1
|
Hong CS, Menchikova EV, Najjar Y, Whiteside TL, Jackson EK. Assessment of adenosinergic activity of small extracellular vesicles in plasma of cancer patients and healthy donors. Oncoimmunology 2025; 14:2444704. [PMID: 39704041 DOI: 10.1080/2162402x.2024.2444704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
The adenosinergic pathway converting endogenous ATP to adenosine (ADO) is a major immunosuppressive pathway in cancer. Emerging data indicate that plasma small extracellular vesicles (sEV) express CD39 and CD73 and produce ADO. Using a noninvasive, highly sensitive newly developed assay, metabolism of N6-etheno-labeled eATP, eADP or eAMP by ecto-nucleotidases on the external surface of sEV was measured using high pressure liquid chromatography with fluorescence detection. Ecto-nucleotidase activity in sEV isolated from plasma of randomly selected cancer patients and healthy donors (HDs) was compared. Relative to sEV of HDs, sEV from the plasma of melanoma patients metabolized eATP to eADP and eAMP to eADO with significantly greater efficiency. Activities of both CD39 and CD73 were elevated, as determined by the use of pharmacologic inhibitors selective for these enzymes. In contrast, metabolic activity of CD39 and CD73 on sEV isolated from plasma of patients with head and neck cancer was comparable to that of HDs, suggesting that the activity of ecto-nucleotidases on sEV may differ depending on the cancer type or cancer stage. The N6-etheno-purine assay measuring contributions of ecto-nucleotidases residing on the surface of sEV to the extracellular ATP to ADO pathway can discriminate cancer patients from HDs, differentiate among different cancer types, and potentially identify patients most likely to benefit from anti-adenosinergic therapy designed to inhibit the adenosine-mediated immune suppression.
Collapse
Affiliation(s)
- Chang Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Research, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Elizabeth V Menchikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yana Najjar
- Cancer Research, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Research, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Noreen S, Ishaq I, Saleem MH, Ali B, Muhammad Ali S, Iqbal J. Electrochemical biosensing in oncology: a review advancements and prospects for cancer diagnosis. Cancer Biol Ther 2025; 26:2475581. [PMID: 40079211 PMCID: PMC11913392 DOI: 10.1080/15384047.2025.2475581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/29/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers. This review discusses the use of electrochemical detection in biosensors to provide real-time insights into disease-specific molecular interactions, focusing on target recognition and signal generation mechanisms. Furthermore, the superior efficacy of electrochemical biosensors compared to conventional techniques is explored, particularly in their ability to detect cancer biomarkers with enhanced specificity and sensitivity. Advancements in electrode materials and nanostructured designs, integrating nanotechnology, microfluidics, and artificial intelligence, have the potential to overcome biological interferences and scale for clinical use. Research and innovation in oncology diagnostics hold potential for personalized medicine, despite challenges in commercial viability and real-world application.
Collapse
Affiliation(s)
- Sana Noreen
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Izwa Ishaq
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Muhammad Ali
- Nursing Department, Communicable Disease Center Hamad Medical Corporation, Doha, Qatar
| | - Javed Iqbal
- Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
3
|
Zhang J, Yan C, Xie L, Ding Q, He X, Liu J, Wang T, Gu X, Wang L, Song C. Multivalent aptamer-linked tetrahedron DNA assisted catalytic hairpin assembly for accurate SERS assay of cancer-derived exosomes in clinical blood. Biosens Bioelectron 2025; 282:117497. [PMID: 40286646 DOI: 10.1016/j.bios.2025.117497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/06/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Exosome-based liquid biopsy plays an increasingly important role in non-invasive cancer diagnosis. However, due to their small size and low abundance, sensitive and accurate detection of cancer-derived exosomes in complex biological samples still faces great challenges. Herein, an ultrasensitive SERS assay based on the multivalent aptamer-linked tetrahedron DNA (MATD) assisted catalytic hairpin assembly (CHA) was developed for accurate detection of cancer-derived exosomes, including MATD-modified SERS sensing chip, identification SERS tags (IS), and assist SERS tags (AS). Taking SGC-7901 cell-derived exosomes as a test model, the exosomes can be captured onto the SERS sensing chip by the specific binding of multivalent aptamers to CD63 proteins, and then the MUC1 aptamers on the IS bind to the highly expressed MUC1 proteins on the SGC-7901 cell-derived exosomes to release the patch strands (P), further triggering the CHA-induced assembly of AuNP network structures between IS and AS with rich hotspots on SERS sensing chip. The proposed SERS assay can achieve ultra-high sensitivity low to 2.98 × 103 particles mL-1 (i.e., approximately 6 exosome particles can be detected from 2 μL of biological sample) within 40 min, high specificity for identifying SGC-7901 cell-derived exosomes, and can accurately distinguish gastric cancer patients from healthy people, which shows the potential applications in clinical diagnosis.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chenlong Yan
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lijie Xie
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qingzhong Ding
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiyu He
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jian Liu
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Tingxiao Wang
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xinyue Gu
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Chunyuan Song
- State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
4
|
Yu L, Shi H, Gao T, Xu W, Qian H, Jiang J, Yang X, Zhang X. Exomeres and supermeres: Current advances and perspectives. Bioact Mater 2025; 50:322-343. [PMID: 40276541 PMCID: PMC12020890 DOI: 10.1016/j.bioactmat.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Recent studies have revealed a great diversity and complexity in extracellular vesicles and particles (EVPs). The developments in techniques and the growing awareness of the particle heterogeneity have spurred active research on new particle subsets. Latest discoveries highlighted unique features and roles of non-vesicular extracellular nanoparticles (NVEPs) as promising biomarkers and targets for diseases. These nanoparticles are distinct from extracellular vesicles (EVs) in terms of their smaller particle sizes and lack of a bilayer membrane structure and they are enriched with diverse bioactive molecules particularly proteins and RNAs, which are widely reported to be delivered and packaged in exosomes. This review is focused on the two recently identified membraneless NVEPs, exomeres and supermeres, to provide an overview of their biogenesis and contents, particularly those bioactive substances linked to their bio-properties. This review also explains the concepts and characteristics of these nanoparticles, to compare them with other EVPs, especially EVs, as well as to discuss their isolation and identification methods, research interests, potential clinical applications and open questions.
Collapse
Affiliation(s)
- Li Yu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hui Shi
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Tingxin Gao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Ge W, Mu Z, Yang S, Zeng Y, Deng Y, Lin Y, Xie P, Li G. Biosensor-based methods for exosome detection with applications to disease diagnosis. Biosens Bioelectron 2025; 279:117362. [PMID: 40157151 DOI: 10.1016/j.bios.2025.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Exosomes are nanoscale extracellular vesicles (EVs) secreted by most eukaryotic cells and can be found in nearly all human body fluids. Increasing evidence has revealed their pivotal roles in intercellular communication, and their active participation in myriad physiological and pathological activities. Exosomes' functions rely on their contents that are closely correlated with the biological characteristics of parental cells, which may provide a rich resource of molecular information for accurate and detailed diagnosis of a diverse array of diseases, such as differential diagnosis of Alzheimer's disease, early detection and subtyping of various tumors. As a category of sensitive detection devices, biosensors can fully reveal the molecular information and convert them into actionable clinical information. In this review, recent advances in biosensor-based methods for the detection of exosomes are summarized. We have described the fabrication of various biosensors based on the analysis of exosomal proteins, RNAs or glycans for accurate diagnosis, with respect to their elaborate recognition designs, signal amplification strategies, sensing properties, as well as their application potential. The challenges along with corresponding technologies in the future development and clinical translation of these biosensors are also discussed.
Collapse
Affiliation(s)
- Weikang Ge
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zheying Mu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yujing Zeng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ying Deng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yifan Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
6
|
Kang Y, Cao X, Fan Y, Li Y, Xu T, Zhou Q, He B. Exosome biomarkers in breast cancer: Systematic review and meta-analysis. Clin Chim Acta 2025; 574:120342. [PMID: 40311726 DOI: 10.1016/j.cca.2025.120342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Breast cancer (BC) has become the primary cancer that threatens women's health and life expectancy. Early diagnosis is crucial for effective treatment and favourable prognosis. As a non-invasive and valuable liquid biopsy method, exosomes are promising for the diagnosis and prognosis of BC. The aim of this meta-analysis is to evaluate the diagnostic and prognostic value of exosome biomarkers in BC. METHODS A systematic search of relevant English literature was conducted in PubMed, Web of Science, and Cochrane library until August 2024 (diagnosis) and October 2024 (prognosis). QUADAS-2 and QUAPAS were used to assess the quality of the literature. Summary statistics and analyses of relevant effect sizes were conducted using STATA software. Subgroup analysis and sensitivity analysis were performed to identify potential sources of heterogeneity. RESULTS For diagnosis, a total of 31 articles with 3,778 patients and 2,722 controls were included, the pooled sensitivity (SEN), specificity (SPE), and area under the receiver operating characteristic curve (AUC) of overall exosome biomarkers were 0.89 (95 %CI: 0.86-0.91), 0.87 (95 %CI: 0.85-0.90), and 0.94 (95 %CI: 0.92-0.96), respectively, indicating a high diagnostic value of exosomes in BC patients. Subgroup analysis suggested that miRNAs in exosomes exhibited better diagnostic value compared to proteins and non-miRNAs, the SEN, SPE, and AUC were 0.89 (95 %CI: 0.82-0.93), 0.86 (95 %CI: 0.80-0.90), and 0.92 (95 %CI: 0.90-0.94), respectively. Among all miRNAs, the pooled SEN, SPE, and AUC of miR-21 were 0.86 (95 %CI: 0.67-0.95), 0.90 (95 %CI: 0.78-0.96), and 0.95 (95 %CI: 0.92-0.96), respectively. The diagnostic efficiency was improved when biomarkers were combined as a panel (SEN 0.91 versus 0.87, SPE 0.89 versus 0.86, AUC 0.96 versus 0.91). In terms of prognosis, we retrieved 14 articles with 2,781 patients. The pooled HR of overall survival (OS) and progression-free survival (PFS) were 1.41 (95 %CI: 0.92-1.90) and 4.39 (95 %CI: 1.87-6.91), respectively, indicating exosome biomarkers like soluble HLA-G, miR-1246, miR-155, and PSMA were a predictor of poor PFS in BC patients. Subgroup analysis in OS group revealed a significant association between the overexpression of exosome proteins (soluble HLA-G, AnxA2, NGF, CXCL13) and worse OS in BC patients (HR = 2.91, 95 %CI: 1.36-4.47). Similarly, the overexpression of miR-1246 and miR-155 was associated with worse PFS in BC patients (HR = 4.13, 95 %CI: 1.24-7.03). Moreover, when biomarkers were combined as a panel, the prognostic efficiency significantly improved in OS (HR = 4.05, 95 %CI: 2.26-5.84) outcome. CONCLUSION The meta-analysis revealed that exosome miR-21 might serve as a promising diagnostic biomarker in BC. Dysregulated exosome proteins and miRNAs could predict poor OS and PFS outcomes, respectively.
Collapse
Affiliation(s)
- Yurou Kang
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoqing Cao
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yujing Fan
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yimin Li
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Qing Zhou
- NHC Key Laboratory of Contraceptives Vigilance and Fertility Surveillance, Jiangsu Health Development Research Center, Jiangsu Provincial Medical Key Laboratory of Fertility Protection and Health Technology Assessment, NO.277 Fenghuang West Street, Nanjing, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Atabay M, Inci F, Saylan Y. Computational studies for the development of extracellular vesicle-based biosensors. Biosens Bioelectron 2025; 277:117275. [PMID: 39999607 DOI: 10.1016/j.bios.2025.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/25/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Cancer affects millions of people, and early detection and efficient treatment are two strong levers to hurdle this disease. Recent studies on exosomes, a subset of extracellular vesicles, have deliberately shown the potential to function as a biomarker or treatment tool, thereby attracting the attention of researchers who work on developing biosensors. Due to the ability of computational methods to predict of the behavior of biomolecules, the combination of experimental and computational methods would enhance the analytical performance of the biosensor, including sensitivity, accuracy, and specificity, even detecting such vesicles from bodily fluids. In this regard, the role of computational methods such as molecular docking, molecular dynamics simulation, and density functional theory is overviewed in the development of biosensors. This review highlights the investigations and studies that have been reported using these methods to design exosome-based biosensors. This review concludes with the role of the quantum mechanics/molecular mechanics method in the investigation of chemical processes of biomolecular systems and the deficiencies in using this approach to develop exosome-based biosensors. In addition, the artificial intelligence theory is explained briefly to show its importance in the study of these biosensors.
Collapse
Affiliation(s)
- Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey; Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
8
|
Chen H, Pang B, Liu Z, Li B, Wang Q, Fan B, Han M, Gong J, Zhou C, Chen Y, Li Y, Jiang J. The Diagnostic Value of Plasma Small Extracellular Vesicle-Derived CAIX Protein in Prostate Cancer and Clinically Significant Prostate Cancer: A Study on Predictive Models. Prostate 2025; 85:723-741. [PMID: 40013658 PMCID: PMC12038087 DOI: 10.1002/pros.24879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 01/25/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Current diagnostic tools are inaccurate and not specific to prostate cancer (PCa) diagnosis. Cancer-derived small extracellular vehicles (sEVs) play a key role in intercellular communication. In this study, we examined the diagnostic value of plasma sEV-derived carbonic anhydrase IX (CAIX) protein for PCa and clinically significant prostate cancer (csPCa) diagnosis and avoiding unnecessary biopsies. METHODS Plasma samples (n = 230) were collected from the patients who underwent prostate biopsy with elevated prostate-specific antigen (PSA) levels. sEVs were isolated and characterized, and sEV protein CAIX was measured using an enzyme-linked immunosorbent assay. Independent predictors of csPCa (Gleason score ≥ 7) were identified, and a predictive model was established. A Nomogram for predicting csPCa was developed using data from the training cohort. RESULTS The expression of sEV protein CAIX was significantly higher in both PCa and csPCa compared to benign patients and nonsignificant PCa (nsPCa) (Gleason score < 7, p < 0.001). sEV protein CAIX performed well in distinguishing PCa from benign patients. The predictive model defined by sEV protein CAIX and PSA density (PSAD) demonstrated the highest discriminative ability for csPCa (AUC = 0.895), with diagnostic sensitivity and specificity of 82.5% and 85.8%, respectively. Furthermore, sEV protein CAIX is an effective predictor of 2-year biochemical recurrence (BCR) in PCa patients (p = 0.013), and its high expression is significantly associated with poorer BCR-free survival (p < 0.05). CONCLUSIONS Our findings demonstrate the excellent performance of sEV protein CAIX in PCa and csPCa diagnosis. The Nomogram-based csPCa predictive model incorporating sEV protein CAIX and PSAD exhibits strong predictive value. Additionally, assessing plasma sEV protein CAIX expression levels can further aid in evaluating patient prognosis and provide a basis for making effective treatment decisions.
Collapse
Affiliation(s)
- Haotian Chen
- The First Affiliated Hospital of Ningbo University, Health Science CenterNingbo UniversityNingboZhejiangChina
- Ningbo Clinical Research Center for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Translational Research Laboratory for Urology, Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Bairen Pang
- The First Affiliated Hospital of Ningbo University, Health Science CenterNingbo UniversityNingboZhejiangChina
- Ningbo Clinical Research Center for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Translational Research Laboratory for Urology, Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System DiseasesNingboZhejiangChina
| | - Zhihan Liu
- The First Affiliated Hospital of Ningbo University, Health Science CenterNingbo UniversityNingboZhejiangChina
- Ningbo Clinical Research Center for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Translational Research Laboratory for Urology, Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Benjie Li
- The First Affiliated Hospital of Ningbo University, Health Science CenterNingbo UniversityNingboZhejiangChina
- Ningbo Clinical Research Center for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Translational Research Laboratory for Urology, Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Qi Wang
- Cancer Care Centre, St George HospitalKogarahNew South WalesAustralia
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW SydneyKensingtonNew South WalesAustralia
| | - Baokun Fan
- The First Affiliated Hospital of Ningbo University, Health Science CenterNingbo UniversityNingboZhejiangChina
- Ningbo Clinical Research Center for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Translational Research Laboratory for Urology, Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Meng Han
- The First Affiliated Hospital of Ningbo University, Health Science CenterNingbo UniversityNingboZhejiangChina
- Ningbo Clinical Research Center for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Translational Research Laboratory for Urology, Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System DiseasesNingboZhejiangChina
| | - Jie Gong
- The First Affiliated Hospital of Ningbo University, Health Science CenterNingbo UniversityNingboZhejiangChina
- Ningbo Clinical Research Center for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Translational Research Laboratory for Urology, Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Cheng Zhou
- The First Affiliated Hospital of Ningbo University, Health Science CenterNingbo UniversityNingboZhejiangChina
- Ningbo Clinical Research Center for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Translational Research Laboratory for Urology, Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System DiseasesNingboZhejiangChina
| | - Yingzhi Chen
- The First Affiliated Hospital of Ningbo University, Health Science CenterNingbo UniversityNingboZhejiangChina
- Ningbo Clinical Research Center for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Translational Research Laboratory for Urology, Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Yong Li
- Cancer Care Centre, St George HospitalKogarahNew South WalesAustralia
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW SydneyKensingtonNew South WalesAustralia
| | - Junhui Jiang
- The First Affiliated Hospital of Ningbo University, Health Science CenterNingbo UniversityNingboZhejiangChina
- Ningbo Clinical Research Center for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Translational Research Laboratory for Urology, Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System DiseasesNingboZhejiangChina
| |
Collapse
|
9
|
Li LY, Liang SY, Cai MP, Ge JC, Tan HS, Wang CB, Xu B. Engineered extracellular vesicles as imaging biomarkers and therapeutic applications for urological diseases. Mater Today Bio 2025; 32:101646. [PMID: 40160248 PMCID: PMC11953971 DOI: 10.1016/j.mtbio.2025.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
With the ever-increasing burden of urological diseases, the need for developing novel imaging biomarkers and therapeutics to manage these disorders has never been greater. Extracellular vesicles (EVs) are natural membranous nanoparticles and widely applied in both diagnostics and therapeutics for many diseases. A growing body of research has demonstrated that EVs can be engineered to enhance their efficiency, specificity, and safety. We systematically examine the strategies for achieving targeted delivery of EVs as well as the techniques for engineering them in this review, with a particular emphasis on cargo loading and transportation. Additionally, this review highlights and summarizes the wide range of imaging biomarkers and therapeutic applications of engineered EVs in the context of urological diseases, emphasizing the potential applications in urological malignancy and kidney diseases.
Collapse
Affiliation(s)
- Liao-Yuan Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Si-Yuan Liang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mao-Ping Cai
- Department of Urology, Cancer Center, Fudan University, Shanghai, China
| | - Jian-Chao Ge
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Song Tan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng-Bang Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Zhang H, Gong L, Yu L, Xian C, Ma Z, Wang X, Xia R. Emerging roles of non-coding RNA derived from extracellular vesicles in regulating PD-1/PD-L1 pathway: insights into cancer immunotherapy and clinical applications. Cancer Cell Int 2025; 25:188. [PMID: 40410719 DOI: 10.1186/s12935-025-03809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 05/05/2025] [Indexed: 05/25/2025] Open
Abstract
Numerous studies have demonstrated that extracellular vesicles (EVs) carry a variety of noncoding RNAs (ncRNAs), which can be taken up by neighboring cells or transported to distant sites via bodily fluids, thereby facilitating intercellular communication and regulating multiple cellular functions. Within the tumor microenvironment, EV-ncRNA, on the one hand, regulate the expression of PD-L1, thereby influencing tumor immune evasion, promoting tumor cell proliferation, and enhancing tumor growth, invasion, and metastasis in vivo. On the other hand, these specific EV-ncRNAs can also modulate the functions of immune cells (such as CD8 + T cells, macrophages, and NK cells) through various molecular mechanisms, inducing an immunosuppressive microenvironment and promoting resistance to anti-PD-1 therapy. Therefore, delving into the molecular mechanisms underlying EV-ncRNA regulation of immune checkpoints presents compelling therapeutic prospects for strategies that selectively target EV-ncRNAs. In this review, we elaborate on the cutting-edge research progress related to EV-ncRNAs in the context of cancer and dissect their pivotal roles in the PD-1/PD-L1 immune checkpoint pathway. We also highlight the promising clinical applications of EV-ncRNAs in anti-PD-1/PD-L1 immunotherapy, bridging basic research with practical clinical applications.
Collapse
Affiliation(s)
- Haixia Zhang
- Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, 434023, Hubei, China
| | - Lianfeng Gong
- Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, 434023, Hubei, China
| | - Li Yu
- Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, 434023, Hubei, China
- Department of Urology, General Hospital of The Yangtze River Shipping, Wuhan, 430010, China
| | - Chenge Xian
- Naidong District People's Hospital, Shannan, 856004, Tibet Autonomous Region, China
| | - Zhaowu Ma
- Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, 434023, Hubei, China.
| | - Xianwang Wang
- Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, 434023, Hubei, China.
- Shannan Maternal and Child Health Hospital, Shannan, 856099, Tibet Autonomous Region, China.
| | - Ruohan Xia
- Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, 434023, Hubei, China.
| |
Collapse
|
11
|
Chen C, Wu Y, Wu J, Sun R, Li Y, Yao Y, Li D. Identification of a panel of lncRNAs derived from urinary extracellular vesicles as non-invasive diagnostic biomarkers for bladder cancer. Clin Chim Acta 2025:120376. [PMID: 40393569 DOI: 10.1016/j.cca.2025.120376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/02/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
Bladder cancer (BLCA) is a common malignant tumor of the urinary system and is histopathologically divided into high-grade and low-grade BLCA. Accurate diagnosis of BLCA and high-grade BLCA are critical for clinical treatment and early intervention. High-throughput RNA-seq was performed to explore dysregulated long non-coding RNAs (lncRNAs) in urinary extracellular vesicles (uEVs) from BLCA patients, and their expression levelswereexamined inalarge cohort of uEVs samples using qRT-PCR. Weexaminedthe expressionlevels and subcellular localization of the lncRNAs in BLCA tissues andcelllines. We analyzed the correlation between the expression levels of lncRNAs in uEVs and clinical parameters and assessed their clinical value as diagnostic biomarkers for BLCA and high-grade BLCA using receiver operating characteristic (ROC) curve. Through high-throughput RNA-seq, we identified several dysregulated lncRNAs (MALAT1, SCARNA10, LINC00963 and LINC01578) in uEVs from BLCA patients. The lncRNAs were significantly upregulated in uEVs of BLCA patients, however with varying expression levels in tissues and cell lines. The lncRNAsarepredominantlylocalizedinthe nucleus of BLCA cell lines. Elevated expression levels of the lncRNAs were associated with adverse factors, including higher tumor grade and larger tumor diameter. ROCcurve analysis showed thatthe combination of four lncRNAs in uEVs and the existing marker nuclear matrix protein 22 provided substantial diagnostic value for BLCA and high-grade BLCA, with area under curve values of 0.900 and 0.917, respectively. The lncRNA panel derived from uEVs may serve as a promising non-invasive biomarker for diagnosing BLCA and high-grade BLCA.
Collapse
Affiliation(s)
- Chen Chen
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ying Wu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Junlu Wu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ruixin Sun
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yaran Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yiwen Yao
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Dong Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
12
|
Zhou H, Wu W, Zhang Q, Zhang T, Jiang S, Liu H, Ma Y, Chang L, Xie Y, Zhu J, Zhou D, Zhang Y, Xu P. Quantitative Proteome Analysis of Plasma Extracellular Vesicles Identifies Three Proteins with Potential Diagnostic Value for Mycobacterium bovis Infection in Cows. J Proteome Res 2025. [PMID: 40372928 DOI: 10.1021/acs.jproteome.5c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Bovine tuberculosis (bTB) is a zoonotic disease that affects cattle and human health. Although the tuberculin skin test (TST) is the main detection method, there is a need for simpler on-farm tests using fluid samples. This study analyzed plasma extracellular vesicles (EVs) from two cow groups (Cohort A, 15 negative, 22 positive; Cohort B, 28 negative, 40 positive) to explore bTB indicators using proteome profiling. Among the 756 proteins, 217 (Cohort A) and 233 (Cohort B) showed differences between healthy and infected cows, with 47 consistently dysregulated in both groups. These proteins were related to tuberculosis, neutrophil extracellular trap formation, and antigen processing and presentation pathways. Notably, three proteins, HSPA8, B2M, and HRG, were confirmed as bTB indicators using multiple methods, including least absolute shrinkage and selection operator (Lasso) regression selection, western blot (WB), and enzyme-linked immunosorbent assay (ELISA) validation with an independent cohort (Cohort C). This study identifies plasma EV biomarkers for bTB infection, offering insights for bTB detection.
Collapse
Affiliation(s)
- Hangfan Zhou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenhui Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qilong Zhang
- Beijing Center for Animal Disease Control and Prevention, Beijing 102629, China
| | - Tao Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Songhao Jiang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Hui Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
- Research Unit of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuan Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Lei Chang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yuping Xie
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jiaqiang Zhu
- Beijing Xinhui Purui Technology Development Co., Ltd, Beijing 102200, China
| | - Degang Zhou
- Beijing Center for Animal Disease Control and Prevention, Beijing 102629, China
| | - Yao Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Research Unit of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
- School of Medicine, Guizhou University, Guiyang 550025, China
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
13
|
Li L, Zheng Z, Lan W, Tang N, Zhang D, Ling J, Wu Y, Yang P, Fu L, Liu J, Zhang J, Yu P, Huang T. Role of Exosomes in Cardiovascular Disease: A Key Regulator of Intercellular Communication in Cardiomyocytes. ACS OMEGA 2025; 10:18145-18169. [PMID: 40385188 PMCID: PMC12079207 DOI: 10.1021/acsomega.4c11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/27/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
In the cardiovascular system, different types of cardiovascular cells can secrete specific exosomes and participate in the maintenance of cardiovascular function and the occurrence and development of diseases. Exosomes carry biologically active substances such as proteins and nucleic acids from cells of origin and can be used as biomarkers for disease diagnosis and prognosis assessment. In addition, exosome-mediated intercellular communication plays a key role in the occurrence and development of cardiovascular diseases and has become a potential therapeutic target. This article emphasizes the importance of understanding the mechanism of exosomes in cardiovascular diseases and systematically details the current understanding of exosomes as regulators of intercellular communication in cardiomyocytes, providing a basis for future research and therapeutic intervention.
Collapse
Affiliation(s)
- Liuxin Li
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Zhidong Zheng
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Wenyu Lan
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Nan Tang
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Deju Zhang
- Food
and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 0000, Hong Kong
| | - Jitao Ling
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Yuting Wu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Pingping Yang
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Linhua Fu
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jianping Liu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jing Zhang
- Department
of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical
College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Peng Yu
- Department
of Metabolism and Endocrinology, The Second
Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tieqiu Huang
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| |
Collapse
|
14
|
Kong H, Yi K, Zhu X, Chen L, Wang H, Ju E, Lv S, Lao YH, Shao D, Xie X, Cheng D, Zhang Y, Tao Y, Li M. Antifouling fusion-mediated diagnostic platform to detect viral DNA-positive extracellular vesicles for in situ blood-based liquid biopsy. Biosens Bioelectron 2025; 286:117568. [PMID: 40408893 DOI: 10.1016/j.bios.2025.117568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/25/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025]
Abstract
In liquid biopsy, extracellular vesicles (EVs) have emerged as promising biomarkers due to their ability to carry protected nucleic acids. In particular, DNA enclosed within these vesicles shows great diagnostic potential for monitoring oncovirus-related disease progression. However, current methods still require labor-intensive procedures and bulk analysis. Additionally, in situ detection from blood is hindered by abundant serum proteins, interfering with the accuracy of diagnosis. To address these limitations, we developed an antifouling fusion-mediated CRISPR/Cas detector (AFFECTOR) as a user-friendly and efficient diagnostic platform for directly detecting EV-contained viral DNA in serum samples. Leveraging zwitterionic phosphatidylcholine to resist protein interference, the platform enables stable membrane fusion with intact EVs even in serum-containing environments, allowing highly specific and sensitive detection of internal DNA via the CRISPR/Cas12a sensing system, lasting just 2 h at 37 °C. In clinical samples from oncovirus-infected patients and healthy donors, the platform achieved one-step detection of viral DNA-positive EVs. Notably, viral DNA in circulating EVs was found for the first time to correlate with oncovirus infection stages. Overall, this platform provides a practical tool for diagnostic applications and expands the detection window in liquid biopsy.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiang Zhu
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lifa Chen
- Department of Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Dan Shao
- Institute of Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Du Cheng
- School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yu Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Martinelli C, Ercoli A, Vizzielli G, Burk SR, Cuomo M, Satasiya V, Kacem H, Braccia S, Mazzarotti G, Miriello I, Tchamou MN, Restaino S, Arcieri M, Poli A, Tius V, Parisi S, Pergolizzi S, Iatì G, Nibali CC, Pizzimenti C, Pepe L, Ieni A, Cortellino S, Giordano A. Liquid biopsy in gynecological cancers: a translational framework from molecular insights to precision oncology and clinical practice. J Exp Clin Cancer Res 2025; 44:140. [PMID: 40340939 PMCID: PMC12060497 DOI: 10.1186/s13046-025-03371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/17/2025] [Indexed: 05/10/2025] Open
Abstract
Liquid biopsy offers a noninvasive method to identify and monitor tumor-derived biomarkers, including circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes, microRNAs, and tumor-educated platelets, that provide real-time insights into the biological behavior of gynecological cancers. The detection of these markers has the potential to revolutionize cancer management by enabling earlier detection, providing novel data to personalize treatments, and predicting disease recurrence before clinical imaging and predicting disease recurrence before clinical imaging can confirm progression, thereby also guiding complex clinical decision-making. However, because this new "omics" layer introduces additional complexity, it must be fully understood, from its biological rationale to technical development and clinical integration, to prevent confusion or misapplication. That is why, focusing on 14 critical fields of inquiry, our goal is to map the current state of liquid biopsy from bench to bedside while highlighting practical considerations for clinical integration. Each topic integrates recent advances in assay sensitivity, biomarker variability, and data interpretation, underscoring how standardized protocols and robust analytical methods are pivotal for reliable results. We then translate these findings into disease-specific insights, examining how liquid biopsy could refine early detection, minimal residual disease assessment, and therapy guidance in endometrial, cervical, and ovarian cancers. Although several FDA-approved assays and promising commercial tests illustrate the field's rapid evolution, many translational hurdles remain, including the need for harmonized protocols, larger prospective clinical trials, and cost-effectiveness analyses. Crucially, our synthesis clarifies the pivotal role of interdisciplinary collaboration. Oncologists, laboratory scientists, and industry partners must align on standardized procedures and clinically relevant endpoints. Without such coordination, promising biomarkers may remain confined to research settings, limiting their practical benefit. Taken together, our review offers a translational view designed to contextualize liquid biopsy in gynecological oncology.
Collapse
Affiliation(s)
- Canio Martinelli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", Unit of Obstetrics and Gynecology, University of Messina, Via Consolare Valeria 1, Messina, 98124, Italy
| | - Alfredo Ercoli
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", Unit of Obstetrics and Gynecology, University of Messina, Via Consolare Valeria 1, Messina, 98124, Italy
| | - Giuseppe Vizzielli
- Clinic of Obstetrics and Gynecology, Santa Maria Della Misericordia" University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Sharon Raffaella Burk
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Maria Cuomo
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Vrunda Satasiya
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Housem Kacem
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simone Braccia
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, Naples, 80131, Italy
| | - Giulio Mazzarotti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Irene Miriello
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
| | - Manuela Nana Tchamou
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, Siena, 53100, Italy
| | - Stefano Restaino
- Clinic of Obstetrics and Gynecology, Santa Maria Della Misericordia" University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Martina Arcieri
- Clinic of Obstetrics and Gynecology, Santa Maria Della Misericordia" University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Alice Poli
- Clinic of Obstetrics and Gynecology, Santa Maria Della Misericordia" University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Veronica Tius
- Clinic of Obstetrics and Gynecology, Santa Maria Della Misericordia" University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Silvana Parisi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, 98125, Italy
| | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, 98125, Italy
| | - Giuseppe Iatì
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, 98125, Italy
| | - Chiara Conti Nibali
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", Unit of Obstetrics and Gynecology, University of Messina, Via Consolare Valeria 1, Messina, 98124, Italy
| | - Cristina Pizzimenti
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Evolutive Age "Gaetano Barresi", G. Martino Hospital, Messina, 98125, Italy
| | - Ludovica Pepe
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Evolutive Age "Gaetano Barresi", G. Martino Hospital, Messina, 98125, Italy
| | - Antonio Ieni
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Evolutive Age "Gaetano Barresi", G. Martino Hospital, Messina, 98125, Italy
| | - Salvatore Cortellino
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Naples, Italy.
- Laboratory of Molecular Oncology, Research Hospital, Campobasso, 86100, Italy.
- SHRO Italia Foundation ETS, Candiolo, Turin, Italy.
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, 1900 N 12 St, Philadelphia, PA, 19122, USA.
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
16
|
Liu N, Wu T, Han G, Chen M. Exosome-mediated ferroptosis in the tumor microenvironment: from molecular mechanisms to clinical application. Cell Death Discov 2025; 11:221. [PMID: 40328736 PMCID: PMC12056189 DOI: 10.1038/s41420-025-02484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Ferroptosis in the tumor microenvironment (TME) plays a crucial role in the development, metastasis, immune escape, and drug resistance of various types of cancer. A better understanding of ferroptosis in the TME could illuminate novel aspects of this process and promote the development of targeted therapies. Compelling evidence indicates that exosomes are key mediators in regulating the TME. In this respect, it is now understood that exosomes can deliver biologically functional molecules to recipient cells, influencing cancer progression by reprogramming the metabolism of cancer cells and their surrounding stromal cells through ferroptosis. In this review, we focus on the role of exosomes in the TME and describe how they contribute to tumor reprogramming, immunosuppression, and the formation of pre-metastatic niches through ferroptosis. In addition, we highlight exosome-mediated ferroptosis as a potential target for cancer therapy and discuss strategies employing exosomes in ferroptosis treatment. Finally, we outline the current applications and challenges of targeted exosome-mediated ferroptosis therapy in tumor immunotherapy and chemotherapy. Our aim is to advance research on the link between exosomes and ferroptosis in the TME, and we pose questions to guide future studies in this area.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Tianqing Wu
- XJTLU Wisdom Lake Academy of Pharmacy, Suzhou, Jiangsu Province, China
| | - Guohu Han
- Department of Oncology, Jingjiang People's Hospital Affiliated with Yangzhou University, Jingjiang, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
17
|
Han W, Lv J, Wang M, Wu X, Sun D, Chen W, Wang Y, Zhou W, Yang Y, Bao J, Han Q, Chen X, Guo F, Feng G, Li M, Chen Q. Potential Roles of Serum Exosomal CD155 and its Impact on NK Cell Immunosuppression in Hepatocellular Carcinoma. Balkan Med J 2025; 42:242-253. [PMID: 40326845 PMCID: PMC12060579 DOI: 10.4274/balkanmedj.galenos.2025.2025-1-129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
Background Targeted therapies directed at tumor immune checkpoint, like programmed death-ligand (PD-L)1/programmed death (PD)-1, have shown remarkable progress. Nevertheless, treatment efficacy in hepatocellular carcinoma (HCC) is notably compromised due to the intricate immune microenvironment. Exploring alternative checkpoints beyond PD-L1/PD-1, including those not located on the cell surface, may improve our understanding of their roles in areas like diagnostic potential and immune tolerance in HCC. Aims To explore the roles of serum exosomal CD155 (exo-CD155) in HCC. Study Design Experimental study. Methods We separated and analyzed serum exosomes from HCC patients. We quantified the concentrations of serum soluble CD155 (sCD155) and serum exo-CD155, and examined their association with disease progression, hepatitis B surface antigen (HBsAg) presence, and the concentrations of α-fetoprotein fraction L3 (AFP-L3) or alpha-fetoprotein (AFP). Additionally, we assessed the diagnostic effect through the receiver operating characteristic (ROC) curve, and the immune suppressive effect on natural killer (NK) cells of exo-CD155. Results This study reveal elevated exo-CD155 levels in all HCC patients, with a significant increase in early-stage patients, exhibiting normal AFP/AFP-L3 or HBsAg-positive status. Exo-CD155 is linked to the progression of HCC and shows significant diagnostic effectiveness for the disease. Furthermore, the incubation of NK-92MI with exosomes derived from HCC patients leads to a substantial reduction in immune function, which can be partially counteracted with an antibody that blocks T cell immune receptor immunoglobulin and ITIM domains, (TIGIT)-blocking antibody. Conclusion These results disclose exo-CD155 shows promise for serving as a biomarker for HCC, especially in early-stage patients or those with normal AFP/AFP-L3 levels. Moreover, serum exosomes from HCC patients suppress NK cell immune functions through the TIGIT/CD155 pathway, contributing to immune tolerance in HCC.
Collapse
Affiliation(s)
- Wenzheng Han
- The First Affiliated Hospital, Wannan Medical College, Anhui, China
| | - Jinrong Lv
- Institute of Biology and Medical Sciences, Soochow University, Jiangsu, China
| | - Mintuo Wang
- The First Affiliated Hospital, Wannan Medical College, Anhui, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Dongdong Sun
- The First Affiliated Hospital, Wannan Medical College, Anhui, China
| | - Wenwen Chen
- Institute of Biology and Medical Sciences, Soochow University, Jiangsu, China
| | - Yingying Wang
- The First Affiliated Hospital, Wannan Medical College, Anhui, China
| | - Wenjie Zhou
- The First Affiliated Hospital, Wannan Medical College, Anhui, China
| | - Yuxuan Yang
- The First Affiliated Hospital, Wannan Medical College, Anhui, China
| | - Jia Bao
- The First Affiliated Hospital, Wannan Medical College, Anhui, China
| | - Qingzhen Han
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, China
| | - Xiaopeng Chen
- The First Affiliated Hospital, Wannan Medical College, Anhui, China
| | - Fei Guo
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Gang Feng
- The First Affiliated Hospital, Wannan Medical College, Anhui, China
| | - Min Li
- Institute of Biology and Medical Sciences, Soochow University, Jiangsu, China
| | - Qing Chen
- The First Affiliated Hospital, Wannan Medical College, Anhui, China
| |
Collapse
|
18
|
Aksamitiene E, Park J, Marjanovic M, Boppart SA. Defining Biological Variability, Analytical Precision and Quantitative Biophysiochemical Characterization of Human Urinary Extracellular Vesicles. J Extracell Vesicles 2025; 14:e70087. [PMID: 40384173 PMCID: PMC12086329 DOI: 10.1002/jev2.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/18/2025] [Indexed: 05/20/2025] Open
Abstract
The magnitude of combined analytical errors of urinary extracellular vesicle (uEV) preparation and measurement techniques (CVA) has not been thoroughly investigated to determine whether it exceeds biological variations. We utilized technical replicates of human urine to assess the repeatability of uEV concentration and size measurements by nanoparticle tracking analysis (NTA) following differential velocity centrifugation (DC), silicon carbide, or polyethylene glycol uEV isolation methods. The DC method attained the highest precision. Consequently, DC-derived uEV size, most abundant protein levels, and optical redox ratio (ORR) were further assessed by dynamic light scattering (DLS), immunoblotting or multi-photon (SLAM) microscopy. Procedural errors primarily affected uEV counting and uEV-associated protein quantification, while instrumental errors contributed most to the total variability of NTA- and DLS-mediated uEV sizing processes. The intra-individual variability (CVI) of uEV counts assessed by NTA was smaller than inter-individual variability (CVG), resulting in an estimated index of individuality IOI < 0.6, suggesting that personalized reference interval (RI) is more suitable for interpretation of changes in subject's test results. Population-based RI was more appropriate for ORR (IOI > 1.4). The analytical performance of DC-NTA and DC-SLAM techniques met optimal CVA < 0.5 × CVI criteria, indicating their suitability for further testing in clinical laboratory settings.
Collapse
Affiliation(s)
- Edita Aksamitiene
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- NIH/NIBIB P41 Center for Label‐Free Imaging and Multiscale BiophotonicsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Jaena Park
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- NIH/NIBIB P41 Center for Label‐Free Imaging and Multiscale BiophotonicsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Department of BioengineeringUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- NIH/NIBIB P41 Center for Label‐Free Imaging and Multiscale BiophotonicsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- NIH/NIBIB P41 Center for Label‐Free Imaging and Multiscale BiophotonicsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Department of BioengineeringUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Electrical and Computer EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Carle Illinois College of MedicineUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Interdisciplinary Health Sciences InstituteUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
19
|
HUANG Y, WANG H, ZHANG Y, LIN Y, QIAO X, HU L. [Bibliometric analysis of exosomes in the biomarker research field]. Se Pu 2025; 43:498-507. [PMID: 40331613 PMCID: PMC12059985 DOI: 10.3724/sp.j.1123.2025.01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Indexed: 05/08/2025] Open
Abstract
Exosomes are extracellular vesicles secreted by cells and are rich in genetic material and proteins. The surfaces of exosome membranes contain many blast-specific markers that provide an important basis for disease diagnosis, progression, and treatment. Herein, we searched the Web of Science core collection (SCI-EXPENED) database for research and review articles on "exosomes" and "biomarkers" or "diagnostics" or "liquid biopsy" as research topics between 2010 and 2024. Bibliometric analysis revealed that exosomes have received increasing levels of attention as disease biomarkers, with China contributing the most to these studies. Herein, we focus on marker diagnoses for cancer, inflammation, and diabetes, as well as neurodegenerative and cardiovascular diseases. Chromatography, mass spectrometry, Raman spectroscopy, and other techniques are typically used to analyze exosomal nucleic acids, proteins, and metabolites, with commonly used test samples including plasma, serum, urine, saliva, cerebrospinal fluid, and other bodily fluids. Research into exosomes as tumor markers has mainly focused on eight highly prevalent cancers, including lung, breast, and prostate cancers. This paper focuses on exosomes as disease biomarkers and uses a bibliometric tool system to analyze the use of exosomes and their contents as biomarkers in the disease diagnosis field between 2010 and 2024, analyzes development prospects, and discusses future exosome-mediated efforts for diagnosing and treating diseases, and is expected to provide a reference for studying and applying exosomes as disease markers.
Collapse
|
20
|
Das A, Sonar S, Dhar R, Subramaniyan V. Exosomes in melanoma: Future potential for clinical theranostics. Pathol Res Pract 2025; 269:155950. [PMID: 40179441 DOI: 10.1016/j.prp.2025.155950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Melanoma, an aggressive form of skin cancer, presents significant therapeutic challenges due to its resistance to conventional treatments and propensity for metastasis. Exosomes, nanoscale vesicles secreted by a wide variety of cells, have emerged as promising tools for developing novel melanoma therapies. Exosome-based therapeutic approaches offer several advantages, including inherent biocompatibility, low immunogenicity, and the ability to cross biological barriers. This review explores the therapeutic potential of exosomes in melanoma treatment, focusing on their multifaceted roles in modulating tumor cell behavior, enhancing anti-tumor immune responses, and serving as targeted drug delivery vehicles. We discuss various strategies employed to engineer exosomes for enhanced therapeutic efficacy, including loading them with chemotherapeutic agents, small interfering RNAs (siRNAs), microRNAs (miRNAs), and immunomodulatory molecules. Additionally, we highlight the potential of exosomes derived from diverse sources to enhance anti-cancer effects. Furthermore, we address the challenges and future directions in translating exosome-based therapies from bench to bedside, emphasizing the need for standardized isolation and manufacturing protocols, as well as rigorous preclinical and clinical evaluations to unlock the full therapeutic potential of exosomes in the fight against melanoma.
Collapse
Affiliation(s)
- Asmit Das
- Department of Oncology and Maxillofacial Pathology, Neuron Institute of Applied Research, Amravati, Maharashtra, India
| | - Swarup Sonar
- Department of Oncology and Maxillofacial Pathology, Neuron Institute of Applied Research, Amravati, Maharashtra, India
| | - Rajib Dhar
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
21
|
Li H, Liu H, Zhou Y, Cheng L, Wang B, Ma J. The multifaceted roles of extracellular vesicles in osteonecrosis of the femoral head. J Orthop Translat 2025; 52:70-84. [PMID: 40256260 PMCID: PMC12008682 DOI: 10.1016/j.jot.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a severe disease characterized by bone tissue necrosis due to vascular impairment, often leading to joint collapse and requiring surgical intervention. Extracellular vesicles (EVs) serve as crucial mediators of intercellular communication, influencing osteogenesis, angiogenesis, and immune regulation. This review summarizes the dual role of EVs in both the pathogenesis of ONFH and post-necrosis bone repair, highlighting the impact of various EV-mediated signaling pathways on bone regeneration and the potential crosstalk among these pathways. Additionally, EVs hold promise as diagnostic biomarkers or contrast agents to complement conventional imaging techniques for ONFH detection. By elucidating the role of EVs in osteonecrosis and addressing the current challenges, we aspire to establish a foundation for the timely identification and treatment of ONFH. The translational potential of this article: This review comprehensively discusses the role of EVs in ONFH, providing innovative and promising insights for its diagnosis and treatment, which also establishes a theoretical foundation for the future clinical application of EVs in ONFH.
Collapse
Affiliation(s)
- Hongxu Li
- Department of Orthopaedic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Haoyang Liu
- Department of Orthopaedic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Yu Zhou
- Department of Orthopaedic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Liming Cheng
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Bailiang Wang
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jinhui Ma
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing, 100029, China
| |
Collapse
|
22
|
WANG H, XIE P, QIAO X, ZHANG L. [Typical strategy and research progress of efficient isolation methods of exosomes based on affinity interaction]. Se Pu 2025; 43:413-423. [PMID: 40331606 PMCID: PMC12059992 DOI: 10.3724/sp.j.1123.2024.11004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 05/08/2025] Open
Abstract
Exosomes form a subclass of extracellular vesicle that are secreted by most cells and found in nearly all body fluids, including blood, urine, saliva, amniotic fluid, and milk, as well as in various tissues and intercellular spaces. Exosomes have recently been recognized as crucial intercellular communication mediators, and an increasing number of studies have shown that exosomes are important liquid-biopsy tools that play irreplaceable roles in the diagnosis, prognosis, and treatment of diseases. The ability to isolate high-quality exosomes is a prerequisite for diagnosing and subsequently treating diseases in an accurate and repeatable manner. However, efficiently isolating exosomes from complex biological samples is challenging owing to their relatively low abundances and interference from non-vesicular macromolecules (such as cell debris and proteins). To date, various isolation techniques based on the physical, chemical, and biological characteristics of exosomes have been developed. Indeed, efficient affinity-interaction-based methods have recently overcome the limitations and drawbacks of traditional exosome isolation methods and are widely used in scientific research and clinical applications. This review focuses on exosome isolation and enrichment, and systematically reviews recent research progress on efficient isolation methods based on affinity interactions. Developmental prospects of exosome isolation and enrichment directions are analyzed with the aim of providing a reference for the construction and use of new exosome-isolation strategies.
Collapse
|
23
|
Liu M, Li TZ, Xu C. The role of tumor-associated fibroblast-derived exosomes in chemotherapy resistance of colorectal cancer and its application prospect. Biochim Biophys Acta Gen Subj 2025; 1869:130796. [PMID: 40122307 DOI: 10.1016/j.bbagen.2025.130796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer (CRC) is the second most common malignant tumor in the world. With its increasing incidence and younger age trend, its impact on human health has been paid more and more attention. Currently, we have a variety of chemotherapy drugs that can be used to treat colorectal cancer. However, the drug resistance of colorectal cancer has become a significant factor affecting its cure rate. Some studies have reported that exosomes are related to the occurrence of drug resistance. However, the exact mechanism is not precise. Therefore, we focused on the role of cancer associated-fibroblast-derived (CAFs-derived) exosomes in colorectal progression. It was found that cancer cells transmit information through exosome interaction and induce chemotherapy resistance by promoting epithelial-mesenchymal transition (EMT), up-regulating the Wnt/β-catenin signaling pathway, transforming growth factor-β1 (TGF-β1) pathway, promoting angiogenesis and other possible molecular mechanisms. In addition, in terms of clinical significance and therapeutic strategies, we explore the clinical relevance of CAFs-derived exosomes in colorectal cancer patients and their potential as potential biomarkers for predicting chemotherapy response. We also provide a new possible direction for overcoming chemotherapy resistance in colorectal cancer by targeting CAFs-derived exosomes.
Collapse
Affiliation(s)
- Meichen Liu
- The Second Clinical Medical College, Nanchang University, NanChang, China
| | - Teng-Zheng Li
- Department of Gastroenterology, The second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, NanChang, China
| | - Congcong Xu
- Department of Cardiovascular Medicine, The second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, NanChang, China.
| |
Collapse
|
24
|
Song G, Zeng C, Li J, Liu J, Zhao J, Liu B, Fan J, Xie H. Exosome-based nanomedicines for digestive system tumors therapy. Nanomedicine (Lond) 2025; 20:1167-1180. [PMID: 40248953 PMCID: PMC12068745 DOI: 10.1080/17435889.2025.2493037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
Digestive system tumors constitute a major subset of malignancies, consistently ranking among the leading causes of mortality globally. Despite limitations inherent in current therapeutic modalities, recent advancements in targeted therapy and drug delivery systems have led to significant improvements in the efficacy of pharmacotherapy for digestive system tumors. In this context, exosomes - naturally occurring nanoscale vesicles - have emerged as promising drug delivery candidates due to their intrinsic molecular transport capabilities, superior biocompatibility, and targeted recognition of tumor cells. The integration of exosomes into cancer therapeutics represents a novel and potentially transformative approach for treating digestive system tumors, which may drive further progress in this field. This review comprehensively examines the sources, loading mechanisms, and therapeutic efficacy of exosomes in the context of digestive system tumor treatment. Furthermore, it discusses the opportunities and challenges associated with exosomes, offering insights into their future role within the therapeutic armamentarium against digestive tumors.
Collapse
Affiliation(s)
- Ge Song
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Chenlu Zeng
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Junru Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jiajia Liu
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Juanxia Zhao
- Department of Pathology, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, China
| | - Jialong Fan
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Hailong Xie
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
25
|
Qi L, Luo DZ, Li H, Yan J, He W. Macrophage-driven exosomes regulate the progression of cardiovascular disease. Front Pharmacol 2025; 16:1563800. [PMID: 40371346 PMCID: PMC12075947 DOI: 10.3389/fphar.2025.1563800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Exosomes, as vital mediators of intercellular communication, play a critical role in the progression of cardiovascular disease (CVD). Recently, macrophage-derived exosomes (Mφ-Exos) have garnered increasing attention because of their significant potential in early diagnosis, pathological processes, and therapeutic applications for CVD. Exosomes contain diverse nucleic acids (e.g., miRNAs, mRNAs, and long noncoding RNAs (lncRNAs)) and proteins, which serve as specific biomarkers that regulate various stages of CVD. For example, miRNAs encapsulated within exosomes (e.g., miR-21, miR-133a, and miR-155) are closely associated with atherosclerosis, myocardial infarction, coronary artery disease, and stroke, and changes in their abundance can serve as diagnostic and prognostic indicators. Additionally, the composition of Mφ-Exos, including miRNAs, lipids, and proteins, plays a significant role in the initiation, progression, and inflammation of CVD. Research on Mφ-Exos provides new directions for early diagnosis, mechanistic exploration, and novel therapeutic targets in CVD. However, challenges remain regarding exosome isolation and identification technologies. Future studies need to further explore the biological properties of exosomes and develop more efficient, economical, and straightforward isolation methods. This review summarizes the multifaceted regulatory roles of Mφ-Exos in CVD, encompassing key processes such as inflammation, angiogenesis, metabolism, and cell death. Research has shown that M1-Exos promote the progression and exacerbation of CVD through pro-inflammatory and pro-fibrotic mechanisms, while M2-Exos demonstrate significant therapeutic potential via anti-inflammatory, pro-angiogenic, and metabolic reprogramming pathways. These findings not only reveal the complex mechanisms of Mφ-Exos in CVD but also provide new perspectives and potential targets for early diagnosis and precision treatment of the disease.
Collapse
Affiliation(s)
- Liao Qi
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, China
| | - De-Zhu Luo
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - HuLi Li
- West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - JianWen Yan
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, China
| | - WenJie He
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, China
| |
Collapse
|
26
|
Yin H, Shi J, Li S, You Q, Zhu H, Koo C, Liu B, Hou L, Wu C. Emerging roles of exosomal circRNAs in non-small cell lung cancer. J Transl Med 2025; 23:490. [PMID: 40307927 PMCID: PMC12042431 DOI: 10.1186/s12967-025-06463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/06/2025] [Indexed: 05/02/2025] Open
Abstract
Despite the prevalence of non-small cell lung cancer (NSCLC) is high, the limited early detection and management of these tumors are restricted since there is an absence of reliable and precise diagnostic biomarkers and therapeutic targets. Exosomes transport functional molecules for facilitating intercellular communication, especially in the tumor microenvironment, indicating their potential as cancer biomarkers and therapeutic targets. Circular RNA (circRNA), a type of non-coding RNA possessing a covalently closed loop structure, substantial abundance, and tissue-specific expression patterns, is stably enriched in exosomes. In recent years, significant breakthroughs have been made in research on exosomal circRNA in NSCLC. This review briefly introduces the biogenesis, characterizations, and functions of circRNAs and exosomes, and systematically describes the biological functions and mechanisms of exosomal circRNAs in NSCLC. In addition, this study summarizes their role in the progression of NSCLC and discusses their clinical significance as biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Hongyuan Yin
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiayi Shi
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qianhui You
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huici Zhu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chinying Koo
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Baonian Liu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
27
|
Liu S, Wan X, Gou Y, Yang W, Xu W, Du Y, Peng X, Wang X, Zhang X. The emerging functions and clinical implications of circRNAs in acute myeloid leukaemia. Cancer Cell Int 2025; 25:167. [PMID: 40296024 PMCID: PMC12038945 DOI: 10.1186/s12935-025-03772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Acute myeloid leukaemia (AML) is a prevalent haematologic malignancy characterized by significant heterogeneity. Despite the application of aggressive therapeutic approaches, AML remains associated with poor prognosis. Circular RNAs (circRNAs) constitute a unique class of single-stranded RNAs featuring covalently closed loop structures that are ubiquitous across species. These molecules perform crucial regulatory functions in the pathogenesis of various diseases through diverse mechanisms, including acting as miRNA sponges, interacting with DNA or proteins, and encoding functional proteins/polypeptides. Recently, numerous circRNAs have been confirmed to have aberrant expression patterns in AML patients. In particular, certain circRNAs are closely associated with specific clinicopathological characteristics and thus have great potential as diagnostic/prognostic biomarkers and therapeutic targets in AML. Herein, we systematically summarize the biogenesis, degradation, and functional mechanisms of circRNAs while highlighting their clinical relevance. We also outline a series of online databases and analytical tools available to facilitate circRNA research. Finally, we discuss the current challenges and future research priorities in this evolving field.
Collapse
Affiliation(s)
- Shuiqing Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xingyu Wan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Yang Gou
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Wuchen Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Wei Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Yuxuan Du
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xiangui Peng
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
28
|
Kitagawa S, Seike M. Liquid biopsy in lung cancer. Jpn J Clin Oncol 2025; 55:453-458. [PMID: 40104865 DOI: 10.1093/jjco/hyaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/13/2025] [Indexed: 03/20/2025] Open
Abstract
Precision medicine based on biomarkers, such as genetic abnormalities and PD-L1 expression, has been established for the treatment of nonsmall cell lung cancer. Recently, liquid biopsy has emerged as a valuable and minimally invasive alternative. This method analyzes blood and other bodily fluids to detect cancer-related genetic abnormalities and molecular residual disease (MRD). Liquid biopsy, which includes testing for circulating tumor cells, circulating tumor DNA (ctDNA), and microRNA (miRNA), offers several advantages over conventional methods. It is minimally invasive, can be performed repeatedly, and provides crucial information for early cancer diagnosis, genotyping, and treatment monitoring. Elevated ctDNA levels and miRNA markers show promise for early diagnosis. Liquid biopsy complements traditional tissue biopsy during genotyping, particularly when tumor samples are insufficient. Tests such as Cobas® EGFR Mutation Test v2 and Guardant360® CDx have been shown to be effective in detecting genetic mutations and guiding treatment decisions. Although the accuracy of liquid biopsy is still lower than that of tissue biopsy, its clinical utility continues to improve. For cancer prediction recurrence and treatment monitoring, ctDNA analysis can detect MRD earlier than conventional imaging, offering potential benefits for treatment adjustment and early relapse detection. The continuous development and validation of liquid biopsy methods are essential for improving personalized lung cancer treatment strategies.
Collapse
Affiliation(s)
- Shingo Kitagawa
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
29
|
Liu L, Zhang S, Ren Y, Wang R, Zhang Y, Weng S, Zhou Z, Luo P, Cheng Q, Xu H, Ba Y, Zuo A, Liu S, Liu Z, Han X. Macrophage-derived exosomes in cancer: a double-edged sword with therapeutic potential. J Nanobiotechnology 2025; 23:319. [PMID: 40287762 PMCID: PMC12034189 DOI: 10.1186/s12951-025-03321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Solid cancer contains a complicated communication network between cancer cells and components in the tumor microenvironment (TME), significantly influencing the progression of cancer. Exosomes function as key carriers of signaling molecules in these communications, including the intricate signalings of tumor-associated macrophages (TAMs) on cancer cells and the TME. With their natural lipid bilayer structures and biological activity that relates to their original cell, exosomes have emerged as efficient carriers in studies on cancer therapy. Intrigued by the heterogeneity and plasticity of both macrophages and exosomes, we regard macrophage-derived exosomes in cancer as a double-edged sword. For instance, TAM-derived exosomes, educated by the TME, can promote resistance to cancer therapies, while macrophage-derived exosomes generated in vitro have shown favorable potential in cancer therapy. Here, we depict the reasons for the heterogeneity of TAM-derived exosomes, as well as the manifold roles of TAM-derived exosomes in cancer progression, metastasis, and resistance to cancer therapy. In particular, we emphasize the recent advancements of modified macrophage-derived exosomes in diverse cancer therapies, arguing that these modified exosomes are endowed with unique advantages by their macrophage origin. We outline the challenges in translating these scientific discoveries into clinical cancer therapy, aiming to provide patients with safe and effective treatments.
Collapse
Affiliation(s)
- Long Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Siying Zhang
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruizhi Wang
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
30
|
Wang H, Bai Z, Qiu Y, Kou J, Zhu Y, Tan Q, Chen C, Mo R. Empagliflozin-Pretreated MSC-Derived Exosomes Enhance Angiogenesis and Wound Healing via PTEN/AKT/VEGF Pathway. Int J Nanomedicine 2025; 20:5119-5136. [PMID: 40297404 PMCID: PMC12035755 DOI: 10.2147/ijn.s512074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Background Diabetic wounds are a common and challenging complication of diabetes, characterized by delayed healing and increased risk of infection. Current treatment methods are limited and often ineffective in promoting wound repair. Mesenchymal stem cell (MSC)-derived exosomes have shown promise in regenerative medicine, but enhancing their therapeutic potential remains a key area of research. Methods In this study, MSCs were pretreated with empagliflozin (EMPA), and exosomes were isolated using ultracentrifugation. The morphology, size, and protein markers of EMPA-Exos were characterized. Their effects on human umbilical vein endothelial cells (HUVECs) were assessed using EdU assays, CCK-8 assays, scratch assays, Transwell assays, and Matrigel tube formation assays. The PTEN/AKT/VEGF signaling pathway was analyzed through Western blotting. In vivo, diabetic mouse wound models were used to evaluate the healing efficacy of EMPA-Exos. Results EMPA pretreatment enhanced the functional properties of MSC-derived exosomes, significantly improving HUVECs' proliferation, migration, invasion, and angiogenesis compared to non-pretreated exosomes (P < 0.05). Transcriptomic analysis and pathway activation studies revealed that EMPA-Exos promoted angiogenesis through the PTEN/AKT/VEGF signaling pathway. In vivo experiments demonstrated accelerated wound healing and increased vascularization in diabetic mice treated with EMPA-Exos (P < 0.05). Conclusion EMPA-pretreated MSC-derived exosomes effectively enhance angiogenesis and accelerate diabetic wound healing by activating the PTEN/AKT/VEGF signaling pathway. This strategy offers a promising approach for improving diabetic wound repair and provides a potential new therapeutic avenue in regenerative medicine.
Collapse
Affiliation(s)
- Hao Wang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zihao Bai
- Nanjing Children’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Yan Qiu
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiaxi Kou
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yanqing Zhu
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chen Chen
- Department of Nutrition, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Ran Mo
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
31
|
Li X, Chen J, Yang Y, Cai H, Ao Z, Xing Y, Li K, Yang K, Guan W, Friend J, Lee LP, Wang N, Guo F. Extracellular vesicle-based point-of-care testing for diagnosis and monitoring of Alzheimer's disease. MICROSYSTEMS & NANOENGINEERING 2025; 11:65. [PMID: 40246821 PMCID: PMC12006457 DOI: 10.1038/s41378-025-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 04/19/2025]
Abstract
Extracellular vesicles (EVs) show potential for early diagnosis of Alzheimer's disease (AD) and monitoring of its progression. However, EV-based AD diagnosis faces challenges due to the small size and low abundance of biomarkers. Here, we report a fully integrated organic electrochemical transistor (OECT) sensor for ultrafast, accurate, and convenient point-of-care testing (POCT) of serum EVs from AD patients. By utilizing acoustoelectric enrichment, the EVs can be quickly propelled, significantly enriched, and specifically bound to the OECT detection area, achieving a gain of over 280 times response in 30 s. The integrated POCT sensor can detect serum EVs from AD patients with a limit of detection as low as 500 EV particles/mL and a reduced detection time of just two minutes. Furthermore, the integrated POCT sensors were used to monitor AD progression in an AD mouse model by testing the mouse Aβ EVs at different time courses (up to 18 months) and compared with the Aβ accumulation using high-resolution magnetic resonance imaging (MRI). This innovative technology has the potential for accurate and rapid diagnosis of Alzheimer's and other neurodegenerative diseases, and monitoring of disease progression and treatment response.
Collapse
Affiliation(s)
- Xiang Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Jie Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yang Yang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Yantao Xing
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Kangle Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Kaiyuan Yang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Weihua Guan
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - James Friend
- Department of Mechanical and Aerospace Engineering, and Department of Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Bioengineering, and Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Nian Wang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
32
|
Du G, He J, Zhan Y, Chen L, Hu Y, Qian J, Huang H, Meng F, Shan L, Chen Z, Hu D, Zhu C, Yue M, Qi Y, Tan W. Changes and application prospects of biomolecular materials in small extracellular vesicles (sEVs) after flavivirus infection. Eur J Med Res 2025; 30:275. [PMID: 40229861 PMCID: PMC11998145 DOI: 10.1186/s40001-025-02539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Small extracellular vesicles (sEVs), also known as exosomes, are membranous vesicles filled with various proteins and nucleic acids, serving as a communication vector between cells. Recent research has highlighted their role in viral diseases. This review synthesizes current understanding of viral sEVs and includes recent findings on sEVs infected with flaviviruses. It discusses the implications of viral sEVs research for advancing arbovirus sEVs research and anticipates the potential applications of sEVs in flavivirus infections.
Collapse
Affiliation(s)
- Gengting Du
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Junhua He
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Yan Zhan
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Leru Chen
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Yue Hu
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Jiaojiao Qian
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Huan Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fanjin Meng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Laiyou Shan
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Zhiyu Chen
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | | | - Changqiang Zhu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Ming Yue
- Department of Infectious Diseases, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Qi
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Weilong Tan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China.
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
33
|
Zhang Y, Yue NN, Chen LY, Tian CM, Yao J, Wang LS, Liang YJ, Wei DR, Ma HL, Li DF. Exosomal biomarkers: A novel frontier in the diagnosis of gastrointestinal cancers. World J Gastrointest Oncol 2025; 17:103591. [PMID: 40235899 PMCID: PMC11995328 DOI: 10.4251/wjgo.v17.i4.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Gastrointestinal (GI) cancers, which predominantly manifest in the stomach, colorectum, liver, esophagus, and pancreas, accounting for approximately 35% of global cancer-related mortality. The advent of liquid biopsy has introduced a pivotal diagnostic modality for the early identification of premalignant GI lesions and incipient cancers. This non-invasive technique not only facilitates prompt therapeutic intervention, but also serves as a critical adjunct in prognosticating the likelihood of tumor recurrence. The wealth of circulating exosomes present in body fluids is often enriched with proteins, lipids, microRNAs, and other RNAs derived from tumor cells. These specific cargo components are reflective of processes involved in GI tumorigenesis, tumor progression, and response to treatment. As such, they represent a group of promising biomarkers for aiding in the diagnosis of GI cancer. In this review, we delivered an exhaustive overview of the composition of exosomes and the pathways for cargo sorting within these vesicles. We laid out some of the clinical evidence that supported the utilization of exosomes as diagnostic biomarkers for GI cancers and discussed their potential for clinical application. Furthermore, we addressed the challenges encountered when harnessing exosomes as diagnostic and predictive instruments in the realm of GI cancers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
- Department of Medical Administration, Huizhou Institute for Occupational Health, Huizhou 516000, Guangdong Province, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen 518000, Guangdong Province, China
| | - Li-Yu Chen
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (Jinan University of Second Clinical Medical Sciences), Shenzhen 518000, Guangdong Province, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, Guangdong Province, China
| | - Dao-Ru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Hua-Lin Ma
- Department of Nephrology, The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
34
|
Li J, Wang A, Guo H, Zheng W, Chen R, Miao C, Zheng D, Peng J, Wang J, Chen Z. Exosomes: innovative biomarkers leading the charge in non-invasive cancer diagnostics. Theranostics 2025; 15:5277-5311. [PMID: 40303340 PMCID: PMC12036879 DOI: 10.7150/thno.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/06/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes, nanoscale extracellular vesicles secreted by diverse cell types, have emerged as promising biomarkers for non-invasive tumor diagnostics, offering significant advantages over traditional methods. These vesicles, typically ranging from 30 to 150 nanometers in size, carry a diverse cargo of proteins, lipids, RNA, and microRNAs, which reflect the molecular alterations occurring within their parent cells. Notably, exosomes can be isolated from easily accessible biofluids such as blood, urine, and saliva, making them ideal candidates for liquid biopsy applications. This review explores the transformative potential of exosome-based biomarkers in the early detection and monitoring of cancers across diverse organ systems, including respiratory, digestive, hematological, neurological, endocrine malignancies and so on. Special emphasis is placed on their application in clinical trials, where exosome-based diagnostics have demonstrated promising results in detecting tumors at early stages and monitoring treatment responses, offering a less invasive and more accessible alternative to traditional biopsies. While recent advancements in exosome isolation and characterization technologies have significantly improved the sensitivity and specificity of these diagnostics, challenges such as biological heterogeneity, lack of standardization, and regulatory hurdles remain. Nevertheless, exosome-based diagnostics hold the promise of providing real-time, dynamic insights into tumor progression, enhancing personalized medicine. The integration of exosomes into clinical practice could revolutionize cancer diagnostics and therapy, improving patient outcomes. Further research and large-scale clinical validation are essential to fully realize the clinical potential of exosome-based biomarker applications in routine clinical settings.
Collapse
Affiliation(s)
- Jiale Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China, 570208
| | - Ailin Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China, 211198
| | - Haijun Guo
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China, 412000
| | - Wei Zheng
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China, 412000
| | - Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China, 533000
| | - Changfeng Miao
- Department of Neurosurgery Second Branche, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China, 410005
| | - Dandan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital Zhejiang University, Hangzhou, China, 310009
| | - Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China, 570208
| | - Jiachong Wang
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China, 570208
| | - Zigui Chen
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China, 570208
| |
Collapse
|
35
|
S BR, Dhar R, Devi A. Exosomes-mediated CRISPR/Cas delivery: A cutting-edge frontier in cancer gene therapy. Gene 2025; 944:149296. [PMID: 39884405 DOI: 10.1016/j.gene.2025.149296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Cancer is considered the second most common disease globally. In the past few decades, many approaches have been proposed for cancer treatment. One among those is targeted therapy using CRISPR/Cas system which plays a significant role in translational research through gene editing. However, due to its inability to cope with specific targeting, off-target effects, and limited tumor penetration, it is very challenging to use this approach in cancer studies. To increase its efficacy, CRISPR components are engineered into the extracellular vesicles (EVs), especially exosomes (a subpopulation of EVs). Exosomes have a significant role in cellular communication. Exosomes-based CRISPR/Cas system transport for gene editing enhances specificity, reduces off-target effects, and improves the therapeutic potential. This review highlights the role of exosomes and the CRISPR/Cas system in cancer research, exosomes-based CRISPR delivery for cancer treatment, and its future orientation.
Collapse
Affiliation(s)
- Bhavanisha Rithiga S
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India.
| |
Collapse
|
36
|
Oliveira Dias J, Sampaio Fagundes I, Bisio MDC, da Silva Barboza V, Jacinto AA, Altei WF. Extracellular vesicles as the common denominator among the 7 Rs of radiobiology: From the cellular level to clinical practice. Biochim Biophys Acta Rev Cancer 2025; 1880:189315. [PMID: 40216093 DOI: 10.1016/j.bbcan.2025.189315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Extracellular vesicles (EVs) are lipid-bound particles released by tumor cells and widely explored in cancer development, progression, and treatment response, being considered as valuable components to be explored as biomarkers or cellular targets to modulate the effect of therapies. The mechanisms underlying the production and profile of EVs during radiotherapy (RT) require addressing radiobiological aspects to determine cellular responses to specific radiation doses and fractionation. In this review, we explore the role of EVs in the 7 Rs of radiobiology, known as the molecular basis of a biological tissue response to radiation, supporting EVs as a shared player in all the seven processes. We also highlight the relevance of EVs in the context of liquid biopsy and resistance to immunotherapy, aiming to establish the connection and utility of EVs as tools in contemporary and precision radiotherapy.
Collapse
Affiliation(s)
- Júlia Oliveira Dias
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | | | - Wanessa Fernanda Altei
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil; Radiation Oncology Department, Barretos Cancer Hospital, Barretos, Brazil.
| |
Collapse
|
37
|
Xu Y, Xu L, Chen Q, Zou C, Huang J, Zhang L. Crosstalk between exosomes and tumor-associated macrophages in hepatocellular carcinoma: implication for cancer progression and therapy. Front Immunol 2025; 16:1512480. [PMID: 40264760 PMCID: PMC12011854 DOI: 10.3389/fimmu.2025.1512480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/26/2025] [Indexed: 04/24/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, represents a significant cause of cancer-related mortality. While our understanding of its pathogenesis is comparatively comprehensive, the influence of the tumor microenvironment (TME) on its progression warrants additional investigation. Tumor-associated macrophages (TAMs) have significant impacts on cancer cell proliferation, migration, invasion, and immune response, facilitating a complex interaction within the TME. Exosomes, which measure between 30 and 150 nanometers in size, are categorized into small extracellular vesicles, secreted by a wide range of eukaryotic cells. They can transfer biological molecules including proteins, non-coding RNAs, and lipids, which mediates the intercellular communication within the TME. Emerging evidence has revealed that exosomes regulate macrophage polarization, thus impacting cancer progression and immune responses within the TME of HCC. Moreover, TAM-derived exosomes also play crucial roles in malignant transformation, which hold immense potential for cancer therapy. In this review, we elaborate on the crosstalk between exosomes and TAMs within TME during HCC development. Moreover, we delve into the feasible treatment approaches for exosomes in cancer therapy and emphasize the limitations and challenges for the translation of exosomes derived from TAMs into clinical courses for cancer therapy, which may provide new perspectives on further ameliorations of therapeutic regimes based on exosomes to advance their clinical applications.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology Operating Room, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Linyue Xu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Qiuyan Chen
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Can Zou
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ju Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Limei Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Wang ZY, Liu WJ, Jin QY, Zhang XS, Chu XJ, Khan A, Zhan SB, Shen H, Yang P. Machine Learning-Based Identification of Novel Exosome-Derived Metabolic Biomarkers for the Diagnosis of Systemic Lupus Erythematosus and Differentiation of Renal Involvement. Curr Med Sci 2025; 45:231-243. [PMID: 40019633 DOI: 10.1007/s11596-025-00023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE This study aims to investigate the exosome-derived metabolomics profiles in systemic lupus erythematosus (SLE), identify differential metabolites, and analyze their potential as diagnostic markers for SLE and lupus nephritis (LN). METHODS Totally, 91 participants were enrolled between February 2023 and January 2024 including 58 SLE patients [30 with nonrenal-SLE and 28 with Lupus nephritis (LN)] and 33 healthy controls (HC). Ultracentrifugation was used to isolate serum exosomes, which were analyzed for their metabolic profiles using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Endogenous metabolites were identified via public metabolite databases. Random Forest, Lasso regression and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were employed to screen key metabolites, and a prediction model was constructed for SLE diagnosis and LN discrimination. ROC curves were constructed to determine the potential of these differential exosome-derived metabolites for the diagnosis of SLE. Furthermore, Spearman's correlation was employed to evaluate the potential links between exosome-derived metabolites and the clinical parameters which reflect disease progression. RESULTS A total of 586 endogenous serum exosome-derived metabolites showed differential expression, with 225 exosome-derived metabolites significantly upregulated, 88 downregulated and 273 exhibiting no notable changes in the HC and SLE groups. Machine learning algorithms revealed three differential metabolites: Pro-Asn-Gln-Met-Ser, C24:1 sphingolipid, and protoporphyrin IX, which exhibited AUC values of 0.998, 0.992 and 0.969 respectively, for distinguishing between the SLE and HC groups, with a combined AUC of 1.0. In distinguishing between the LN and SLE groups, the AUC values for these metabolites were 0.920, 0.893 and 0.865, respectively, with a combined AUC of 0.931, demonstrating excellent diagnostic performance. Spearman correlation analysis revealed that Pro-Asn-Gln-Met-Ser and protoporphyrin IX were positively correlated with the SLE Disease Activity Index (SLEDAI) scores, urinary protein/creatinine ratio (ACR) and urinary protein levels, while C24:1 sphingolipid exhibited a negative correlation. CONCLUSIONS This study provides the first comprehensive characterization of the exosome-derived metabolites in SLE and established a promising prediction model for SLE and LN discrimination. The correlation between exosome-derived metabolites and key clinical parameters strongly indicated their potential role in SLE pathological progression.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Wen-Jing Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Qing-Yang Jin
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Xiao-Shan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, 210008, China
| | - Xiao-Jie Chu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China
| | - Adeel Khan
- Department of Biotechnology, University of Science and Technology Bannu, Bannu, 28100, Pakistan
| | - Shou-Bin Zhan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, 210008, China.
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China.
| | - Ping Yang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
39
|
Li J, Wijaya LNA, Jang DW, Hu Y, You J, Cai Y, Gao Z, Mi Y, Luo Z. 2D Materials-Based Field-Effect Transistor Biosensors for Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408961. [PMID: 39659061 DOI: 10.1002/smll.202408961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Indexed: 12/12/2024]
Abstract
The need for accurate point-of-care (POC) tools, driven by increasing demands for precise medical diagnostics and monitoring, has accelerated the evolution of biosensor technology. Integrable 2D materials-based field-effect transistor (2D FET) biosensors offer label-free, rapid, and ultrasensitive detection, aligning perfectly with current biosensor trends. Given these advancements, this review focuses on the progress, challenges, and future prospects in the field of 2D FET biosensors. The distinctive physical properties of 2D materials and recent achievements in scalable synthesis are highlighted that significantly improve the manufacturing process and performance of FET biosensors. Additionally, the advancements of 2D FET biosensors are investigated in fatal disease diagnosis and screening, chronic disease management, and environmental hazards monitoring, as well as their integration in flexible electronics. Their promising capabilities shown in laboratory trials accelerate the development of prototype products, while the challenges are acknowledged, related to sensitivity, stability, and scalability that continue to impede the widespread adoption and commercialization of 2D FET biosensors. Finally, current strategies are discussed to overcome these challenges and envision future implications of 2D FET biosensors, such as their potential as smart and sustainable POC biosensors, thereby advancing human healthcare.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. China
| | - Leonardo Nicholas Adi Wijaya
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. China
| | - Dong Wook Jang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. China
| | - Yunxia Hu
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Jiawen You
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Yuting Cai
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Zhaoli Gao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. China
| | - Yongli Mi
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
40
|
Wang JS, Schellenberg SJ, Demeros A, Lin AY. Exosomes in review: A new frontier in CAR-T cell therapies. Neoplasia 2025; 62:101147. [PMID: 40037165 PMCID: PMC11923832 DOI: 10.1016/j.neo.2025.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Exosomes are extracellular vehicles that facilitate intra-cellular communication via transport of critical proteins and genetic material. Every exosome is intrinsically reflective of the cell from which it was derived and can even mimic effector functions of their parent cells. In recent years, with the success of CAR-T therapies, there has been growing interest in characterizing exosomes derived from CAR-T cells. CAR exosomes contain the same cytotoxic granules as their parent cells and have demonstrated significant anti-tumor activity in vitro and in animal models. Moreover, infusion of CAR exosomes in animal models did not generate cytokine release syndrome. Conversely, there are also novel bispecific antibodies which target tumor-derived exosomes in hopes of derailing immunosuppressive pathways mediated by exosomes produced from malignant cells. The two most promising examples include (a) BsE CD73 x EpCAM which binds and inhibits exosomal CD73 to suppress production of immunosuppressant adenosine and (b) BsE CD3 x PD-L1 which targets exosomal PD-L1 within the tumor microenvironment to guide cytotoxic T-cells towards tumor cells. As our understanding of exosome biology continues to evolve, opportunities for advances in cellular therapies will grow in tandem.
Collapse
Affiliation(s)
- John S Wang
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Chicago, IL, USA
| | - Samuel J Schellenberg
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Chicago, IL, USA
| | | | - Adam Y Lin
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Oncology, Chicago, IL, USA; Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
| |
Collapse
|
41
|
Feng X, Shen A, Zhang W, Jia S, Iliuk A, Wang Y, Zhang W, Zhang Y, Tao WA, Hu L. High-throughput capture and in situ protein analysis of extracellular vesicles by chemical probe-based array. Nat Protoc 2025; 20:1057-1081. [PMID: 39438698 DOI: 10.1038/s41596-024-01082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are small particles with phospholipid bilayers that carry a diverse range of cargoes including nucleic acids, proteins and metabolites. EVs have important roles in various cellular processes and are increasingly recognized for their ubiquitous role in cell-cell communications and potential applications in therapeutics and diagnostics. Although many methods have been developed for the characterization and measurement of EVs, analyzing them from biofluids remains a challenge with regard to throughput and sensitivity. Recently, we introduced an approach to facilitate high-throughput analysis of EVs from trace amounts of sample. In this method, an amphiphile-dendrimer supramolecular probe (ADSP) is coated onto a nitrocellulose membrane for array-based capture and to enable an in situ immunoblotting assay. Here, we describe the protocol for our array-based method of EV profiling. We describe an enhanced version of the method that incorporates an automated printing workstation, ensuring high throughput and reproducibility. We further demonstrate the use of our array to profile specific glycosylations on the EV surface using click chemistry of an azide group introduced by metabolic labeling. In this protocol, the synthesis of ADSP and the fabrication of ADSP nitrocellulose membrane array can be completed on the same day. EVs are efficiently captured from biological or clinical samples through a 30-min incubation, followed by an immunoblotting assay within a 3-h window, thus providing a high-throughput platform for EV isolation and in situ targeted analysis of EV proteins and their modifications.
Collapse
Affiliation(s)
- Xin Feng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Ao Shen
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Shengnan Jia
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China
| | - Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Wenke Zhang
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China
| | - Ying Zhang
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
42
|
Wu P, Wang Z, Sun Y, Cheng Z, Wang M, Wang B. Extracellular vesicles: a new frontier in diagnosing and treating graft-versus-host disease after allogeneic hematopoietic cell transplantation. J Nanobiotechnology 2025; 23:251. [PMID: 40133949 PMCID: PMC11938667 DOI: 10.1186/s12951-025-03297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Graft-versus-host disease (GvHD) is a prevalent complication following allogeneic hematopoietic stem cell transplantation (HSCT) and is characterized by relatively high morbidity and mortality rates. GvHD can result in extensive systemic damage in patients following allogeneic HSCT (allo-HSCT), with the skin, gastrointestinal tract, and liver frequently being the primary target organs affected. The severe manifestations of acute intestinal GvHD often indicate a poor prognosis for patients after allo-HSCT. Endoscopy and histopathological evaluation remain employed to diagnose GvHD, and auxiliary examinations exclude differential diagnoses. Currently, reliable serum biomarkers for the diagnosis and differential diagnosis of GvHD are scarce. As an essential part of standard transplant protocols, early application of immunosuppressive drugs effectively prevents GvHD. Among them, steroids represent first-line therapeutic agents, and the JAK2 inhibitor ruxolitinib represents the second-line therapeutic agent. Currently, no efficacious treatment modality exists for steroid-resistant aGvHD. Therefore, the diagnosis and treatment of GvHD still face significant medical demands. Extracellular vesicles (EVs) are nanometer to micrometer-scale biomembrane vesicles containing various bioactive components, such as proteins, nucleotides, and metabolites. Distinctive changes in serum-derived EV components occur in patients after allo-HSCT; Hence, EVs are expected to be potential biomarkers for diagnosing and treating GvHD. Furthermore, cell-free therapeutics characterized by EVs derived from mesenchymal stem cells (MSCs) have manifested remarkable therapeutic efficacy in preclinical models and preclinical trials of GvHD. Customized engineered EVs with fewer toxic and side effects for the combined treatment of GvHD hold broad prospects for clinical translation. This review article examines the potential value of translating EVs into clinical applications for the diagnosis and treatment of GvHD. It summarizes the latest advancements and prospects of engineered EVs applying GvHD.
Collapse
Affiliation(s)
- Peipei Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Zhangfei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Yongping Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhixiang Cheng
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Anhui Public Health Clinical Center, Hefei, China.
| | - Min Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China.
| | - Baolong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
43
|
Chi H, Shi L, Gan S, Fan G, Dong Y. Innovative Applications of Nanopore Technology in Tumor Screening: An Exosome-Centric Approach. BIOSENSORS 2025; 15:199. [PMID: 40277513 PMCID: PMC12024935 DOI: 10.3390/bios15040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/26/2025]
Abstract
Cancer remains one of the leading causes of death worldwide. Its complex pathogenesis and metastasis pose significant challenges for early diagnosis, underscoring the urgent need for innovative and non-invasive tumor screening methods. Exosomes, small extracellular vesicles that reflect the physiological and pathological states of their parent cells, are uniquely suited for cancer liquid biopsy due to their molecular cargo, including RNA, DNA, and proteins. However, traditional methods for exosome isolation and detection are often limited by inadequate sensitivity, specificity, and efficiency. Nanopore technology, characterized by high sensitivity and single-molecule resolution, offers powerful tools for exosome analysis. This review highlights its diverse applications in tumor screening, such as magnetic nanopores for high-throughput sorting, electrochemical sensing for real-time detection, nanomaterial-based assemblies for efficient capture, and plasmon resonance for ultrasensitive analysis. These advancements have enabled precise exosome detection and demonstrated promising potential in the early diagnosis of breast, pancreatic, and prostate cancers, while also supporting personalized treatment strategies. Additionally, this review summarizes commercialized products for exosome-based cancer diagnostics and examines the technical and translational challenges in clinical applications. Finally, it discusses the future prospects of nanopore technology in advancing liquid biopsy toward clinical implementation. The continued progress of nanopore technology not only accelerates exosome-based precision medicine but also represents a significant step forward in next-generation liquid biopsy and tumor screening.
Collapse
Affiliation(s)
- Heng Chi
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
| | - Liuxin Shi
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
| | | | | | - Yuliang Dong
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
- BGI Research, Hangzhou 310030, China;
| |
Collapse
|
44
|
Xiao Q, Tan M, Yan G, Peng L. Revolutionizing lung cancer treatment: harnessing exosomes as early diagnostic biomarkers, therapeutics and nano-delivery platforms. J Nanobiotechnology 2025; 23:232. [PMID: 40119368 PMCID: PMC11929271 DOI: 10.1186/s12951-025-03306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/08/2025] [Indexed: 03/24/2025] Open
Abstract
Lung cancer, known for its high morbidity and mortality rates, remains one of the most critical health challenges globally. Conventional treatment options, such as chemotherapy and surgery, are often limited by high costs, significant side effects, and often yield a poor prognosis. Notably, recent research has shed light on the potential therapeutic roles of exosomes, which essentially influence lung cancer's development, diagnosis, treatment, and prognosis. Exosomes have been revealed for their exceptional properties, including natural intercellular communication, excellent biocompatibility, minimal toxicity, prolonged blood circulation ability, and biodegradability. These unique characteristics position exosomes as highly effective drug delivery systems, nanotherapeutics, and potential diagnostic and prognostic biomarkers in lung cancer. This review provides a comprehensive review of the physiological and pathological roles of exosomes in lung cancer, emphasizing their potential as innovative diagnostic biomarkers, therapeutics, and delivery platforms. By harnessing their unique properties, exosomes are poised to revolutionize the diagnosis and treatment of lung cancer, offering a promising avenue for more personalized and effective therapies.
Collapse
Affiliation(s)
- Qiyao Xiao
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.
| |
Collapse
|
45
|
Tang S, Cheng H, Zang X, Tian J, Ling Z, Wang L, Xu W, Jiang J. Small extracellular vesicles: crucial mediators for prostate cancer. J Nanobiotechnology 2025; 23:230. [PMID: 40114183 PMCID: PMC11927207 DOI: 10.1186/s12951-025-03326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Small extracellular vesicles (sEVs) play a critical role in the progression, diagnosis, and treatment of prostate cancer (PCa), particularly within the tumor microenvironment (TME). Acting as novel biomarkers and agents for targeted biological therapy, sEVs contribute significantly to improving patient survival. These vesicles transport a variety of biomolecules, including proteins, nucleic acids, and lipids, which are instrumental in remodeling the TME, facilitating intercellular communication, and influencing key processes such as tumor growth, metastasis, and therapy resistance. A thorough understanding of sEV heterogeneity, including their biogenesis, characteristics, and potential applications, is essential. Recent advances have illuminated the origins, formation processes, and molecular cargo of PCa-derived sEVs (PCa-sEVs), enhancing our understanding of their role in disease progression. Furthermore, sEVs show promise as diagnostic markers, with potential applications in early detection and prognostic assessment in PCa. Therapeutically, natural and engineered sEVs offer versatile applications, including drug delivery, gene therapy, and immunomodulation, underscoring their potential in PCa management. This review delves into the substantial potential of sEVs in clinical practices for PCa.
Collapse
Affiliation(s)
- Sijie Tang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Huiying Cheng
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xueyan Zang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Jiawei Tian
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
| | - Zhongli Ling
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
| | - Lingling Wang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
| | - Wenrong Xu
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China.
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Jiajia Jiang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China.
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
46
|
Yin H, Zhang M, Zhang Y, Zhang X, Zhang X, Zhang B. Liquid biopsies in cancer. MOLECULAR BIOMEDICINE 2025; 6:18. [PMID: 40108089 PMCID: PMC11923355 DOI: 10.1186/s43556-025-00257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025] Open
Abstract
Cancer ranks among the most lethal diseases worldwide. Tissue biopsy is currently the primary method for the diagnosis and biological analysis of various solid tumors. However, this method has some disadvantages related to insufficient tissue specimen collection and intratumoral heterogeneity. Liquid biopsy is a noninvasive approach for identifying cancer-related biomarkers in peripheral blood, which allows for repetitive sampling across multiple time points. In the field of liquid biopsy, representative biomarkers include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes. Many studies have evaluated the prognostic and predictive roles of CTCs and ctDNA in various solid tumors. Although these studies have limitations, the results of most studies appear to consistently demonstrate the correlations of high CTC counts and ctDNA mutations with lower survival rates in cancer patients. Similarly, a reduction in CTC counts throughout therapy may be a potential prognostic indicator related to treatment response in advanced cancer patients. Moreover, the biochemical characteristics of CTCs and ctDNA can provide information about tumor biology as well as resistance mechanisms against targeted therapy. This review discusses the current clinical applications of liquid biopsy in cancer patients, emphasizing its possible utility in outcome prediction and treatment decision-making.
Collapse
Affiliation(s)
- Hang Yin
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Manjie Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yu Zhang
- Dalian Medical University, Dalian, 116000, China
| | - Xuebing Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Xia Zhang
- Dalian Fifth People's Hospital, Dalian, 116000, China.
| | - Bin Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
47
|
Semeradtova A, Liegertova M, Herma R, Capkova M, Brignole C, Del Zotto G. Extracellular vesicles in cancer´s communication: messages we can read and how to answer. Mol Cancer 2025; 24:86. [PMID: 40108630 PMCID: PMC11921637 DOI: 10.1186/s12943-025-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Extracellular vesicles (EVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME), profoundly influencing cancer progression. These nano-sized vesicles, released by both tumor and stromal cells, carry a diverse cargo of proteins, nucleic acids, and lipids, reflecting the dynamic cellular landscape and mediating intricate interactions between cells. This review provides a comprehensive overview of the biogenesis, composition, and functional roles of EVs in cancer, highlighting their significance in both basic research and clinical applications. We discuss how cancer cells manipulate EV biogenesis pathways to produce vesicles enriched with pro-tumorigenic molecules, explore the specific contributions of EVs to key hallmarks of cancer, such as angiogenesis, metastasis, and immune evasion, emphasizing their role in shaping TME and driving therapeutic resistance. Concurrently, we submit recent knowledge on how the cargo of EVs can serve as a valuable source of biomarkers for minimally invasive liquid biopsies, and its therapeutic potential, particularly as targeted drug delivery vehicles and immunomodulatory agents, showcasing their promise for enhancing the efficacy and safety of cancer treatments. By deciphering the intricate messages carried by EVs, we can gain a deeper understanding of cancer biology and develop more effective strategies for early detection, targeted therapy, and immunotherapy, paving the way for a new era of personalized and precise cancer medicine with the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Alena Semeradtova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic.
| | - Michaela Liegertova
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Regina Herma
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Magdalena Capkova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Genny Del Zotto
- Core Facilities, Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| |
Collapse
|
48
|
Yu D, Gu J, Zhang J, Wang M, Ji R, Feng C, Santos HA, Zhang H, Zhang X. Integrated Microfluidic Chip for Neutrophil Extracellular Vesicle Analysis and Gastric Cancer Diagnosis. ACS NANO 2025; 19:10078-10092. [PMID: 40059332 PMCID: PMC11924328 DOI: 10.1021/acsnano.4c16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Neutrophil-derived extracellular vesicles (NEVs) are critically involved in disease progression and are considered potential biomarkers. However, the tedious processes of NEV separation and detection restrain their use. Herein, we presented an integrated microfluidic chip for NEV (IMCN) analysis, which achieved immune-separation of CD66b+ NEVs and multiplexed detection of their contained miRNAs (termed NEV signatures) by using 10 μL serum samples. The optimized microchannel and flow rate of the IMCN chip enabled efficient capture of NEVs (>90%). After recognition of the captured NEVs by a specific CD63 aptamer, on-chip rolling circle amplification (RCA) reaction was triggered by the released aptamers and miRNAs from heat-lysed NEVs. Then, the RCA products bound to molecular beacons (MBs), initiating allosteric hairpin structures and amplified "turn on" fluorescence signals (RCA-MB assay). Clinical sample analysis showed that NEV signatures had a high area under curve (AUC) in distinguishing between healthy control (HC) and gastric cancer (GC) (0.891), benign gastric diseases (BGD) and GC (0.857). Notably, the AUC reached 0.912 with a combination of five biomarkers (NEV signatures, CEA, and CA199) to differentiate GC from HC, and the diagnostic accuracy was further increased by using a machine learning (ML)-based ensemble classification system. Therefore, the developed IMCN chip is a valuable platform for NEV analysis and may have potential use in GC diagnosis.
Collapse
Affiliation(s)
- Dan Yu
- Jiangsu
Key Laboratory of Medical Science and Laboratory Medicine, School
of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianmei Gu
- Department
of Clinical Laboratory Medicine, Affiliated
Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China
| | - Jiahui Zhang
- Jiangsu
Key Laboratory of Medical Science and Laboratory Medicine, School
of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Maoye Wang
- Jiangsu
Key Laboratory of Medical Science and Laboratory Medicine, School
of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Runbi Ji
- Jiangsu
Key Laboratory of Medical Science and Laboratory Medicine, School
of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunlai Feng
- School
of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hélder A. Santos
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University
Medical Center Groningen, Groningen 9713 AV, Netherlands
| | - Hongbo Zhang
- Pharmaceutical
Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland
- Turku Biosciences
Center, University of Turku and Åbo
Akademi University, Turku 20520, Finland
| | - Xu Zhang
- Jiangsu
Key Laboratory of Medical Science and Laboratory Medicine, School
of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
49
|
Lan M, Wu D, Cheng C, Ren Z, Chen S, Li Y, Song Z, Lu H, Wang J, Li G, Yang F. Small Extracellular Vesicles Detection by Dielectrophoresis-Based Microfluidic Chip Filled with Transparent Antibody-Conjugated Microbeads for Breast Cancer Diagnosis. Anal Chem 2025; 97:5678-5687. [PMID: 40055868 DOI: 10.1021/acs.analchem.4c06592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Small extracellular vesicles (sEVs) are ideal biomarkers for early diagnosis of tumors, but their low density and small size make them difficult to enrich and detect in body fluid samples. This study combined dielectrophoresis (DEP) with immunoaffinity methods and proposed a novel, fast, and efficient acDEP-sEV immunochip, in which by filling the chip reaction chamber with antibody-conjugated microbeads, a nonuniform electric field can be constructed, laminar flow can be disrupted, mass transfer efficiency can be improved, and fluorescence signals can be focused, ultimately achieving rapid, sensitive, and adjustable sEVs capture and detection. This method only requires 20-50 μL of plasma sample for liquid biopsy in less than 35 min. We analyzed total sEVs, EpCAM, and MUC1 positive sEVs in clinical plasma samples, and found that the combined evaluation of multiple sEVs biomarkers has extremely high sensitivity, accuracy, and specificity. Meanwhile, the chip also achieved a low limit of detection of 54 sEV/μL. This hybrid approach provides a new strategy for achieving rapid and sensitive liquid biopsy of cancer and other diseases based on sEVs.
Collapse
Affiliation(s)
- Mei Lan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Di Wu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Cheng Cheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ze Ren
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Siyu Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yulai Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zixuan Song
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Honglin Lu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jianxia Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
50
|
Madhan S, Dhar R, Devi A. Clinical Impact of Exosome Chemistry in Cancer. ACS APPLIED BIO MATERIALS 2025; 8:1862-1876. [PMID: 39936581 DOI: 10.1021/acsabm.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
As we progress into the 21st century, cancer stands as one of the most dreaded diseases. With approximately one in every four individuals facing a lifetime risk of developing cancer, cancer remains one of the most serious health challenges worldwide. Its multifaceted nature makes it an arduous and tricky problem to diagnose and treat. Over the years, researchers have explored plenty of approaches and avenues to improve cancer management. One notable strategy includes the study of extracellular vesicles (EVs) as potential biomarkers and therapeutics. Among these EVs, exosomes have emerged as particularly promising candidates due to their unique characteristic properties and functions. They are small membrane-bound vesicles secreted by cells carrying a cargo of biomolecules such as proteins, nucleic acids, and lipids. These vesicles play crucial roles in intercellular communication, facilitating the transfer of biological information between cell-to-cell communication. Exosomes transport cargoes such as DNA, RNA, proteins, and lipids involved in cellular reprogramming and promoting cancer. In this review, we explore the molecular composition of exosomes, significance of exosomes chemistry in cancer development, and its theranostic application as well as exosomes research complications and solutions.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| |
Collapse
|