstract
The dopamine D2 receptor (D2R) family is upregulated in many cancers and tied to stemness. Reduced cancer risk has been correlated with disorders such as schizophrenia and Parkinson's disease, in which dopaminergic drugs are used. D2R antagonists are reported to have anticancer efficacy in cell culture and animal models where they have reduced tumor growth, induced autophagy, affected lipid metabolism, and caused apoptosis, among other effects. This has led to several hypotheses, the most prevalent being that D2R ligands may be a novel approach to cancer chemotherapy. This hypothesis is appealing because of the large number of approved and experimental drugs of this class that could be repurposed. We review the current state of the literature and the evidence for and against this hypothesis. When the existing literature is evaluated from a pharmacological context, one of the striking findings is that the concentrations needed for cytotoxic effects of D2R antagonists are orders of magnitude higher than their affinity for this receptor. Although additional definitive studies will provide further clarity, our hypothesis is that targeting D2-like dopamine receptors may only yield useful ligands for cancer chemotherapy in rare cases.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Jeffrey D Neighbors
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Richard B Mailman
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Raymond J Hohl
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| |
Collapse
|
35
|
Matsushima Y, Terada K, Kamei C, Sugimoto Y. Sertraline inhibits nerve growth factor-induced neurite outgrowth in PC12 cells via a mechanism involving the sigma-1 receptor. Eur J Pharmacol 2019; 853:129-135. [PMID: 30902656 DOI: 10.1016/j.ejphar.2019.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/18/2019] [Indexed: 02/02/2023]
Abstract
The selective serotonin reuptake inhibitors (SSRIs) fluvoxamine and sertraline show a high affinity for sigma-1 receptors. Fluvoxamine enhances nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells via a sigma-1 receptor-mediated mechanism, which suggests that neurogenesis may be involved in the antidepressant action of fluvoxamine. However, the effects of sertraline on neurite outgrowth remain unclear. Here, we report the effects of sertraline on NGF-induced neurite outgrowth in PC12 cells. At concentrations above 0.3 μM, sertraline inhibited neurite outgrowth induced by NGF (50 ng/mL) in PC12 cells in a concentration-dependent manner. At 0.3-3 μM, sertraline inhibited NGF-induced neurite outgrowth; however, had no effect on cell viability. This suggests that at these concentrations, sertraline inhibits NGF-induced neurite outgrowth without causing cell toxicity. Because sertraline has a high affinity for the sigma-1 receptor, we investigated whether this receptor is involved in sertraline's inhibitory effect on NGF-induced neurite outgrowth. The effect was reversed by both the sigma-1 receptor agonist PRE-084 and the sigma-1 receptor antagonist NE-100. These results suggest that sertraline inhibits NGF-induced neurite outgrowth in PC12 cells by acting as an inverse agonist of the sigma-1 receptor in this system.
Collapse
Affiliation(s)
- Yukari Matsushima
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan; Department of Kampo and Natural Product Chemistry, Yokohama University of Pharmacy, 601 Matanocho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Chiaki Kamei
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
| | - Yumi Sugimoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| |
Collapse
|
36
|
Emerging therapeutic potential of anti-psychotic drugs in the management of human glioma: A comprehensive review. Oncotarget 2019; 10:3952-3977. [PMID: 31231472 PMCID: PMC6570463 DOI: 10.18632/oncotarget.26994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Despite numerous advancements in the last decade, human gliomas such as astrocytoma and glioblastoma multiforme have the worst prognoses among all cancers. Anti-psychotic drugs are commonly prescribed to treat mental disorders among cancer patients, and growing empirical evidence has revealed their antitumor, anti-metastatic, anti-angiogenic, anti-proliferative, chemo-preventive, and neo-adjuvant efficacies in various in vitro, in vivo, and clinical glioma models. Anti-psychotic drugs have drawn the attention of physicians and researchers owing to their beneficial effects in the prevention and treatment of gliomas. This review highlights data on the therapeutic potential of various anti-psychotic drugs as anti-proliferative, chemopreventive, and anti-angiogenic agents in various glioma models via the modulation of upstream and downstream molecular targets involved in apoptosis, autophagy, oxidative stress, inflammation, and the cell cycle in in vitro and in vivo preclinical and clinical stages among glioma patients. The ability of anti-psychotic drugs to modulate various signaling pathways and multidrug resistance-conferring proteins that enhance the efficacy of chemotherapeutic drugs with low side-effects exemplifies their great potential as neo-adjuvants and potential chemotherapeutics in single or multimodal treatment approach. Moreover, anti-psychotic drugs confer the ability to induce glioma into oligodendrocyte-like cells and neuronal-like phenotype cells with reversal of epigenetic alterations through inhibition of histone deacetylase further rationalize their use in glioma treatment. The improved understanding of anti-psychotic drugs as potential chemotherapeutic drugs or as neo-adjuvants will provide better information for their use globally as affordable, well-tolerated, and effective anticancer agents for human glioma.
Collapse
|
37
|
Rutherford KD, Mazandu GK, Mulder NJ. A systems-level analysis of drug-target-disease associations for drug repositioning. Brief Funct Genomics 2019; 17:34-41. [PMID: 28968683 DOI: 10.1093/bfgp/elx015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug repositioning is the process of finding new therapeutic uses for existing, approved drugs-a process thathas value when considering the exorbitant costs of novel drug development. Several computational strategies exist as a way to predict these alternative applications. In this study, we used datasets on: (1) human biological drug targets and (2) disease-associated genes and, based on a direct functional interaction between them, searched for potential opportunities for drug repositioning. From the set of 1125 unique drug targets and their 88 490 interactions with disease-associated genes, 30 drug targets were analyzed and (3) discussed in detail for the purpose of this article. The current indications of the drugs thattarget them were validated through the interactions, and new opportunities for repositioning were predicted. Among the set of drugs for potential repositioning werebenzodiazepines for the treatment of autism spectrum disorders; nortriptyline for the treatment of melanoma, glioma and other cancers; and vitamin B6 in prevention of spontaneous abortions and cleft palate birth defects. Special emphasis was also placed on those new potential indications that pertained to orphan diseases-these are diseases whose rarity means that development of novel treatment is not financially viable. This computational drug repositioning approach uses existing information on drugs and drug targets, and insights into the genetic basis of disease, as a means to systematically generate the most probable new uses for the drugs on offer, and in this way harness their true therapeutic power.
Collapse
|
38
|
Rein T. Is Autophagy Involved in the Diverse Effects of Antidepressants? Cells 2019; 8:E44. [PMID: 30642024 PMCID: PMC6356221 DOI: 10.3390/cells8010044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
Autophagy has received increased attention as a conserved process governing cellular energy and protein homeostasis that is thus relevant in a range of physiological and pathophysiological conditions. Recently, autophagy has also been linked to depression, mainly through its involvement in the action of antidepressants. Some antidepressant drugs and psychotropic medication have been reported to exert beneficial effects in other diseases, for example, in cancer and neurodegenerative diseases. This review collates the evidence for the hypothesis that autophagy contributes to the effects of antidepressants beyond depression treatment.
Collapse
Affiliation(s)
- Theo Rein
- Max Planck Institute of Psychiatry, Munich 80804, Germany.
| |
Collapse
|
39
|
Paroxetine Induces Apoptosis of Human Breast Cancer MCF-7 Cells through Ca 2+-and p38 MAP Kinase-Dependent ROS Generation. Cancers (Basel) 2019; 11:cancers11010064. [PMID: 30634506 PMCID: PMC6356564 DOI: 10.3390/cancers11010064] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022] Open
Abstract
Depression is more common in women with breast cancer than the general population. Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are widely used for the treatment of patients with depression and a range of anxiety-related disorders. The association between the use of antidepressant medication and breast cancer is controversial. In this study, we investigated whether and how SSRIs induce the death of human breast cancer MCF-7 cells. Of the antidepressants tested in this study (amitriptyline, bupropion, fluoxetine, paroxetine, and tianeptine), paroxetine most reduced the viability of MCF-7 cells in a time-and dose-dependent manner. The exposure of MCF-7 cells to paroxetine resulted in mitochondrion-mediated apoptosis, which is assessed by increase in the number of cells with sub-G1 DNA content, caspase-8/9 activation, poly (ADP-ribose) polymerase cleavage, and Bax/Bcl-2 ratio and a reduction in the mitochondrial membrane potential. Paroxetine increased a generation of reactive oxygen species (ROS), intracellular Ca2+ levels, and p38 MAPK activation. The paroxetine-induced apoptotic events were reduced by ROS scavengers and p38 MAPK inhibitor, and the paroxetine’s effect was dependent on extracellular Ca2+ level. Paroxetine also showed a synergistic effect on cell death induced by chemotherapeutic drugs in MCF-7 and MDA-MB-231 cells. Our results showed that paroxetine induced apoptosis of human breast cancer MCF-7 cells through extracellular Ca2+-and p38 MAPK-dependent ROS generation. These results suggest that paroxetine may serve as an anticancer adjuvant to current cancer therapies for breast cancer patients with or without depression.
Collapse
|
40
|
Shen W, Chang SC. Antidepressant therapy in patients with cancer: A clinical review. TAIWANESE JOURNAL OF PSYCHIATRY 2019. [DOI: 10.4103/tpsy.tpsy_3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
41
|
Jang WJ, Jung SK, Vo TTL, Jeong CH. Anticancer activity of paroxetine in human colon cancer cells: Involvement of MET and ERBB3. J Cell Mol Med 2018; 23:1106-1115. [PMID: 30421568 PMCID: PMC6349215 DOI: 10.1111/jcmm.14011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/18/2018] [Accepted: 08/16/2018] [Indexed: 12/28/2022] Open
Abstract
The concept of drug repositioning has recently received considerable attention in the field of oncology. In the present study, we propose that paroxetine can be used as a potent anticancer drug. Paroxetine, one of the selective serotonin reuptake inhibitors (SSRIs), has been widely prescribed for the treatment of depression and anxiety disorders. Recently, SSRIs have been reported to have anticancer activity in various types of cancer cells; however, the underlying mechanisms of their action are not yet known. In this study, we investigated the potential anticancer effect of paroxetine in human colorectal cancer cells, HCT116 and HT‐29. Treatment with paroxetine reduced cell viability, which was associated with marked increase in apoptosis, in both the cell lines. Also, paroxetine effectively inhibited colony formation and 3D spheroid formation. We speculated that the mode of action of paroxetine might be through the inhibition of two major receptor tyrosine kinases – MET and ERBB3 – leading to the suppression of AKT, ERK and p38 activation and induction of JNK and caspase‐3 pathways. Moreover, in vivo experiments revealed that treatment of athymic nude mice bearing HT‐29 cells with paroxetine remarkably suppressed tumour growth. In conclusion, paroxetine is a potential therapeutic option for patients with colorectal cancer.
Collapse
Affiliation(s)
- Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu, Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | | | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, Korea
| |
Collapse
|
42
|
D’Arcy M, Stürmer T, Lund JL. The importance and implications of comparator selection in pharmacoepidemiologic research. CURR EPIDEMIOL REP 2018; 5:272-283. [PMID: 30666285 PMCID: PMC6338470 DOI: 10.1007/s40471-018-0155-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Pharmacoepidemiologic studies employing large databases are critical to evaluating the effectiveness and safety of drug exposures in large and diverse populations. Because treatment is not randomized, researchers must select a relevant comparison group for the treatment of interest. The comparator group can consist of individuals initiating: (1) a similarly indicated treatment (active comparator), (2) a treatment used for a different indication (inactive comparator) or (3) no particular treatment (non-initiators). Herein we review recent literature and describe considerations and implications of comparator selection in pharmacoepidemiologic studies. RECENT FINDINGS Comparator selection depends on the scientific question and feasibility constraints. Because pharmacoepidemiologic studies rely on the choice to initiate or not initiate a specific treatment, rather than randomization, they are at-risk for confounding related to the comparator choice including: by indication, disease severity and frailty. We describe forms of confounding specific to pharmacoepidemiologic studies and discuss each comparator along with informative examples and a case study. We provide commentary on potential issues relevant to comparator selection in each study, highlighting the importance of understanding the population in whom the treatment is given and how patient characteristics are associated with the outcome. SUMMARY Advanced statistical techniques may be insufficient for reducing confounding in observational studies. Evaluating the extent to which comparator selection may mitigate or induce systematic bias is a critical component of pharmacoepidemiologic studies.
Collapse
Affiliation(s)
- Monica D’Arcy
- Department of Epidemiology, Gillings School of Global
Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Til Stürmer
- Department of Epidemiology, Gillings School of Global
Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jennifer L. Lund
- Department of Epidemiology, Gillings School of Global
Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
43
|
Gao H, Zhang IY, Zhang L, Song Y, Liu S, Ren H, Liu H, Zhou H, Su Y, Yang Y, Badie B. S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth. Cancer Lett 2018; 439:91-100. [PMID: 30076898 PMCID: PMC7048242 DOI: 10.1016/j.canlet.2018.07.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 01/03/2023]
Abstract
S100B, a member of the multigene family of Ca2+-binding proteins, is overexpressed by most malignant gliomas but its biological role in gliomagenesis is unclear. Recently, we demonstrated that low concentrations of S100B attenuated microglia activation through the induction of STAT3. Furthermore, S100B downregulation in a murine glioma model inhibited macrophage trafficking and tumor growth. Based on these observations, we hypothesized that S100B inhibitors may have antiglioma properties through modulation of tumor microenvironment. To discover novel S100B inhibitors, we developed a high-throughput screening cell-based S100B promoter-driven luciferase reporter assay. Initial screening of 768 compounds in the NIH library identified 36 hits with >85% S100B inhibitory activity. Duloxetine (Dul, an SNRI) was selected for the initial proof-of-concept studies. At low concentrations (1–5 μM) Dul inhibited S100B and CCL2 production in mouse GL261 glioma cells, but had minimal cytotoxic activity in vitro. In vivo, however, Dul (30 mg/kg/14 days) inhibited S100B production, altered the polarization and trafficking of tumor-associated myeloid-derived cells, and inhibited the growth of intracranial GL261 gliomas. Dul therapeutic efficacy, however, was not observed in the K-Luc glioma model that expresses low levels of S100B. These findings affirm the role of S100B in gliomagenesis and justify the development of more potent S100B inhibitors for glioma therapy.
Collapse
Affiliation(s)
- Hang Gao
- Department of Bone and Joint Surgery, No.1 Hospital of Jilin University, Changchun, Jilin Province, PR China.
| | - Ian Y Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, USA.
| | - Leying Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, USA.
| | - Yanyan Song
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin Province, PR China.
| | - Shunan Liu
- Department of Pharmacology, The Pharmacy School of Jilin University, Changchun, Jilin Province, PR China.
| | - Hui Ren
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, PR China.
| | - Huili Liu
- Division of Neurosurgery, City of Hope Beckman Research Institute, USA.
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, PR China.
| | - Yanping Su
- College of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, PR China.
| | - Yihang Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China.
| | - Behnam Badie
- Department of Cancer Immunotherapeutics & Tumor Immunology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA.
| |
Collapse
|
44
|
Preston G, Kirdar F, Kozicz T. The role of suboptimal mitochondrial function in vulnerability to post-traumatic stress disorder. J Inherit Metab Dis 2018; 41:585-596. [PMID: 29594645 DOI: 10.1007/s10545-018-0168-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Post-traumatic stress disorder remains the most significant psychiatric condition associated with exposure to a traumatic event, though rates of traumatic event exposure far outstrip incidence of PTSD. Mitochondrial dysfunction and suboptimal mitochondrial function have been increasingly implicated in several psychopathologies, and recent genetic studies have similarly suggested a pathogenic role of mitochondria in PTSD. Mitochondria play a central role in several physiologic processes underlying PTSD symptomatology, including abnormal fear learning, brain network activation, synaptic plasticity, steroidogenesis, and inflammation. Here we outline several potential mechanisms by which inherited (genetic) or acquired (environmental) mitochondrial dysfunction or suboptimal mitochondrial function, may contribute to PTSD symptomatology and increase susceptibility to PTSD. The proposed pathogenic role of mitochondria in the pathophysiology of PTSD has important implications for prevention and therapy, as antidepressants commonly prescribed for patients with PTSD have been shown to inhibit mitochondrial function, while alternative therapies shown to improve mitochondrial function may prove more efficacious.
Collapse
Affiliation(s)
- Graeme Preston
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Faisal Kirdar
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tamas Kozicz
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Anatomy, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
45
|
Elmorsy E, Al-Ghafari A, Helaly ANM, Hisab AS, Oehrle B, Smith PA. Editor's Highlight: Therapeutic Concentrations of Antidepressants Inhibit Pancreatic Beta-Cell Function via Mitochondrial Complex Inhibition. Toxicol Sci 2018; 158:286-301. [PMID: 28482088 DOI: 10.1093/toxsci/kfx090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Diabetes mellitus risk is increased by prolonged usage of antidepressants (ADs). Although various mechanisms are suggested for their diabetogenic potential, whether a direct effect of ADs on pancreatic β-cells is involved is unclear. We examined this idea for 3 ADs: paroxetine, clomipramine and, with particular emphasis, fluoxetine, on insulin secretion, mitochondrial function, cellular bioenergetics, KATP channel activity, and caspase activity in murine and human cell-line models of pancreatic β-cells. Metabolic assays showed that these ADs decreased the redox, oxidative respiration, and energetic potential of β-cells in a time and concentration dependent manner, even at a concentration of 100 nM, well within the therapeutic window. These effects were related to inhibition of mitochondrial complex I and III. Consistent with impaired mitochondrial function, lactate output was increased and insulin secretion decreased. Neither fluoxetine, antimycin nor rotenone could reactivate KATP channel activity blocked by glucose unlike the mitochondrial uncoupler, FCCP. Chronic, but not acute, AD increased oxidative stress and activated caspases, 3, 8, and 9. A close agreement was found for the rates of oxidative respiration, lactate output and modulation of KATP channel activity in MIN6 cells with those of primary murine cells; data that supports MIN6 as a valid model to study beta-cell bioenergetics. To conclude, paroxetine, clomipramine and fluoxetine were all cytotoxic at therapeutic concentrations on pancreatic beta-cells; an action suggested to arise by inhibition of mitochondrial bioenergetics, oxidative stress and induction of apoptosis. These actions help explain the diabetogenic potential of these ADs in humans.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Kingdom of Saudi Arabia
| | - Ahmed N M Helaly
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed S Hisab
- University of Nottingham Medical School, University of Nottingham, Nottinghamshire, UK
| | - Bettina Oehrle
- University of Nottingham Medical School, University of Nottingham, Nottinghamshire, UK
| | - Paul A Smith
- University of Nottingham Medical School, University of Nottingham, Nottinghamshire, UK
| |
Collapse
|
46
|
Kohli KM, Loewenstern J, Kessler RA, Pain M, Palmese CA, Bederson J, Shrivastava RK. Antidepressant use in patients with meningioma: is there an association with tumor recurrence? Neurosurg Focus 2018; 44:E14. [DOI: 10.3171/2018.3.focus17797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEWith increasing general use of antidepressants (ADs), multiple studies have noted a small protective effect of ADs for patients with glioma, but their impact on meningioma has not been established. This study aims to evaluate the role of ADs in the context of additional clinical factors in relation to long-term risk of meningioma recurrence.METHODSOne hundred five patients with an intracranial meningioma presenting from 2011–2014 with at least 3 years of follow-up (median 4.2 years) after resection were reviewed. AD use along with demographics, tumor characteristics, and outcomes were recorded. Multivariate logistic regression was used to analyze the association of AD use with tumor recurrence, including other clinical measures significantly associated with recurrence as covariates.RESULTSTwenty-nine patients (27.4%) were taking ADs (27 selective serotonin reuptake inhibitors, 2 norepinephrine-dopamine reuptake inhibitors) prior to tumor recurrence. Their tumors largely affected the frontal (31.0%) or parietal lobe (17.2%) and were located in convexity, parasagittal, or falcine (CPF) areas more frequently than skull base areas relative to the tumors of non-AD users (p = 0.035). AD use was found to be an independent predictor of recurrence, in addition to subtotal resection and WHO grade II/III classification (p values < 0.05). The median time from AD prescription to tumor recurrence was 36.6 months (interquartile range [IQR] = 20.9–62.9 months) and median length of AD use was 41.4 months (IQR = 24.7–62.8 months).CONCLUSIONSAD use was an independent predictor of meningioma recurrence. This association may be due to mood or affective changes caused by tumor location in CPF regions that may be a sign of early recurrence. The finding calls attention to AD use in the management of patients with meningioma, and warrants further exploration of an underlying relationship.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Raj K. Shrivastava
- Departments of 1Neurosurgery,
- 4Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
47
|
Repurposing drugs for glioblastoma: From bench to bedside. Cancer Lett 2018; 428:173-183. [PMID: 29729291 DOI: 10.1016/j.canlet.2018.04.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme is the most common, aggressive and lethal type of brain tumor. It is a stage IV cancer disease with a poor prognosis, as the current therapeutic options (surgery, radiotherapy and chemotherapy) are not able to eradicate tumor cells. The approach to treat glioblastoma has not suffered major changes over the last decade and temozolomide (TMZ) remains the mainstay for chemotherapy. However, resistance mechanisms to TMZ and other chemotherapeutic agents are becoming more frequent. The lack of effective options is a reality that may be counterbalanced by repositioning known and commonly used drugs for other diseases. This approach takes into consideration the available pharmacokinetic, pharmacodynamic, toxicity and safety data, and allows a much faster and less expensive drug and product development process. In this review, an extensive literature search is conducted aiming to list drugs with repurposing usage, based on their preferential damage in glioblastoma cells through various mechanisms. Some of these drugs have already entered clinical trials, exhibiting favorable outcomes, which sparks their potential application in glioblastoma treatment.
Collapse
|
48
|
Sakka L, Delétage N, Chalus M, Aissouni Y, Sylvain-Vidal V, Gobron S, Coll G. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation. Oncotarget 2018; 8:42789-42807. [PMID: 28467792 PMCID: PMC5522106 DOI: 10.18632/oncotarget.17050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (p<2.26 10−7), -24.1 (p<5.6 10−9) and -17.7 (p<1.2 10−7). CCNE1, AURKA, IGF2, MYCN and ERBB2 were more moderately down-regulated by both molecules. Glioma markers E2F1, DAPK1 and CCND1 were down-regulated. Citalopram displayed more powerful action with broader and distinct spectrum of action than escitalopram.
Collapse
Affiliation(s)
- Laurent Sakka
- Laboratoire d'Anatomie et d'Organogenèse, Laboratoire de Biophysique Sensorielle, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.,Service de Neurochirurgie, Pole RMND, CHU de Clermont-Ferrand, Hôpital Gabriel-Montpied, 63003 Clermont-Ferrand Cedex, France
| | - Nathalie Delétage
- Neuronax SAS, Biopôle Clermont-Limagne, F-63360 Saint-Beauzire, France
| | - Maryse Chalus
- Laboratoire d'Anatomie et d'Organogenèse, Laboratoire de Biophysique Sensorielle, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Youssef Aissouni
- Laboratoire de Pharmacologie Fondamentale et Clinique de la Douleur, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | | | - Stéphane Gobron
- Neuronax SAS, Biopôle Clermont-Limagne, F-63360 Saint-Beauzire, France
| | - Guillaume Coll
- Service de Neurochirurgie, Pole RMND, CHU de Clermont-Ferrand, Hôpital Gabriel-Montpied, 63003 Clermont-Ferrand Cedex, France
| |
Collapse
|
49
|
Tan SK, Jermakowicz A, Mookhtiar AK, Nemeroff CB, Schürer SC, Ayad NG. Drug Repositioning in Glioblastoma: A Pathway Perspective. Front Pharmacol 2018; 9:218. [PMID: 29615902 PMCID: PMC5864870 DOI: 10.3389/fphar.2018.00218] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/27/2018] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary adult brain tumor. The current standard of care is surgical resection, radiation, and chemotherapy treatment, which extends life in most cases. Unfortunately, tumor recurrence is nearly universal and patients with recurrent glioblastoma typically survive <1 year. Therefore, new therapies and therapeutic combinations need to be developed that can be quickly approved for use in patients. However, in order to gain approval, therapies need to be safe as well as effective. One possible means of attaining rapid approval is repurposing FDA approved compounds for GBM therapy. However, candidate compounds must be able to penetrate the blood-brain barrier (BBB) and therefore a selection process has to be implemented to identify such compounds that can eliminate GBM tumor expansion. We review here psychiatric and non-psychiatric compounds that may be effective in GBM, as well as potential drugs targeting cell death pathways. We also discuss the potential of data-driven computational approaches to identify compounds that induce cell death in GBM cells, enabled by large reference databases such as the Library of Integrated Network Cell Signatures (LINCS). Finally, we argue that identifying pathways dysregulated in GBM in a patient specific manner is essential for effective repurposing in GBM and other gliomas.
Collapse
Affiliation(s)
- Sze Kiat Tan
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, Miami Project to Cure Paralysis, Sylvester Comprehensive Cancer Center, University of Miami Brain Tumor Initiative, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anna Jermakowicz
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, Miami Project to Cure Paralysis, Sylvester Comprehensive Cancer Center, University of Miami Brain Tumor Initiative, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Adnan K Mookhtiar
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, Miami Project to Cure Paralysis, Sylvester Comprehensive Cancer Center, University of Miami Brain Tumor Initiative, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences and Center on Aging, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephan C Schürer
- Department of Molecular Pharmacology, Center for Computational Sciences, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nagi G Ayad
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, Miami Project to Cure Paralysis, Sylvester Comprehensive Cancer Center, University of Miami Brain Tumor Initiative, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
50
|
Sawai H. Desipramine-induced lysosomal vacuolization is independent of autophagy. Cell Biol Int 2017; 42:248-253. [PMID: 29068103 DOI: 10.1002/cbin.10901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/21/2017] [Indexed: 12/22/2022]
Abstract
Desipramine, a commonly used antidepressant drug, induced cytosolic vacuolization in L929 cells. The level of LC3-II was elevated and that of p62 was reduced in desipramine-treated L929 cells, indicating the induction of autophagy by desipramine. Surprisingly, massive vacuolization was observed in desipramine-treated L929 cells in the presence of LY294002, an inhibitor of autophagy. On the other hand, bafilomycin A1, an inhibitor of vacuolar type H+ ATPase, almost completely inhibited vacuolization in desipramine- or desipramine/LY294002-treated L929 cells. Furthermore, desipramine-induced vacuolization was observed in autophagy-deficient Atg7-/- mouse embryonic fibroblasts (MEFs) as well as wild-type Atg7+/+ MEFs. These results demonstrate that desipramine-induced lysosomal vacuolization is independent of autophagy.
Collapse
Affiliation(s)
- Hirofumi Sawai
- Department of Internal Medicine, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan
| |
Collapse
|