1
|
Wang XW, Tang YX, Li FX, Wang JL, Yao GP, Zeng DT, Tang YL, Chi BT, Su QY, Huang LQ, Qin DY, Chen G, Feng ZB, He RQ. Clinical significance of upregulated Rho GTPase activating protein 12 causing resistance to tyrosine kinase inhibitors in hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:4244-4263. [DOI: 10.4251/wjgo.v16.i10.4244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major health challenge with high incidence and poor survival rates in China. Systemic therapies, particularly tyrosine kinase inhibitors (TKIs), are the first-line treatment for advanced HCC, but resistance is common. The Rho GTPase family member Rho GTPase activating protein 12 (ARHGAP12), which regulates cell adhesion and invasion, is a potential therapeutic target for overcoming TKI resistance in HCC. However, no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported.
AIM To unveil the expression of ARHGAP12 in HCC, its role in TKI resistance and its potential associated pathways.
METHODS This study used single-cell RNA sequencing (scRNA-seq) to evaluate ARHGAP12 mRNA levels and explored its mechanisms through enrichment analysis. CellChat was used to investigate focal adhesion (FA) pathway regulation. We integrated bulk RNA data (RNA-seq and microarray), immunohistochemistry and proteomics to analyze ARHGAP12 mRNA and protein levels, correlating with clinical outcomes. We assessed ARHGAP12 expression in TKI-resistant HCC, integrated conventional HCC to explore its mechanism, identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy.
RESULTS ARHGAP12 mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA. In malignant hepatocytes in high-score FA groups, MDK-[integrin alpha 6 (ITGA6) + integrin β-1 (ITGB1)] showed specificity in ligand-receptor interactions. ARHGAP12 mRNA and protein were upregulated in bulk RNA, immunohistochemistry and proteomics, and higher expression was associated with a worse prognosis. ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway. ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA. High expression of ARHGAP12 was associated with adverse reactions to sorafenib, cabozantinib and regorafenib, but not to immunotherapy.
CONCLUSION ARHGAP12 expression is elevated in HCC and TKI-resistant HCC, and its regulatory role in FA may underlie the TKI-resistant phenotype.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Fu-Xi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jia-Le Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gao-Peng Yao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Da-Tong Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Department of Pathology, Red Cross Hospital of Yulin City, Yulin 537000, Guangxi Zhuang Autonomous Region, China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bang-Teng Chi
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qin-Yan Su
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lin-Qing Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Di-Yuan Qin
- Department of Computer Science and Technology, School of Computer and Electronic Information, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
3
|
Chan TO, Armen RS, Yadav S, Shah S, Zhang J, Tiegs BC, Keny N, Blumhof B, Deshpande DA, Rodeck U, Penn RB. A tripartite cooperative mechanism confers resistance of the protein kinase A catalytic subunit to dephosphorylation. J Biol Chem 2020; 295:3316-3329. [PMID: 31964716 DOI: 10.1074/jbc.ra119.010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/28/2019] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of specific residues in the activation loops of AGC kinase group (protein kinase A, G, and C families) is required for activity of most of these kinases, including the catalytic subunit of PKA (PKAc). Although many phosphorylated AGC kinases are sensitive to phosphatase-mediated dephosphorylation, the PKAc activation loop uniquely resists dephosphorylation, rendering it "constitutively" phosphorylated in cells. Previous biophysical experiments and structural modeling have suggested that the N-terminal myristoylation signal and the C-terminal FXXF motif in PKAc regulate its thermal stability and catalysis. Here, using site-directed mutagenesis, molecular modeling, and in cell-free and cell-based systems, we demonstrate that substitutions of either the PKAc myristoylation signal or the FXXF motif only modestly reduce phosphorylation and fail to affect PKAc function in cells. However, we observed that these two sites cooperate with an N-terminal FXXW motif to cooperatively establish phosphatase resistance of PKAc while not affecting kinase-dependent phosphorylation of the activation loop. We noted that this tripartite cooperative mechanism of phosphatase resistance is functionally relevant, as demonstrated by changes in morphology, adhesion, and migration of human airway smooth muscle cells transfected with PKAc variants containing amino acid substitutions in these three sites. These findings establish that three allosteric sites located at the PKAc N and C termini coordinately regulate the phosphatase sensitivity of this enzyme. This cooperative mechanism of phosphatase resistance of AGC kinase opens new perspectives toward therapeutic manipulation of kinase signaling in disease.
Collapse
Affiliation(s)
- Tung O Chan
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| | - Roger S Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Santosh Yadav
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Sushrut Shah
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jin Zhang
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Brian C Tiegs
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Nikhil Keny
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Brian Blumhof
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Deepak A Deshpande
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Ulrich Rodeck
- Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Raymond B Penn
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
4
|
Abstract
INTRODUCTION 3-Phosphoinositide-dependent kinase 1 (PDK1), the 'master kinase of the AGC protein kinase family', plays a key role in cancer development and progression. Although it has been rather overlooked, in the last decades a growing number of molecules have been developed to effectively modulate the PDK1 enzyme. AREAS COVERED This review collects different PDK1 inhibitors patented from October 2014 to December 2018. The molecules have been classified on the basis of the chemical structure/type of inhibition, and for each general structure, examples have been discussed in extenso. EXPERT OPINION The role of PDK1 in cancer development and progression as well as in metastasis formation and in chemoresistance has been confirmed by many studies. Therefore, the pharmaceutical discovery in both public and private institutions is still ongoing despite the plentiful molecules already published. The majority of the new molecules synthetized interact with binding sites different from the ATP binding site (i.e. PIF pocket or DFG-out conformation). However, many researchers are still looking for innovative PDK1 modulation strategy such as combination of well-known inhibitory agents or multitarget ligands, aiming to block, together with PDK1, other different critical players in the wide panorama of proteins involved in tumor pathways.
Collapse
Affiliation(s)
- Simona Sestito
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | | |
Collapse
|
5
|
Mucha BE, Banka S, Ajeawung NF, Molidperee S, Chen GG, Koenig MK, Adejumo RB, Till M, Harbord M, Perrier R, Lemyre E, Boucher RM, Skotko BG, Waxler JL, Thomas MA, Hodge JC, Gecz J, Nicholl J, McGregor L, Linden T, Sisodiya SM, Sanlaville D, Cheung SW, Ernst C, Campeau PM. A new microdeletion syndrome involving TBC1D24, ATP6V0C, and PDPK1 causes epilepsy, microcephaly, and developmental delay. Genet Med 2018; 21:1058-1064. [DOI: 10.1038/s41436-018-0290-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
|
6
|
Luo D, Xu X, Li J, Chen C, Chen W, Wang F, Xie Y, Li F. The PDK1/c‑Jun pathway activated by TGF‑β induces EMT and promotes proliferation and invasion in human glioblastoma. Int J Oncol 2018; 53:2067-2080. [PMID: 30106127 DOI: 10.3892/ijo.2018.4525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/23/2018] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant tumor affecting the human brain. Despite improvements in therapeutic technologies, patients with GBM have a poor clinical result and the molecular mechanisms responsible for the development of GBM have not yet been fully elucidated. 3-phosphoinositide dependent protein kinase 1 (PDK1) is upregulated in various tumors and promotes tumor invasion. In glioma, transforming growth factor-β (TGF‑β) promotes cell invasion; however, whether TGF‑β directly regulates PDK1 protein and promotes proliferation and invasion is not yet clear. In this study, PDK1 levels were measured in glioma tissues using tissue microarray (TMA) by immunohistochemistry (IHC) and RT‑qPCR. Kaplan-Meier analyses were used to calculate the survival rate of patients with glioma. In vitro, U251 and U87 glioma cell lines were used for functional analyses. Cell proliferation and invasion were analyzed using siRNA transfection, MTT assay, RT‑qPCR, western blot analysis, flow cytometry and invasion assay. In vivo, U251 glioma cell xenografts were established. The results revealed that PDK1 protein was significantly upregulated in glioma tissues compared with non-tumorous tissues. Furthermore, the higher PDK1 levels were associated with a large tumor size (>5.0 cm), a higher WHO grade and a shorter survival of patients with GBM. Univariate and multivariate analyses indicated that PDK1 was an independent prognostic factor. In vivo, PDK1 promoted glioma tumor xenograft growth. In vitro, functional analyses confirmed that TGF‑β upregulated PDK1 protein expression and PDK1 promoted cell migration and invasion, and functioned as an oncogene in GBM, by upregulating c‑Jun protein and inducing epithelial-mesenchymal transition (EMT). c‑Jun protein were overexpressed in glioma tissues and positively correlated with PDK1 levels. Moreover, our findings were further validated by the online Oncomine database. On the whole, the findings of this study indicate that in GBM, PDK1 functions as an oncogene, promoting proliferation and invasion.
Collapse
Affiliation(s)
- Dingyuan Luo
- Department of Vascular and Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Junliang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Wei Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Fangyu Wang
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Yanping Xie
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
7
|
Gagliardi PA, Puliafito A, Primo L. PDK1: At the crossroad of cancer signaling pathways. Semin Cancer Biol 2018; 48:27-35. [DOI: 10.1016/j.semcancer.2017.04.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/28/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
|
8
|
di Blasio L, Puliafito A, Gagliardi PA, Comunanza V, Somale D, Chiaverina G, Bussolino F, Primo L. PI3K/mTOR inhibition promotes the regression of experimental vascular malformations driven by PIK3CA-activating mutations. Cell Death Dis 2018; 9:45. [PMID: 29352118 PMCID: PMC5833448 DOI: 10.1038/s41419-017-0064-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Abstract
Somatic activating mutations within the PIK3CA gene have been recently detected in sporadic lymphatic and venous malformations, and in vascular malformations (VM) associated to overgrowth syndromes, such as CLOVES and Klippel-Trenaunay syndrome. Although VM are often limited to specific tissue areas and can be well treated, in extended or recurrent lesions novel therapeutic approaches are needed. We generated a mouse model of VM by local expression of PIK3CA-activating mutation in endothelial cells. PIK3CA-driven lesions are characterized by large areas of hemorrhage, hyperplastic vessels, infiltrates of inflammatory cells, and elevated endothelial cell density. Such vascular lesions are ameliorated by administration of dual PI3K/mTOR inhibitor, BEZ235, and mTOR inhibitor, Everolimus. Unexpectedly, the expression of PIK3CA-activating mutations in human endothelial cells results in both increased proliferation rates and senescence. Moreover, active forms of PIK3CA strongly promote the angiogenic sprouting. Treatment with PI3K/mTOR inhibitors restores normal endothelial cell proliferation rate and reduces the amount of senescent cells, whereas treatment with Akt inhibitor is less effective. Our findings reveal that PIK3CA mutations have a key role in the pathogenesis of VM and PIK3CA-driven experimental lesions can be effectively treated by PI3K/mTOR inhibitors.
Collapse
Affiliation(s)
- Laura di Blasio
- Candiolo Cancer Institute FPO-IRCCS, 10060, Candiolo, Torino, Italy. .,Department of Oncology, University of Torino, 10100, Torino, Italy.
| | | | | | - Valentina Comunanza
- Candiolo Cancer Institute FPO-IRCCS, 10060, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, 10100, Torino, Italy
| | - Desiana Somale
- Candiolo Cancer Institute FPO-IRCCS, 10060, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, 10100, Torino, Italy
| | - Giulia Chiaverina
- Candiolo Cancer Institute FPO-IRCCS, 10060, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, 10100, Torino, Italy
| | - Federico Bussolino
- Candiolo Cancer Institute FPO-IRCCS, 10060, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, 10100, Torino, Italy
| | - Luca Primo
- Candiolo Cancer Institute FPO-IRCCS, 10060, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, 10100, Torino, Italy
| |
Collapse
|
9
|
Shaheen NL, Kataria E, Antony J, Galvan D, Ballou Y, Bryan BA. Extracellular matrix composition modulates angiosarcoma cell attachment and proliferation. Oncoscience 2017; 4:178-188. [PMID: 29344556 PMCID: PMC5769982 DOI: 10.18632/oncoscience.383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/11/2017] [Indexed: 11/25/2022] Open
Abstract
Angiosarcoma is a rare and generally fatal tumor composed of aberrant cells of endothelial origin. Because of its infrequency in humans, very little is known about the growth requirements of this vascular sarcoma. Unlike the rapidly proliferating solid tumors from which they are isolated from, many of the established angiosarcoma cell lines exhibit less than robust growth in culture and often fail to form tumors in xenograft models. In order to better understand angiosarcoma in vitro growth conditions, we focused on a singular aspect of their culture—adhesion to the extracellular matrix—in order to identify attachment substrates that may facilitate and/or enhance their growth in tissue culture. Our data indicates that the extracellular matrix of angiosarcomas contains similar protein compositions to that of non-diseased endothelial cells. Moreover, angiosarcoma cell lines exhibited strong attachment preference to substrates such as collagen I or fibronectin, and less preference to collagen IV, laminin, or tropoelastin. Growth on preferred extracellular matrix substrates promoted mitogenic signaling and increased proliferation of angiosarcoma cell lines. These findings provide insight that may lead to more successful in vitro growth of angiosarcoma cell lines.
Collapse
Affiliation(s)
- Noel L Shaheen
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Esha Kataria
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Jocelyn Antony
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Dana Galvan
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Yessenia Ballou
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Brad A Bryan
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA.,Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| |
Collapse
|
10
|
Use of Single-Frequency Impedance Spectroscopy to Characterize the Growth Dynamics of Biofilm Formation in Pseudomonas aeruginosa. Sci Rep 2017; 7:5223. [PMID: 28701712 PMCID: PMC5507860 DOI: 10.1038/s41598-017-05273-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 05/26/2017] [Indexed: 02/08/2023] Open
Abstract
Impedance spectroscopy has been applied in prokaryotic and eukaryotic cytometry as a label-free method for the investigation of adherent cells. In this paper, its use for characterizing the growth dynamics of P. aeruginosa biofilms is described and compared to crystal violet staining and confocal microscopy. The method allows monitoring the growth of biofilm-forming P. aeruginosa in a continuous and label-free manner over a period of 72 h in a 96 well plate format. Impedance curves obtained for P. aeruginosa PA14 wild type and mutant strains with a transposon insertion in pqsA and pelA genes exhibited distinct phases. We propose that the slope of the declining curve following a maximum at ca. 35–40 h is a measure of biofilm formation. Transplant experiments with P. aeruginosa biofilms and paraffin suggest that the impedance also reflects pellicle formation at the liquid-air interface, a barely considered contributor to impedance. Finally, the impairment of biofilm formation upon treatment of cultures with L-arginine and with ciprofloxacin, tobramycin and meropenem was studied by single frequency impedance spectroscopy. We suggest that these findings qualify impedance spectroscopy as an additional technique to characterize biofilm formation and its modulation by small molecule drugs.
Collapse
|
11
|
Di Blasio L, Gagliardi PA, Puliafito A, Primo L. Serine/Threonine Kinase 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) as a Key Regulator of Cell Migration and Cancer Dissemination. Cancers (Basel) 2017; 9:cancers9030025. [PMID: 28287465 PMCID: PMC5366820 DOI: 10.3390/cancers9030025] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 02/03/2023] Open
Abstract
Dissecting the cellular signaling that governs the motility of eukaryotic cells is one of the fundamental tasks of modern cell biology, not only because of the large number of physiological processes in which cell migration is crucial, but even more so because of the pathological ones, in particular tumor invasion and metastasis. Cell migration requires the coordination of at least four major processes: polarization of intracellular signaling, regulation of the actin cytoskeleton and membrane extension, focal adhesion and integrin signaling and contractile forces generation and rear retraction. Among the molecular components involved in the regulation of locomotion, the phosphatidylinositol-3-kinase (PI3K) pathway has been shown to exert fundamental role. A pivotal node of such pathway is represented by the serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDPK1 or PDK1). PDK1, and the majority of its substrates, belong to the AGC family of kinases (related to cAMP-dependent protein kinase 1, cyclic Guanosine monophosphate-dependent protein kinase and protein kinase C), and control a plethora of cellular processes, downstream either to PI3K or to other pathways, such as RAS GTPase-MAPK (mitogen-activated protein kinase). Interestingly, PDK1 has been demonstrated to be crucial for the regulation of each step of cell migration, by activating several proteins such as protein kinase B/Akt (PKB/Akt), myotonic dystrophy-related CDC42-binding kinases alpha (MRCKα), Rho associated coiled-coil containing protein kinase 1 (ROCK1), phospholipase C gamma 1 (PLCγ1) and β3 integrin. Moreover, PDK1 regulates cancer cell invasion as well, thus representing a possible target to prevent cancer metastasis in human patients. The aim of this review is to summarize the various mechanisms by which PDK1 controls the cell migration process, from cell polarization to actin cytoskeleton and focal adhesion regulation, and finally, to discuss the evidence supporting a role for PDK1 in cancer cell invasion and dissemination.
Collapse
Affiliation(s)
- Laura Di Blasio
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | | | | | - Luca Primo
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
12
|
Leonhardt H, Gerhardt M, Höppner N, Krüger K, Tarantola M, Beta C. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics. Phys Rev E 2016; 93:012414. [PMID: 26871108 DOI: 10.1103/physreve.93.012414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 01/15/2023]
Abstract
We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.
Collapse
Affiliation(s)
- Helmar Leonhardt
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Strasse 24/25, 14476 Potsdam, Germany
| | - Matthias Gerhardt
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Strasse 24/25, 14476 Potsdam, Germany
| | - Nadine Höppner
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Kirsten Krüger
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Strasse 24/25, 14476 Potsdam, Germany
| | - Marco Tarantola
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Strasse 24/25, 14476 Potsdam, Germany.,Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|
13
|
PDK1: A signaling hub for cell migration and tumor invasion. Biochim Biophys Acta Rev Cancer 2015; 1856:178-88. [DOI: 10.1016/j.bbcan.2015.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 01/22/2023]
|
14
|
Dumas V, Guignandon A, Vico L, Mauclair C, Zapata X, Linossier MT, Bouleftour W, Granier J, Peyroche S, Dumas JC, Zahouani H, Rattner A. Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. ACTA ACUST UNITED AC 2015; 10:055002. [PMID: 26334374 DOI: 10.1088/1748-6041/10/5/055002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Surface improvement of implants is essential for achieving a fast osseo-integration. Technically, the creation of a precise pattern on a titanium alloy surface is challenging. Here, the femtosecond laser was chosen as an innovative technology for texturing with accuracy a nano-micro topography. By adjusting the laser parameters, three biomimetic textures were fabricated on the titanium surface: micropits with nano-ripples in the pits, micropits with nano-ripples around the pits, and a texture with only nano-ripples. Mesenchymal stem cells (MSCs, C3H10T1/2) grown on these surfaces displayed altered morphometric parameters, and modified their focal adhesions in term of number, size, and distribution depending on surface type. These results indicate that the MSCs perceived subtle differences in topography. Dynamic analyses of early cellular events showed a higher speed of spreading on all the textured surfaces as opposed to the polished titanium. Concerning commitment, all the laser-treated surfaces strongly inhibited the expression of adipogenic-related genes (PPARϒ2, C/EBPα) and up-regulated the expression of osteoblastic-related genes (RUNX2, osteocalcin). Interestingly, the combination of micropits to nano-ripples enhanced their osteogenic potential as seen by a twofold increase in osteocalcin mRNA. Alkaline phosphatase activity was increased on all the textured surfaces, and lipid production was down-regulated. The functionalization of metallic surfaces by this high-resolution process will help us understand the MSCs' interactions with substrates for the development of textured implants with predictable tissue integrative properties.
Collapse
Affiliation(s)
- Virginie Dumas
- Université de Lyon, Ecole Nationale d'Ingénieurs de Saint Etienne (ENISE), LTDS, UMR 5513 CNRS, 42023 Saint-Etienne Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gagliardi PA, Puliafito A, di Blasio L, Chianale F, Somale D, Seano G, Bussolino F, Primo L. Real-time monitoring of cell protrusion dynamics by impedance responses. Sci Rep 2015; 5:10206. [PMID: 25976978 PMCID: PMC4432390 DOI: 10.1038/srep10206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/02/2015] [Indexed: 01/17/2023] Open
Abstract
Cellular protrusions are highly dynamic structures involved in fundamental processes, including cell migration and invasion. For a cell to migrate, its leading edge must form protrusions, and then adhere or retract. The spatial and temporal coordination of protrusions and retraction is yet to be fully understood. The study of protrusion dynamics mainly relies on live-microscopy often coupled to fluorescent labeling. Here we report the use of an alternative, label-free, quantitative and rapid assay to analyze protrusion dynamics in a cell population based on the real-time recording of cell activity by means of electronic sensors. Cells are seeded on a plate covered with electrodes and their shape changes map into measured impedance variations. Upon growth factor stimulation the impedance increases due to protrusive activity and decreases following retraction. Compared to microscopy-based methods, impedance measurements are suitable to high-throughput studies on different cell lines, growth factors and chemical compounds. We present data indicating that this assay lends itself to dissect the biochemical signaling pathways controlling adhesive protrusions. Indeed, we show that the protrusion phase is sustained by actin polymerization, directly driven by growth factor stimulation. Contraction instead mainly relies on myosin action, pointing at a pivotal role of myosin in lamellipodia retraction.
Collapse
Affiliation(s)
- Paolo Armando Gagliardi
- 1] Department of Oncology, University of Torino, Torino, 10043, Italy [2] Candiolo Cancer Institute-FPO IRCCS, Candiolo, 10060, Italy
| | | | - Laura di Blasio
- 1] Department of Oncology, University of Torino, Torino, 10043, Italy [2] Candiolo Cancer Institute-FPO IRCCS, Candiolo, 10060, Italy
| | | | - Desiana Somale
- 1] Department of Oncology, University of Torino, Torino, 10043, Italy [2] Candiolo Cancer Institute-FPO IRCCS, Candiolo, 10060, Italy
| | - Giorgio Seano
- 1] Department of Oncology, University of Torino, Torino, 10043, Italy [2] Candiolo Cancer Institute-FPO IRCCS, Candiolo, 10060, Italy
| | - Federico Bussolino
- 1] Department of Oncology, University of Torino, Torino, 10043, Italy [2] Candiolo Cancer Institute-FPO IRCCS, Candiolo, 10060, Italy [3] Center for Molecular Systems Biology, University of Torino, 10124, Torino, Italy
| | - Luca Primo
- 1] Department of Oncology, University of Torino, Torino, 10043, Italy [2] Candiolo Cancer Institute-FPO IRCCS, Candiolo, 10060, Italy [3] Center for Molecular Systems Biology, University of Torino, 10124, Torino, Italy
| |
Collapse
|