1
|
Li L, Wei C, Xie Y, Su Y, Liu C, Qiu G, Liu W, Liang Y, Zhao X, Huang D, Wu D. Expanded insights into the mechanisms of RNA-binding protein regulation of circRNA generation and function in cancer biology and therapy. Genes Dis 2025; 12:101383. [PMID: 40290118 PMCID: PMC12022641 DOI: 10.1016/j.gendis.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 04/30/2025] Open
Abstract
RNA-binding proteins (RBPs) regulate the generation of circular RNAs (circRNAs) by participating in the reverse splicing of circRNA and thereby influencing circRNA function in cells and diseases, including cancer. Increasing evidence has demonstrated that the circRNA-RBP network plays a complex and multifaceted role in tumor progression. Thus, a better understanding of this network may provide new insights for the discovery of cancer drugs. In this review, we discuss the characteristics of RBPs and circRNAs and how the circRNA-RBP network regulates tumor cell phenotypes such as proliferation, metastasis, apoptosis, metabolism, immunity, drug resistance, and the tumor environment. Moreover, we investigate the factors that influence circRNA-RBP interactions and the regulation of downstream pathways related to tumor development, such as the tumor microenvironment and N6-methyladenosine modification. Furthermore, we discuss new ideas for targeting circRNA-RBP interactions using various RNA technologies.
Collapse
Affiliation(s)
- Lixia Li
- Cancer Hospital, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Chunhui Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yu Xie
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yanyu Su
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Caixia Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Guiqiang Qiu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Weiliang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yanmei Liang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Xuanna Zhao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Dan Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Dong Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| |
Collapse
|
2
|
Gu C, ChenLiu Z, Wu Q, Tang D. ncRNAs as Key Regulators in Gastric Cancer: From Molecular Subtyping to Therapeutic Targets. Ann Surg Oncol 2025:10.1245/s10434-025-17368-9. [PMID: 40358781 DOI: 10.1245/s10434-025-17368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025]
Abstract
Gastric cancer (GC) poses a major global health challenge, underscoring the need for advanced diagnostic and therapeutic approaches. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have emerged as pivotal regulators in GC, with their dysregulated expression driving key processes such as tumorigenesis, metastasis, immune evasion, and chemoresistance. The functional diversity of ncRNAs across different GC molecular subtypes highlights their potential as biomarkers for improved subtype classification and patient stratification. Beyond their diagnostic value, ncRNAs demonstrate critical regulatory functions in tumor biology, establishing these RNA molecules as promising targets for therapeutic development. Strategies based on RNA hold considerable promise for addressing critical challenges such as immune escape and drug resistance by modulating key signaling pathways. These approaches can enhance immune responses, reprogram the tumor microenvironment, and reverse resistance mechanisms that compromise treatment efficacy, thereby improving clinical outcomes. Although ncRNAs represent a promising frontier in GC precision medicine, further research is required to fully harness their clinical potential.
Collapse
Affiliation(s)
- Chen Gu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhenni ChenLiu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Qihang Wu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Northern Jiangsu People's Hospital, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou Medical University, Yangzhou, China.
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China.
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian Medical University, Yangzhou, China.
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China.
| |
Collapse
|
3
|
Joshi V, Swati, Mishra A, Panda A, Sharma V. The role of circular RNAs in regulating cytokine signaling in cancer. FEBS Open Bio 2025. [PMID: 40356340 DOI: 10.1002/2211-5463.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/30/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Dysregulation of cytokine signaling is central to the development and progression of cancer. Cytokines are not only involved in promoting cancer development but also regulate anti-tumor immune responses. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules lacking free ends, which have emerged as critical regulators of cytokine signaling. Transcriptional and post-transcriptional regulation of cytokine signaling by circRNAs contributes to cancer pathogenesis. Here, we discuss the emerging role of circRNAs in modulating cytokine signaling pathways that regulate cancer development. In particular, we examine the role of circRNAs in TGF-β, IL-6, IL-10, TNF-α, VEGF, FGF, PDGF, and chemokine signaling in cancer.
Collapse
Affiliation(s)
- Vandana Joshi
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, India
| | - Swati
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, India
| | | | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, India
| |
Collapse
|
4
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Joshi KK, Sameer HN, Yaseen A, Athab ZH, Adil M. The hidden messengers: Tumor microenvironment-derived exosomal ceRNAs in gastric cancer progression. Pathol Res Pract 2025; 269:155905. [PMID: 40073646 DOI: 10.1016/j.prp.2025.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in the development and progression of gastric cancer (GC). The TME comprises a network of cancer cells, immune cells, fibroblasts, endothelial cells, and extracellular matrix components, which provide a supportive niche for cancer cells. This study investigates the role of TME-derived exosomal competitive endogenous RNAs (ceRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as major regulating agents in GC development. Exosomal ceRNAs control gene expression across several TME components, amplifying cancer hallmarks like cell proliferation, invasion, metastases, and chemoresistance. They promote dynamic interplay between cancer cells and adjacent stromal cells, enabling tumor development through immune suppression, angiogenesis, and epithelial-mesenchymal transition (EMT). Exosomal ceRNAs can modify the TME, creating a pro-tumorigenic milieu and preparing cancer cells to avoid immunological responses, defy death, and adapt to therapeutic pressures. This review highlights the understudied interactions between the TME and exosomal ceRNAs in gastric cancer and emphasizes their potential utility as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand 248002, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
5
|
Sun H, Xu L, Liu S, Ma T. Astragalus mongholicus and Hedyotis diffusa willd inhibit cell proliferation by attenuating the miR-582-3p-p27 signaling pathway in LUAD. Sci Rep 2025; 15:13411. [PMID: 40251292 PMCID: PMC12008290 DOI: 10.1038/s41598-025-97996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
Previous studies conducted by the same group of researchers found that Traditional Chinese Medicine Astragalus mongholicus Bunge and Hedyotis diffusa Willd (A-H) significantly suppressed the cell proliferation of lung adenocarcinoma (LUAD). MicroRNAs are considered promising candidates for cancer diagnosis and treatment. This study focused on miR-582-3p as the primary subject of investigation to explore the mechanism by which A-H inhibits cell proliferation through miR-582-3p. The overexpressing and silencing miR-582-3p cell models were established by using lentiviral transfection technology. CCK-8 assay (24 h, 48 h, 72 h) and clone formation assay (1 w) were employed to detect the proliferation of A549 cells. Moreover, flow cytometry analysis (24 h) was performed to detect the cell cycle. Western blotting (WB) and a luciferase reporter assay were also used to measure the expression of cell cycle-related proteins and verify the direct interaction between miR-582-3p and p27, respectively. The LV-miR-582-3p inhibitor + shRNA-p27 stable A549 cells were constructed in the same manner to repeat the above-mentioned procedure. The CCK-8 assay was conducted to assess the effects of various concentrations of A-H on the proliferation of A549 cells. A-H-containing serum was prepared to intervene in LV-miR-582-3p and mimic A549 cells. Subsequently, the same procedure was repeated, as described earlier. Results indicated a direct interaction between miR-582-3p and p27. Furthermore, miR-582-3p was found to enhance the proliferation of A549 cells by regulating cell cycle-related proteins, specifically p27. It was also observed that A-H-containing serum inhibited the proliferation of A549 cells through the miR-582-3p-p27 signaling pathway. The study findings revealed the underlying molecular mechanisms of miR-582-3p in the development and prognosis of A549 LUAD cells. In addition, A-H inhibited LUAD proliferation through the miR-582-3p-p27 signaling pathway. These findings may provide a new understanding of the use of Chinese medicine in treating lung cancer.
Collapse
Affiliation(s)
- Haipeng Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Lufan Xu
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Siyuan Liu
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China.
| | - Ting Ma
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China.
| |
Collapse
|
6
|
QUAN JINGDAN, WAN ZIXIN, WU WEI, CAO XINYUAN, QIU JIAYUAN, LIU XIAOYE, ZHANG ZHIWEI. Classical biomarkers and non-coding RNAs associated with diagnosis and treatment in gastric cancer. Oncol Res 2025; 33:1069-1089. [PMID: 40296904 PMCID: PMC12034007 DOI: 10.32604/or.2025.063005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
One of the most prevalent malignant tumors worldwide, stomach cancer still has a high incidence and fatality rate in China, and the number of young people developing early-onset gastric cancer is steadily increasing. The 5-year survival rate of stomach cancer is typically 30%-35%, the prognosis is bad, the patients' quality of life is low, and the progression of advanced gastric cancer cannot be effectively managed despite the use of surgical surgery, chemotherapy, and other medicines. We urgently need molecular biomarkers with high specificity and sensitivity to increase the early gastric cancer detection rate, extend patient survival, and improve patient quality of life. The initial diagnosis of gastric cancer primarily depends on gastroscopy and biopsy, and invasive procedures cause significant discomfort to patients. Similar to this, treating advanced and metastatic stomach cancer is a pressing issue that requires attention. More and more immune checkpoint molecules have been discovered, and corresponding inhibitors are gradually being applied to clinical diagnosis and treatment. Recently, some non-coding RNAs have begun to be used as new targets for the treatment of gastric cancer. Some non-coding RNAs are highly present in the serum or urine of gastric cancer patients and can be used as diagnostic markers or prognostic indicators. Many clinical trials targeting non-coding RNAs have also shown good therapeutic effects. In general, targeting non-coding RNAs has shown good therapeutic effects. The biomarkers for gastric cancer detection and treatment are reviewed in this article, focusing on the new non-coding RNAs used in diagnosis, prognosis, and treatment. Patients with stomach cancer should have access to more precise and efficient diagnosis and treatment choices as a result of ongoing technological advancements and thorough research.
Collapse
Affiliation(s)
- JINGDAN QUAN
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - ZIXIN WAN
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - WEI WU
- Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - XINYUAN CAO
- Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - JIAYUAN QIU
- Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - XIAOYE LIU
- Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - ZHIWEI ZHANG
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, 421001, China
| |
Collapse
|
7
|
Zhang Y, Yue NN, Chen LY, Tian CM, Yao J, Wang LS, Liang YJ, Wei DR, Ma HL, Li DF. Exosomal biomarkers: A novel frontier in the diagnosis of gastrointestinal cancers. World J Gastrointest Oncol 2025; 17:103591. [PMID: 40235899 PMCID: PMC11995328 DOI: 10.4251/wjgo.v17.i4.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Gastrointestinal (GI) cancers, which predominantly manifest in the stomach, colorectum, liver, esophagus, and pancreas, accounting for approximately 35% of global cancer-related mortality. The advent of liquid biopsy has introduced a pivotal diagnostic modality for the early identification of premalignant GI lesions and incipient cancers. This non-invasive technique not only facilitates prompt therapeutic intervention, but also serves as a critical adjunct in prognosticating the likelihood of tumor recurrence. The wealth of circulating exosomes present in body fluids is often enriched with proteins, lipids, microRNAs, and other RNAs derived from tumor cells. These specific cargo components are reflective of processes involved in GI tumorigenesis, tumor progression, and response to treatment. As such, they represent a group of promising biomarkers for aiding in the diagnosis of GI cancer. In this review, we delivered an exhaustive overview of the composition of exosomes and the pathways for cargo sorting within these vesicles. We laid out some of the clinical evidence that supported the utilization of exosomes as diagnostic biomarkers for GI cancers and discussed their potential for clinical application. Furthermore, we addressed the challenges encountered when harnessing exosomes as diagnostic and predictive instruments in the realm of GI cancers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
- Department of Medical Administration, Huizhou Institute for Occupational Health, Huizhou 516000, Guangdong Province, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen 518000, Guangdong Province, China
| | - Li-Yu Chen
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (Jinan University of Second Clinical Medical Sciences), Shenzhen 518000, Guangdong Province, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, Guangdong Province, China
| | - Dao-Ru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Hua-Lin Ma
- Department of Nephrology, The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
8
|
Hua J, Wang Z, Cheng X, Dai J, Zhao P. Circular RNAs modulate cancer drug resistance: advances and challenges. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:17. [PMID: 40201313 PMCID: PMC11977347 DOI: 10.20517/cdr.2024.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Acquired drug resistance is a main factor contributing to cancer therapy failure and high cancer mortality, highlighting the necessity to develop novel intervention targets. Circular RNAs (circRNAs), an abundant class of RNA molecules with a closed loop structure, possess characteristics including high stability, which provide unique advantages in clinical application. Growing evidence indicates that aberrantly expressed circRNAs are associated with resistance against various cancer treatments, including targeted therapy, chemotherapy, radiotherapy, and immunotherapy. Therefore, targeting these aberrant circRNAs may offer a strategy to improve the efficiency of cancer therapy. Herein, we present a summary of the most recently studied circRNAs and their regulatory roles on cancer drug resistance. With the advances in artificial intelligence (AI)-based bioinformatics algorithms, circRNAs could emerge as promising biomarkers and intervention targets in cancer therapy.
Collapse
Affiliation(s)
- Jinghan Hua
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230000, Anhui, China
| | - Zhe Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230000, Anhui, China
| | - Xiaoxun Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230000, Anhui, China
- The Second Clinical School of Anhui Medical University, Hefei 230000, Anhui, China
| | - Jiaojiao Dai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230000, Anhui, China
| | - Ping Zhao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
9
|
Sur S, Pal JK, Shekhar S, Bafna P, Bhattacharyya R. Emerging role and clinical applications of circular RNAs in human diseases. Funct Integr Genomics 2025; 25:77. [PMID: 40148685 DOI: 10.1007/s10142-025-01575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
Circular RNAs (circRNAs) are a large family of non-coding RNAs characterized by a single-stranded, covalently closed structure, predominantly synthesized through a back-splicing mechanism. While thousands of circRNAs have been identified, only a few have been functionally characterized. Although circRNAs are less abundant than other RNA types, they exhibit exceptional stability due to their covalently closed structure and demonstrate high cell and tissue specificity. CircRNAs play a critical role in maintaining cellular homeostasis by influencing gene transcription, translation, and post-translation processes, modulating the immune system, and interacting with mRNA, miRNA, and proteins. Abnormal circRNA expression has been associated with a wide range of human diseases and various infections. Due to their remarkable stability in body fluids and tissues, emerging research suggests that circRNAs could serve as diagnostic and therapeutic biomarkers for these diseases. This review focuses on the emerging role of circRNAs in various human diseases, exploring their biogenesis, molecular functions, and potential clinical applications as diagnostic and therapeutic biomarkers with current evidence, challenges, and future perspectives. The key theme highlights the significance of circRNAs in regulating gene expression, their involvement in diseases like cancer, neurodegenerative disorders, cardiovascular diseases, and diabetes, and their potential use in translational medicine for developing novel therapeutic strategies. We also discuss recent clinical trials involving circRNAs. Thus, this review is important for both basic researchers and clinical scientists, as it provides updated insights into the role of circRNAs in human diseases, aiding further exploration and advancements in the field.
Collapse
Affiliation(s)
- Subhayan Sur
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, 411033, India.
| | - Jayanta K Pal
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, 411033, India.
| | - Soumya Shekhar
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, 411033, India
| | - Palak Bafna
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, 411033, India
| | - Riddhiman Bhattacharyya
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, 411033, India
| |
Collapse
|
10
|
Tang S, Cheng H, Zang X, Tian J, Ling Z, Wang L, Xu W, Jiang J. Small extracellular vesicles: crucial mediators for prostate cancer. J Nanobiotechnology 2025; 23:230. [PMID: 40114183 PMCID: PMC11927207 DOI: 10.1186/s12951-025-03326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Small extracellular vesicles (sEVs) play a critical role in the progression, diagnosis, and treatment of prostate cancer (PCa), particularly within the tumor microenvironment (TME). Acting as novel biomarkers and agents for targeted biological therapy, sEVs contribute significantly to improving patient survival. These vesicles transport a variety of biomolecules, including proteins, nucleic acids, and lipids, which are instrumental in remodeling the TME, facilitating intercellular communication, and influencing key processes such as tumor growth, metastasis, and therapy resistance. A thorough understanding of sEV heterogeneity, including their biogenesis, characteristics, and potential applications, is essential. Recent advances have illuminated the origins, formation processes, and molecular cargo of PCa-derived sEVs (PCa-sEVs), enhancing our understanding of their role in disease progression. Furthermore, sEVs show promise as diagnostic markers, with potential applications in early detection and prognostic assessment in PCa. Therapeutically, natural and engineered sEVs offer versatile applications, including drug delivery, gene therapy, and immunomodulation, underscoring their potential in PCa management. This review delves into the substantial potential of sEVs in clinical practices for PCa.
Collapse
Affiliation(s)
- Sijie Tang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Huiying Cheng
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xueyan Zang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Jiawei Tian
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
| | - Zhongli Ling
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
| | - Lingling Wang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China
| | - Wenrong Xu
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China.
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Jiajia Jiang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd, Zhangjiagang, Suzhou, 215600, China.
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Zhang Y, Wang B, Chen J, Li T. Role of exosomal miRNAs and macrophage polarization in gastric cancer: A novel therapeutic strategy. Eur J Pharmacol 2025; 990:177268. [PMID: 39805486 DOI: 10.1016/j.ejphar.2025.177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal cancers worldwide, with consistently high morbidity and mortality rates and poor prognosis. Most patients are diagnosed at an advanced stage due to the lack of specific presentation in the early stages. Exosomes are a class of extracellular vesicles (EVs) widely found in body fluids and can release genetic material or multiple proteins to facilitate intercellular communication. In recent years, exosomal miRNAs have gained attention for their role in various cancers. These exosomal miRNAs can impact GC development and progression by targeting specific genes or influencing signaling pathways and cytokines involved in Angiogenesis, epithelial-mesenchymal transition (EMT), drug resistance, and immune regulation. They show great potential in terms of diagnosis, prognosis, and treatment of GC. Notably, the gastrointestinal tract has the largest number of macrophages, which play a significant role in GC progression. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and can influence macrophage programming through various mediators, including macrophage polarization. Macrophage polarization is involved in inflammatory responses and significantly impacts the GC process.
Collapse
Affiliation(s)
- Yun Zhang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; General Hospital of Ningxia Medical University, Ningxia, China
| | - Baozhen Wang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; General Hospital of Ningxia Medical University, Ningxia, China
| | - Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| | - Tao Li
- Department of Surgical Oncology, Tumor Hospital, The General Hospital of Ningxia Medical University, Ningxia, China.
| |
Collapse
|
12
|
FANG ZIYI, SHAO YONGFU, HU MENG, YAN JIANING, YE GUOLIANG. Biological roles and molecular mechanism of circular RNAs in epithelial-mesenchymal transition of gastrointestinal malignancies. Oncol Res 2025; 33:549-566. [PMID: 40109856 PMCID: PMC11915071 DOI: 10.32604/or.2024.051589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 03/22/2025] Open
Abstract
Circular RNAs (circRNAs) are formed by splicing of precursor RNAs and covalently linked at the 5' and 3' ends. Dysregulated circRNAs are closely related to the epithelial-mesenchymal transition (EMT) of gastrointestinal malignancies. CircRNAs, including circRNA_0008717, circGOT1, circ-DOCK5, circVPS33B, circPVT1, circMET, circ-OXCT1, circ_67835, circRTN4, circ_0087502, circFNDC38, circ_PTEN1, circPGPEP1, and circ-E-Cad are involved in the EMT process of gastrointestinal malignancies through a variety of mechanisms, such as regulating EMT-inducing transcription factors, signaling pathways, and tumor microenvironments. Gastrointestinal (GI) malignancies are common malignant tumors worldwide, and the heterogeneity and easy metastasis of gastrointestinal malignancies limit the effectiveness of medical treatments. Therefore, investigating the molecular mechanisms involved in the pathogenesis of gastrointestinal malignancies is essential for clinical treatment. This article summarizes the biological roles and molecular mechanism of circRNAs in EMT of gastrointestinal malignancies, providing a theoretical basis for applying EMT-related circRNAs in targeted therapy.
Collapse
Affiliation(s)
- ZIYI FANG
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| | - YONGFU SHAO
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| | - MENG HU
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - JIANING YAN
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| | - GUOLIANG YE
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| |
Collapse
|
13
|
Tang L, Zhang W, Qi T, Jiang Z, Tang D. Exosomes play a crucial role in remodeling the tumor microenvironment and in the treatment of gastric cancer. Cell Commun Signal 2025; 23:82. [PMID: 39948541 PMCID: PMC11827163 DOI: 10.1186/s12964-024-02009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/21/2024] [Indexed: 02/16/2025] Open
Abstract
Gastric cancer (GC) is a common and frequent malignant cancer of the digestive system with a poor prognosis. In addition to common therapies such as surgical resection and chemotherapy, novel biological interventions are quite valuable for research. Exosomes are extracellular vesicles (EVs) that originate from various cell types and contain proteins, RNA, DNA, and other components that transmit biological signals and mediate intercellular communication. Numerous studies have shown that exosomes shape the tumor microenvironment (TME) by affecting hypoxia, inflammation, immunity, metabolism, and interstitial changes in the tumor, playing a crucial role in the development and metastasis of GC. This article reviews the important role of exosomes in the TME of GC and explores their potential clinical applications in GC treatment.
Collapse
Affiliation(s)
- Lingyun Tang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Teng Qi
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Zhengting Jiang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital; The Yangzhou Clinical Medical College of Xuzhou Medical University; The Yangzhou School of Clinical Medicine of Dalian Medical University; The Yangzhou School of Clinical Medicine of Nanjing Medical University; Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225000, China.
| |
Collapse
|
14
|
Chen BD, Zhao Y, Wu JL, Zhu ZG, Yang XD, Fang RP, Wu CS, Zheng W, Xu CA, Xu K, Ji X. Exosomes in Skin Flap Survival: Unlocking Their Role in Angiogenesis and Tissue Regeneration. Biomedicines 2025; 13:353. [PMID: 40002766 PMCID: PMC11853446 DOI: 10.3390/biomedicines13020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
This review explores the critical role of exosomes in promoting angiogenesis, a key factor in skin flap survival. Skin flaps are widely used in reconstructive surgery, and their survival depends heavily on the formation of new blood vessels. Exosomes, small extracellular vesicles secreted by various cells, have emerged as important mediators of intercellular communication and play a crucial role in biological processes such as angiogenesis. Compared to traditional methods of promoting angiogenesis, exosomes show more selective and targeted therapeutic potential as they naturally carry angiogenic factors and can precisely regulate the angiogenesis process. The review will delve into the molecular mechanisms by which exosomes facilitate angiogenesis, discuss their potential therapeutic applications in enhancing skin flap survival, and explore future research directions, particularly the challenges and prospects of exosomes in clinical translation. By highlighting the unique advantages of exosomes in skin flap survival, this review provides a new perspective in this field and opens up new research directions for future therapeutic strategies.
Collapse
Affiliation(s)
- Bo-da Chen
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Yue Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou 310053, China;
| | - Jian-long Wu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Zi-guan Zhu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Xiao-dong Yang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Ren-peng Fang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Chen-si Wu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| | - Wei Zheng
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| | - Cheng-an Xu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| | - Keyang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China;
| | - Xin Ji
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| |
Collapse
|
15
|
Li X, Liu H, Xing P, Li T, Fang Y, Chen S, Dong S. Exosomal circRNAs: Deciphering the novel drug resistance roles in cancer therapy. J Pharm Anal 2025; 15:101067. [PMID: 39957900 PMCID: PMC11830318 DOI: 10.1016/j.jpha.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/13/2024] [Accepted: 08/03/2024] [Indexed: 02/18/2025] Open
Abstract
Exosomal circular RNA (circRNAs) are pivotal in cancer biology, and tumor pathophysiology. These stable, non-coding RNAs encapsulated in exosomes participated in cancer progression, tumor growth, metastasis, drug sensitivity and the tumor microenvironment (TME). Their presence in bodily fluids positions them as potential non-invasive biomarkers, revealing the molecular dynamics of cancers. Research in exosomal circRNAs is reshaping our understanding of neoplastic intercellular communication. Exploiting the natural properties of exosomes for targeted drug delivery and disrupting circRNA-mediated pro-tumorigenic signaling can develop new treatment modalities. Therefore, ongoing exploration of exosomal circRNAs in cancer research is poised to revolutionize clinical management of cancer. This emerging field offers hope for significant breakthroughs in cancer care. This review underscores the critical role of exosomal circRNAs in cancer biology and drug resistance, highlighting their potential as non-invasive biomarkers and therapeutic targets that could transform the clinical management of cancer.
Collapse
Affiliation(s)
- Xi Li
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hanzhe Liu
- Department of Critical Care Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Peiyu Xing
- Department of Ophthalmology, China Medical University the Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Fang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuang Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Siyuan Dong
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
16
|
Wang L, Zhou S, Ruan Y, Wu X, Zhang X, Li Y, Ying D, Lu Y, Tian Y, Cheng G, Zhang J, Lv K, Zhou X. Hypoxia-Challenged Pancreatic Adenocarcinoma Cell-Derived Exosomal circR3HCC1L Drives Tumor Growth Via Upregulating PKM2 Through Sequestering miR-873-5p. Mol Biotechnol 2025; 67:762-777. [PMID: 38526683 DOI: 10.1007/s12033-024-01091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/24/2024] [Indexed: 03/27/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a fatal disease with poor survival. Increasing evidence show that hypoxia-induced exosomes are associated with cancer progression. Here, we aimed to investigate the function of hsa_circ_0007678 (circR3HCC1L) and hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD progression. Through the exoRBase 2.0 database, we screened for a circular RNA circR3HCC1L related to PAAD. Changes of circR3HCC1L in PAAD samples and cells were analyzed with real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, migration, invasion were analyzed by colony formation, cell counting, and transwell assays. Measurements of glucose uptake and lactate production were done using corresponding kits. Several protein levels were detected by western blotting. The regulation mechanism of circR3HCC1L was verified by dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Exosomes were separated by differential ultracentrifugation. Animal experiments were used to verify the function of hypoxia-derived exosomal circR3HCC1L. CircR3HCC1L was upregulated in PAAD samples and hypoxic PAAD cells. Knockdown of circR3HCC1L decreased hypoxia-driven PAAD cell proliferation, migration, invasion, and glycolysis. Hypoxic PAAD cell-derived exosomes had higher levels of circR3HCC1L, hypoxic PAAD cell-derived exosomal circR3HCC1L promoted normoxic cancer cell malignant transformation and glycolysis in vitro and xenograft tumor growth in mouse models in vivo. Mechanistically, circR3HCC1L regulated pyruvate kinase M2 (PKM2) expression via sponging miR-873-5p. Also, PKM2 overexpression or miR-873-5p silencing offset circR3HCC1L knockdown-mediated effects on hypoxia-challenged PAAD cell malignant transformation and glycolysis. Hypoxic PAAD cell-derived exosomal circR3HCC1L facilitated PAAD progression through the miR-873-5p/PKM2 axis, highlighting the contribution of hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD.
Collapse
Affiliation(s)
- Luoluo Wang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Shuping Zhou
- Ningbo College of Health Sciences, No.51, Xuefu Road, Yinzhou District, Ningbo, 315040, Zhejiang, China.
| | - Yi Ruan
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Xiang Wu
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
- Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Xueming Zhang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yi Li
- College of Computer Science and Artificial Intelligence Wenzhou University, Wenzhou, 325000, Zhejiang, China
| | - Dongjian Ying
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yeting Lu
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yuan Tian
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Gong Cheng
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Jing Zhang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Kaiji Lv
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Xinhua Zhou
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
17
|
Cai ZR, Zheng YQ, Hu Y, Ma MY, Wu YJ, Liu J, Yang LP, Zheng JB, Tian T, Hu PS, Liu ZX, Zhang L, Xu RH, Ju HQ. Construction of exosome non-coding RNA feature for non-invasive, early detection of gastric cancer patients by machine learning: a multi-cohort study. Gut 2025:gutjnl-2024-333522. [PMID: 39753334 DOI: 10.1136/gutjnl-2024-333522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/08/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND AND OBJECTIVE Gastric cancer (GC) remains a prevalent and preventable disease, yet accurate early diagnostic methods are lacking. Exosome non-coding RNAs (ncRNAs), a type of liquid biopsy, have emerged as promising diagnostic biomarkers for various tumours. This study aimed to identify a serum exosome ncRNA feature for enhancing GC diagnosis. DESIGNS Serum exosomes from patients with GC (n=37) and healthy donors (n=20) were characterised using RNA sequencing, and potential biomarkers for GC were validated through quantitative reverse transcription PCR (qRT-PCR) in both serum exosomes and tissues. A combined diagnostic model was developed using LASSO-logistic regression based on a cohort of 518 GC patients and 460 healthy donors, and its diagnostic performance was evaluated via receiver operating characteristic curves. RESULTS RNA sequencing identified 182 candidate biomarkers for GC, of which 31 were validated as potential biomarkers by qRT-PCR. The combined diagnostic score (cd-score), derived from the expression levels of four long ncRNAs (RP11.443C10.1, CTD-2339L15.3, LINC00567 and DiGeorge syndrome critical region gene (DGCR9)), was found to surpass commonly used biomarkers, such as carcinoembryonic antigen, carbohydrate antigen 19-9 (CA19-9) and CA72-4, in distinguishing GC patients from healthy donors across training, testing and external validation cohorts, with AUC values of 0.959, 0.942 and 0.949, respectively. Additionally, the cd-score could effectively identify GC patients with negative gastrointestinal tumour biomarkers and those in early-stage. Furthermore, molecular biological assays revealed that knockdown of DGCR9 inhibited GC tumour growth. CONCLUSIONS Our proposed serum exosome ncRNA feature provides a promising liquid biopsy approach for enhancing the early diagnosis of GC.
Collapse
Affiliation(s)
- Ze-Rong Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yong-Qiang Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yan Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Meng-Yao Ma
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Yi-Jin Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lu-Ping Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia-Bo Zheng
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Tian Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Pei-Shan Hu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
18
|
Gao C, Wang X, Yan H, Zeng G, Chen Y, Gao J. Exosome-Delivered Hsa_Circ_0000116 Facilitates Osteosarcoma Cell Malignancy via PI3K/Akt/mTOR and p38/MAPK Pathways. DNA Cell Biol 2025; 44:153-160. [PMID: 39778893 DOI: 10.1089/dna.2024.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Exosome-delivered circular RNAs (circRNAs) are recognized as a key mechanism that regulates osteosarcoma (OS) progression. The purpose of this study is to discover the role of a novel circRNA hsa_circ_0000116 from exosomes in OS progression. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify the exosomes isolated from two OS cell lines (HOS and MG-63). After coculturing exosomes with OS cells and transfecting hsa_circ_0000116 knockdown vector into OS cells, cell function experiments, including cell counting kit-8, wound healing, and Transwell experiments, were performed to assess the change of OS cell malignant phenotype. In addition, the levels of PI3K/Akt/mTOR and p38/MAPK pathways-associated proteins were measured using western blotting. Exosomes with around 100 nm in diameter were successfully isolated from HOS and MG-63 cells, and promote OS cells to proliferate, migrate, and invade. hsa_circ_0000116 was upregulated in OS-derived exosomes, and silencing hsa_circ_0000116 declined the exosome-induced OS cell malignancy. In addition, inhibiting hsa_circ_0000116 effectively inhibited exosome-mediated activation of PI3K/Akt/mTOR and p38/MAPK pathways. In conclusion, exosomal hsa_circ_0000116 can facilitate OS cell malignancy by inducing the activation of PI3K/Akt/mTOR and p38/MAPK pathways. The findings of this study may identify novel molecular mechanisms driving OS progression and provide novel therapeutic targets for OS.
Collapse
Affiliation(s)
- Chunsheng Gao
- Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Xiaowei Wang
- Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Huichao Yan
- Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Ge Zeng
- Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Yan Chen
- Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Jun Gao
- Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
19
|
Yin X, Li H, Zhou Y. Circular RNAs in Viral Infection and Antiviral Treatment. Cells 2024; 13:2033. [PMID: 39682781 PMCID: PMC11640649 DOI: 10.3390/cells13232033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs that lack the 5'-cap structure and the 3' poly(A) tail. Their distinguishing feature is that the 3' and 5' ends are covalently linked to form a closed circular structure. CircRNAs have a longer half-life and stronger ribonuclease resistance compared with linear RNA. Viral infections lead to the production of circRNA molecules through the transcription and splicing mechanisms of host cells. circRNAs are produced from the transcription and splicing of the viral genome or from the splicing reactions of the host cell gene. They participate in regulating the replication of many viruses, including coronaviruses, human herpesviruses, human immunodeficiency virus, and cytomegalovirus. CircRNAs regulate the infection process by modulating circRNA expression in host cells and affect cellular biological processes. Some circRNAs have been proposed as diagnostic markers for viral infections. In this review, we discussed the properties of virus-derived circRNAs, the biological functions of diverse viruses-derived and host circRNAs during viral infections, and the critical role of circRNAs in the host's antiviral immune defense. Extensive research on the applications of circRNAs can help us better understand gene regulatory networks and disease mechanisms.
Collapse
Affiliation(s)
| | | | - Yan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming 650118, China; (X.Y.); (H.L.)
| |
Collapse
|
20
|
Liu C, Guo H, Jin F. Research trends and hotspots in gastric carcinoma associated exosome: a bibliometric analysis. Front Oncol 2024; 14:1457346. [PMID: 39703839 PMCID: PMC11655325 DOI: 10.3389/fonc.2024.1457346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024] Open
Abstract
Background Stomach cancer is considered the fifth most common cancer worldwide. This study utilized bibliometric analysis to construct a visualization map of the relationship between stomach cancer and exosomes, aiming to reveal research trends and emerging themes, and provide direction for future research. Method Retrieve relevant literature on gastric cancer exosomes in the Web of Science Core Collection (WoSCC) over the past 25 years according to search criteria, and conduct bibliometric and visualization analysis using bibliometric software VOSviewer and CiteSpace. Results This study included a total of 727 articles, with an overall increasing trend in annual publication output. There were 68 countries involved, with China having the largest number of publications followed by the United States. A total of 957 research institutions were involved, with most of the top 10 institutions in terms of publication output being universities in China. The top 5 journals are Molecular Cancer, Cell death & disease, Cancers, International journal of molecular sciences, and Frontiers in oncology. A total of 4529 authors were involved, with 5 authors having a publication output of no less than 13 articles. A total of 35516 references were cited, with a total number of citations. The top publication is "Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells". Conclusion Over the past 25 years, researchers have been dedicated to studying the field of exosomes related to gastric cancer, and research in this area is currently progressing steadily. Based on previous studies, exosomes in gastric adenocarcinoma serve as biomarkers, potential therapeutic targets, and post-resistance treatment, which represents current hotspots and emerging frontiers in research.
Collapse
Affiliation(s)
- Chunqiu Liu
- Integrated Traditional Chinese and Western Medicine Oncology Department, Tangshan People’s Hospital, Tangshan, Hebei, China
| | - Honglei Guo
- Department of Chinese Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Fangzhou Jin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Lou Y, Yan J, Liu Q, Miao M, Shao Y. Biological functions and molecular mechanisms of exosome-derived circular RNAs and their clinical implications in digestive malignancies: the vintage in the bottle. Ann Med 2024; 56:2420861. [PMID: 39484707 PMCID: PMC11536637 DOI: 10.1080/07853890.2024.2420861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are identified as a novel family of endogenous RNA molecules through 'back-splicing' and covalently linked at the 5' and 3' ends. Emerging researches have demonstrated circRNAs are stable and abundant in exosomes called exosomal circRNAs (exo-circRNA). MATERIALS AND METHODS We searched recent studies and references to summary the research progress of exosomal circRNA. RESULTS Recent studies have revealed that exosome-derived circRNAs including exo-CDR1as, exo-circRanGAP1, exo-circIAR play vital roles in cell proliferation and apoptosis, epithelial mesenchymal transition, invasion and metastasis, angiogenesis, immune evasion, cellular crosstalk, cancer cachexia through a variety of biological mechanisms, such as serving as microRNA sponges, interacting with RNA binding proteins, regulating gene transcription, N6-Methyladenosine modification and so on. Due to their characteristics of origin, structure, properties and biological functions, exo-circRNAs are expected to apply in precious diagnosis and prognostic indicators, improving drug and radiation resistance and sensitivity, becoming biological therapeutic targets. CONCLUSION We summarize the update of digestive malignancies associated exo-circRNAs in biogenesis, biological functions, molecular mechanisms, clinical implications, potential applications and experimental technique in order to effectively promote transformation and application in the future.
Collapse
Affiliation(s)
- Yuanyan Lou
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qingqing Liu
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Min Miao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
22
|
Pu J, Yan X, Zhang H. The potential of circular RNAs as biomarkers and therapeutic targets for gastric cancer: A comprehensive review. J Adv Res 2024:S2090-1232(24)00551-4. [PMID: 39617262 DOI: 10.1016/j.jare.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a global health concern, contributing significantly to cancer-related mortality rates. Early detection is vital for improving patient outcomes. Recently, circular RNAs (circRNAs) have emerged as crucial players in the development and progression of various cancers, including GC. AIM This comprehensive review underscores the promising potential of circRNAs as innovative biomarkers for the early diagnosis of GC, as well as their possible utility as therapeutic targets for this life-threatening disease. Specifically, the review focuses on recent findings, mechanistic insights, and clinical applications of circRNAs in GC. KEY SCIENTIFIC CONCEPTS OF REVIEW Dysregulation of circRNAs has been consistently observed in GC tissues, offering potential diagnostic value due to their stability in bodily fluids such as blood and urine. For instance, circPTPN22 and hsa_circ_000200. Furthermore, the expression levels of circRNAs such as circCUL2, hsa_circ_0000705 and circSHKBP1 have shown strong associations with critical clinical features of GC, including diagnosis, prognosis, tumor size, lymph node metastasis, tumor-node-metastasis (TNM) stage, and treatment response. Additionally, circRNAs such as circBGN, circLMO7, and circMAP7D1 have shown interactions with specific microRNAs (miRNAs), proteins, and other molecules that play key roles in development and progression of GC. This further highlighting their potential as therapeutic targets. Despite their potential, several challenges need to be addressed to effectively apply circRNAs as GC biomarkers. These include standardizing detection methods, establishing cutoff values for diagnostic accuracy, and validating findings in larger patient cohorts. Moreover, the functional mechanisms by which circRNAs contribute to GC pathogenesis and therapeutic resistance warrant further investigation. Advances in circRNAs research could provide valuable insights into the early detection and targeted treatment of GC, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Junlin Pu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuli Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
23
|
Gao Q, Cheng X, Gao X. Circ_0089761 accelerates colorectal cancer metastasis and immune escape via miR-27b-3p/PD-L1 axis. Physiol Rep 2024; 12:e70137. [PMID: 39632246 PMCID: PMC11617067 DOI: 10.14814/phy2.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Circular RNAs have been implicated as critical regulators in the initiation and progression of colorectal cancer (CRC). This study was intended to elucidate the functional significance of the circ_0089761/miR-27b-3p/programmed cell death ligand 1 (PD-L1) axis in CRC. Our findings indicated that circ_0089761 expression was significantly elevated in CRC tissues and cell lines. Furthermore, the high expression of circ_0089761 was correlated with TNM stage and tumor size. Silencing circ_0089761 inhibited CRC cell proliferation, migration, and invasion, and increased apoptosis. Mechanistically, circ_0089761 facilitated its biological function by binding to miR-27b-3p to upregulate PD-L1 expression in CRC. Coculture experiments confirmed that low expression of circ_0089761 impeded CD8 + T cell apoptosis and depletion, activated CD8 + T cell function, and increased secretion of the immune effector cytokines IFN-γ, TNF-α, perforin, and granzyme-B. MiR-27b-3p inhibition or PD-L1 overexpression partially impeded CD8 + T cell function. The circ_0089761/miR-27b-3p/PD-L1 axis is postulated to exert pivotal functions in the mechanistic progression of CRC. Furthermore, it holds promising prospects as a feasible biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Qizhong Gao
- Department of Gastrointestinal SurgeryAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Xiaowei Cheng
- Internal Medicine OncologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Xiang Gao
- Internal Medicine OncologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
24
|
Gao Y, Lin H, Tang T, Wang Y, Chen W, Li L. Circular RNAs in programmed cell death: Regulation mechanisms and potential clinical applications in cancer: A review. Int J Biol Macromol 2024; 280:135659. [PMID: 39288849 DOI: 10.1016/j.ijbiomac.2024.135659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs with covalently closed structures formed by reverse splicing of precursor mRNAs. The widespread expression of circRNAs across species has been revealed by high-throughput sequencing and bioinformatics approaches, indicating their unique properties and diverse functions including acting as microRNA sponges and interacting with RNA-binding proteins. Programmed cell death (PCD), encompassing various forms such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis, is an essential process for maintaining normal development and homeostasis in the human body by eliminating damaged, infected, and aging cells. Many studies have demonstrated that circRNAs play crucial roles in tumourigenesis and development by regulating PCD in tumor cells, showing that circRNAs have the potential to be biomarkers and therapeutic targets in cancer. This review aims to comprehensively summarize the intricate associations between circRNAs and diverse PCD pathways in tumor cells, which play crucial roles in cancer development. Additionally, this review provides a detailed overview of the underlying mechanisms by which circRNAs modulate various forms of PCD for the first time. The ultimate objective is to offer valuable insights into the potential clinical significance of developing novel strategies based on circRNAs and PCD for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yudi Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hong Lin
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tiantian Tang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
25
|
Wang T, Zhang H. Exploring the roles and molecular mechanisms of RNA binding proteins in the sorting of noncoding RNAs into exosomes during tumor progression. J Adv Res 2024; 65:105-123. [PMID: 38030125 PMCID: PMC11518959 DOI: 10.1016/j.jare.2023.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND RNA binding proteins (RBPs) play a role in sorting non-coding RNAs (ncRNAs) into exosomes. These ncRNAs, carried by exosomes, are involved in regulating various aspects of tumor progression, including metastasis, angiogenesis, control of the tumor microenvironment, and drug resistance. Recent studies have emphasized the importance of the RBP-ncRNA-exosome mechanism in tumor regulation. AIM OF REVIEW This comprehensive review aims to explore the RBP-ncRNA-exosome mechanism and its influence on tumor development. By understanding this intricate mechanism provides novel insights into tumor regulation and may lead to innovative treatment strategies in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW The review discusses the formation of exosomes and the complex relationships among RBPs, ncRNAs, and exosomes. The RBP-ncRNA-exosome mechanism is shown to affect various aspects of tumor biology, including metastasis, multidrug resistance, angiogenesis, the immunosuppressive microenvironment, and tumor progression. Tumor development relies on the transmission of information between cells, with RBPs selectively mediating sorting of ncRNAs into exosomes through various mechanisms, which in turn carry ncRNAs to regulate RBPs. The review also provides an overview of potential therapeutic strategies, such as targeted drug discovery and genetic engineering for modifying therapeutic exosomes, which hold great promise for improving cancer treatment.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
26
|
Wang D, Shen Y, Qian H, Jiang J, Xu W. Emerging advanced approaches for liquid biopsy: in situ nucleic acid assays of extracellular vesicles. Theranostics 2024; 14:7309-7332. [PMID: 39659566 PMCID: PMC11626945 DOI: 10.7150/thno.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/20/2024] [Indexed: 12/12/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as valuable biomarkers in liquid biopsies owing to their stability, accessibility, and ability to encapsulate nucleic acids. The majority of existing methodologies for detecting EV nucleic acid biomarkers require the lysis of EVs to extract DNA or RNA. This process is labor-intensive and may lead to the loss and degradation of nucleic acids. However, the emerging field of in situ EV assays offers innovative tools for liquid biopsy, facilitating direct profiling of nucleic acids within intact EVs and reducing sample handling procedures. This review focuses on the promising and innovative field of in situ EV nucleic acid analysis. It examines the translational potential of in situ EV nucleic acid analysis in liquid biopsies from detection strategies, diagnostic applications, and diagnostic aids for single EV analysis and machine learning techniques. We highlight the innovative approach of in situ EV nucleic acid assays and provide novel insights into advancing liquid biopsy technology. This approach shows a promising avenue for improving EV-based cancer diagnosis and guiding personalized treatment with minimal invasiveness.
Collapse
Affiliation(s)
- Dongli Wang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou Jiangsu 215600, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212013, China
| | - Ye Shen
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou Jiangsu 215600, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212013, China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212013, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou Jiangsu 215600, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou Jiangsu 215600, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212013, China
| |
Collapse
|
27
|
Iksen I, Singharajkomron N, Nguyen HM, Hoang HNT, Ho DV, Pongrakhananon V. Adunctin E from Conamomum rubidum Induces Apoptosis in Lung Cancer via HSP90AA1 Modulation: A Network Pharmacology and In Vitro Study. Int J Mol Sci 2024; 25:11368. [PMID: 39518920 PMCID: PMC11546842 DOI: 10.3390/ijms252111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer stands out as a leading cause of death among various cancer types, highlighting the urgent need for effective anticancer drugs and the discovery of new compounds with potent therapeutic properties. Natural sources, such as the Conamomum genus, offer various bioactive compounds. Adunctin E (AE), a dihydrochalcone derived from Conamomum rubidum, exhibited several pharmacological activities, and its potential as an anticancer agent remains largely unexplored. Thus, this study aimed to elucidate its apoptotic-inducing effect and identify its molecular targets. The network pharmacology analysis led to the identification of 71 potential targets of AE against lung cancer. Subsequent gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway enrichment analyses revealed the involvement of these targets in cancer-associated signaling pathways. Notably, HSP90AA1, MAPK1, and PIK3CA emerged as key players in apoptosis. In silico molecular docking and dynamic simulations suggested a strong and stable interaction between AE and HSP90AA1. In vitro experiments further confirmed a significant apoptotic-inducing effect of AE on lung cancer cell lines A549 and H460. Furthermore, immunoblot analysis exhibited a substantial decrease in HSP90AA1 levels in response to AE treatment. These findings support the potential anticancer activity of AE through the HSP90AA1 mechanism, underscoring its promise as a novel compound worthy of further research and development for anti-lung cancer therapy.
Collapse
Affiliation(s)
- Iksen Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.I.); (N.S.)
| | - Natsaranyatron Singharajkomron
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.I.); (N.S.)
| | - Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Hanh Nhu Thi Hoang
- Faculty of Engineering and Food Technology, Hue University of Agriculture and Forestry, Hue University, Hue City 49000, Vietnam;
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City 49000, Vietnam;
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City 49000, Vietnam;
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.I.); (N.S.)
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
28
|
Wu J, Wang Y, Yan L, Dong Y. Expression of CLDN1 and EGFR in PTC. Discov Oncol 2024; 15:562. [PMID: 39404969 PMCID: PMC11480332 DOI: 10.1007/s12672-024-01428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) involves complex genetic mechanisms, notably involving CLDN1 and EGFR. This study investigates the expression and variations of these genes and their effects on tumor behavior and patient outcomes. Meta-analysis of CLDN1 and EGFR expression in TCGA-PTC patients and GEO datasets was conducted. cBioPortal was used for clinical analysis. GSEA, GO, KEGG, Hallmark pathways, and cibersort analysis were applied. Cell proliferation, migration, invasion, and apoptosis were assessed in vitro. Co-culturing with CD8+ T cells, MTT assay, ELISA, subcutaneous tumor models, and immunohistochemistry were performed. TGF-β pathway-related proteins were analyzed via Western blot. CLDN1 and EGFR were overexpressed in PTC tumors, correlating with higher-risk patients and reduced CD8+ T cell infiltration. Silencing these genes inhibited tumor cell functions and enhanced CD8+ T cell activity, both in vitro and in vivo. CLDN1 and EGFR are crucial in PTC, linked to tumor invasiveness, EMT, and immune suppression, presenting them as potential therapeutic targets.
Collapse
Affiliation(s)
- JunJie Wu
- Department of Pathology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China
| | - YouMei Wang
- Department of Pathology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China
| | - Lei Yan
- Department of Pathology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China
| | - YaWen Dong
- Department of Pathology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China.
| |
Collapse
|
29
|
Mu Y, Lu J, Yue K, Yin S, Zhang R, Zhang C. circ_0006988 promotes gastric cancer cell proliferation, migration and invasion through miRNA-92a-2-5p/TFAP4 axis. Epigenomics 2024; 16:1287-1299. [PMID: 39400106 PMCID: PMC11534138 DOI: 10.1080/17501911.2024.2410697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Aim: To explore precise function and underlying mechanism of circ_0006988 in gastric cancer (GC).Materials & methods: GC tissues were collected clinically, and GC cells were purchased from the company. Quantitative real-time polymerase chain reaction and western blot were used to detect mRNA and protein expression. Functional analysis was performed through CCK-8, Transwell and scratch experiment. Binding relationship was validated through dual luciferase reporter and RNA immunoprecipitation assays. HGC-27 cells were subcutaneously injected into mice to construct a xenograft tumor model.Results: In GC tissues and cells, circ_0006988 overexpressed, promoting proliferation, migration and invasion. MiRNA-92a-2-5p downregulation or TFAP4 overexpression weakened effects of circ_0006988 silencing on GC progression.Conclusion: circ_0006988 facilitates GC development through miRNA-92a-2-5p/TFAP4 axis.
Collapse
Affiliation(s)
- Yalin Mu
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, 473000, China
| | - Juan Lu
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, 473000, China
| | - Kai Yue
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, 473000, China
| | - Shuoxin Yin
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, 473000, China
| | - Ru Zhang
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, 473000, China
| | - Chenghui Zhang
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, 473000, China
| |
Collapse
|
30
|
Xie L, Deng X, Li X, Li X, Wang X, Yan H, Zhao L, Yang D, Luo T, Yang Y, Xiao Z, Lu X. CircMETTL3-156aa reshapes the glycolytic metabolism of macrophages to promote M1 polarization and induce cytokine storms in sHLH. Cell Death Discov 2024; 10:431. [PMID: 39384750 PMCID: PMC11464708 DOI: 10.1038/s41420-024-02202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Persistent macrophage activation and cytokine storms are critical causes for the rapid disease progression and high mortality rate of Secondary Hemophagocytic lymphohistiocytosis (sHLH). Identification of key regulatory factors that govern the activation of macrophages is vital. Plasma exosomal circular RNAs (circRNAs) are considered important biomarkers and potential therapeutic targets for various diseases, however, their function in sHLH is still unclear. In this study, we demonstrated for the first time that circMETTL3, derived from METTL3, is upregulated in sHLH patient plasma exosomes, which may plays an important role in the diagnosis of sHLH. Significantly, we also revealed that a novel peptide encoded by circMETTL3, METTL3-156aa, is an inducer of M1 macrophage polarization, which is responsible for the development of cytokine storms during sHLH. We then identified that METTL3-156aa binding with lactate dehydrogenase A (LDHA) and promotes M1 macrophage polarization by enhancing macrophage glycolysis. Additionally, the glycolysis metabolite lactate upregulates the cleavage factor SRSF10 expression by lactylation. This results in increased splicing of the pre-METTL3 mRNA, leading to an enchance in the production of cirMETTL3. Therefore, our results suggest that the circMETTL3/METTL3-156aa/LDHA/Lactate/SRSF10 axis forms a positive feedback loop and may be a novel therapeutic target for the treatment of sHLH.
Collapse
Affiliation(s)
- Longlong Xie
- Department of Radiology, Hunan Provincial Key Laboratory of Pediatric Orthopedics, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Xiangying Deng
- Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Li
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xun Li
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Pediatrics Research Institute of Hunan, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Xiangyu Wang
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Pediatrics Research Institute of Hunan, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Haipeng Yan
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Yang
- Pediatrics Research Institute of Hunan, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Ting Luo
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Pediatrics Research Institute of Hunan, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Yufan Yang
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Zhenghui Xiao
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China.
| | - Xiulan Lu
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China.
| |
Collapse
|
31
|
Zhang H, Pei S, Li J, Zhu J, Li H, Wu G, Weng R, Chen R, Fang Z, Sun J, Chen K. Insights about exosomal circular RNAs as novel biomarkers and therapeutic targets for hepatocellular carcinoma. Front Pharmacol 2024; 15:1466424. [PMID: 39444611 PMCID: PMC11496148 DOI: 10.3389/fphar.2024.1466424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most prevalent pathological types of Primary Liver Cancer (PLC) is the Hepatocellular Carcinoma (HCC) poses a global health issue. The high recurrence and metastasis rate of HCC, coupled with a low 5-year survival rate, result in a bleak prognosis. Exosomes, small extracellular vesicles released by various cells, contain diverse non-coding RNA molecules, including circular RNAs (circRNAs), which play a significant role in intercellular communication and can impact HCC progression. Studies have revealed the potential clinical applications of exosomal circRNAs as biomarkers and therapeutic targets for HCC. These circRNAs can be transferred via exosomes to nearby non-cancerous cells, thereby regulating HCC progression and influencing malignant phenotypes, such as cell proliferation, invasion, metastasis, and drug resistance. This review provides a comprehensive overview of the identified exosomal circRNAs, highlighting their potential as non-invasive biomarkers for HCC, and suggesting new perspectives for HCC diagnosis and treatment. The circRNA from exosomal organelles promotes metastasis and immune scape because of their unique chirality which is different from the Biomolecular Homochirality.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Zhejiang Chinese Medical University, Shuren College, Hangzhou, China
| | - Shanshan Pei
- School of Pharmacy, Beihua University, Jilin, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingbo Sun
- School of Pharmacy, Beihua University, Jilin, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
32
|
Almutairy B, Alzahrani MS, Waggas DS, Alsaab HO. Particular exosomal micro-RNAs and gastrointestinal (GI) cancer cells' roles: Current theories. Exp Cell Res 2024; 442:114278. [PMID: 39383930 DOI: 10.1016/j.yexcr.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
A diverse range of gastrointestinal tract disorders are called gastrointestinal (GI) malignancies. The transformation of normal cells into precursor cells, precursor cells into premalignant cells, and premalignant cells into cancerous cells is facilitated by the interaction of many modifiable and non-modifiable risk factors. Developing relevant therapy alternatives based on a better knowledge of the illness's aetiology is essential to enhance patient outcomes. The exosome is crucial in regulating intercellular interaction because it may send molecular signals to nearby or distant cells. Exosomes produced from cancer can introduce a variety of chemicals and vast concentrations of microRNA (miRNA) into the tumour microenvironment. These miRNAs significantly impact immunological evasion, metastasis, apoptosis resistance, and cell growth. Exosomal miRNAs, or exosomal miRNAs, are essential for controlling cancer resistance to apoptosis, according to mounting data. Exosomal miRNAs function as an interaction hub between cancerous cells and the milieu around them, regulating gene expression and various signalling pathways. Our research examines the regulatory function of exosomal miRNAs in mediating interactions between cancer cells and the stromal and immunological cells that make up the surrounding milieu.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah University, Saudi Arabia.
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
33
|
Xie J, Jiang J, Wang X, Zuo X, Jia Y. RNA binding protein ELAVL1-mediated USP33 stabilizes HIF1A to promote pathological proliferation, migration and angiogenesis of RECs. Int Ophthalmol 2024; 44:393. [PMID: 39320536 DOI: 10.1007/s10792-024-03311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Dysfunction of retinal vascularization plays pathogenic roles in retinopathy of prematurity (ROP). Hypoxia-inducible factor 1 alpha (HIF1A) is activated by hypoxia and contributes to ROP progression. Herein, we clarified the mechanism underlying HIF1A activation in human retinal vascular endothelial cells (HRECs) under hypoxia. METHODS Protein expression was assayed by immunoblot analysis. Cell migration, microtubule formation, invasion, proliferation, and viability were detected by wound-healing, tube formation, transwell, EdU, and CCK-8 assays, respectively. Bioinformatics was used to predict the deubiquitinase-HIF1A interactions and RNA binding proteins (RBPs) bound to USP33. The impact of USP33 on HIF1A deubiquitination was validated by immunoprecipitation (IP) assay. RNA stability analysis was performed with actinomycin D (Act D) treatment. The ELAVL1/USP33 interaction was assessed by RNA immunoprecipitation experiment. RESULTS In hypoxia-exposed HRECs, HIF1A and USP33 protein levels were upregulated. Deficiency of HIF1A or USP33 suppressed cell migration, proliferation and microtubule formation of hypoxia-exposed HRECs. Mechanistically, USP33 deficiency led to an elevation in HIF1A ubiquitination and degradation. USP33 deficiency reduced HIF1A protein levels to suppress the proliferation and microtubule formation of hypoxia-induced HRECs. Moreover, the RBP ELAVL1 stabilized USP33 mRNA to increase USP33 protein levels. ELAVL1 decrease repressed the proliferation and microtubule formation of hypoxia-induced HRECs by reducing USP33. CONCLUSION Our study identifies a novel ELAVL1/USP33/HIF1A regulatory cascade with the ability to affect hypoxia-induced pathological proliferation, angiogenesis, and migration in HRECs.
Collapse
Affiliation(s)
- Jing Xie
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China.
| | - Jun Jiang
- Department of Urology, The First Affiliated Hospital of Xingtai Medical College, Xingtai City, 054001, Hebei, China
| | - Xiuxian Wang
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China
| | - Xiangrong Zuo
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China
| | - Yuhong Jia
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China
| |
Collapse
|
34
|
Kundu I, Varshney S, Karnati S, Naidu S. The multifaceted roles of circular RNAs in cancer hallmarks: From mechanisms to clinical implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102286. [PMID: 39188305 PMCID: PMC11345389 DOI: 10.1016/j.omtn.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Circular RNAs (circRNAs) represent a distinct class of covalently closed RNA species lacking conventional 5' to 3' polarity. Derived predominantly from pre-mRNA transcripts of protein-coding genes, circRNAs arise through back-splicing events of exon-exon or exon-intron junctions. They exhibit tissue- and cell-specific expression patterns and play crucial roles in regulating fundamental cellular processes such as cell cycle dynamics, proliferation, apoptosis, and differentiation. CircRNAs modulate gene expression through a plethora of mechanisms at epigenetic, transcriptional, and post-transcriptional levels, and some can even undergo translation into functional proteins. Recently, aberrant expression of circRNAs has emerged as a significant molecular aberration within the intricate regulatory networks governing hallmarks of cancer. The tumor-specific expression patterns and remarkable stability of circRNAs have profound implications for cancer diagnosis, prognosis, and therapy. This review comprehensively explores the multifaceted roles of circRNAs across cancer hallmarks in various tumor types, underscoring their growing significance in cancer diagnosis and therapeutic interventions. It also details strategies for leveraging circRNA-based therapies and discusses the challenges in using circRNAs for cancer management, emphasizing the need for further research to overcome these obstacles.
Collapse
Affiliation(s)
- Indira Kundu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Shivani Varshney
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| |
Collapse
|
35
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)The First Department of Thoracic SurgeryPeking University Cancer Hospital and InstitutePeking University School of OncologyBeijingChina
| | - Jin Zhang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Yuchen Yang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Zhuofeng Liu
- Department of Traditional Chinese MedicineThe Third Affiliated Hospital of Xi'an Medical UniversityXi'anChina
| | - Sijia Sun
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Rui Li
- Department of EpidemiologySchool of Public HealthAir Force Medical UniversityXi'anChina
| | - Hui Zhu
- Department of AnatomyMedical College of Yan'an UniversityYan'anChina
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Tian Li
- School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Jin Zheng
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Jie Li
- Department of EndocrineXijing 986 HospitalAir Force Medical UniversityXi'anChina
| | - Litian Ma
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
- Department of GastroenterologyTangdu HospitalAir Force Medical UniversityXi'anChina
- School of MedicineNorthwest UniversityXi'anChina
| |
Collapse
|
36
|
Wang JH, Bai ZZ, Niu XD, Zhu CL, Liang T, Hu YL, Gao ZH, Da MX. Serum extracellular vesicle-derived miR-21-5p and miR-26a-5p as non-invasive diagnostic potential biomarkers for gastric cancer: A preliminary study. Int J Biol Markers 2024; 39:217-225. [PMID: 38881381 DOI: 10.1177/03936155241261390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
PURPOSE Gastric cancer is the most common malignancy worldwide and is the third leading cause of cancer-related deaths, urgently requiring an early and non-invasive diagnosis. Circulating extracellular vesicles may emerge as promising biomarkers for the rapid diagnosis in a non-invasive manner. METHODS Using high-throughput small RNA sequencing, we profiled the small RNA population of serum-derived extracellular vesicles from healthy controls and gastric cancer patients. Differentially expressed microRNAs (miRNAs) were randomly selected and validated by reverse transcription-quantitative real-time polymerase chain reaction. Receiver operating characteristic curves were employed to assess the predictive value of miRNAs for gastric cancer. RESULTS In this study, 193 differentially expressed miRNAs were identified, of which 152 were upregulated and 41 were significantly downregulated. Among the differently expressed miRNA, the expression levels of miR-21-5p, miR-26a-5p, and miR-27a-3p were significantly elevated in serum-derived extracellular vesicles of gastric cancer patients. The miR-21-5p and miR-27a-3p were closely correlated with the tumor size. Moreover, the expression levels of serum miR-21-5p and miR-26a-5p were significantly decreased in gastric cancer patients after surgery. CONCLUSIONS The present study discovered the potential of serum miR-21-5p and miR-26a-5p as promising candidates for the diagnostic and prognostic markers of gastric cancer.
Collapse
Affiliation(s)
- Jun-Hong Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First People's Hospital of Baiyin (Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine), Baiyin, China
| | - Zhao-Zhao Bai
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xing-Dong Niu
- The First Clinical Medical College, Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Cheng-Lou Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tong Liang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yong-Li Hu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhen-Hua Gao
- Department of General Surgery, The First People's Hospital of Baiyin (Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine), Baiyin, China
| | - Ming-Xu Da
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
37
|
Chen J, Wang H, Xu J, Chen E, Meng Q, Wang J, Xiang H, Zhou W, Shan G, Ju Z, Song Z. CircZFR promotes colorectal cancer progression via stabilizing BCLAF1 and regulating the miR-3127-5p/RTKN2 axis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1881-1898. [PMID: 38805063 DOI: 10.1007/s11427-023-2514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/29/2023] [Indexed: 05/29/2024]
Abstract
Aberrant expression of circular RNAs (circRNAs) is frequently linked to colorectal cancer (CRC). Here, we identified circZFR as a promising biomarker for CRC diagnosis and prognosis. CircZFR was upregulated in CRC tissues and serum exosomes and its level was linked to cancer incidence, advanced-stages, and metastasis. In both in vitro and in vivo settings, circZFR promoted the growth and spread while suppressing apoptosis of CRC. Exosomes with circZFR overexpression promoted the proliferation and migration of cocultured CRC cells. Mechanistically, epithelial splicing regulatory protein 1 (ESRP1) in CRC cells may enhance the production of circZFR. BCL2-associated transcription factor 1 (BCLAF1) bound to circZFR, which prevented its ubiquitinated degradation. Additionally, circZFR sponged miR-3127-5p to boost rhotekin 2 (RTKN2) expression. Our TCP1-CD-QDs nanocarrier was able to carry and deliver circZFR siRNA (si-circZFR) to the vasculature of CRC tissues and cells, which inhibited the growth of tumors in patient-derived xenograft (PDX) models. Taken together, our results show that circZFR is an oncogenic circRNA, which promotes the development and spread of CRC in a BCLAF1 and miR-3127-5p-dependent manner. CircZFR is a possible serum biopsy marker for the diagnosis and a desirable target for further treatment of CRC.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Huijuan Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Jianbin Xu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Engeng Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Qing Meng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Jiawei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Haoyi Xiang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Wei Zhou
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Ge Shan
- Department of Pulmonary and Critical Care Medicine, Regional medical center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
38
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
40
|
Spokeviciute B, Kholia S, Brizzi MF. Chimeric antigen receptor (CAR) T-cell therapy: Harnessing extracellular vesicles for enhanced efficacy. Pharmacol Res 2024; 208:107352. [PMID: 39147005 DOI: 10.1016/j.phrs.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
A cutting-edge approach in cell-based immunotherapy for combating resistant cancer involves genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes. In recent years, these therapies have demonstrated effectiveness, leading to their commercialization and clinical application against certain types of cancer. However, CAR-T therapy faces limitations, such as the immunosuppressive tumour microenvironment (TME) that can render CAR-T cells ineffective, and the adverse side effects of the therapy, including cytokine release syndrome (CRS). Extracellular vesicles (EVs) are a diverse group of membrane-bound particles released into the extracellular environment by virtually all cell types. They are essential for intercellular communication, transferring cargoes such as proteins, lipids, various types of RNAs, and DNA fragments to target cells, traversing biological barriers both locally and systemically. EVs play roles in numerous physiological processes, with those from both immune and non-immune cells capable of modulating the immune system through activation or suppression. Leveraging this capability of EVs to enhance CAR-T cell therapy could represent a significant advancement in overcoming its current limitations. This review examines the current landscape of CAR-T cell immunotherapy and explores the potential role of EVs in augmenting its therapeutic efficacy.
Collapse
Affiliation(s)
| | - Sharad Kholia
- Department of Medical Sciences, University of Torino, Turin, Italy
| | | |
Collapse
|
41
|
Lin Z, Pan R, Wu L, Zhu F, Fang Q, Kwok HF, Lu X. AFP-HSP90 mediated MYC/MET activation promotes tumor progression in hepatocellular carcinoma and gastric cancers. Cancer Cell Int 2024; 24:283. [PMID: 39135041 PMCID: PMC11321088 DOI: 10.1186/s12935-024-03455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Alpha-fetoprotein (AFP) elevation is a well-known biomarker in various diseases, particularly in the diagnosis of hepatocellular carcinoma (HCC). Intracellular AFP has been previously implicated in promoting tumorigenesis. In this study, we discovered that AFP enhances the stability of oncoproteins c-MYC and c-MET, thereby facilitating the progression of liver and gastric tumors. Our findings suggest that AFP acts by stabilizing these oncoproteins, which are clients of heat shock protein 90 (HSP90), and prevents their degradation through ubiquitination. Intriguingly, we identified AFP as a novel co-chaperone of HSP90, demonstrating its ability to regulate the stabilization of HSP90 client proteins. Furthermore, our results indicate that inhibiting AFP or HSP90 enhances the cytotoxicity of chemotherapeutic agents in AFP-producing HCC and gastric cancer cells. These findings have significant implications for the development of therapeutic strategies targeting AFP-producing tumors, as the AFP-HSP90-mediated activation of c-MYC and c-MET provides new insights into potential treatment approaches. In summary, this study sheds light on the role of AFP in promoting tumor progression by stabilizing oncoproteins through its interaction with HSP90. The identification of this mechanism opens up new avenues for therapeutic interventions in AFP-producing tumors.
Collapse
Affiliation(s)
- Ziqi Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Liyue Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Fangsheng Zhu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Qiwei Fang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
42
|
Wang JB, Lin TX, Fan DH, Gao YX, Chen YJ, Wu YK, Xu KX, Qiu QZ, Li P, Xie JW, Lin JX, Chen QY, Cao LL, Huang CM, Zheng CH. CircUBA2 promotes the cancer stem cell-like properties of gastric cancer through upregulating STC1 via sponging miR-144-5p. Cancer Cell Int 2024; 24:276. [PMID: 39103836 PMCID: PMC11302268 DOI: 10.1186/s12935-024-03423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are critical factors that limit the effectiveness of gastric cancer (GC) therapy. Circular RNAs (circRNAs) are confirmed as important regulators of many cancers. However, their role in regulating CSC-like properties of GC remains largely unknown. Our study aimed to investigate the role of circUBA2 in CSC maintenance and the underlying mechanisms. METHODS We identified circUBA2 as an upregulated gene using circRNA microarray analysis. qRT-PCR was used to examine the circUBA2 levels in normal and GC tissues. In vitro and in vivo functional assays were performed to validate the role of circUBA2 in proliferation, migration, metastasis and CSC-like properties of GC cell. The relationship between circUBA2, miR-144-5p and STC1 was characterised using bioinformatics analysis, a dual fluorescence reporter system, FISH, and RIP assays. RESULTS CircUBA2 expression was significantly increased in GC tissues, and patients with GC with high circUBA2 expression had a poor prognosis. CircUBA2 enhances CSC-like properties of GC, thereby promoting cell proliferation, migration, and metastasis. Mechanistically, circUBA2 promoted GC malignancy and CSC-like properties by acting as a sponge for miR-144-5p to upregulate STC1 expression and further activate the IL-6/JAK2/STAT3 signaling pathway. More importantly, the ability of circUBA2 to enhance CSC-like properties was inhibited by tocilizumab, a humanised Interleukin-6 receptor (IL-6R) antibody. Thus, circUBA2 knockdown and tocilizumab synergistically inhibited CSC-like properties. CONCLUSIONS Our study demonstrated the critical role of circUBA2 in regulating CSC-like properties in GC. CircUBA2 may be a promising prognostic biomarker for GC.
Collapse
Affiliation(s)
- Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Tong-Xing Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Deng-Hui Fan
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - You-Xin Gao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yu-Jing Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yu-Kai Wu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Kai-Xiang Xu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qing-Zhu Qiu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
43
|
Ding P, Wu H, Wu J, Li T, He J, Ju Y, Liu Y, Li F, Deng H, Gu R, Zhang L, Guo H, Tian Y, Yang P, Meng N, Li X, Guo Z, Meng L, Zhao Q. N6-methyladenosine modified circPAK2 promotes lymph node metastasis via targeting IGF2BPs/VEGFA signaling in gastric cancer. Oncogene 2024; 43:2548-2563. [PMID: 39014193 DOI: 10.1038/s41388-024-03099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Circular RNAs (circRNAs) have emerged as key regulators of cancer occurrence and progression, as well as promising biomarkers for cancer diagnosis and prognosis. However, the potential mechanisms of circRNAs implicated in lymph node (LN) metastasis of gastric cancer remain unclear. Herein, we identify a novel N6-methyladenosine (m6A) modified circRNA, circPAK2, which is significantly upregulated in gastric cancer tissues and metastatic LN tissues. Functionally, circPAK2 enhances the migration, invasion, lymphangiogenesis, angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis of gastric cancer in vitro and in vivo. Mechanistically, circPAK2 is exported by YTH domain-containing protein 1 (YTHDC1) from the nucleus to the cytoplasm in an m6A methylation-dependent manner. Moreover, increased cytoplasmic circPAK2 interacts with Insulin-Like Growth Factor 2 mRNA-Binding Proteins (IGF2BPs) and forms a circPAK2/IGF2BPs/VEGFA complex to stabilize VEGFA mRNA, which contributes to gastric cancer vasculature formation and aggressiveness. Clinically, high circPAK2 expression is positively associated with LN metastasis and poor prognosis in gastric cancer. This study highlights m6A-modified circPAK2 as a key regulator of LN metastasis of gastric cancer, thus supporting circPAK2 as a promising therapeutic target and prognostic biomarker for gastric cancer.
Collapse
Affiliation(s)
- Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Tongkun Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Yingchao Ju
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Animal Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yueping Liu
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Li
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiyan Deng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Renjun Gu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Ning Meng
- Department of General Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China
| | - Xiaolong Li
- Department of General Surgery, Baoding Central Hospital, Baoding, Hebei, China
| | - Zhenjiang Guo
- General Surgery Department, Hengshui People's Hospital, Hengshui, Hebei, China
| | - Lingjiao Meng
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China.
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China.
| |
Collapse
|
44
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
45
|
Jiang Z, Gu Z, Lu X, Wen W. The role of dysregulated metabolism and associated genes in gastric cancer initiation and development. Transl Cancer Res 2024; 13:3854-3868. [PMID: 39145068 PMCID: PMC11319955 DOI: 10.21037/tcr-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
The review delves into the intricate interplay between metabolic dysregulation and the onset and progression of gastric cancer (GC), shedding light on a pivotal aspect of this prevalent malignancy. GC stands as one of the leading causes of cancer-related mortality worldwide, its trajectory influenced by a multitude of factors, among which metabolic dysregulation and aberrant gene expression play significant roles. The article navigates through the fundamental roles of metabolic dysregulation in the genesis of GC, unveiling phenomena such as aberrant glycolysis, epitomized by the Warburg effect, alongside anomalies in lipid and amino acid metabolism. It delineates how these disruptions fuel the cancerous process, facilitating uncontrolled cell proliferation and survival. Furthermore, the intricate nexus between metabolism and the vitality of GC cells is elucidated, underscoring the profound influence of metabolic reprogramming on tumor energy dynamics and the accrual of metabolic by-products, which further perpetuate malignant growth. A pivotal segment of the review entails an exploration of key metabolic-related genes implicated in GC pathogenesis. MYC and TP53 are spotlighted among others, delineating their pivotal roles in driving tumorigenesis through metabolic pathway modulation. These genetic pathways serve as critical nodes in the intricate network orchestrating GC development, providing valuable targets for therapeutic intervention. This review embarks on a forward-looking trajectory, delineating the potential therapeutic avenues stemming from insights into metabolic dysregulation in GC. It underscores the promise of targeted therapies directed towards specific metabolic pathways implicated in tumor progression, alongside the burgeoning potential of combination therapy strategies leveraging both metabolic and conventional anti-cancer modalities. In essence, this comprehensive review serves as a beacon, illuminating the intricate landscape of metabolic dysregulation in GC pathogenesis. Through its nuanced exploration of metabolic aberrations and their genetic underpinnings, it not only enriches our understanding of GC biology but also unveils novel therapeutic vistas poised to revolutionize its clinical management.
Collapse
Affiliation(s)
- Zhengyan Jiang
- Digestive Department, Jiangsu Second Chinese Medicine Hospital, Nanjing, China
| | - Zhengrong Gu
- Digestive Department, Jiangsu Second Chinese Medicine Hospital, Nanjing, China
| | - Xianyan Lu
- Digestive Department, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People’s Hospital), Suzhou, China
| | - Wei Wen
- Digestive Department, Jiangsu Second Chinese Medicine Hospital, Nanjing, China
| |
Collapse
|
46
|
Jia J, Zhao H, Li F, Zheng Q, Wang G, Li D, Liu Y. Research on drug treatment and the novel signaling pathway of chronic atrophic gastritis. Biomed Pharmacother 2024; 176:116912. [PMID: 38850667 DOI: 10.1016/j.biopha.2024.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a global digestive system disease and one of the important causes of gastric cancer. The incidence of CAG has been increasing yearly worldwide. PURPOSE This article reviews the latest research on the common causes and future therapeutic targets of CAG as well as the pharmacological effects of corresponding clinical drugs. We provide a detailed theoretical basis for further research on possible methods for the treatment of CAG and reversal of the CAG process. RESULTS CAG often develops from chronic gastritis, and its main pathological manifestation is atrophy of the gastric mucosa, which can develop into gastric cancer. The drug treatment of CAG can be divided into agents that regulate gastric acid secretion, eradicate Helicobacter. pylori (H. pylori), protect gastric mucous membrane, or inhibit inflammatory factors according to their mechanism of action. Although there are limited specific drugs for the treatment of CAG, progress is being made in defining the pathogenesis and therapeutic targets of the disease. Growing evidence shows that NF-κB, PI3K/AKT, Wnt/ β-catenin, MAPK, Toll-like receptors (TLRs), Hedgehog, and VEGF signaling pathways play an important role in the development of CAG.
Collapse
Affiliation(s)
- Jinhao Jia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Huijie Zhao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Special Administrative Region of China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | - Ying Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
47
|
Yildiz SN, Entezari M, Paskeh MDA, Mirzaei S, Kalbasi A, Zabolian A, Hashemi F, Hushmandi K, Hashemi M, Raei M, Goharrizi MASB, Aref AR, Zarrabi A, Ren J, Orive G, Rabiee N, Ertas YN. Nanoliposomes as nonviral vectors in cancer gene therapy. MedComm (Beijing) 2024; 5:e583. [PMID: 38919334 PMCID: PMC11199024 DOI: 10.1002/mco2.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024] Open
Abstract
Nonviral vectors, such as liposomes, offer potential for targeted gene delivery in cancer therapy. Liposomes, composed of phospholipid vesicles, have demonstrated efficacy as nanocarriers for genetic tools, addressing the limitations of off-targeting and degradation commonly associated with traditional gene therapy approaches. Due to their biocompatibility, stability, and tunable physicochemical properties, they offer potential in overcoming the challenges associated with gene therapy, such as low transfection efficiency and poor stability in biological fluids. Despite these advancements, there remains a gap in understanding the optimal utilization of nanoliposomes for enhanced gene delivery in cancer treatment. This review delves into the present state of nanoliposomes as carriers for genetic tools in cancer therapy, sheds light on their potential to safeguard genetic payloads and facilitate cell internalization alongside the evolution of smart nanocarriers for targeted delivery. The challenges linked to their biocompatibility and the factors that restrict their effectiveness in gene delivery are also discussed along with exploring the potential of nanoliposomes in cancer gene therapy strategies by analyzing recent advancements and offering future directions.
Collapse
Affiliation(s)
| | - Maliheh Entezari
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mahshid Deldar Abad Paskeh
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of BiologyFaculty of ScienceIslamic Azad UniversityScience and Research BranchTehranIran
| | - Alireza Kalbasi
- Department of PharmacyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Amirhossein Zabolian
- Department of OrthopedicsShahid Beheshti University of Medical SciencesTehranIran
| | - Farid Hashemi
- Department of Comparative BiosciencesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Kiavash Hushmandi
- Department of Clinical Sciences InstituteNephrology and Urology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mehrdad Hashemi
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehdi Raei
- Department of Epidemiology and BiostatisticsSchool of HealthBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer ScienceDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
- Department of Translational SciencesXsphera Biosciences Inc.BostonMassachusettsUSA
| | - Ali Zarrabi
- Department of Biomedical EngineeringFaculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular DiseasesDepartment of CardiologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Gorka Orive
- NanoBioCel Research GroupSchool of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology ‐ UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- The AcademiaSingapore Eye Research InstituteSingaporeSingapore
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityPerthWestern AustraliaAustralia
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM−National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
48
|
Sun W, Jiang C, Liu Q, Wang N, Huang R, Jiang G, Yang Y. Exosomal noncoding RNAs: decoding their role in thyroid cancer progression. Front Endocrinol (Lausanne) 2024; 15:1337226. [PMID: 38933820 PMCID: PMC11199389 DOI: 10.3389/fendo.2024.1337226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Exosomes, as pivotal entities within the tumor microenvironment, orchestrate intercellular communication through the transfer of diverse molecules, among which non-coding RNAs (ncRNAs) such as miRNAs, lncRNAs, and circRNAs play a crucial role. These ncRNAs, endowed with regulatory functions, are selectively incorporated into exosomes. Emerging evidence underscores the significance of exosomal ncRNAs in modulating key oncogenic processes in thyroid cancer (TC), including proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and immunoediting. The unique composition of exosomes shields their cargo from enzymatic and chemical degradation, ensuring their integrity and facilitating their specific expression in plasma. This positions exosomal ncRNAs as promising candidates for novel diagnostic and prognostic biomarkers in TC. Moreover, the potential of exosomes in the therapeutic landscape of TC is increasingly recognized. This review aims to elucidate the intricate relationship between exosomal ncRNAs and TC, fostering a deeper comprehension of their mechanistic involvement. By doing so, it endeavors to propel forward the exploration of exosomal ncRNAs in TC, ultimately paving the way for innovative diagnostic and therapeutic strategies predicated on exosomes and their ncRNA content.
Collapse
Affiliation(s)
- Weiming Sun
- The First Hospital of Lanzhou University, Endocrinology Department, Lanzhou, China
| | - Chenjun Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Na Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Gengchen Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuxuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
49
|
Mou Y, Lv K. Extracellular vesicle-delivered hsa_circ_0090081 regulated by EIF4A3 enhances gastric cancer tumorigenesis. Cell Div 2024; 19:19. [PMID: 38862985 PMCID: PMC11165812 DOI: 10.1186/s13008-024-00123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Circular RNA (circRNA) and extracellular vesicles (EVs) in tumors are crucial for the malignant phenotype of tumor cells. Nevertheless, the mechanisms and clinical effects of EV-delivered hsa_circ_0090081 in gastric cancer (GC) are unclear. This study aimed to reveal the effect of eukaryotic translation initiation factor 4A3 (EIF4A3)-mediated hsa_circ_0090081 expression and EV-delivered hsa_circ_0090081 on GC progression. METHODS qRT-PCR was conducted to clarify hsa_circ_0090081 and EIF4A3 levels in GC tissues. Transmission electronic microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting identified the EVs isolated from GC cells by ultracentrifugation. The roles of hsa_circ_0090081, EIF4A3, and EV-delivered hsa_circ_0090081 in GC cells were analyzed using Transwell, EdU, and CCK-8 assays. The regulatory role between EIF4A3 and hsa_circ_0090081 was investigated using RIP, qRT-PCR, and Pearson's analysis. RESULTS Our study showed that hsa_circ_0090081 and EIF4A3 were highly expressed in GC, and hsa_circ_0090081 was associated with poor prognosis. Data revealed that hsa_circ_0090081 inhibition restrained GC cell proliferation, invasion, and migration. Additionally, EIF4A3 could bind to the pre-mRNA of PHEX (linear form of hsa_circ_0090081) to enhance hsa_circ_0090081 expression in GC cells. Moreover, EIF4A3 overexpression nullified the malignant phenotypic suppression caused by hsa_circ_0090081 silencing in GC cells. Furthermore, EVs secreted by GC cells delivered hsa_circ_0090081 to facilitate the malignant progression of targeted GC cells. CONCLUSION This study showed that hsa_circ_0090081 was enhanced by EIF4A3 to play a promotive role in GC development. The results may help understand the mechanism of EIF4A3 and EV-delivered hsa_circ_0090081 and offer a valuable GC therapeutic target.
Collapse
Affiliation(s)
- Yanjie Mou
- Department of Tradition Chinese Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), No. 241, Pengliuyang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Kun Lv
- Department of Tradition Chinese Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), No. 241, Pengliuyang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
50
|
Tong Y, Jia L, Li M, Li H, Wang S. Identification of exosomal circSLC26A4 as a liquid biopsy marker for cervical cancer. PLoS One 2024; 19:e0305050. [PMID: 38861540 PMCID: PMC11166277 DOI: 10.1371/journal.pone.0305050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVE Circular RNA SLC26A4 (circSLC26A4) functions as an oncogene in the initiation and progression of cervical cancer (CC). However, the clinical role of plasma exosomal circSLC26A4 in CC is poorly known. This study aims to develop an accurate diagnostic method based on circulating exosomal circSLC26A4. METHODS In this study, exosomal circSLC26A4 derived from CC cell lines (CaSki, SiHa, and HeLa) and human cervical epithelial cells (HcerEpic) was measured and compared using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Additionally, 56 volunteers, including 18 CC patients, 18 cervical high-grade squamous intraepithelial lesion (HSIL) patients, and 20 healthy volunteers, were enrolled. qRT-PCR was also performed to measure the plasma exosomal circSLC26A4 levels in all participants. RESULTS The exosomal circSLC26A4 expression level derived from CC cells was significantly elevated compared to it derived from HcerEpic cells. Plasma exosomal circSLC26A4 levels in CC patients were significantly higher than in healthy women and HSIL patients (P < 0.05). In addition, high plasma exosomal circSLC26A4 expression was positively associated with lymph node metastasis and FIGO stage (all P < 0.05). However, no significant correlation was found between plasma exosomal circSLC26A4 expression and age, intravascular cancerous embolus, and perineural invasion (P > 0.05). CONCLUSIONS The high exosomal circSLC26A4 expression is closely related to the occurrence of CC. Plasma exosomal circSLC26A4 can be used as a diagnostic marker for CC.
Collapse
Affiliation(s)
- Yutong Tong
- Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Lanlan Jia
- Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Minghui Li
- Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hongjuan Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shuli Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|