1
|
Liu B, Zhang Q. Association between CD4 + cell count, CD4/CD8 ratio, and fragility fractures in people with HIV. AIDS 2025; 39:817-828. [PMID: 39693488 DOI: 10.1097/qad.0000000000004091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND People with HIV (PWH) often exhibit reduced CD4 + T cell counts and altered CD4/CD8 ratios, but their impact on fragility fractures remains underexplored. This study investigated the association between CD4 + cell count, CD4/CD8 ratio, and fragility fractures in PWH in China. METHODS A retrospective cohort study was conducted on PWH treated at Beijing Ditan Hospital from January 2011 to September 2023. Data on demographics, clinical status, and bone mineral density were collected. Fragility fractures were identified through medical records. Multivariate Cox regression was used to assess the relationship between CD4 + cell count, CD4/CD8 ratio, and fracture risk, with restricted cubic splines (RCS) applied to explore potential nonlinear associations. Subgroup analyses evaluated the consistency of these findings. RESULTS The study included 1107 participants (median age 37 years, 92.6% male). The median CD4 + cell count was 547 cells/μl, and the median CD4/CD8 ratio was 0.7. Fragility fractures occurred in 185 participants (16.7%). Lower CD4 + cell counts (<200 cells/μl) were associated with a higher risk of fractures [aHR = 2.78; 95% confidence interval (95% CI): 1.66-4.65; P < 0.001], as were lower CD4/CD8 ratios (<0.5) (aHR = 3.43; 95% CI: 2.16-5.44; P < 0.001). RCS indicated a curvilinear association, with increased fracture risk at CD4/CD8 ratios below 1.16. Subgroup analyses confirmed the stability of these associations. CONCLUSION Lower CD4 + cell counts and CD4/CD8 ratios are linked to an increased risk of fragility fractures in PWH, underscoring the importance of immune function in bone health.
Collapse
Affiliation(s)
- Bo Liu
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University
- National Center for Infectious Diseases, Beijing, China
| | - Qiang Zhang
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University
- National Center for Infectious Diseases, Beijing, China
| |
Collapse
|
2
|
Kim SD, Pyo SJ, Kim DH, Yoo HS, Park SJ. Efficacy and safety of herbal medicine treatment on postsurgical recovery in gastric cancer patients: A systematic review and meta-analysis. Medicine (Baltimore) 2025; 104:e41034. [PMID: 40184097 PMCID: PMC11709200 DOI: 10.1097/md.0000000000041034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is the second most prevalent cancer in Korea, and is associated with significant morbidity and mortality. Although advancements in early detection and treatment have improved survival rates, management of postsurgical recovery remains vital. Herbal medicine (HM) has emerged as a potential adjunct therapy for enhancing the recovery and quality of life (QoL) of patients post-GC surgery. METHODS This systematic review and meta-analysis evaluated the efficacy and safety of HM in the postsurgical recovery of patients with GC. We searched both Korean and international databases and identified 16 randomized controlled trials that met our inclusion criteria. We assessed the study quality using the Cochrane Risk of Bias tool and analyzed the data using the Review Manager Software (RevMan). RESULTS Our analysis included 1546 patients from selected studies, demonstrating that HM significantly improved gastrointestinal recovery times, including the time to first flatus, bowel movement, and return of bowel sounds. Significant improvements were also observed in nutritional markers, such as albumin and prealbumin, along with beneficial effects on immune markers, such as CD3+ and CD4+ levels. QoL assessments using the WHOQOL-BREF and QLQ-C30 indicated substantial improvements. HM had a favorable safety profile, showing a reduced incidence of adverse effects compared to the controls. CONCLUSION The findings suggest that HM can significantly enhance recovery and improve quality of life following GC surgery, with a favorable safety profile. However, due to the considerable heterogeneity in study results, extended clinical trials and rigorous follow-ups are recommended to comprehensively assess long-term effects and side effects.
Collapse
Affiliation(s)
- Soo-Dam Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sook-Jin Pyo
- East-West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Dong-Hyeon Kim
- Pusan National University Korean Medicine Hospital, Yangsan, Republic of Korea
| | - Hwa-Seung Yoo
- East-West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - So-Jung Park
- Pusan National University Korean Medicine Hospital, Yangsan, Republic of Korea
- Department of Korean Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
3
|
Akbar N, Mariuz P. Disseminated TB With IRIS Presenting as a Pancreatic Mass in Newly Diagnosed HIV: A Case Report. Open Forum Infect Dis 2025; 12:ofae746. [PMID: 39817033 PMCID: PMC11733769 DOI: 10.1093/ofid/ofae746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Pancreatic tuberculosis (TB) is an uncommon extrapulmonary presentation of TB. Identification of coinfection with HIV may unmask not only disseminated TB but also immune reconstitution inflammatory syndrome (IRIS). We present the case of a 70-year-old Indian woman newly diagnosed with AIDS and pancreatic tuberculosis with miliary disseminated disease. Her clinical course was complicated by IRIS related to HIV-TB coinfection despite sequential and targeted anti-infective therapies. We review the presentation, pathophysiology, and risk factors for developing IRIS with HIV and pancreatic TB.
Collapse
Affiliation(s)
- Nina Akbar
- Division of Infectious Disease, Nuvance Health/Norwalk Hospital, Norwalk, Connecticut, USA
| | - Peter Mariuz
- Division of Infectious Disease, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
4
|
Li W, Liu H, Gao L, Hu Y, Zhang A, Li W, Liu G, Bai W, Xu Y, Xiao C, Deng J, Lei W, Chen G. In-depth human immune cellular profiling from newborn to frail. J Leukoc Biol 2024; 117:qiae046. [PMID: 38447557 DOI: 10.1093/jleuko/qiae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/20/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Immune functional decline and remodeling accompany aging and frailty. It is still largely unknown how changes in the immune cellular composition differentiate healthy individuals from those who become frail at a relatively early age. Our aim in this exploratory study was to investigate immunological changes from newborn to frailty and the association between health statute and various immune cell subtypes. The participants analyzed in this study covered human cord blood cells and peripheral blood cells collected from young adults and healthy and frail old individuals. A total of 30 immune cell subsets were performed by flow cytometry based on the surface markers of immune cells. Furthermore, frailty was investigated for its relations with various leukocyte subpopulations. Frail individuals exhibited a higher CD4/CD8 ratio; a higher proportion of CD4+ central memory T cells, CD8+ effector memory T cells, CD27- switched memory B (BSM) cells, CD27+ BSM cells, age-associated B cells, and CD38-CD24- B cells; and a lower proportion of naïve CD8+ T cells and progenitor B cells. The frailty index score was found to be associated with naïve T cells, CD4/CD8 ratio, age-associated B cells, CD27- BSM cells, and CD4+ central memory T cells. Our findings conducted a relatively comprehensive and extensive atlas of age- and frailty-related changes in peripheral leukocyte subpopulations from newborn to frailty. The immune phenotypes identified in this study can contribute to a deeper understanding of immunosenescence in frailty and may provide a rationale for future interventions and diagnosis.
Collapse
Affiliation(s)
- Wangchun Li
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Hangyu Liu
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Lijuan Gao
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Yang Hu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, No.17, Meidong Road, Yuexiu District, Guangzhou 510632, China
| | - Anna Zhang
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Wenfeng Li
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Guolong Liu
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, No.1, Panfu Road, Yuexiu District, Guangzhou 510180, China
| | - Weibin Bai
- Department of Food Science and Engineering, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Institute of Food Safety and Nutrition, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Yudai Xu
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Chanchan Xiao
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Jieping Deng
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Wen Lei
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, No.466, Xingang Middle Road, Haizhu District, Guangzhou 510632, China
| | - Guobing Chen
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control, Jinan University, Ministry of Education, No.601, West Huangpu Avenue, Tianhe District, Guangzhou, 510632, China
| |
Collapse
|
5
|
Garrido-Rodríguez V, Bulnes-Ramos Á, Olivas-Martínez I, Pozo-Balado MDM, Álvarez-Ríos AI, Gutiérrez F, Izquierdo R, García F, Tiraboschi JM, Vera-Méndez F, Peraire J, Rull A, Pacheco YM. The persistence of low CD4/CD8 ratio in chronic HIV-infection, despite ART suppression and normal CD4 levels, is associated with pre-therapy values of inflammation and thymic function. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:854-867. [PMID: 39209566 DOI: 10.1016/j.jmii.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Persistence of a low CD4/CD8 ratio is associated with an increased morbimortality in people living with HIV (PLWH) under effective antiretroviral therapy. We aimed to explore the immunological significance of a persistently low CD4/CD8 ratio, even despite normal CD4 levels, and assess whether these features vary from those associated to a low nadir-CD4, another well-established predictor of disease progression. METHODS CD4-recovered PLWH were classified by CD4/CD8 ratio after three-years of ART (viral suppression, CD4≥500; R < 0.8, n = 24 and R > 1.2, n = 28). sj/β-TRECs ratio and inflammatory-related markers were quantified. PBMCs were immunophenotyped by CyTOF and functionally characterized by ELISPOT. Subjects were also reclassified depending on nadir-CD4 (N ≤ 350/N > 350). RESULTS R < 0.8 showed a differential inflammatory profile compared to R > 1.2 (increased β2-microglobulin, D-dimers and IP-10 before ART). R < 0.8 presented lower baseline thymic function, being inversely correlated with post-ART inflammation. R < 0.8 at follow-up showed most alterations in CD8 subsets (increasing frequency and exhibiting a senescent phenotype [e.g., CD57+, CD95+]) and enhanced T-cell IFNγ/IL-2 secretion. However, comparing N ≤ 350 to N > 350, the main features were altered functional markers in CD4 T-cells, despite no differences in maturational subsets, together with a restricted T-cell cytokine secretion pattern. CONCLUSION Persistence of low CD4/CD8 ratio in successfully-treated PLWH, with normal CD4 counts, is associated with baseline inflammation and low thymic function, and it features post-therapy alterations specific to CD8 T-cells. Differently, subjects recovered from low nadir-CD4 in this setting feature post-therapy alterations on CD4 T-cells. Hence, different mechanisms of disease progression could underlie these biomarkers, potentially requiring different clinical approaches.
Collapse
Affiliation(s)
- Vanesa Garrido-Rodríguez
- Servicio de Inmunología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| | - Ángel Bulnes-Ramos
- Servicio de Inmunología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| | - Israel Olivas-Martínez
- Servicio de Inmunología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| | - María Del Mar Pozo-Balado
- Servicio de Inmunología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| | | | - Félix Gutiérrez
- Hospital General de Elche & Universidad Miguel Hernández, Alicante, Spain; CIBERINFEC, Carlos III Health Institute, Madrid, Spain.
| | - Rebeca Izquierdo
- National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; CIBERINFEC, Carlos III Health Institute, Madrid, Spain.
| | - Federico García
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain; CIBERINFEC, Carlos III Health Institute, Madrid, Spain.
| | - Juan Manuel Tiraboschi
- Servicio de Enfermedades Infecciosas, Hospital Universitario de Bellvitge, Barcelona, Spain.
| | - Francisco Vera-Méndez
- Medicina Interna Infecciosas, Hospital General Universitario Santa Lucía, Cartagena, Spain.
| | - Joaquim Peraire
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain; Universitat Rovira i Virgili (URV), Tarragona, Spain; CIBERINFEC, Carlos III Health Institute, Madrid, Spain.
| | - Anna Rull
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain; Universitat Rovira i Virgili (URV), Tarragona, Spain; CIBERINFEC, Carlos III Health Institute, Madrid, Spain.
| | - Yolanda María Pacheco
- Servicio de Inmunología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Universidad Loyola Andalucía, Facultad de Ciencias de la Salud, Campus Sevilla, 41704, Dos Hermanas, Sevilla, Spain.
| |
Collapse
|
6
|
Moreira Gabriel E, Dias J, Caballero RE, Salinas TW, Nayrac M, Filali-Mouhim A, Chartrand-Lefebvre C, Routy JP, Durand M, El-Far M, Tremblay C, Ancuta P. Novel Immunological Markers of Intestinal Impairment Indicative of HIV-1 Status and/or Subclinical Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624885. [PMID: 39651272 PMCID: PMC11623515 DOI: 10.1101/2024.11.22.624885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Antiretroviral therapy (ART) controls HIV-1 replication in people with HIV-1 (PWH), but immunological restauration at mucosal barrier surfaces is not achieved. This fuels microbial translocation, chronic immune activation, and increased comorbidities, including cardiovascular disease (CVD). Here, we sought to identify novel markers of mucosal barrier impairment in the blood to predict the HIV and/or CVD status. Flow cytometry was used to characterize CD326/EpCAM + intestinal epithelial cells (IEC); CD4 + T-cells; CD8 + and CD4 + intraepithelial lymphocytes (IELs); and subsets of CD4 + T-cells expressing Th17 (CCR6) and gut-homing (Itgβ7) markers. To this aim, we collected peripheral blood mononuclear cells (PBMCs) from 42 ART-treated PWH (HIV + ) and 40 uninfected participants (HIV - ) from the Canadian HIV and Aging Cohort Study (CHACS). Both groups were categorized based on the presence of coronary atherosclerotic plaques measured by CT scan angiography as total plaque volume (TPV, mm 3 ). Our findings associate the HIV-1 status with increased frequencies of circulating CD326 + IEC; CD326 + CD4 + T-cells with activated (CD69 + HLA-DR + ) and gut-homing (ItgαE + CCR6 + CCR9 + ) phenotypes, CCR6 + Itgβ7 - CD4 + T-cells; and decreased frequencies of CD8 + IELs. Logistic regression analyses confirmed the predictive capacity of the above cellular markers regarding HIV status. Spearman correlation revealed a positive correlation between TPV and CCR6 + Itgβ7 - and CCR6 + Itgβ7 + CD4 + T-cell frequencies.Together, these results highlighted significant immune dysregulation and persistent mucosal barrier alterations despite effective viral suppression by ART and linked the abundance of CCR6 + Itgβ7 + and CCR6 + Itgβ7 - CD4 + T-cells to increased atherosclerotic plaque burden. Thus, strategies targeting the gut-immune axis restoration may reduce CVD onset and improve long-term health outcomes in PWH.
Collapse
|
7
|
van der Mescht MA, Steel HC, de Beer Z, Masenge A, Abdullah F, Ueckermann V, Anderson R, Rossouw TM. T-Cell Phenotypes and Systemic Cytokine Profiles of People Living with HIV Admitted to Hospital with COVID-19. Microorganisms 2024; 12:2149. [PMID: 39597537 PMCID: PMC11596914 DOI: 10.3390/microorganisms12112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Whether SARS-CoV-2 infection leads to a higher mortality and morbidity in people living with HIV (PLWH) in Africa remains inconclusive. In this study, we explored the differences in the T-cell phenotypes between people with and without HIV on the day of admission (V1) and ±7 days later (V2), as well as their cytokine/chemokine profiles on V1. Patients admitted with COVID-19 were recruited between May 2020 and December 2021 from the Steve Biko Academic and Tshwane District Hospitals in Pretoria, South Africa. Of 174 patients, 37 (21%) were PLWH. T-cell profiles were determined by flow cytometry, and cytokine levels were determined using a multiplex suspension bead array. PLWH were significantly younger than those without HIV, and were more likely to be female. In an adjusted analysis, PLWH had higher percentages of CD4+ central memory (CM) programmed cell death protein 1 (PD-1)+, CD8+ effector memory (EM)2, and CD8+ EM4 CD57+ cells, as well as higher concentrations of interleukin (IL)-35 at admission. PLWH with CD4+ T-cell counts of >200 cells/mm3 had altered CD4+ and CD8+ T-cell profiles, lower levels of systemic inflammation measured by plasma ferritin and PCT levels, and less severe disease. PLWH with CD4+ T-cell counts of <200 cells/mm3 on admission had higher concentrations of IL-6 and lower levels of IL-29. At V2, the percentages of CD4+ CM PD-1+ T-cells and CD8+ EM4 T-cells co-expressing CD57 and PD-1 remained higher in PLWH, while all other CD8+ EM populations were lower. Fewer CD8+ EM T-cells after ±7 days of admission may be indicative of mechanisms inhibiting EM T-cell survival, as indicated by the higher expression of IL-35 and the T-cell maturation arrest observed in PLWH. This profile was not observed in PLWH with severe immunodeficiency, highlighting the need for differentiated care in the broader PLWH population.
Collapse
Affiliation(s)
- Mieke A. van der Mescht
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| | - Helen C. Steel
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| | - Zelda de Beer
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
- Tshwane District Hospital, Pretoria 0084, South Africa
| | - Andries Masenge
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa; (F.A.); (V.U.)
- Office of AIDS and TB Research, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Public Health Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa; (F.A.); (V.U.)
| | - Ronald Anderson
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| | - Theresa M. Rossouw
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| |
Collapse
|
8
|
Yan H, Dong B, Li X, He J, Yu B, Mao X, Yu J, Luo Y, Luo J, Wu A, Pu J, Wang Q, Wang H, Crenshaw J, Shen Y, Chen D. Spray-dried plasma protects against rotavirus-induced gastroenteritis via regulating macrophage and T cells divergence in weanling pigs. Front Vet Sci 2024; 11:1467108. [PMID: 39479205 PMCID: PMC11523297 DOI: 10.3389/fvets.2024.1467108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Infectious gastroenteritis is the major cause for diarrhea in piglets. The protection of spray-dried plasma (SDP) on viral gastroenteritis during the progression of rotavirus (RV) infection remain unclear. In this study, 64 weanling piglets were randomly assigned to control diets (n = 40) and SDP diets (n = 24) for 14 days, and then pigs were challenged with RV on day 15. Pigs were sacrificed on day 14 (normal condition), day 18 (manifestation stage), and day 21 (convalescent stage) of the trial. Prior to RV infection, SDP increased ADG, M1 macrophages and CD4+ T cells in different organs without increasing proinflammatory cytokines, indicating a more robust immunity with less inflammation. During the manifestation of infection, SDP enhanced mucosal immunity by increasing M1 macrophages, M1/M2 ratio and cytokines in mucosa and increasing intraepithelial CD8+ T cells for RV clearance. During the convalescence, SDP promoted M2 macrophage polarization and reduced pro-inflammatory cytokines to facilitate intestinal repair and prevent prolonged inflammation. Collectively, SDP enhanced mucosal immunity to promote viral clearance and maintained immune homeostasis to prevent long-lasting inflammation as a therapeutically approach for infectious gastroenteritis.
Collapse
Affiliation(s)
- Hui Yan
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Biqiong Dong
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xipeng Li
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Junning Pu
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Quyuan Wang
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huifen Wang
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Joe Crenshaw
- R&D Department, APC LLC, Ankeny, IA, United States
| | - Yanbin Shen
- R&D Department, APC LLC, Ankeny, IA, United States
| | - Daiwen Chen
- Key Laboratories for Animal Disease-Resistance Nutrition of China Ministry of Education, China Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Hui X, Farooq MA, Chen Y, Ajmal I, Ren Y, Xue M, Ji Y, Du B, Wu S, Jiang W. A novel strategy of co-expressing CXCR5 and IL-7 enhances CAR-T cell effectiveness in osteosarcoma. Front Immunol 2024; 15:1462076. [PMID: 39450160 PMCID: PMC11499113 DOI: 10.3389/fimmu.2024.1462076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Background Solid tumors are characterized by a low blood supply, complex stromal architecture, and immunosuppressive milieu, which inhibit CAR-T cell entry and survival. CXCR5 has previously been employed to increase CAR-T cell infiltration into CXCL13+ cancers. On the other hand, IL-7 improves the survival and persistence of T cells inside a solid tumor milieu. Methods We constructed a novel NKG2D-based CAR (C5/IL7-CAR) that co-expressed CXCR5 and IL-7. The human osteosarcoma cell lines U-2 OS, 143B, and Mg63 highly expressed MICA/B and CXCL13, thus presenting a perfect avenue for the present study. Results Novel CAR-T cells are superior in their activation, degranulation, and cytokine release competence, hence lysing more target cells than conventional CAR. Furthermore, CXCR5 and IL-7 co-expression decreased the expression of PD-1, TIM-3, and TIGIT and increased Bcl-2 expression. Novel CAR-T cells show enhanced proliferation and differentiation towards the stem cell memory T cell phenotype. C5/IL7-CAR-T cells outperformed conventional CAR-T in eradicating osteosarcoma in mouse models and displayed better survival. Additionally, CXCR5 and IL-7 co-expression enhanced CAR-T cell numbers, cytokine release, and survival in implanted tumor tissues compared to conventional CAR-T cells. Mechanistically, C5/IL7-CAR-T cells displayed enhanced STAT5 signaling. Conclusion These findings highlight the potential of CXCR5 and IL-7 co-expression to improve CAR-T cell therapy efficacy against osteosarcoma.
Collapse
Affiliation(s)
- Xinhui Hui
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yiran Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yaojun Ren
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Min Xue
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuzhou Ji
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Bingtan Du
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Shijia Wu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
10
|
Wouters C, Sachithanandham J, Akin E, Pieterse L, Fall A, Truong TT, Bard JD, Yee R, Sullivan DJ, Mostafa HH, Pekosz A. SARS-CoV-2 Variants from Long-Term, Persistently Infected Immunocompromised Patients Have Altered Syncytia Formation, Temperature-Dependent Replication, and Serum Neutralizing Antibody Escape. Viruses 2024; 16:1436. [PMID: 39339912 PMCID: PMC11437501 DOI: 10.3390/v16091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
SARS-CoV-2 infection of immunocompromised individuals often leads to prolonged detection of viral RNA and infectious virus in nasal specimens, presumably due to the lack of induction of an appropriate adaptive immune response. Mutations identified in virus sequences obtained from persistently infected patients bear signatures of immune evasion and have some overlap with sequences present in variants of concern. We characterized virus isolates obtained greater than 100 days after the initial COVID-19 diagnosis from two COVID-19 patients undergoing immunosuppressive cancer therapy, wand compared them to an isolate from the start of the infection. Isolates from an individual who never mounted an antibody response specific to SARS-CoV-2 despite the administration of convalescent plasma showed slight reductions in plaque size and some showed temperature-dependent replication attenuation on human nasal epithelial cell culture compared to the virus that initiated infection. An isolate from another patient-who did mount a SARS-CoV-2 IgM response-showed temperature-dependent changes in plaque size as well as increased syncytia formation and escape from serum-neutralizing antibodies. Our results indicate that not all virus isolates from immunocompromised COVID-19 patients display clear signs of phenotypic change, but increased attention should be paid to monitoring virus evolution in this patient population.
Collapse
Affiliation(s)
- Camille Wouters
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Elgin Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Amary Fall
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thao T. Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rebecca Yee
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - David J. Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Heba H. Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| |
Collapse
|
11
|
McMahon WC, Kwatra G, Izu A, Jones SA, Mbele NJ, Jafta N, Lala R, Shalekoff S, Tiemessen CT, Madhi SA, Nunes MC. T-cell responses to ancestral SARS-CoV-2 and Omicron variant among unvaccinated pregnant and postpartum women living with and without HIV in South Africa. Sci Rep 2024; 14:20348. [PMID: 39223211 PMCID: PMC11369237 DOI: 10.1038/s41598-024-70725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
SARS-CoV-2 cell-mediated immunity remains understudied during pregnancy in unvaccinated Black African women living with HIV (WLWH) from low- and middle-income countries. We investigated SARS-CoV-2-specific T-cell responses 1 month following infection in 24 HIV-uninfected women and 15 WLWH at any stage during pregnancy or postpartum. The full-length spike (FLS) glycoprotein and nucleocapsid (N) protein of wild-type (WT) SARS-CoV-2, as well as mutated spike protein regions found in the Omicron variant (B.1.1.529) were targeted by flow cytometry. WT-specific CD4+ and CD8+ T cells elicited similar FLS- and N-specific responses in HIV-uninfected women and WLWH. SARS-CoV-2-specific T-lymphocytes were predominantly TNF-α monofunctional in pregnant and postpartum women living with and without HIV, with fever cells producing either IFN-γ or IL-2. Furthermore, T-cell responses were unaffected by Omicron-specific spike mutations as similar responses between Omicron and the ancestral virus were detected for CD4+ and CD8+ T cells. Our results collectively demonstrate comparable T-cell responses between WLWH on antiretroviral therapy and HIV-uninfected pregnant and postpartum women who were naïve to Covid-19 vaccination. Additionally, we show that T cells from women infected with the ancestral virus, Beta variant (B.1.351), or Delta variant (B.1.617.2) can cross-recognize Omicron, suggesting an overall preservation of T-cell immunity.
Collapse
Affiliation(s)
- William C McMahon
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Research Chair Initiative in Vaccine Preventable Diseases, Department of Science and Innovation/National Research Foundation, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA.
- Department of Clinical Microbiology, Christian Medical College, Vellore, India.
| | - Alane Izu
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie A Jones
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nkululeko J Mbele
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nwabisa Jafta
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rushil Lala
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sharon Shalekoff
- A Division of the National Health Laboratory Service, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T Tiemessen
- A Division of the National Health Laboratory Service, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marta C Nunes
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Research Chair Initiative in Vaccine Preventable Diseases, Department of Science and Innovation/National Research Foundation, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center of Excellence in Respiratory Pathogens, Hospices Civils de Lyon, and Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
12
|
Szymańska B, Knysz B, Ciepłucha H, Piwowar A. Assessment of Metabolic, Inflammatory, and Immunological Disorders Using a New Panel of Plasma Parameters in People Living with HIV Undergoing Antiretroviral Therapy-A Retrospective Study. J Clin Med 2024; 13:4580. [PMID: 39124846 PMCID: PMC11312710 DOI: 10.3390/jcm13154580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives: People living with HIV (PLWH) treated with combined antiretroviral therapy (cART) show a greater predisposition to metabolic and inflammatory disturbances compared to the general population. This study aimed to assess the effect of five years of cART use on the level of selected parameters related to carbohydrate and lipid metabolism and inflammation in PLWH compared to the uninfected. Methods: The levels of sirtuins (-1, -3, -6); irisin (IRS); myostatin (MSTN); peptide YY (PYY); glucagon-like peptide-1 (GLP-1); dipeptidyl peptidase IV (DPP-4); fetuin-A (FETU-A); pentraxin 3 (PTX3); chemokine stromal cell-derived factor 1 (SDF-1); regulated on activation, normal T cell expressed and presumably secreted (RANTES); and interleukins (-4, -7, -15) in the plasma of PLWH and a control group were evaluated by immunoassay methods. The results obtained after five years of antiretroviral therapy were compared with the levels obtained before and one year after cART. Results: Analysis of the parameters after five years of cART showed significantly higher levels in PLWH compared to the control group for SIRT-6, IRS, and IL-4 and significantly lower levels for RANTES and IL-7. There were significantly higher levels of SIRT-6, PYY, GLP-1, and PTX3 obtained after five years of cART compared to the results before therapy and after one year of cART. Conclusions: The results indicated changes occur in the expression of selected parameters during cART use in PLWH. Further research on the clinical usefulness of selected parameters and obtaining new information on the development of HIV-related comorbidities needs to be conducted.
Collapse
Affiliation(s)
- Beata Szymańska
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Brygida Knysz
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Faculty of Medicine, Wroclaw Medical University, 51-149 Wroclaw, Poland; (B.K.); (H.C.)
| | - Hubert Ciepłucha
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Faculty of Medicine, Wroclaw Medical University, 51-149 Wroclaw, Poland; (B.K.); (H.C.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
13
|
Gadoth A, Ourfalian K, Basnet S, Kunzweiler C, Bohn RL, Fülöp T, Diaz-Decaro J. Potential relationship between cytomegalovirus and immunosenescence: Evidence from observational studies. Rev Med Virol 2024; 34:e2560. [PMID: 38866595 DOI: 10.1002/rmv.2560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Immunosenescence (IS) occurs as a natural outcome of ageing and may be described as a decline in immune system flexibility and adaptability to sufficiently respond to new, foreign antigens. Potential factors that may precipitate IS include persistent herpesvirus infections, such as cytomegalovirus (CMV). Here, we conducted a review of the literature evaluating the potential association between CMV and IS. Twenty-seven epidemiologic studies that included direct comparisons between CMV-seropositive and CMV-seronegative immunocompetent individuals were analysed. The majority of these studies (n = 20) were conducted in European populations. The strength of evidence supporting a relationship between CMV, and various IS-associated immunologic endpoints was assessed. T-cell population restructuring was the most prominently studied endpoint, described in 21 studies, most of which reported a relationship between CMV and reduced CD4:CD8 T-cell ratio or modified CD8+ T-cell levels. Telomere length (n = 4) and inflammageing (n = 3) were less frequently described in the primary literature, and the association of these endpoints with CMV and IS was less pronounced. An emergent trend from our review is the potential effect modification of the CMV-IS relationship with both sex and age, indicating the importance of considering various effector variables when evaluating associations between CMV and IS. Our analysis revealed plausible mechanisms that may underlie the larger epidemiologic trends seen in the literature that support the indirect effect of CMV on IS. Future studies are needed to clarify CMV-associated and IS-associated immunologic endpoints, as well as in more diverse global and immunocompromised populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Tamas Fülöp
- Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | |
Collapse
|
14
|
Rivero-Pino F, Casquete M, Castro MJ, Redondo del Rio P, Gutierrez E, Mayo-Iscar A, Nocito M, Corell A. Prospective, Randomized, Double-Blind Parallel Group Nutritional Study to Evaluate the Effects of Routine Intake of Fresh vs. Pasteurized Yogurt on the Immune System in Healthy Adults. Nutrients 2024; 16:1969. [PMID: 38931322 PMCID: PMC11206341 DOI: 10.3390/nu16121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The immune system is affected by the dietary products humans intake. Immune system regulation by nutrition has uses in the clinical context, but it can also benefit healthy populations by delaying or preventing the emergence of immune-mediated chronic illnesses. In this study, the purpose was to describe and compare the modulator effects on the immune system of the routine ingestion of fresh vs. pasteurized yogurt. A unicentral, prospective, randomized, double-blind, parallel group 8-week nutritional study was carried out comparing the ingestion of 125 g of the products in healthy adults three times a day. A complete battery of in vitro tests on the activity of the immune system, processes and phenomena was performed. Exclusive immune-modulatory effects of fresh yogurt with respect to base line were found in terms of increased systemic IgM (primary immune responses), increased synthesis of IFN-gamma upon stimulation (Th1) and increased peripheral T cells (mainly "naive" CD4s). In the three interventions, we observed an increased phagocytic activity and burst test in granulocytes, together with increased secretion of IL-6, IL-1 β and IL-8 (pro-inflammatory) and increased CD16 expression (FcR favoring phagocytosis) in granulocytes. Overall, it is concluded that regardless of bacteria being alive or thermally inactivated, yogurt has common effects on the innate system, but the presence of live bacteria is necessary to achieve a potentiating effect on the specific immune response.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Mar Casquete
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Maria José Castro
- Departamento de Enfermería, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Paz Redondo del Rio
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Eloina Gutierrez
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Agustín Mayo-Iscar
- Departamento de Estadística e Investigación Operativa & IMUVA, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Mercedes Nocito
- Inmunología, Hospital Clínico de Zaragoza, 50009 Zaragoza, Spain
| | - Alfredo Corell
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
15
|
Lisiecka U, Brodzki P, Śmiech A, Michalak K, Winiarczyk S, Żylińska B, Adaszek Ł. The diagnostic value of selected immune parameters in peripheral blood of dogs with malignant mammary tumours - a preliminary study. J Vet Res 2024; 68:271-278. [PMID: 38947156 PMCID: PMC11210351 DOI: 10.2478/jvetres-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The main adaptive immune cells are T and B lymphocytes and they play key roles in the induction of immune responses against canine mammary tumours. Investigating these cell subpopulations may lead to more precise diagnosis of these malignancies. Material and Methods The percentages of CD3+, CD4+ and CD8+ T cells and of CD21+ B cells in the peripheral blood of bitches with malignant mammary tumours were compared with those in the blood of healthy animals. The phenotypic features of peripheral blood leukocytes were evaluated by flow cytometry. Results There was a significant difference in the mean percentages of CD3+ lymphocytes between healthy (66.7%) and metastatic dogs (46.1%), and between tumour-bearing non-metastatic (66.6%) and metastatic dogs. There was also a significant difference in CD4+ T helper cell percentages between healthy dogs (40.4%) and dogs with metastases (23.2%), and between the latter and dogs without them (35.5%). In the case of CD21+ lymphocyte subsets, a significant difference was noted between healthy animals (10.9%) and those with metastases (20.1%), and between the latter and patients without metastases (8.5%). There were also significant differences in CD3+/CD21+ ratios between the group with metastases (3.0), the healthy group (7.8), and the group without metastases (8.5). Similarly, a significant difference was noted in CD4+/CD8+ ratios between animals with metastases (1.4), bitches in the control group (2.2), and dogs without metastases (1.9). Conclusion Peripheral blood leukocyte phenotypic characteristics are putative novel biomarkers. These findings may be useful in future studies improving mammary tumour diagnostic procedures, especially in metastasis detection.
Collapse
Affiliation(s)
- Urszula Lisiecka
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Piotr Brodzki
- Department and Clinic of Animal Reproduction, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Anna Śmiech
- Department of Pathological Anatomy, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Stanisław Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Beata Żylińska
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| |
Collapse
|
16
|
Casado-Fernández G, Cantón J, Nasarre L, Ramos-Martín F, Manzanares M, Sánchez-Menéndez C, Fuertes D, Mateos E, Murciano-Antón MA, Pérez-Olmeda M, Cervero M, Torres M, Rodríguez-Rosado R, Coiras M. Pre-existing cell populations with cytotoxic activity against SARS-CoV-2 in people with HIV and normal CD4/CD8 ratio previously unexposed to the virus. Front Immunol 2024; 15:1362621. [PMID: 38812512 PMCID: PMC11133563 DOI: 10.3389/fimmu.2024.1362621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction HIV-1 infection may produce a detrimental effect on the immune response. Early start of antiretroviral therapy (ART) is recommended to preserve the integrity of the immune system. In fact, people with HIV (PWH) and normal CD4/CD8 ratio appear not to be more susceptible to severe forms of COVID-19 than the general population and they usually present a good seroconversion rate in response to vaccination against SARS-CoV-2. However, few studies have fully characterized the development of cytotoxic immune populations in response to COVID-19 vaccination in these individuals. Methods In this study, we recruited PWH with median time of HIV-1 infection of 6 years, median CD4/CD8 ratio of 1.0, good adherence to ART, persistently undetectable viral load, and negative serology against SARS-CoV-2, who then received the complete vaccination schedule against COVID-19. Blood samples were taken before vaccination against COVID-19 and one month after receiving the complete vaccination schedule. Results PWH produced high levels of IgG against SARS-CoV-2 in response to vaccination that were comparable to healthy donors, with a significantly higher neutralization capacity. Interestingly, the cytotoxic activity of PBMCs from PWH against SARS-CoV-2-infected cells was higher than healthy donors before receiving the vaccination schedule, pointing out the pre-existence of activated cell populations with likely unspecific antiviral activity. The characterization of these cytotoxic cell populations revealed high levels of Tgd cells with degranulation capacity against SARS-CoV-2-infected cells. In response to vaccination, the degranulation capacity of CD8+ T cells also increased in PWH but not in healthy donors. Discussion The full vaccination schedule against COVID-19 did not modify the ability to respond against HIV-1-infected cells in PWH and these individuals did not show more susceptibility to breakthrough infection with SARS-CoV-2 than healthy donors after 12 months of follow-up. These results revealed the development of protective cell populations with broad-spectrum antiviral activity in PWH with normal CD4/CD8 ratio and confirmed the importance of early ART and treatment adherence to avoid immune dysfunctions.
Collapse
Affiliation(s)
- Guiomar Casado-Fernández
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- PhD Program in Health Sciences, Faculty of Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Juan Cantón
- PhD Program in Health Sciences, Faculty of Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - Laura Nasarre
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Fernando Ramos-Martín
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mario Manzanares
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Daniel Fuertes
- School of Telecommunications Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María Aranzazu Murciano-Antón
- Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
- International PhD School, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Mayte Pérez-Olmeda
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Serology Service, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rafael Rodríguez-Rosado
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
17
|
Salvador PBU, Altavas PJDR, del Rosario MAS, Ornos EDB, Dalmacio LMM. Alterations in the Gut Microbiome Composition of People Living with HIV in the Asia-Pacific Region: A Systematic Review. Clin Pract 2024; 14:846-861. [PMID: 38804398 PMCID: PMC11130874 DOI: 10.3390/clinpract14030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection continues to present a global health issue. Recent studies have explored the potential role of the gut microbiome in HIV infection for novel therapeutic approaches. We investigated the gut microbiome composition of people living with HIV (PLHIV) in the Asia-Pacific region. This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. An electronic search was conducted in the PubMed/MEDLINE, Scopus, and ScienceDirect databases using keywords such as "HIV", "PLHIV", "AIDS", "gut microbiome", "gut dysbiosis", and "metagenomics". Only peer-reviewed and full-text studies published in English were included. A total of 15 studies from the Asia-Pacific region were included for analysis. Compared to healthy controls, PLHIV showed an increased abundance of Proteobacteria and its genera, which may be considered pathobionts, and decreased abundances of Bacteroidetes and several genera under Firmicutes with known short-chain fatty acid and immunoregulatory activities. Predominant taxa such as Ruminococcaceae and Prevotellaceae were also associated with clinical factors such as CD4 count, the CD4/CD8 ratio, and inflammatory cytokines. This review highlights gut microbiome changes among PLHIV in the Asia-Pacific region, indicating potential bacterial signatures for prognostication. The partial restoration of the microbiome toward beneficial taxa may ensure the long-term success of treatment, promoting immune recovery while maintaining viral load suppression.
Collapse
Affiliation(s)
- Paul Benedic U. Salvador
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (P.J.d.R.A.); (L.M.M.D.)
| | - Patrick Josemaria d. R. Altavas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (P.J.d.R.A.); (L.M.M.D.)
| | - Mark Angelo S. del Rosario
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (M.A.S.d.R.); (E.D.B.O.)
| | - Eric David B. Ornos
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (M.A.S.d.R.); (E.D.B.O.)
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Leslie Michelle M. Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (P.J.d.R.A.); (L.M.M.D.)
| |
Collapse
|
18
|
Lo PC, Feng JY, Hsiao YH, Su KC, Chou KT, Chen YM, Ko HK, Perng DW. Long COVID symptoms after 8-month recovery: persistent static lung hyperinflation associated with small airway dysfunction. Respir Res 2024; 25:209. [PMID: 38750527 PMCID: PMC11097537 DOI: 10.1186/s12931-024-02830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Limited research has investigated the relationship between small airway dysfunction (SAD) and static lung hyperinflation (SLH) in patients with post-acute sequelae of COVID-19 (PASC) especially dyspnea and fatigue. METHODS 64 patients with PASC were enrolled between July 2020 and December 2022 in a prospective observational cohort. Pulmonary function tests, impulse oscillometry (IOS), and symptom questionnaires were performed two, five and eight months after acute infection. Multivariable logistic regression models were used to test the association between SLH and patient-reported outcomes. RESULTS SLH prevalence was 53.1% (34/64), irrespective of COVID-19 severity. IOS parameters and circulating CD4/CD8 T-cell ratio were significantly correlated with residual volume to total lung capacity ratio (RV/TLC). Serum CD8 + T cell count was negatively correlated with forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) with statistical significance. Of the patients who had SLH at baseline, 57% continued to have persistent SLH after eight months of recovery, with these patients tending to be older and having dyspnea and fatigue. Post-COVID dyspnea was significantly associated with SLH and IOS parameters R5-R20, and AX with adjusted odds ratios 12.4, 12.8 and 7.6 respectively. SLH was also significantly associated with fatigue. CONCLUSION SAD and a decreased serum CD4/CD8 ratio were associated with SLH in patients with PASC. SLH may persist after recovery from infection in a substantial proportion of patients. SAD and dysregulated T-cell immune response correlated with SLH may contribute to the development of dyspnea and fatigue in patients with PASC.
Collapse
Affiliation(s)
- Po-Chun Lo
- Department of Chest Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei 112, Taipei, 11217, Taiwan, ROC
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei 112, Taipei, 11217, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan, ROC
- Institute of Emergency and Critical Care Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan, ROC
| | - Yi-Han Hsiao
- Department of Chest Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei 112, Taipei, 11217, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan, ROC
| | - Kang-Cheng Su
- Department of Chest Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei 112, Taipei, 11217, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan, ROC
| | - Kun-Ta Chou
- Department of Chest Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei 112, Taipei, 11217, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan, ROC
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei 112, Taipei, 11217, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan, ROC
| | - Hsin-Kuo Ko
- Department of Chest Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei 112, Taipei, 11217, Taiwan, ROC.
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan, ROC.
| | - Diahn-Warng Perng
- Department of Chest Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei 112, Taipei, 11217, Taiwan, ROC.
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan, ROC.
- Institute of Emergency and Critical Care Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan, ROC.
| |
Collapse
|
19
|
Bohórquez JA, Adduri S, Ansari D, John S, Florence J, Adejare O, Singh G, Konduru NV, Jagannath C, Yi G. A novel humanized mouse model for HIV and tuberculosis co-infection studies. Front Immunol 2024; 15:1395018. [PMID: 38799434 PMCID: PMC11116656 DOI: 10.3389/fimmu.2024.1395018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. HIV infection decreases CD4+ T cell levels markedly increasing Mtb co-infections. An appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans during co-infection would facilitate basic and translational research in HIV/Mtb infections. Herein, we describe a novel humanized mouse model. Methods The irradiated NSG-SGM3 mice were transplanted with human CD34+ hematopoietic stem cells, and the humanization was monitored by staining various immune cell markers for flow cytometry. They were challenged with HIV and/or Mtb, and the CD4+ T cell depletion and HIV viral load were monitored over time. Before necropsy, the live mice were subjected to pulmonary function test and CT scan, and after sacrifice, the lung and spleen homogenates were used to determine Mtb load (CFU) and cytokine/chemokine levels by multiplex assay, and lung sections were analyzed for histopathology. The mouse sera were subjected to metabolomics analysis. Results Our humanized NSG-SGM3 mice were able to engraft human CD34+ stem cells, which then differentiated into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced granulomatous lesions in the lungs. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Conclusion The humanized NSG-SGM3 mice are able to recapitulate the pathogenic effects of HIV and Mtb infections and co-infection at the pathological, immunological and metabolism levels and are therefore a reproducible small animal model for studying HIV/Mtb co-infection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Danish Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Sahana John
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Jon Florence
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Omoyeni Adejare
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Gaurav Singh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Nagarjun V. Konduru
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| |
Collapse
|
20
|
DeConne TM, Fancher IS, Edwards DG, Trott DW, Martens CR. CD8 + T-cell metabolism is related to cerebrovascular reactivity in middle-aged adults. Am J Physiol Regul Integr Comp Physiol 2024; 326:R416-R426. [PMID: 38406845 PMCID: PMC11687960 DOI: 10.1152/ajpregu.00267.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Cerebrovascular reactivity (CVR) decreases with advancing age, contributing to increased risk of cognitive impairment; however, the mechanisms underlying the age-related decrease in CVR are incompletely understood. Age-related changes to T cells, such as impaired mitochondrial respiration, increased inflammation, likely contribute to peripheral and cerebrovascular dysfunction in animals. However, whether T-cell mitochondrial respiration is related to cerebrovascular function in humans is not known. Therefore, we hypothesized that peripheral T-cell mitochondrial respiration would be positively associated with CVR and that T-cell glycolytic metabolism would be negatively associated with CVR. Twenty middle-aged adults (58 ± 5 yr) were recruited for this study. T cells were separated from peripheral blood mononuclear cells. Cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR, a marker of glycolytic activity) were measured using extracellular flux analysis. CVR was quantified using the breath-hold index (BHI), which reflects the change in blood velocity in the middle-cerebral artery (MCAv) during a 30-s breath-hold. In contrast to our hypothesis, we found that basal OCR in CD8+ T cells (β = -0.59, R2 = 0.27, P = 0.019) was negatively associated with BHI. However, in accordance with our hypothesis, we found that basal ECAR (β = -2.20, R2 = 0.29, P = 0.015) and maximum ECAR (β = -50, R2 = 0.24, P = 0.029) were negatively associated with BHI in CD8+ T cells. There were no associations observed in CD4+ T cells. These associations appeared to be primarily mediated by an association with the pressor response to the breath-hold test. Overall, our findings suggest that CD8+ T-cell respiration and glycolytic activity may influence CVR in humans.NEW & NOTEWORTHY Peripheral T-cell metabolism is related to in vivo cerebrovascular reactivity in humans. Higher glycolytic metabolism in CD8+ T cells was associated with lower cerebrovascular reactivity to a breath-hold in middle-aged adults, which is possibly reflective of a more proinflammatory state in midlife.
Collapse
Affiliation(s)
- Theodore M DeConne
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Ibra S Fancher
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
21
|
Lizana-Vasquez GD, Mendez-Vega J, Cappabianca D, Saha K, Torres-Lugo M. In vitro encapsulation and expansion of T and CAR-T cells using 3D synthetic thermo-responsive matrices. RSC Adv 2024; 14:13734-13747. [PMID: 38681842 PMCID: PMC11046447 DOI: 10.1039/d4ra01968g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Suspension cell culture and rigid commercial substrates are the most common methods to clinically manufacture therapeutic CAR-T cells ex vivo. However, suspension culture and nano/micro-scale commercial substrates poorly mimic the microenvironment where T cells naturally develop, leading to profound impacts on cell proliferation and phenotype. To overcome this major challenge, macro-scale substrates can be used to emulate that environment with higher precision. This work employed a biocompatible thermo-responsive material with tailored mechanical properties as a potential synthetic macro-scale scaffold to support T cell encapsulation and culture. Cell viability, expansion, and phenotype changes were assessed to study the effect of two thermo-responsive hydrogel materials with stiffnesses of 0.5 and 17 kPa. Encapsulated Pan-T and CAR-T cells were able to grow and physically behave similar to the suspension control. Furthermore, matrix stiffness influenced T cell behavior. In the softer polymer, T cells had higher activation, differentiation, and maturation after encapsulation obtaining significant cell numbers. Even when terpolymer encapsulation affected the CAR-T cell viability and expansion, CAR T cells expressed favorable phenotypical profiles, which was supported with cytokines and lactate production. These results confirmed the biocompatibility of the thermo-responsive hydrogels and their feasibility as a promising 3D macro-scale scaffold for in vitro T cell expansion that could potentially be used for cell manufacturing process.
Collapse
Affiliation(s)
- Gaby D Lizana-Vasquez
- Deparment of Chemical Engineering, University of Puerto Rico-Mayagüez Road 108 Km. 1.0 Bo. Miradero. P.O. Box 9046 Mayagüez 00681-9046 Puerto Rico USA +1 787 832 4040 Ext. 2585
| | - Janet Mendez-Vega
- Deparment of Chemical Engineering, University of Puerto Rico-Mayagüez Road 108 Km. 1.0 Bo. Miradero. P.O. Box 9046 Mayagüez 00681-9046 Puerto Rico USA +1 787 832 4040 Ext. 2585
| | - Dan Cappabianca
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison Wisconsin USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison Wisconsin USA
| | - Madeline Torres-Lugo
- Deparment of Chemical Engineering, University of Puerto Rico-Mayagüez Road 108 Km. 1.0 Bo. Miradero. P.O. Box 9046 Mayagüez 00681-9046 Puerto Rico USA +1 787 832 4040 Ext. 2585
| |
Collapse
|
22
|
Eberlein V, Rosencrantz S, Finkensieper J, Besecke JK, Mansuroglu Y, Kamp JC, Lange F, Dressman J, Schopf S, Hesse C, Thoma M, Fertey J, Ulbert S, Grunwald T. Mucosal immunization with a low-energy electron inactivated respiratory syncytial virus vaccine protects mice without Th2 immune bias. Front Immunol 2024; 15:1382318. [PMID: 38646538 PMCID: PMC11026718 DOI: 10.3389/fimmu.2024.1382318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
The respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections associated with numerous hospitalizations. Recently, intramuscular (i.m.) vaccines against RSV have been approved for elderly and pregnant women. Noninvasive mucosal vaccination, e.g., by inhalation, offers an alternative against respiratory pathogens like RSV. Effective mucosal vaccines induce local immune responses, potentially resulting in the efficient and fast elimination of respiratory viruses after natural infection. To investigate this immune response to an RSV challenge, low-energy electron inactivated RSV (LEEI-RSV) was formulated with phosphatidylcholine-liposomes (PC-LEEI-RSV) or 1,2-dioleoyl-3-trimethylammonium-propane and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DD-LEEI-RSV) for vaccination of mice intranasally. As controls, LEEI-RSV and formalin-inactivated-RSV (FI-RSV) were used via i.m. vaccination. The RSV-specific immunogenicity of the different vaccines and their protective efficacy were analyzed. RSV-specific IgA antibodies and a statistically significant reduction in viral load upon challenge were detected in mucosal DD-LEEI-RSV-vaccinated animals. Alhydrogel-adjuvanted LEEI-RSV i.m. showed a Th2-bias with enhanced IgE, eosinophils, and lung histopathology comparable to FI-RSV. These effects were absent when applying the mucosal vaccines highlighting the potential of DD-LEEI-RSV as an RSV vaccine candidate and the improved performance of this mucosal vaccine candidate.
Collapse
Affiliation(s)
- Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Sophia Rosencrantz
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Applied Polymer Research (IAP), Potsdam, Germany
| | - Julia Finkensieper
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Joana Kira Besecke
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology (FEP), Dresden, Germany
| | - Yaser Mansuroglu
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Jan-Christopher Kamp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Jennifer Dressman
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Simone Schopf
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology (FEP), Dresden, Germany
| | - Christina Hesse
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Martin Thoma
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Manufacturing Engineering and Automation (IPA), Stuttgart, Germany
| | - Jasmin Fertey
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| |
Collapse
|
23
|
Xhaxho S, Chen-Wichmann L, Kreissig S, Windisch R, Gottschlich A, Nandi S, Schabernack S, Kohler I, Kellner C, Kobold S, Humpe A, Wichmann C. Efficient Chimeric Antigen Receptor T-Cell Generation Starting with Leukoreduction System Chambers of Thrombocyte Apheresis Sets. Transfus Med Hemother 2024; 51:111-118. [PMID: 38584695 PMCID: PMC10996058 DOI: 10.1159/000532130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/17/2023] [Indexed: 04/09/2024] Open
Abstract
Introduction Primary human blood cells represent an essential model system to study physiology and disease. However, human blood is a limited resource. During healthy donor plateletpheresis, the leukoreduction system chamber (LRSC) reduces the leukocyte amount within the subsequent platelet concentrate through saturated, fluidized, particle bed filtration technology. Normally, the LRSC is discarded after apheresis is completed. Compared to peripheral blood, LRSC yields 10-fold mononuclear cell concentration. Methods To explore if those retained leukocytes are attractive for research purposes, we isolated CD3+ T cells from the usually discarded LRSCs via density gradient centrifugation in order to manufacture CD19-targeted chimeric antigen receptor (CAR) T cells. Results Immunophenotypic characterization revealed viable and normal CD4+ and CD8+ T-cell populations within LRSC, with low CD19+ B cell counts. Magnetic-activated cell sorting (MACS) purified CD3+ T cells were transduced with CD19 CAR-encoding lentiviral self-inactivating vectors using concentrated viral supernatants. Robust CD19 CAR cell surface expression on transduced T cells was confirmed by flow cytometry. CD19 CAR T cells were further enriched through anti-CAR MACS, yielding 80% CAR+ T-cell populations. In vitro CAR T cell expansion to clinically relevant numbers was achieved. To prove functionality, CAR T cells were co-incubated with the human CD19+ B cell precursor leukemia cell line Nalm6. Compared to unmodified T cells, CD19 CAR T cells effectively eradicated Nalm6 cells. Conclusion Taken together, we can show that lymphocytes isolated from LRSCs of plateletpheresis sets can be efficiently used for the generation of functional CAR T cells for experimental purposes.
Collapse
Affiliation(s)
- Stefani Xhaxho
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Linping Chen-Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Sophie Kreissig
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Sayantan Nandi
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Sophie Schabernack
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Irmgard Kohler
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
24
|
Potestio L, Patruno C, Genco L, DI Filippo G, Napolitano M. Kaposi's sarcoma as presentation of HIV in an atopic patient treated with upadacitinib. Ital J Dermatol Venerol 2024; 159:211-212. [PMID: 38650502 DOI: 10.23736/s2784-8671.24.07766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Affiliation(s)
- Luca Potestio
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Cataldo Patruno
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Lucia Genco
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy -
| | - Giovanni DI Filippo
- Section of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maddalena Napolitano
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
Leech T, Peiris M. Mucosal neuroimmune mechanisms in gastro-oesophageal reflux disease (GORD) pathogenesis. J Gastroenterol 2024; 59:165-178. [PMID: 38221552 PMCID: PMC10904498 DOI: 10.1007/s00535-023-02065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Gastro-oesophageal reflux disease (GORD) is a chronic condition characterised by visceral pain in the distal oesophagus. The current first-line treatment for GORD is proton pump inhibitors (PPIs), however, PPIs are ineffective in a large cohort of patients and long-term use may have adverse effects. Emerging evidence suggests that nerve fibre number and location are likely to play interrelated roles in nociception in the oesophagus of GORD patients. Simultaneously, alterations in cells of the oesophageal mucosa, namely epithelial cells, mast cells, dendritic cells, and T lymphocytes, have been a focus of GORD research for several years. The oesophagus of GORD patients exhibits both macro- and micro-inflammation as a response to chronic acidic reflux at the epithelium. In other conditions of the GI tract, such as IBS and IBD, well-characterised bidirectional processes between immune cells and mucosal nerve fibres contribute to pathogenesis and symptom generation. Sensory alterations in these conditions such as nerve fibre outgrowth and hypersensitivity can be driven by inflammatory processes, which promote visceral pain signalling. This review will examine what is currently known of the molecular pathways linking inflammation and sensory perception leading to the development of GORD symptoms and explore potentially relevant mechanisms in other GI regions which may indicate new areas in GORD research.
Collapse
Affiliation(s)
- Tom Leech
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
26
|
Vörösházi J, Neogrády Z, Mátis G, Mackei M. Pathological consequences, metabolism and toxic effects of trichothecene T-2 toxin in poultry. Poult Sci 2024; 103:103471. [PMID: 38295499 PMCID: PMC10846437 DOI: 10.1016/j.psj.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Contamination of feed with mycotoxins has become a severe issue worldwide. Among the most prevalent trichothecene mycotoxins, T-2 toxin is of particular importance for livestock production, including poultry posing a significant threat to animal health and productivity. This review article aims to comprehensively analyze the pathological consequences, metabolism, and toxic effects of T-2 toxin in poultry. Trichothecene mycotoxins, primarily produced by Fusarium species, are notorious for their potent toxicity. T-2 toxin exhibits a broad spectrum of negative effects on poultry species, leading to substantial economic losses as well as concerns about animal welfare and food safety in modern agriculture. T-2 toxin exposure easily results in negative pathological consequences in the gastrointestinal tract, as well as in parenchymal tissues like the liver (as the key organ for its metabolism), kidneys, or reproductive organs. In addition, it also intensely damages immune system-related tissues such as the spleen, the bursa of Fabricius, or the thymus causing immunosuppression and increasing the susceptibility of the animals to infectious diseases, as well as making immunization programs less effective. The toxin also damages cellular processes on the transcriptional and translational levels and induces apoptosis through the activation of numerous cellular signaling cascades. Furthermore, according to recent studies, besides the direct effects on the abovementioned processes, T-2 toxin induces the production of reactive molecules and free radicals resulting in oxidative distress and concomitantly occurring cellular damage. In conclusion, this review article provides a complex and detailed overview of the metabolism, pathological consequences, mechanism of action as well as the immunomodulatory and oxidative stress-related effects of T-2 toxin. Understanding these effects in poultry is crucial for developing strategies to mitigate the impact of the T-2 toxin on avian health and food safety in the future.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary.
| |
Collapse
|
27
|
Obeagu EI, Obeagu GU. Utilization of immunological ratios in HIV: Implications for monitoring and therapeutic strategies. Medicine (Baltimore) 2024; 103:e37354. [PMID: 38428854 PMCID: PMC10906605 DOI: 10.1097/md.0000000000037354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains a significant global health concern, necessitating ongoing research and innovation in the quest for improved disease management. Traditional markers for monitoring HIV progression and the effectiveness of antiretroviral therapy have limitations in capturing the intricate immune responses and inflammatory dynamics in people with HIV. In recent years, the concept of inflammation ratios has gained prominence as a valuable tool for assessing and understanding the complex interplay between inflammation, immune function, and HIV. In this abstract, we provide an overview of the emerging field of utilizing inflammation ratios in the context of HIV and its implications for disease monitoring and therapeutic strategies. These ratios, such as the CD4/CD8 ratio, neutrophil-to-lymphocyte ratio, and monocyte-to-lymphocyte ratio, offer a more comprehensive assessment of an individual's immune status and inflammatory state. By exploring the clinical implications of inflammation ratios, including their potential to predict disease complications and guide personalized treatment approaches, this publication sheds light on the potential benefits of incorporating inflammation ratios into routine HIV care. Furthermore, we emphasize the importance of ongoing research in this field to further refine our understanding of the utility and significance of inflammation ratios in improving the lives of people with HIV.
Collapse
|
28
|
Tylutka A, Morawin B, Walas Ł, Zembron-Lacny A. Does excess body weight accelerate immune aging? Exp Gerontol 2024; 187:112377. [PMID: 38346543 DOI: 10.1016/j.exger.2024.112377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Overweight and obesity in older adults increase the risk of a range of comorbidities by sustaining chronic inflammation and thus enhancing immunosenescence. This study aimed to assess whether excess body mass affected disproportion in T lymphocytes. Therefore, the study was designed to explain whether excess body mass in older individuals affected the disproportion in numbers of T lymphocytes and whether anthropometric indices and immune risk profile expressed as CD4/CD8 ratio are diagnostically useful in the analysis of immunosenescence. MATERIALS & METHODS One hundred three individuals aged 73.6 ± 3.1 years were allocated to the normal body mass (body mass index (BMI) 18.5-24.9 kg/m2,n = 39), the pre-obesity (BMI 25.0-29.9 kg/m2, n = 44) or the obesity (BMI ≥30.0 kg/m2, n = 20) group, based on WHO recommendations. Details on the subjects' medical history and lifestyle were obtained by health questionnaire. Anthropometric analysis was performed by bioelectrical impedance method, biochemical analysis was made by the automatic analyzer and ELISA immunoassays, and T and B lymphocyte counts were determined by eight-parameter flow cytometry. Additionally, visceral adiposity index, body adiposity index (BAI), and body shape index (ABSI) were evaluated based on body circumference, BMI and lipid-lipoprotein profile measurements. RESULTS The highest percentage of CD3+CD4+ T lymphocytes (59.4 ± 12.6 %) and the lowest CD3+CD8+ T lymphocytes (31.6 ± 10.0 %) were noted in patients the obesity group. The highest cut-off value of 1.9 for CD4/CD8 ratio was recorded in the normal body mass vs pre-obesity model. CD4/CD8 ratio > 2.5 was recorded in >20 % of our pre-obesity and obesity groups while 64.5 % of the normal body mass group had CD4/CD8 ratio < 1. High diagnostic usefulness was demonstrated for both BAI and lipid accumulation product (LAP) (AUC values of ~0.800 and ~ 0.900 respectively) in three models: normal body mass vs pre-obesity, normal body mass vs obesity, and pre-obesity vs obesity. CONCLUSION The odds ratios (OR) for CD4/CD8 ratio in the normal body mass vs obesity model (OR = 16.1, 95%CI 3.8-93.6) indicated a potential diagnostic value of T lymphocytes for clinical prognosis of immune aging in relation to excess body weight in older adults. High values of AUC obtained for the following models: CD4/CD8 + BAI (AUC = 0.927), CD4/CD8 + LAP (AUC = 1.00), CD4/CD8 + ABSI (AUC = 0.865) proved to provide excellent discrimination between older adults with obesity and with normal body mass.
Collapse
Affiliation(s)
- Anna Tylutka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Poland.
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Poland.
| | - Łukasz Walas
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Poland.
| |
Collapse
|
29
|
Tarozzi M, Baruzzi E, Decani S, Tincati C, Santoro A, Moneghini L, Lodi G, Sardella A, Carrassi A, Varoni EM. HIV-Related Oral Mucosa Lesions: A Cross-Sectional Study on a Cohort of Italian Patients. Biomedicines 2024; 12:436. [PMID: 38398038 PMCID: PMC10886531 DOI: 10.3390/biomedicines12020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection can be associated with oral mucosal diseases, including oral candidiasis and HPV infection, which are putative indicators of the immune status. AIM AND METHODS This retrospective cross-sectional study was aimed at assessing the prevalence of HIV-related oral mucosal lesions in a cohort of Italian HIV+ patients regularly attending the Clinics of Infectious Diseases. RESULTS One hundred seventy-seven (n = 177) patients were enrolled and 30 (16.9%) of them showed HIV-related diseases of the oral mucosa. They were mainly found in male patients over 35 years old, undergoing Combination Antiretroviral Therapy (cART), and with CD4+ count < 500/µL. Oral candidiasis was the most common HIV-related oral lesion. No significant correlations could be detected between the prevalence of HPV infection and other clinical parameters (lymphocyte count, cART treatment and viral load). CONCLUSIONS HIV-related oral mucosal diseases can correlate with immunosuppression. Early diagnosis and management of oral lesions in HIV+ patients should be part of the regular follow-up, from a multidisciplinary perspective of collaboration between oral medicine and infectious disease specialists, in an attempt to reduce morbidity due to oral lesions and modulate antiretroviral therapy according to the patient's immune status.
Collapse
Affiliation(s)
- Marco Tarozzi
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.); (E.B.); (S.D.); (G.L.); (A.S.); (A.C.)
- Odontostomatologia II, ASST Santi Paolo e Carlo—Presidio Ospedaliero San Paolo, 20142 Milano, Italy
| | - Elisa Baruzzi
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.); (E.B.); (S.D.); (G.L.); (A.S.); (A.C.)
- Odontostomatologia II, ASST Santi Paolo e Carlo—Presidio Ospedaliero San Paolo, 20142 Milano, Italy
| | - Sem Decani
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.); (E.B.); (S.D.); (G.L.); (A.S.); (A.C.)
- Odontostomatologia II, ASST Santi Paolo e Carlo—Presidio Ospedaliero San Paolo, 20142 Milano, Italy
| | - Camilla Tincati
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milano, Italy; (C.T.); (A.S.)
- Clinica di Malattie Infettive, ASST Santi Paolo e Carlo—Presidio Ospedaliero San Paolo, 20142 Milano, Italy
| | - Andrea Santoro
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milano, Italy; (C.T.); (A.S.)
- Clinica di Malattie Infettive, ASST Santi Paolo e Carlo—Presidio Ospedaliero San Paolo, 20142 Milano, Italy
| | - Laura Moneghini
- Anatomia Patologica, ASST Santi Paolo e Carlo—Presidio Ospedaliero San Paolo, 20142 Milano, Italy;
| | - Giovanni Lodi
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.); (E.B.); (S.D.); (G.L.); (A.S.); (A.C.)
- Odontostomatologia II, ASST Santi Paolo e Carlo—Presidio Ospedaliero San Paolo, 20142 Milano, Italy
| | - Andrea Sardella
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.); (E.B.); (S.D.); (G.L.); (A.S.); (A.C.)
- Odontostomatologia II, ASST Santi Paolo e Carlo—Presidio Ospedaliero San Paolo, 20142 Milano, Italy
| | - Antonio Carrassi
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.); (E.B.); (S.D.); (G.L.); (A.S.); (A.C.)
- Odontostomatologia II, ASST Santi Paolo e Carlo—Presidio Ospedaliero San Paolo, 20142 Milano, Italy
| | - Elena Maria Varoni
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.); (E.B.); (S.D.); (G.L.); (A.S.); (A.C.)
- Odontostomatologia II, ASST Santi Paolo e Carlo—Presidio Ospedaliero San Paolo, 20142 Milano, Italy
| |
Collapse
|
30
|
Wang H, Mendez L, Morton G, Loblaw A, Chung HT, Cheung P, Mesci A, Escueta V, Petchiny TN, Huang X, White SD, Downes M, Vesprini D, Liu SK. Brachytherapy for high grade prostate cancer induces distinct changes in circulating CD4 and CD8 T cells - Implications for systemic control. Radiother Oncol 2024; 191:110077. [PMID: 38176656 DOI: 10.1016/j.radonc.2023.110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
This exploratory study is a follow up to our previous investigation of immune response in the circulation of high-grade Gleason 9 prostate cancer patients treated with EBRT + BT compared to EBRT alone. Notably, EBRT + BT demonstrates the potential to elicit an effect on CD4/CD8 ratio which may have attributed to improved clinical response to therapy. Our findings show promise for leveraging circulating immune cells as predictive biomarkers for radiotherapy response.
Collapse
Affiliation(s)
- H Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - L Mendez
- Division of Radiation Oncology, London Regional Cancer Program, London, ON, Canada
| | - G Morton
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - A Loblaw
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, Toronto, ON, Canada
| | - H T Chung
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - P Cheung
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - A Mesci
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - V Escueta
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - T N Petchiny
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - X Huang
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - S D White
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - M Downes
- Division of Anatomic Pathology, Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - D Vesprini
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - S K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Chen XT, Zhi S, Han XY, Jiang JW, Liu GM, Rao ST. A systematic two-sample and bidirectional MR process highlights a unidirectional genetic causal effect of allergic diseases on COVID-19 infection/severity. J Transl Med 2024; 22:94. [PMID: 38263182 PMCID: PMC10804553 DOI: 10.1186/s12967-024-04887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Allergic diseases (ADs) such as asthma are presumed risk factors for COVID-19 infection. However, recent observational studies suggest that the assumed correlation contradicts each other. We therefore systematically investigated the genetic causal correlations between various ADs and COVID-19 infection/severity. METHODS We performed a two-sample, bidirectional Mendelian randomization (MR) study for five types of ADs and the latest round of COVID-19 GWAS meta-analysis datasets (critically ill, hospitalized, and infection cases). We also further validated the significant causal correlations and elucidated the potential underlying molecular mechanisms. RESULTS With the most suitable MR method, asthma consistently demonstrated causal protective effects on critically ill and hospitalized COVID-19 cases (OR < 0.93, p < 2.01 × 10-2), which were further confirmed by another validated GWAS dataset (OR < 0.92, p < 4.22 × 10-3). In addition, our MR analyses also observed significant causal correlations of food allergies such as shrimp allergy with the risk of COVID-19 infection/severity. However, we did not find any significant causal effect of COVID-19 phenotypes on the risk of ADs. Regarding the underlying molecular mechanisms, not only multiple immune-related cells such as CD4+ T, CD8+ T and the ratio of CD4+/CD8+ T cells showed significant causal effects on COVID-19 phenotypes and various ADs, the hematology traits including monocytes were also significantly correlated with them. Conversely, various ADs such as asthma and shrimp allergy may be causally correlated with COVID-19 infection/severity by affecting multiple hematological traits and immune-related cells. CONCLUSIONS Our systematic and bidirectional MR analyses suggest a unidirectional causal effect of various ADs, particularly of asthma on COVID-19 infection/severity, but the reverse is not true. The potential underlying molecular mechanisms of the causal effects call for more attention to clinical monitoring of hematological cells/traits and may be beneficial in developing effective therapeutic strategies for allergic patients following infection with COVID-19.
Collapse
Affiliation(s)
- Xiao-Tong Chen
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, No. 1 Xue-Yuan Rd., University Town, Fuzhou, 350122, Fujian, China
| | - Shuai Zhi
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, No. 1 Xue-Yuan Rd., University Town, Fuzhou, 350122, Fujian, China
| | - Xin-Yu Han
- Xiamen Key Laboratory of Marine Functional Food, College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Jian-Wei Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, No. 1 Xue-Yuan Rd., University Town, Fuzhou, 350122, Fujian, China
| | - Guang-Ming Liu
- Xiamen Key Laboratory of Marine Functional Food, College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
| | - Shi-Tao Rao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, No. 1 Xue-Yuan Rd., University Town, Fuzhou, 350122, Fujian, China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
32
|
Jang WS, Lee J, Park S, Lim CS, Kim J. Performance Evaluation of Microscanner Plus, an Automated Image-Based Cell Counter, for Counting CD4+ T Lymphocytes in HIV Patients. Diagnostics (Basel) 2023; 14:73. [PMID: 38201382 PMCID: PMC10871079 DOI: 10.3390/diagnostics14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Counting CD4+ T lymphocytes using flow cytometry is a standard method for monitoring patients with HIV infections. Simpler and cheaper alternatives to flow cytometry are in high demand because getting access to flow cytometers is difficult or impossible in resource-limited settings. We evaluated the performance of the Microscanner Plus, a simple and automated image-based cell counter, in determining CD4 counts against a flow cytometer. CD4 count results of the Microscanner Plus and flow cytometer were compared using samples from 47 HIV-infected patients and 87 healthy individuals. All CV% for precision and reproducibility tests were less than 10%. The Microscanner Plus's lowest detectable CD4 count was determined to be 15.27 cells/µL of whole blood samples. The correlation coefficient (R) between Microscanner Plus and flow cytometry for CD4 counting in 134 clinical samples was very high, at 0.9906 (p < 0.0001). The automated Microscanner Plus showed acceptable analytical performance for counting CD4+ T lymphocytes and may be particularly useful for monitoring HIV patients in resource-limited settings.
Collapse
Affiliation(s)
- Woong Sik Jang
- Departments of Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea;
| | - Junmin Lee
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.L.); (C.S.L.)
| | - Seoyeon Park
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea;
| | - Chae Seung Lim
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.L.); (C.S.L.)
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea;
| | - Jeeyong Kim
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.L.); (C.S.L.)
| |
Collapse
|
33
|
Ren X, Su W, Li S, Zhao T, Huang Q, Wang Y, Wang X, Zhang X, Wei J. Immunogenicity and Therapeutic Efficacy of a Sendai-Virus-Vectored HSV-2 Vaccine in Mouse and Guinea Pig Models. Vaccines (Basel) 2023; 11:1752. [PMID: 38140157 PMCID: PMC10747028 DOI: 10.3390/vaccines11121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND To date, there is no licensed vaccine for preventing herpes simplex virus type 2 (HSV-2). The current treatment to address the infection and prevent its transmission is not always satisfactory. METHODS We constructed two recombinant vectors, one encoding HSV-2 glycoprotein D (gD, SeV-dF/HSV-2-gD) and one encoding HSV-2-infected cell protein 27 (ICP27, SeV-dF/HSV-2-ICP27), based on a replication-defective Sendai virus through reverse genetics, collectively comprising a combinatorial HSV-2 therapeutic vaccine candidate. The immunogenicity and proper immunization procedure for this vaccine were explored in a murine model. The therapeutic effect that helps prevent recurrent HSV-2 disease was evaluated in HSV-2-infected guinea pigs. RESULTS Both a robust humoral immune response and a cellular immune response, characterized by the neutralizing antibody titer and the IFN-γ level, respectively, were elicited in BALB/c mice. A further study of cellular immunogenicity in mice revealed that T lymphocytes were successfully enhanced with the desirable secretion of several cytokines. In HSV-2-seropositive guinea pigs, vaccination could reduce the severity of HSV-2 in terms of recurrent lesions, duration of recurrent outbreak, and frequency of recurrence by 58.66%, 45.34%, and 45.09%, respectively, while viral shedding was also significantly inhibited in the vaccine-treated group compared to the group treated with phosphate-buffered saline. CONCLUSIONS The replication-defective recombinant Sendai viruses conveying HSV-2-gD and ICP27 proteins showed great immunogenicity and potential for preventing recurrent HSV-2 disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiangbo Wei
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China; (X.R.); (W.S.); (S.L.); (T.Z.); (Q.H.); (Y.W.); (X.W.); (X.Z.)
| |
Collapse
|
34
|
Burdo TH, Robinson JA, Cooley S, Smith MD, Flynn J, Petersen KJ, Nelson B, Westerhaus E, Wisch J, Ances BM. Increased Peripheral Inflammation Is Associated With Structural Brain Changes and Reduced Blood Flow in People With Virologically Controlled HIV. J Infect Dis 2023; 228:1071-1079. [PMID: 37352555 PMCID: PMC10582906 DOI: 10.1093/infdis/jiad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND While antiretroviral therapy (ART) has improved outcomes for people with HIV (PWH), brain dysfunction is still evident. Immune activation and inflammation remain elevated in PWH receiving ART, thereby contributing to morbidity and mortality. Previous studies demonstrated reduced functional and structural changes in PWH; however, underlying mechanisms remain elusive. METHODS Our cohort consisted of PWH with ART adherence and viral suppression ( < 50 copies/mL; N = 173). Measurements included immune cell markers of overall immune health (CD4/CD8 T-cell ratio) and myeloid inflammation (CD16+ monocytes), plasma markers of inflammatory status (soluble CD163 and CD14), and structural and functional neuroimaging (volume and cerebral blood flow [CBF], respectively). RESULTS Decreased CD4/CD8 ratios correlated with reduced brain volume, and higher levels of inflammatory CD16+ monocytes were associated with reduced brain volume in total cortex and gray matter. An increase in plasma soluble CD14-a marker of acute peripheral inflammation attributed to circulating microbial products-was associated with reduced CBF within the frontal, parietal, temporal, and occipital cortices and total gray matter. CONCLUSIONS CD4/CD8 ratio and number of CD16+ monocytes, which are chronic immune cell markers, are associated with volumetric loss in the brain. Additionally, this study shows a potential new association between plasma soluble CD14 and CBF.
Collapse
Affiliation(s)
- Tricia H Burdo
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jake A Robinson
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Sarah Cooley
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Mandy D Smith
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jacqueline Flynn
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Kalen J Petersen
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Brittany Nelson
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Elizabeth Westerhaus
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Julie Wisch
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| |
Collapse
|
35
|
Bandara V, Foeng J, Gundsambuu B, Norton TS, Napoli S, McPeake DJ, Tyllis TS, Rohani-Rad E, Abbott C, Mills SJ, Tan LY, Thompson EJ, Willet VM, Nikitaras VJ, Zheng J, Comerford I, Johnson A, Coombs J, Oehler MK, Ricciardelli C, Cowin AJ, Bonder CS, Jensen M, Sadlon TJ, McColl SR, Barry SC. Pre-clinical validation of a pan-cancer CAR-T cell immunotherapy targeting nfP2X7. Nat Commun 2023; 14:5546. [PMID: 37684239 PMCID: PMC10491676 DOI: 10.1038/s41467-023-41338-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell immunotherapy is a novel treatment that genetically modifies the patients' own T cells to target and kill malignant cells. However, identification of tumour-specific antigens expressed on multiple solid cancer types, remains a major challenge. P2X purinoceptor 7 (P2X7) is a cell surface expressed ATP gated cation channel, and a dysfunctional version of P2X7, named nfP2X7, has been identified on cancer cells from multiple tissues, while being undetectable on healthy cells. We present a prototype -human CAR-T construct targeting nfP2X7 showing potential antigen-specific cytotoxicity against twelve solid cancer types (breast, prostate, lung, colorectal, brain and skin). In xenograft mouse models of breast and prostate cancer, CAR-T cells targeting nfP2X7 exhibit robust anti-tumour efficacy. These data indicate that nfP2X7 is a suitable immunotherapy target because of its broad expression on human tumours. CAR-T cells targeting nfP2X7 have potential as a wide-spectrum cancer immunotherapy for solid tumours in humans.
Collapse
Affiliation(s)
- Veronika Bandara
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Jade Foeng
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Todd S Norton
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Silvana Napoli
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Dylan J McPeake
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Timona S Tyllis
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Elaheh Rohani-Rad
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Caitlin Abbott
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stuart J Mills
- University of South Australia, STEM (Future Industries Institute) SA, Adelaide, 5095, Australia
| | - Lih Y Tan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
| | - Emma J Thompson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
| | - Vasiliki M Willet
- Reproductive Cancer Research Group, Discipline Obstetrics and Gynaecology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Victoria J Nikitaras
- Reproductive Cancer Research Group, Discipline Obstetrics and Gynaecology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jieren Zheng
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Iain Comerford
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Adam Johnson
- Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Justin Coombs
- Carina Biotech, Level 2 Innovation & Collaboration Centre, UniSA Bradley Building, Adelaide, SA, 5001, Australia
| | - Martin K Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Carmela Ricciardelli
- Reproductive Cancer Research Group, Discipline Obstetrics and Gynaecology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Allison J Cowin
- University of South Australia, STEM (Future Industries Institute) SA, Adelaide, 5095, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Michael Jensen
- Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Timothy J Sadlon
- Department of Gastroenterology, Women's and Children's Health Network, North Adelaide, SA, 5006, Australia
| | - Shaun R McColl
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Carina Biotech, Level 2 Innovation & Collaboration Centre, UniSA Bradley Building, Adelaide, SA, 5001, Australia
| | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5000, Australia.
- Carina Biotech, Level 2 Innovation & Collaboration Centre, UniSA Bradley Building, Adelaide, SA, 5001, Australia.
- Department of Gastroenterology, Women's and Children's Health Network, North Adelaide, SA, 5006, Australia.
| |
Collapse
|
36
|
Mendoza N, Casas-Recasens S, Olvera N, Hernandez-Gonzalez F, Cruz T, Albacar N, Alsina-Restoy X, Frino-Garcia A, López-Saiz G, Robres L, Rojas M, Agustí A, Sellarés J, Faner R. Blood Immunophenotypes of Idiopathic Pulmonary Fibrosis: Relationship with Disease Severity and Progression. Int J Mol Sci 2023; 24:13832. [PMID: 37762135 PMCID: PMC10531459 DOI: 10.3390/ijms241813832] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
(1) The role of the immune response in the pathogenesis of idiopathic pulmonary fibrosis (IPF) remains controversial. We hypothesized that peripheral blood immune phenotypes will be different in IPF patients and may relate to the disease severity and progression. (2) Whole blood flow cytometry staining was performed at diagnosis in 32 IPF patients, and in 32 age- and smoking-matched healthy controls. Thirty-one IPF patients were followed up for one year and categorized as stable or progressors based on lung function, deterioration and/or death. At 18-60 months, immunophenotypes were characterized again. (3) The main results showed that: (1) compared to matched controls, at diagnosis, patients with IPF showed more neutrophils, CD8+HLA-DR+ and CD8+CD28- T cells, and fewer B lymphocytes and naïve T cells; (2) in IPF, circulating neutrophils, eosinophils and naïve T cells were associated with lung function abnormalities; (3) patients whose disease progressed during the 12 months of follow-up showed evidence of cytotoxic dysregulation, with increased CD8+CD28- T cells, decreased naïve T cells and an inverted CD4/CD8 ratio at baseline; and (4) blood cell alterations were stable over time in survivors. (4) IPF is associated with abnormalities in circulating immune cells, particularly in the cytotoxic cell domain. Patients with progressive IPF, despite antifibrotic therapy, present an over-activated and exhausted immunophenotype at diagnosis, which is maintained over time.
Collapse
Affiliation(s)
- Nuria Mendoza
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
- Biomedicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sandra Casas-Recasens
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
| | - Núria Olvera
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Fernanda Hernandez-Gonzalez
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Biomedicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Tamara Cruz
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
| | - Núria Albacar
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Xavier Alsina-Restoy
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Alejandro Frino-Garcia
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Gemma López-Saiz
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Lucas Robres
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
| | - Mauricio Rojas
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Alvar Agustí
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
- Biomedicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Jacobo Sellarés
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
- Respiratory Institute, Clinic Barcelona, 08036 Barcelona, Spain; (X.A.-R.); (A.F.-G.); (G.L.-S.)
| | - Rosa Faner
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (N.M.); (S.C.-R.); (N.O.); (F.H.-G.); (T.C.); (N.A.); (A.A.); (J.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain;
- Biomedicine Department, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
37
|
Xu W, Huang Y, Yuen H, Shi L, Qian H, Cui L, Tang M, Wang J, Zhu J, Wang Z, Xiao L, Zhao X, Wang L. Living prosthetic breast for promoting tissue regeneration and inhibiting tumor recurrence. Bioeng Transl Med 2023; 8:e10409. [PMID: 37693055 PMCID: PMC10487338 DOI: 10.1002/btm2.10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
Developing a living prosthetic breast to inhibit potential breast cancer recurrence and simultaneously promote breast reconstruction would be a promising strategy for clinical treatment of breast cancer after mastectomy. Here, a living prosthetic breast in the form of injectable gelatin methacryloyl microspheres is prepared, where they encapsulated zeolitic imidazolate framework (ZIF) nanoparticles loaded with small molecules urolithin C (Uro-C) and adipose-derived stem cells (ADSCs). Taking advantage of the acidic tumor microenvironment, the ZIF triggered a pH-sensitive drug release in situ so that Uro-C can induce tumor cell apoptosis via reactive oxygen species (ROS) generation. Meanwhile, the ADSCs proliferate in situ to promote tissue regeneration. Using such a design, our data showed that the ADSCs maintained viable and proliferate under the inhibitory effect of Uro-C in vitro. Through ROS generation, Uro-C also activated a suppressive tumor microenvironment in mice by both re-polarizing M2 macrophages to M1 macrophages for elevated inflammatory responses, and increasing the ratio between CD8 and CD4 T cells for tumor recurrence inhibition, significantly promoting new adipose tissue formation. Altogether, our results demonstrate that the prepared living prosthetic breast with bifunctional properties can be a promising candidate in clinic involving tumor treatment and tissue engineering in synergy.
Collapse
Affiliation(s)
- Wenting Xu
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Yu Huang
- Department of Obstetrics and GynecologyThe First People's Hospital of Zhangjiagang, Soochow UniversityZhangjiagangChina
| | - Ho‐Yin Yuen
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Linli Shi
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Haiqing Qian
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Lijuan Cui
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Mengyu Tang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Jiahui Wang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Jie Zhu
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Zhirong Wang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| | - Xin Zhao
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Lihong Wang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagangJiangsuChina
| |
Collapse
|
38
|
Magatti M, Pischiutta F, Ortolano F, Pasotti A, Caruso E, Cargnoni A, Papait A, Capuzzi F, Zoerle T, Carbonara M, Stocchetti N, Borsa S, Locatelli M, Erba E, Prati D, Silini AR, Zanier ER, Parolini O. Systemic immune response in young and elderly patients after traumatic brain injury. Immun Ageing 2023; 20:41. [PMID: 37573338 PMCID: PMC10422735 DOI: 10.1186/s12979-023-00369-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of death and long-term disability worldwide. In addition to primary brain damage, systemic immune alterations occur, with evidence for dysregulated immune responses in aggravating TBI outcome and complications. However, immune dysfunction following TBI has been only partially understood, especially in the elderly who represent a substantial proportion of TBI patients and worst outcome. Therefore, we aimed to conduct an in-depth immunological characterization of TBI patients, by evaluating both adaptive (T and B lymphocytes) and innate (NK and monocytes) immune cells of peripheral blood mononuclear cells (PBMC) collected acutely (< 48 h) after TBI in young (18-45 yo) and elderly (> 65 yo) patients, compared to age-matched controls, and also the levels of inflammatory biomarkers. RESULTS Our data show that young respond differently than elderly to TBI, highlighting the immune unfavourable status of elderly compared to young patients. While in young only CD4 T lymphocytes are activated by TBI, in elderly both CD4 and CD8 T cells are affected, and are induced to differentiate into subtypes with low cytotoxic activity, such as central memory CD4 T cells and memory precursor effector CD8 T cells. Moreover, TBI enhances the frequency of subsets that have not been previously investigated in TBI, namely the double negative CD27- IgD- and CD38-CD24- B lymphocytes, and CD56dim CD16- NK cells, both in young and elderly patients. TBI reduces the production of pro-inflammatory cytokines TNF-α and IL-6, and the expression of HLA-DM, HLA-DR, CD86/B7-2 in monocytes, suggesting a compromised ability to drive a pro-inflammatory response and to efficiently act as antigen presenting cells. CONCLUSIONS We described the acute immunological response induced by TBI and its relation with injury severity, which could contribute to pathologic evolution and possibly outcome. The focus on age-related immunological differences could help design specific therapeutic interventions based on patients' characteristics.
Collapse
Affiliation(s)
- Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.
| | - Francesca Pischiutta
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Fabrizio Ortolano
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Pasotti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Enrico Caruso
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Andrea Papait
- Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
| | - Franco Capuzzi
- Dipartimento Medicina di Laboratorio, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Tommaso Zoerle
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Marco Carbonara
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nino Stocchetti
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Stefano Borsa
- Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marco Locatelli
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
- Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elisa Erba
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Antonietta R Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elisa R Zanier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ornella Parolini
- Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Roma, Italy
| |
Collapse
|
39
|
Masyeni S, Budhitresna AAG, Adiwinata R, Wibawa S, Nugraha PA, Antara J, Asmara DPGW, Widyaningsih PD, Yenny LGS, Widiastika M, Kahari S, Wardhana CA, Pasek AW, Putrawan O, Santosa A, Herawati S, Arisanti NLPE, Astini W, Fatawy RM, Kameoka M, Nelwan EJ. The role of CD4+, CD8+, CD4+/CD8+ and neutrophile to lymphocyte ratio in predicting and determining COVID-19 severity in Indonesian patients. Trans R Soc Trop Med Hyg 2023; 117:591-597. [PMID: 37024111 DOI: 10.1093/trstmh/trad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Biomarkers that are cost-effective and accurate for predicting severe coronavirus disease 2019 (COVID-19) are urgently needed. We would like to assess the role of various inflammatory biomarkers on admission as disease severity predictors and determine the optimal cut-off of the neutrophile-to-lymphocyte ratio (NLR) for predicting severe COVID-19. METHODS We conducted a cross-sectional study in six hospitals in Bali and recruited real-time PCR-confirmed COVID-19 patients aged >18 y from June to August 2020. Data collection included each patient's demographic, clinical, disease severity and hematological data. Multivariate and receiver operating characteristic curve analyses were performed. RESULTS A total of 95 Indonesian COVID-19 patients were included. The highest NLR among severe patients was 11.5±6.2, followed by the non-severe group at 3.3±2.8. The lowest NLR was found in the asymptomatic group (1.9±1.1). The CD4+ and CD8+ values were lowest in the critical and severe disease groups. The area under the curve of NLR was 0.959. Therefore, the optimal NLR cut-off value for predicting severe COVID-19 was ≥3.55, with sensitivity at 90.9% and a specificity of 16.7%. CONCLUSIONS Lower CD4+ and CD8+ and higher NLR values on admission are reliable predictors of severe COVID-19 among Indonesian people. NLR cut-off ≥3.55 is the optimal value for predicting severe COVID-19.
Collapse
Affiliation(s)
- Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine & Health Sciences, Universitas Warmadewa/Sanjiwani Hospital, Bali, 80239, Indonesia
| | - Anak Agung Gede Budhitresna
- Department of Internal Medicine, Faculty of Medicine & Health Sciences, Universitas Warmadewa/Sanjiwani Hospital, Bali, 80239, Indonesia
| | - Randy Adiwinata
- Department of Internal Medicine, Faculty of Medicine, Sam Ratulangi University/Prof dr. R.D. Kandou Hospital, Manado, 95262, Indonesia
| | | | | | | | - Dewa Putu Gede Wedha Asmara
- Department of Internal Medicine, Faculty of Medicine & Health Sciences, Universitas Warmadewa/Sanjiwani Hospital, Bali, 80239, Indonesia
| | - Putu Dyah Widyaningsih
- Department of Internal Medicine, Faculty of Medicine & Health Sciences, Universitas Warmadewa/Sanjiwani Hospital, Bali, 80239, Indonesia
| | - Luh Gede Sri Yenny
- Department of Internal Medicine, Faculty of Medicine & Health Sciences, Universitas Warmadewa/Sanjiwani Hospital, Bali, 80239, Indonesia
| | | | - Siska Kahari
- Department of Clinical Pathology, Faculty of Medicine & Health Sciences, Universitas Warmadewa/Tabanan Public Hospital, Bali, 80239, Indonesia
| | | | - Arya Widiyana Pasek
- Faculty of Medicine and Health Sciences, Universitas Warmadewa/Mangusada Hospital, Bali, 80239, Indonesia
| | - Oka Putrawan
- Faculty of Medicine and Health Sciences, Universitas Warmadewa/Mangusada Hospital, Bali, 80239, Indonesia
| | - Agus Santosa
- Faculty of Medicine and Health Sciences, Universitas Warmadewa/Mangusada Hospital, Bali, 80239, Indonesia
| | - Sianny Herawati
- Faculty of Medicine, Universitas Udayana/Sanglah Hospital, Bali, 80361, Indonesia
| | | | - Wining Astini
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo National Hospital, Jakarta, 10430, Indonesia
| | - Rois Muqsith Fatawy
- Infectious Disease and Immunology Research Center - IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia, Indonesia
| | - Masanori Kameoka
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
- Department of International Health, Kobe University Graduate School of Health Sciences, Hyogo, 654-0142, Japan
| | - Erni Juwita Nelwan
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo National Hospital, Jakarta, 10430, Indonesia
- Infectious Disease and Immunology Research Center - IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia, Indonesia
| |
Collapse
|
40
|
Karim A, Freeman MJ, Yang Q, Leverson G, Cherney-Stafford L, Striker R, Sanger CB. Duration of Time CD4/CD8 Ratio is Below 0.5 is Associated with Progression to Anal Cancer in Patients with HIV and High-Grade Dysplasia. Ann Surg Oncol 2023; 30:4737-4743. [PMID: 36869915 PMCID: PMC11630477 DOI: 10.1245/s10434-023-13213-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND A CD4/CD8 ratio < 0.5 is associated with increased risk of advanced anal disease (AAD) but it is unknown if duration below 0.5 matters. The purpose of this study was to determine if duration of a CD4/CD8 ratio < 0.5 is associated with increased risk of invasive anal cancer (IC) in people living with HIV and high-grade dysplasia (HSIL). METHODS This single institution, retrospective study used the University of Wisconsin Hospital and Clinics Anal Dysplasia and Anal Cancer Database. Patients with IC versus HSIL alone were compared. Independent variables were mean and percentage of time the CD4/CD8 ratio was < 0.5. Multivariate logistic regression was performed to estimate the adjusted odds of anal cancer. RESULTS We identified 107 patients with HIV infection and AAD (87 with HSIL, 20 with IC). A history of smoking was significantly associated with the development of IC (95% in patients with IC vs. 64% in patients with HSIL; p = 0.015). Mean time the CD4/CD8 ratio was < 0.5 was significantly longer in patients with IC compared with patients with HSIL (7.7 years vs. 3.8 years; p = 0.002). Similarly, the mean percentage of time the CD4/CD8 ratio was < 0.5 was higher in those with IC versus those with HSIL (80% vs. 55%; p = 0.009). On multivariate analysis, duration CD4/CD8 ratio was < 0.5 was associated with increased odds of developing IC (odds ratio 1.25, 95% confidence interval 1.02-1.53; p = 0.034). CONCLUSIONS In this retrospective, single-institution study of a cohort of people living with HIV and HSIL, increasing duration the CD4/CD8 ratio was < 0.5 was associated with increased odds of developing IC. Monitoring the number of years the CD4/CD8 ratio is < 0.5 could inform decision making in patients with HIV infection and HSIL.
Collapse
Affiliation(s)
- Aos Karim
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, USA
| | - Matthew J Freeman
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, USA
| | - Qiuyu Yang
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, USA
| | - Glen Leverson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, USA
| | - Linda Cherney-Stafford
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, USA
| | - Rob Striker
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cristina B Sanger
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, USA.
- Department of Surgery, W.S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
41
|
Liu B, Li K, Li S, Zhao R, Zhang Q. The association between the CD4/CD8 ratio and surgical site infection risk among HIV-positive adults: insights from a China hospital. Front Immunol 2023; 14:1135725. [PMID: 37497209 PMCID: PMC10366603 DOI: 10.3389/fimmu.2023.1135725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Purpose It is well known that the CD4/CD8 ratio is a special immune-inflammation marker. We aimed to explore the relationship between the CD4/CD8 ratio and the risk of surgical site infections (SSI) among human immunodeficiency virus (HIV)-positive adults undergoing orthopedic surgery. Methods We collected and analyzed data from 216 HIV-positive patients diagnosed with fractures at the department of orthopedics, Beijing Ditan Hospital between 2011 and 2019. The demographic, surgical, and hematological data for all patients were collected in this retrospective cohort study. We explored the risk factors for SSI using univariate and multivariate logistic regression analysis. Then, the clinical correlation between the CD4 count, CD4/CD8 ratio, and SSI was studied using multivariate logistic regression models after adjusting for potential confounders. Furthermore, the association between the CD4/CD8 ratio and SSI was evaluated on a continuous scale with restricted cubic spline (RCS) curves based on logistic regression models. Results A total of 23 (10.65%) patients developed SSI during the perioperative period. Patients with hepatopathy (OR=6.10, 95%CI=1.46-28.9), HIV viral load (OR=8.68, 95%CI=1.42-70.2; OR=19.4, 95%CI=3.09-179), operation time (OR=7.84, 95%CI=1.35-77.9), and CD4 count (OR=0.05, 95%CI=0.01-0.23) were risk factors for SSI (P-value < 0.05). Our study demonstrated that a linear relationship between CD4 count and surgical site infection risk. In other words, patients with lower CD4 counts had a higher risk of developing SSI. Furthermore, the relationship between CD4/CD8 ratio and SSI risk was non-linear, inverse 'S' shaped. The risk of SSI increased substantially when the ratio was below 0.913; above 0.913, the risk of SSI was almost unchanged. And there is a 'threshold-saturation' effect between them. Conclusion Our research shows the CD4/CD8 ratio could be a useful predictor and immune-inflammation marker of the risk of SSI in HIV-positive fracture patients. These results, from a Chinese hospital, support the beneficial role of immune reconstitution in HIV-positive patients prior to orthopedic surgery.
Collapse
|
42
|
Bohne A, Grundler E, Knüttel H, Fürst A, Völkel V. Influence of Laparoscopic Surgery on Cellular Immunity in Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3381. [PMID: 37444491 DOI: 10.3390/cancers15133381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. The main treatment options are laparoscopic (LS) and open surgery (OS), which might differ in their impact on the cellular immunity so indispensable for anti-infectious and antitumor defense. MEDLINE, Embase, Web of Science (SCI-EXPANDED), the Cochrane Library, Google Scholar, ClinicalTrials.gov, and ICTRP (WHO) were systematically searched for randomized controlled trials (RCTs) comparing cellular immunity in CRC patients of any stage between minimally invasive and open surgical resections. A random effects-weighted inverse variance meta-analysis was performed for cell counts of natural killer (NK) cells, white blood cells (WBCs), lymphocytes, CD4+ T cells, and the CD4+/CD8+ ratio. The RoB2 tool was used to assess the risk of bias. The meta-analysis was prospectively registered in PROSPERO (CRD42021264324). A total of 14 trials including 974 participants were assessed. The LS groups showed more favorable outcomes in eight trials, with lower inflammation and less immunosuppression as indicated by higher innate and adaptive cell counts, higher NK cell activity, and higher HLA-DR expression rates compared to OS, with only one study reporting lower WBCs after OS. The meta-analysis yielded significantly higher NK cell counts at postoperative day (POD)4 (weighted mean difference (WMD) 30.80 cells/µL [19.68; 41.92], p < 0.00001) and POD6-8 (WMD 45.08 cells/µL [35.95; 54.21], p < 0.00001). Although further research is required, LS is possibly associated with less suppression of cellular immunity and lower inflammation, indicating better preservation of cellular immunity.
Collapse
Affiliation(s)
- Annika Bohne
- Fakultät für Medizin, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Elena Grundler
- Fakultät für Medizin, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Helge Knüttel
- Universitätsbibliothek Regensburg, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Alois Fürst
- Caritas Krankenhaus St. Josef Regensburg, Klinik für Allgemein-, Viszeral-, Thoraxchirurgie und Adipositasmedizin, Landshuter Str. 65, 93053 Regensburg, Germany
| | - Vinzenz Völkel
- Tumorzentrum Regensburg-Zentrum für Qualitätssicherung und Versorgungsforschung der Universität Regensburg, Am BioPark 9, 93053 Regensburg, Germany
| |
Collapse
|
43
|
Ahuja SK, Manoharan MS, Lee GC, McKinnon LR, Meunier JA, Steri M, Harper N, Fiorillo E, Smith AM, Restrepo MI, Branum AP, Bottomley MJ, Orrù V, Jimenez F, Carrillo A, Pandranki L, Winter CA, Winter LA, Gaitan AA, Moreira AG, Walter EA, Silvestri G, King CL, Zheng YT, Zheng HY, Kimani J, Blake Ball T, Plummer FA, Fowke KR, Harden PN, Wood KJ, Ferris MT, Lund JM, Heise MT, Garrett N, Canady KR, Abdool Karim SS, Little SJ, Gianella S, Smith DM, Letendre S, Richman DD, Cucca F, Trinh H, Sanchez-Reilly S, Hecht JM, Cadena Zuluaga JA, Anzueto A, Pugh JA, Agan BK, Root-Bernstein R, Clark RA, Okulicz JF, He W. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection. Nat Commun 2023; 14:3286. [PMID: 37311745 PMCID: PMC10264401 DOI: 10.1038/s41467-023-38238-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/17/2023] [Indexed: 06/15/2023] Open
Abstract
Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8+ and CD4+ T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation. Profiles of IR metrics in ~48,500 individuals collectively indicate that some persons resist degradation of IR both during aging and when challenged with varied inflammatory stressors. With this resistance, preservation of optimal IR tracked (i) a lower risk of HIV acquisition, AIDS development, symptomatic influenza infection, and recurrent skin cancer; (ii) survival during COVID-19 and sepsis; and (iii) longevity. IR degradation is potentially reversible by decreasing inflammatory stress. Overall, we show that optimal IR is a trait observed across the age spectrum, more common in females, and aligned with a specific immunocompetence-inflammation balance linked to favorable immunity-dependent health outcomes. IR metrics and mechanisms have utility both as biomarkers for measuring immune health and for improving health outcomes.
Collapse
Affiliation(s)
- Sunil K Ahuja
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Muthu Saravanan Manoharan
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Grace C Lee
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Pharmacotherapy Education and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Justin A Meunier
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Nathan Harper
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Alisha M Smith
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Marcos I Restrepo
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anne P Branum
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Matthew J Bottomley
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Fabio Jimenez
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Andrew Carrillo
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Lavanya Pandranki
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Caitlyn A Winter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lauryn A Winter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Alvaro A Gaitan
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Alvaro G Moreira
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Elizabeth A Walter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Guido Silvestri
- Department of Pathology, Emory University School of Medicine & Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- National Resource Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- National Resource Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - T Blake Ball
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Paul N Harden
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Kristen R Canady
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Susan J Little
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sara Gianella
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Davey M Smith
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Scott Letendre
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
| | - Douglas D Richman
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, 07100, Italy
| | - Hanh Trinh
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Sandra Sanchez-Reilly
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Joan M Hecht
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Jose A Cadena Zuluaga
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Antonio Anzueto
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jacqueline A Pugh
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Brian K Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | | | - Robert A Clark
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Jason F Okulicz
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Medicine, Infectious Diseases Service, Brooke Army Medical Center, San Antonio, TX, 78234, USA
| | - Weijing He
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| |
Collapse
|
44
|
Arana Echarri A, Struszczak L, Beresford M, Campbell JP, Jones RH, Thompson D, Turner JE. Immune cell status, cardiorespiratory fitness and body composition among breast cancer survivors and healthy women: a cross sectional study. Front Physiol 2023; 14:1107070. [PMID: 37324393 PMCID: PMC10267418 DOI: 10.3389/fphys.2023.1107070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Methods: We examined whether immune cell profiles differ between healthy women (n = 38) and breast cancer survivors (n = 27) within 2 years of treatment, and whether any group-differences were influenced by age, cytomegalovirus infection, cardiorespiratory fitness and body composition. Using flow cytometry, CD4+ and CD8+ T cell subsets, including naïve (NA), central memory (CM) and effector cells (EM and EMRA) were identified using CD27/CD45RA. Activation was measured by HLA-DR expression. Stem cell-like memory T cells (TSCMs) were identified using CD95/CD127. B cells, including plasmablasts, memory, immature and naïve cells were identified using CD19/CD27/CD38/CD10. Effector and regulatory Natural Killer cells were identified using CD56/CD16. Results: Compared to healthy women, CD4+ CM were +Δ21% higher among survivors (p = 0.028) and CD8+ NA were -Δ25% lower (p = 0.034). Across CD4+ and CD8+ subsets, the proportion of activated (HLA-DR+) cells was +Δ31% higher among survivors: CD4+ CM (+Δ25%), CD4+ EM (+Δ32%) and CD4+ EMRA (+Δ43%), total CD8+ (+Δ30%), CD8+ EM (+Δ30%) and CD8+ EMRA (+Δ25%) (p < 0.046). The counts of immature B cells, NK cells and CD16+ NK effector cells were higher among survivors (+Δ100%, +Δ108% and +Δ143% respectively, p < 0.04). Subsequent analyses examined whether statistically significant differences in participant characteristics, influenced immunological differences between groups. Compared to healthy women, survivors were older (56 ± 6 y vs. 45 ± 11 y), had lower cardiorespiratory fitness (V˙O2max mL kg-1 min-1: 28.8 ± 5.0 vs. 36.2 ± 8.5), lower lean mass (42.3 ± 5.0 kg vs. 48.4 ± 15.8 kg), higher body fat (36.3% ± 5.3% vs. 32.7% ± 6.4%) and higher fat mass index (FMI kg/m2: 9.5 ± 2.2 vs. 8.1 ± 2.7) (all p < 0.033). Analysis of covariance revealed divergent moderating effects of age, CMV serostatus, cardiorespiratory fitness and body composition on the differences in immune cell profiles between groups, depending on the cell type examined. Moreover, across all participants, fat mass index was positively associated with the proportion of HLA-DR+ CD4+ EMRA and CD8+ EM/EMRA T cells (Pearson correlation: r > 0.305, p < 0.019). The association between fat mass index and HLA-DR+ CD8+ EMRA T cells withstood statistical adjustment for all variables, including age, CMV serostatus, lean mass and cardiorespiratory fitness, potentially implicating these cells as contributors to inflammatory/immune-dysfunction in overweight/obesity.
Collapse
Affiliation(s)
| | | | - Mark Beresford
- Department for Oncology and Haematology, Royal United Hospitals Bath NHS Trust, Bath, United Kingdom
| | | | - Robert H. Jones
- Velindre Cancer Centre and Cardiff University, Cardiff, United Kingdom
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
45
|
Yao B, Delaidelli A, Vogel H, Sorensen PH. Pediatric Brain Tumours: Lessons from the Immune Microenvironment. Curr Oncol 2023; 30:5024-5046. [PMID: 37232837 PMCID: PMC10217418 DOI: 10.3390/curroncol30050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
In spite of recent advances in tumour molecular subtyping, pediatric brain tumours (PBTs) remain the leading cause of cancer-related deaths in children. While some PBTs are treatable with favourable outcomes, recurrent and metastatic disease for certain types of PBTs remains challenging and is often fatal. Tumour immunotherapy has emerged as a hopeful avenue for the treatment of childhood tumours, and recent immunotherapy efforts have been directed towards PBTs. This strategy has the potential to combat otherwise incurable PBTs, while minimizing off-target effects and long-term sequelae. As the infiltration and activation states of immune cells, including tumour-infiltrating lymphocytes and tumour-associated macrophages, are key to shaping responses towards immunotherapy, this review explores the immune landscape of the developing brain and discusses the tumour immune microenvironments of common PBTs, with hopes of conferring insights that may inform future treatment design.
Collapse
Affiliation(s)
- Betty Yao
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannes Vogel
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
46
|
Arana Echarri A, Struszczak L, Beresford M, Campbell JP, Thompson D, Turner JE. The effects of exercise training for eight weeks on immune cell characteristics among breast cancer survivors. Front Sports Act Living 2023; 5:1163182. [PMID: 37252426 PMCID: PMC10211347 DOI: 10.3389/fspor.2023.1163182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Methods This study examined the effects of exercise training for 8 weeks on blood immune cell characteristics among 20 breast cancer survivors (age 56 ± 6 years, Body Mass Index 25.4 ± 3.0 kg m2) within two years of treatment. Participants were randomly allocated to a partly-supervised or a remotely-supported exercise group (n = 10 each). The partly supervised group undertook 2 supervised (laboratory-based treadmill walking and cycling) and 1 unsupervised session per week (outdoor walking) progressing from 35 to 50 min and 55% to 70% V˙O2max. The remotely-supported group received weekly exercise/outdoor walking targets (progressing from 105 to 150 min per week 55% to 70% V˙O2max) via weekly telephone calls discussing data from a fitness tracker. Immune cell counts were assessed using flow cytometry: CD4+ and CD8+ T cells (Naïve, NA; Central memory, CM; and Effector cells, EM and EMRA; using CD27/CD45RA), Stem cell-like memory T cells (TSCMs; using CD95/CD127), B cells (plasmablasts, memory, immature and naïve cells using CD19/CD27/CD38/CD10) and Natural Killer cells (effector and regulatory cells, using CD56/CD16). T cell function was assessed by unstimulated HLA-DR expression or interferon gamma (IFN-γ) production with Enzyme-linked ImmunoSpot assays following stimulation with virus or tumour-associated antigens. Results Total leukocyte counts, lymphocytes, monocytes and neutrophils did not change with training (p > 0.425). Most CD4+ and CD8+ T cell subtypes, including TSCMs, and B cell and NK cell subtypes did not change (p > 0.127). However, across groups combined, the CD4+ EMRA T cell count was lower after training (cells/µl: 18 ± 33 vs. 12 ± 22, p = 0.028) and these cells were less activated on a per cell basis (HLA-DR median fluorescence intensity: 463 ± 138 vs. 420 ± 77, p = 0.018). Furthermore, the partly-supervised group showed a significant decrease in the CD4+/CD8+ ratio (3.90 ± 2.98 vs. 2.54 ± 1.29, p = 0.006) and a significant increase of regulatory NK cells (cells/µl: 16 ± 8 vs. 21 ± 10, p = 0.011). T cell IFN-γ production did not change with exercise training (p > 0.515). Discussion In summary, most immune cell characteristics are relatively stable with 8 weeks of exercise training among breast cancer survivors. The lower counts and activation of CD4+ EMRA T cells, might reflect an anti-immunosenescence effect of exercise.
Collapse
Affiliation(s)
| | | | - Mark Beresford
- Department for Oncology and Haematology, Royal United Hospitals Bath NHS Trust, Bath, United Kingdom
| | | | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
47
|
Liu G, Ajao AM, Shanmugasundaram R, Taylor J, Ball E, Applegate TJ, Selvaraj R, Kyriazakis I, Olukosi OA, Kim WK. The effects of arginine and branched-chain amino acid supplementation to reduced-protein diet on intestinal health, cecal short-chain fatty acid profiles, and immune response in broiler chickens challenged with Eimeria spp. Poult Sci 2023; 102:102773. [PMID: 37236037 DOI: 10.1016/j.psj.2023.102773] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
We investigated the effects of supplementing arginine (Arg) and branched-chain amino acids (BCAA) in broilers fed reduced-protein diets and challenged with Eimeria spp. All birds were fed the same starter diet meeting Cobb 500 nutrient specifications from d 1 to 9. Four grower diets: positive control (PC) with 20.0% crude protein (CP); reduced-protein negative control (NC) with 17.5% CP; or NC supplemented with Arg or BCAA at 50% above recommendations (ARG or BCAA) were fed to the birds from d 9 to 28. Birds were allocated in a 2 × 4 factorial arrangement (4 diets, each with or without challenge), with 8 replicates per treatment. On d 14, the challenge groups were orally gavaged with mixed Eimeria spp. Intestinal permeability was higher (P < 0.05) in NC than PC, whereas the permeability of ARG and BCAA groups did not differ significantly from PC. On d 28, a significant interaction (P < 0.01) was observed in CD8+: CD4+ ratios in cecal tonsils (CT), Eimeria challenge increased the ratios in all groups except for the ARG group. On d 21, a significant interaction was found for CD4+CD25+ percentages in CT (P < 0.01) that Eimeria challenge increased the percentages only in PC and NC groups. On d 21 and 28, significant interactions (P < 0.01) were found for macrophage nitric oxide (NO) production. In nonchallenged birds, NO was higher in the ARG group than other groups, but in challenged birds, NO was higher in both ARG and BCAA groups. On d 21, a significant interaction was found for bile anticoccidial IgA concentrations (P < 0.05) that Eimeria challenge increased IgA only in NC and ARG groups. The results suggest that a reduced-protein diet exacerbates the impact of the Eimeria challenge on intestinal integrity, but this could be mitigated by Arg and BCAA supplementations. Arginine and BCAA supplementations in reduced-protein diets could be beneficial for broilers against Eimeria infection by enhancing the immune responses. The beneficial effects of Arg supplementation tended to be more pronounced compared to BCAA supplementation.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Adeleye M Ajao
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - James Taylor
- Agri-Food & Biosciences Institute (AFBI), Belfast, BT9 5PX, United Kingdom
| | - Elizabeth Ball
- Institute for Global Food Security, Queen's University, Belfast, BT9 5DL, United Kingdom
| | - Todd J Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ramesh Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ilias Kyriazakis
- Agri-Food & Biosciences Institute (AFBI), Belfast, BT9 5PX, United Kingdom.; Institute for Global Food Security, Queen's University, Belfast, BT9 5DL, United Kingdom
| | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
48
|
Arrigoni FIF, Spyer M, Hunter P, Alber D, Kityo C, Hakim J, Matubu A, Olal P, Paton NI, Walker AS, Klein N. Impact of sub-optimal HIV viral control on activated T cells. AIDS 2023; 37:913-923. [PMID: 36723505 PMCID: PMC7617099 DOI: 10.1097/qad.0000000000003488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE HIV viral load (VL) monitoring is generally conducted 6-12 monthly in low- and middle-income countries, risking relatively prolonged periods of poor viral control. We explored the effects of different levels of loss of viral control on immune reconstitution and activation. DESIGN Two hundred and eight participants starting protease inhibitor (PI)-based second-line therapy in the EARNEST trial (ISRCTN37737787) in Uganda and Zimbabwe were enrolled and CD38 + /HLA-DR + immunophenotyping performed (CD8-FITC/CD38-PE/CD3-PerCP/HLA-DR-APC; centrally gated) in real-time at 0, 12, 48, 96 and 144 weeks from randomization. METHODS VL was assayed retrospectively on samples collected every 12-16 weeks and classified as continuous suppression (<40 copies/ml throughout); suppression with transient blips; low-level rebound (two or more consecutive VL >40, <5000 copies/ml); high-level rebound/nonresponse (two or more consecutive VL >5000 copies/ml). RESULTS Immunophenotype reconstitution varied between that defined by numbers of cells and that defined by cell percentages. Furthermore, VL dynamics were associated with substantial differences in expression of CD4 + and CD8 + cell activation markers, with only individuals with high-level rebound/nonresponse (>5000 copies/ml) experiencing significantly greater activation and impaired reconstitution. There was little difference between participants who suppressed consistently and who exhibited transient blips or even low-level rebound by 144 weeks ( P > 0.2 vs. suppressed consistently). CONCLUSION Detectable viral load below the threshold at which WHO guidelines recommend that treatment can be maintained without switching (1000 copies/ml) appear to have at most, small effects on reconstitution and activation, for patients taking a PI-based second-line regimen.
Collapse
Affiliation(s)
- Francesca I F Arrigoni
- UCL, Great Ormond Street, Institute of Child Health
- Department of Pharmacy, LSPC, HSSCE, Kingston University
| | - Moira Spyer
- UCL, Great Ormond Street, Institute of Child Health
- MRC Clinical Trials Unit at University College London, London, UK
| | | | - Dagmar Alber
- UCL, Great Ormond Street, Institute of Child Health
| | - Cissy Kityo
- Joint Clinical Research Centre (JCRC), Kampala, Uganda
| | - James Hakim
- University of Zimbabwe Clinical Research Centre, Harare, Zimbabwe
| | - Allen Matubu
- University of Zimbabwe Clinical Research Centre, Harare, Zimbabwe
| | - Patrick Olal
- Joint Clinical Research Centre (JCRC), Kampala, Uganda
| | - Nicholas I Paton
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - A Sarah Walker
- MRC Clinical Trials Unit at University College London, London, UK
- Joint Clinical Research Centre (JCRC), Kampala, Uganda
| | - Nigel Klein
- UCL, Great Ormond Street, Institute of Child Health
| |
Collapse
|
49
|
De Rose DU, Pace PG, Ceccherini-Silberstein F, Dotta A, Andreoni M, Sarmati L, Iannetta M. T Lymphocyte Subset Counts and Interferon-Gamma Production in Adults and Children with COVID-19: A Narrative Review. J Pers Med 2023; 13:jpm13050755. [PMID: 37240926 DOI: 10.3390/jpm13050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Adults and children exhibit a broad range of clinical outcomes from SARS-CoV-2 infection, with minimal to mild symptoms, especially in the pediatric age. However, some children present with a severe hyperinflammatory post-infectious complication named multisystem inflammatory syndrome in children (MIS-C), mainly affecting previously healthy subjects. Understanding these differences is still an ongoing challenge, that can lead to new therapeutic strategies and avoid unfavorable outcomes. In this review, we discuss the different roles of T lymphocyte subsets and interferon-γ (IFN-γ) in the immune responses of adults and children. Lymphopenia can influence these responses and represent a good predictor for the outcome, as reported by most authors. The increased IFN-γ response exhibited by children could be the starting point for the activation of a broad response that leads to MIS-C, with a significantly higher risk than in adults, although a single IFN signature has not been identified. Multicenter studies with large cohorts in both age groups are still needed to study SARS-CoV-2 pathogenesis with new tools and to understand how is possible to better modulate immune responses.
Collapse
Affiliation(s)
- Domenico Umberto De Rose
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, 00165 Rome, Italy
- PhD Course in Microbiology, Immunology, Infectious Diseases, and Transplants (MIMIT), Faculty of Medicine and Surgery, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Pier Giorgio Pace
- Infectious Disease Unit, Department of System Medicine, "Tor Vergata" University and Hospital, 00133 Rome, Italy
| | | | - Andrea Dotta
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, 00165 Rome, Italy
| | - Massimo Andreoni
- Infectious Disease Unit, Department of System Medicine, "Tor Vergata" University and Hospital, 00133 Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Unit, Department of System Medicine, "Tor Vergata" University and Hospital, 00133 Rome, Italy
| | - Marco Iannetta
- Infectious Disease Unit, Department of System Medicine, "Tor Vergata" University and Hospital, 00133 Rome, Italy
| |
Collapse
|
50
|
Bozkurt G, Kaya F, Yildirim Y, Yildiz R, Gungor O, Dogan F, Ayozger LEO. The effect of multiple-dose ivermectin treatment on CD4 +/CD8 + and the oxidative stress index in goats with udder viral papillomatosis. Res Vet Sci 2023; 157:17-25. [PMID: 36848794 DOI: 10.1016/j.rvsc.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/31/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
This study aims to reveal the therapeutic effect of ivermectin against Capra hircus papillomavirus (ChPV-1) infection and on the CD4+/CD8+ (cluster of differentiation) and oxidative stress index (OSI). Twenty hair goats naturally infected with ChPV-1 were divided into two groups with equal numbers as the ivermectin group and the control groups. Ivermectin was administered subcutaneously at a dose of 0.2 mg/kg to the goats in the ivermectin group on days 0, 7, and 21. Blood samples were collected from the vena jugularis on days 0, 21, 45, and 90. The cluster of differentiation4+/CD8+ ratio was significantly higher in the ivermectin group than in the control group on the 90th day. Furthermore, the CD8+ concentration was significantly decreased in the ivermectin group on the 90th day compared with the control group. Both total oxidant status (TOS) and OSI were found to be significantly higher in the control group on the 21st and 45th days than in the ivermectin group. On the 90th day, it was determined that the lesions in the ivermectin group improved significantly compared to those in the control group. Additionally, only in the ivermectin group was there a significant difference between the 90th day and the other days in terms of healing. As a result, it can be suggested that ivermectin has positive effects on the immune response and that its oxidative actions are of therapeutic value and do not harm the systemic oxidative status, as in untreated goats.
Collapse
Affiliation(s)
- Gokhan Bozkurt
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, 15100 Burdur, Turkey.
| | - Feyyaz Kaya
- Balikesir University, Faculty of Veterinary Medicine, Department of Internal Medicine, Balikesir, Turkey.
| | - Yakup Yildirim
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Virology, 15100 Burdur, Turkey.
| | - Ramazan Yildiz
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Internal Medicine, 15100 Burdur, Turkey.
| | - Orsan Gungor
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, 15100 Burdur, Turkey.
| | - Firat Dogan
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Virology, 31060, Hatay, Turkey.
| | - Leyla Elif Ozgu Ayozger
- Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Pathology, 15100 Burdur, Turkey.
| |
Collapse
|