1
|
Lan Q, Wu X, Liu Q, Liang Q, He X, Zhu B. Integrating temporal dynamics of both microbial taxonomic and functional characteristics as a tool for forensic time since deposition estimation. Forensic Sci Int 2025; 369:112406. [PMID: 40009954 DOI: 10.1016/j.forsciint.2025.112406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Predicting the time since deposition (TsD) of body fluid stain at a crime scene is highly valuable in forensic investigation, as it can connect a DNA-identified stain donor to a crime or estimate the post-mortem interval in forensic case involving cadaver. Previous study has demonstrated the applicability of microbial taxa for TsD prediction. In this proof-of-concept study, we explored the combined use of taxonomic and functional characteristics in human saliva microbiome for TsD prediction. We investigated the potential correlations between the temporal dynamics in microbial communities and the TsD of saliva stains, utilizing the relative abundance of microbial genera, amplicon sequence variants (AsVs), and the metabolic function pathway profiles. The results revealed that changes in the metabolic function pathway profiles of microbial communities could contribute to TsD estimation of the aged saliva stains. We developed ensemble models with multiple heterogeneous algorithms, also combined microbial species and metabolic function pathway profiles for TsD estimation. The TsD prediction model, developed using the relative abundance of the top 50 microbial genera and metabolic functional pathway profiles with the xgboost algorithm, achieved high accuracy (R2 = 0.76, mean absolute error = 6.28 days) in a 60-day deposition. Besides, we further interpreted the model and identified potential biomarkers for TsD estimation of saliva stains. The current study provided the first evidence to explore the potential of using multiple data modalities for predicting the TsD of aged saliva stains, offering valuable insight for forensic investigation.
Collapse
Affiliation(s)
- Qiong Lan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolian Wu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qinglin Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qinglin Liang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaolong He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Reichert S, Switala H, Schulz S. Differences Between Vietnamese Living in Germany and German Periodontitis Patients in Periodontal Conditions and Subgingival Microbiota. Int Dent J 2025; 75:620-631. [PMID: 39370342 PMCID: PMC11976536 DOI: 10.1016/j.identj.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION AND AIMS A number of studies have reported ethnic differences in the prevalence and severity of periodontitis. Such discrepancies could be attributed to disparities in periodontal risk factors, as well as variations in the composition of the subgingival microbiota. Given the substantial Vietnamese population residing in the former German Democratic Republic, the present study aimed to compare the clinical and microbial characteristics of periodontitis patients of Vietnamese Asian origin living in Germany with those of German Caucasian periodontitis patients. METHODS A total of 60 patients with a minimum stage II periodontitis diagnosis were included in the study. Of these, 30 were of Vietnamese origin, with an average age of 55 years and a male prevalence of 33.3%. The remaining 30 patients were of German origin, with an average age of 54.5 years and a male prevalence of 40%. The periodontal diagnosis was made in accordance with the recently revised classification of periodontal disease. The pooled subgingival plaque samples were subjected to next-generation sequencing on the MiSeq platform (Illumina). RESULTS The German patients were significantly more likely to be smokers (56.7% vs 13.3%), had significantly higher body mass index (26 vs 22.6 kg/m²), probing depth (4.1 vs 3.6 mm), and clinical attachment loss (5 vs 4.1 mm). In terms of microbiota, the Vietnamese patients exhibited significantly lower beta diversity compared to the German patients, and smokers demonstrated a significantly higher beta diversity compared to nonsmokers. The microbiota of both groups differed most significantly in the relative abundance of Porphyromonas gingivalis (Vietnamese) and Fusobacteriia (German). CONCLUSIONS German patients with periodontitis showed more severe periodontal symptoms and more pronounced periodontal risk factors compared to Vietnamese patients. Both patient groups also showed significant differences in the subgingival microbiota. CLINICAL RELEVANCE Compared to Vietnamese living in Germany, German patients have a higher need for periodontal treatment and at the same time the risk factors of smoking and obesity should be reduced. More research is needed before the differences in oral microbiota between the two groups can lead to individualised therapeutic approaches.
Collapse
Affiliation(s)
- Stefan Reichert
- Department of Operative Dentistry and Periodontology, University School of Dental Medicine, Martin-Luther University, Halle (Saale), Germany.
| | - Hiacynta Switala
- Department of Operative Dentistry and Periodontology, University School of Dental Medicine, Martin-Luther University, Halle (Saale), Germany
| | - Susanne Schulz
- Department of Operative Dentistry and Periodontology, University School of Dental Medicine, Martin-Luther University, Halle (Saale), Germany
| |
Collapse
|
3
|
Ryan N, O’Mahony S, Leahy-Warren P, Philpott L, Mulcahy H. The impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes: A scoping review. PLoS One 2025; 20:e0318237. [PMID: 40019912 PMCID: PMC11870360 DOI: 10.1371/journal.pone.0318237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/14/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Perinatal maternal stress, which includes both psychological and physiological stress experienced by healthy women during pregnancy and the postpartum period, is becoming increasingly prevalent. Infant early exposure to adverse environments such as perinatal stress has been shown to increase the long-term risk to metabolic, immunologic and neurobehavioral disorders. Evidence suggests that the human microbiome facilitates the transmission of maternal factors to infants via the vaginal, gut, and human milk microbiomes. The colonization of aberrant microorganisms in the mother's microbiome, influenced by the microbiome-brain-gut axis, may be transferred to infants during a critical early developmental period. This transfer may predispose infants to a more inflammatory-prone microbiome which is associated with dysregulated metabolic process leading to adverse health outcomes. Given the prevalence and potential impact of perinatal stress on maternal and infant health, with no systematic mapping or review of the data to date, the aim of this scoping review is to gather evidence on the relationship between perinatal maternal stress, and the human milk, maternal, and infant gut microbiomes. METHODS This is an exploratory mapping scoping review, guided by the Joanna Briggs Institute's methodology along with use of the Prisma Scr reporting guideline. A comprehensive search was conducted using the following databases, CINAHL Complete; MEDLINE; PsycINFO, Web of Science and Scopus with a protocol registered with Open Science Framework DOI 10.17605/OSF.IO/5SRMV. RESULTS After screening 1145 papers there were 7 paper that met the inclusion criteria. Statistically significant associations were found in five of the studies which identify higher abundance of potentially pathogenic bacteria such as Erwinia, Serratia, T mayombie, Bacteroides with higher maternal stress, and lower levels of stress linked to potentially beneficial bacteria such Lactococcus, Lactobacillus, Akkermansia. However, one study presents conflicting results where it was reported that higher maternal stress was linked to the prevalence of more beneficial bacteria. CONCLUSION This review suggests that maternal stress does have an impact on the alteration of abundance and diversity of influential bacteria in the gut microbiome, however, it can affect colonisation in different ways. These bacterial changes have the capacity to influence long term health and disease. The review analyses data collection tools and methods, offers potential reasons for these findings as well as suggestions for future research.
Collapse
Affiliation(s)
- Niamh Ryan
- School of Nursing and Midwifery, University College Cork, Cork, Ireland
| | - Siobhain O’Mahony
- Department of Anatomy and Neuroscience, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Lloyd Philpott
- School of Nursing and Midwifery, University College Cork, Cork, Ireland
| | - Helen Mulcahy
- School of Nursing and Midwifery, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Liu J, Yue Q, Zhang S, Xu J, Jiang X, Su Q, Sun L, Li B, Li K, Su L, Zhao L. A pilot study on oral microbiome in electronic cigarettes consumers versus traditional cigarettes smokers. Folia Microbiol (Praha) 2025; 70:147-158. [PMID: 38954243 DOI: 10.1007/s12223-024-01185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Oral microorganisms are closely related to oral health, the occurrence of some oral diseases is associated with changes in the oral microbiota, and many studies have demonstrated that traditional smoking can affect the oral microbial community. However, due to the short time since the emergence of e-cigarettes, fewer studies are comparing oral microorganisms for users of e-cigarettes versus cigarettes. We collected saliva from 40 non-smokers (NS), 46 traditional cigarette smokers (TS), and 27 e-cigarette consumers (EC), aged between 18 and 35 years. We performed 16S rRNA gene sequencing on the saliva samples collected to study the effects of e-cigarettes versus traditional cigarettes on the oral microbiome. The results showed that compared with the NS group, the alpha diversity of oral flora in saliva was altered in the TS group, with no significant change in the e-cigarette group. Compared with the NS and EC groups, the relative abundance of Actinomyces and Prevotella was increased in the TS group. However, compared with the NS and TS groups, the relative abundance of Veillonella was increased, and the relative abundance of Porphyromonas and Peptostreptococcus was decreased in the EC group. These results showed that both e-cigarettes and traditional cigarettes could alter the structure and composition of oral microbiota. The use of traditional cigarettes promotes the growth of some anaerobic bacteria, which may contribute to dental decay and bad breath over time. E-cigarettes have a different effect on the structure and composition of the oral microbial community compared to conventional cigarettes. In order to better understand the effects of e-cigarettes and traditional cigarettes on users' mouths, future studies will investigate the relationship between diseases such as dental caries and periodontitis and changes in oral microbial species levels.
Collapse
Affiliation(s)
- Jilong Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
| | - Jing Xu
- RELX Tech. Co., Ltd, Shenzhen, People's Republic of China
| | - Xingtao Jiang
- RELX Tech. Co., Ltd, Shenzhen, People's Republic of China
| | - Qun Su
- Shandong Baoyuan Biotechnology Co., Ltd, Yantai, People's Republic of China
| | - Lei Sun
- Shandong Baoyuan Biotechnology Co., Ltd, Yantai, People's Republic of China
| | - Baojun Li
- Shandong Danhe Biotechnology Co., Ltd, Jinan, People's Republic of China
| | - Kunlun Li
- Shengshengxiangrong (Shandong) Biotechnology Co., Ltd, Jinan, People's Republic of China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China.
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China.
| |
Collapse
|
5
|
Lei Y, Li M, Zhang H, Deng Y, Dong X, Chen P, Li Y, Zhang S, Li C, Wang S, Tao R. Comparative analysis of the human microbiome from four different regions of China and machine learning-based geographical inference. mSphere 2025; 10:e0067224. [PMID: 39699186 PMCID: PMC11774049 DOI: 10.1128/msphere.00672-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
The human microbiome, the community of microorganisms that reside on and inside the human body, is critically important for health and disease. However, it is influenced by various factors and may vary among individuals residing in distinct geographic regions. In this study, 220 samples, consisting of sterile swabs from palmar skin and oral and nasal cavities were collected from Chinese Han individuals living in Shanghai, Chifeng, Kunming, and Urumqi, representing the geographic regions of east, northeast, southwest, and northwest China. The full-length 16S rRNA gene of the microbiota in each sample was sequenced using the PacBio single-molecule real-time sequencing platform, followed by clustering the sequences into operational taxonomic units (OTUs). The analysis revealed significant differences in microbial communities among the four regions. Cutibacterium was the most abundant bacterium in palmar samples from Shanghai and Kunming, Psychrobacter in Chifeng samples, and Psychrobacillus in Urumqi samples. Additionally, Streptococcus and Staphylococcus were the dominant bacteria in the oral and nasal cavities. Individuals from the four regions could be distinguished and predicted based on a model constructed using the random forest algorithm, with the predictive effect of palmar microbiota being better than that of oral and nasal cavities. The prediction accuracy using hypervariable regions (V3-V4 and V4-V5) was comparable with that of using the entire 16S rRNA. Overall, our study highlights the distinctiveness of the human microbiome in individuals living in these four regions. Furthermore, the microbiome can serve as a biomarker for geographic origin inference, which has immense application value in forensic science.IMPORTANCEMicrobial communities in human hosts play a significant role in health and disease, varying in species, quantity, and composition due to factors such as gender, ethnicity, health status, lifestyle, and living environment. The characteristics of microbial composition at various body sites of individuals from different regions remain largely unexplored. This study utilized single-molecule real-time sequencing technology to detect the entire 16S rRNA gene of bacteria residing in the palmar skin, oral, and nasal cavities of Han individuals from four regions in China. The composition and structure of the bacteria at these three body sites were well characterized and found to differ regionally. The results elucidate the differences in bacterial communities colonizing these body sites across different regions and reveal the influence of geographical factors on human bacteria. These findings not only contribute to a deeper understanding of the diversity and geographical distribution of human bacteria but also enrich the microbiome data of the Asian population for further studies.
Collapse
Affiliation(s)
- Yinlei Lei
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
- Department of Forensic Medicine, Zunyi Medical University, Zunyi, China
| | - Min Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Han Zhang
- Institute of Forensic Science, Fudan University, Shanghai, China
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yu Deng
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
- Department of Forensic Medicine, Zunyi Medical University, Zunyi, China
| | - Xinyu Dong
- Minhang Branch of Shanghai Public Security Bureau, Shanghai, China
| | - Pengyu Chen
- Department of Forensic Medicine, Zunyi Medical University, Zunyi, China
| | - Ye Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Suhua Zhang
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Chengtao Li
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Shouyu Wang
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| |
Collapse
|
6
|
Govender P, Ghai M. Population-specific differences in the human microbiome: Factors defining the diversity. Gene 2025; 933:148923. [PMID: 39244168 DOI: 10.1016/j.gene.2024.148923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Differences in microbial communities at different body habitats define the microbiome composition of the human body. The gut, oral, skin vaginal fluid and tissue microbiome, are pivotal for human development and immune response and cross talk between these microbiomes is evident. Population studies reveal that various factors, such as host genetics, diet, lifestyle, aging, and geographical location are strongly associated with population-specific microbiome differences. The present review discusses the factors that shape microbiome diversity in humans, and microbiome differences in African, Asian and Caucasian populations. Gut microbiome studies show that microbial species Bacteroides is commonly found in individuals living in Western countries (Caucasian populations), while Prevotella is prevalent in non-Western countries (African and Asian populations). This association is mainly due to the high carbohydrate, high fat diet in western countries in contrast to high fibre, low fat diets in African/ Asian regions. Majority of the microbiome studies focus on the bacteriome component; however, interesting findings reveal that increased bacteriophage richness, which makes up the virome component, correlates with decreased bacterial diversity, and causes microbiome dysbiosis. An increase of Caudovirales (bacteriophages) is associated with a decrease in enteric bacteria in inflammatory bowel diseases. Future microbiome studies should evaluate the interrelation between bacteriome and virome to fully understand their significance in the pathogenesis and progression of human diseases. With ethnic health disparities becoming increasingly apparent, studies need to emphasize on the association of population-specific microbiome differences and human diseases, to develop microbiome-based therapeutics. Additionally, targeted phage therapy is emerging as an attractive alternative to antibiotics for bacterial infections. With rapid rise in microbiome research, focus should be on standardizing protocols, advanced bioinformatics tools, and reducing sequencing platform related biases. Ultimately, integration of multi-omics data (genomics, transcriptomics, proteomics and metabolomics) will lead to precision models for personalized microbiome therapeutics advancement.
Collapse
Affiliation(s)
- Priyanka Govender
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| |
Collapse
|
7
|
L’Heureux JE, Corbett A, Ballard C, Vauzour D, Creese B, Winyard PG, Jones AM, Vanhatalo A. Oral microbiome and nitric oxide biomarkers in older people with mild cognitive impairment and APOE4 genotype. PNAS NEXUS 2025; 4:pgae543. [PMID: 39876877 PMCID: PMC11773611 DOI: 10.1093/pnasnexus/pgae543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/18/2024] [Indexed: 01/31/2025]
Abstract
Apolipoprotein E4 (APOE4) genotype and nitric oxide (NO) deficiency are risk factors for age-associated cognitive decline. The oral microbiome plays a critical role in maintaining NO bioavailability during aging. The aim of this study was to assess interactions between the oral microbiome, NO biomarkers, and cognitive function in 60 participants with mild cognitive impairment (MCI) and 60 healthy controls using weighted gene co-occurrence network analysis and to compare the oral microbiomes between APOE4 carriers and noncarriers in a subgroup of 35 MCI participants. Within the MCI group, a high relative abundance of Neisseria was associated with better indices of cognition relating to executive function (Switching Stroop, rs = 0.33, P = 0.03) and visual attention (Trail Making, rs = -0.30, P = 0.05), and in the healthy group, Neisseria correlated with working memory (Digit Span, rs = 0.26, P = 0.04). High abundances of Haemophilus (rs = 0.38, P = 0.01) and Haemophilus parainfluenzae (rs = 0.32, P = 0.03), that co-occurred with Neisseria correlated with better scores on executive function (Switching Stroop) in the MCI group. There were no differences in oral nitrate (P = 0.48) or nitrite concentrations (P = 0.84) between the MCI and healthy groups. Linear discriminant analysis Effect Size identified Porphyromonas as a predictor for MCI and Prevotella intermedia as a predictor of APOE4-carrier status. The principal findings of this study were that a greater prevalence of oral P. intermedia is linked to elevated genetic risk for dementia (APOE4 genotype) in individuals with MCI prior to dementia diagnosis and that interventions that promote the oral Neisseria-Haemophilus and suppress Prevotella-dominated modules have potential for delaying cognitive decline.
Collapse
Affiliation(s)
- Joanna E L’Heureux
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - Anne Corbett
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - Clive Ballard
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Byron Creese
- Department of Life Sciences, University of Brunel, London UB8 3PH, United Kingdom
| | - Paul G Winyard
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - Andrew M Jones
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - Anni Vanhatalo
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| |
Collapse
|
8
|
Camañes-Gonzalvo S, Montiel-Company JM, Lobo-de-Mena M, Safont-Aguilera MJ, Fernández-Diaz A, López-Roldán A, Paredes-Gallardo V, Bellot-Arcís C. Relationship between oral microbiota and colorectal cancer: A systematic review. J Periodontal Res 2024; 59:1071-1082. [PMID: 38775019 PMCID: PMC11626693 DOI: 10.1111/jre.13289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 12/10/2024]
Abstract
This systematic review aims to investigate the microbial basis underlying the association between oral microbiota and colorectal cancer. A comprehensive search was conducted across four databases, encompassing potentially relevant studies published up to April 2024 related to the PECO question: "Is there a differentiation in oral microbial composition between adult patients diagnosed with colorectal cancer compared to healthy patients?". The Newcastle-Ottawa Scale was used to evaluate the quality of the studies included. The level of evidence was assessed through the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) tool. Sixteen studies fulfilled the eligibility criteria. Based on low to moderate evidence profile, high levels of certain subspecies within Firmicutes (such as Streptococcus anginosus, Peptostreptococcus stomatis, S. koreensis, and S. gallolyticus), Prevotella intermedia, Fusobacterium nucleatum, and Neisseria oralis were found to be associated with colorectal cancer. Conversely, certain bacteria (e.g., Lachnospiraceae, F. periodonticum, and P. melaninogenica) could exert a symbiotic protective effect against colorectal cancer. Based on existing evidence, it appears that variations in oral microbiota composition exist among individuals with and without colorectal cancer. However, further research is necessary to determine the mechanisms of oral dysbiosis in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Sara Camañes-Gonzalvo
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | | | - Miriam Lobo-de-Mena
- Medical Oncology Department, Consortium of the General University Hospital of Valencia, University of Valencia, Valencia, Spain
| | - María José Safont-Aguilera
- Medical Oncology Department, Consortium of the General University Hospital of Valencia, University of Valencia, Valencia, Spain
| | | | - Andrés López-Roldán
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Vanessa Paredes-Gallardo
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Carlos Bellot-Arcís
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
9
|
Ryu EP, Gautam Y, Proctor DM, Bhandari D, Tandukar S, Gupta M, Gautam GP, Relman DA, Shibl AA, Sherchand JB, Jha AR, Davenport ER. Nepali oral microbiomes reflect a gradient of lifestyles from traditional to industrialized. MICROBIOME 2024; 12:228. [PMID: 39497165 PMCID: PMC11533410 DOI: 10.1186/s40168-024-01941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Lifestyle plays an important role in shaping the gut microbiome. However, its contributions to the oral microbiome remain less clear, due to the confounding effects of geography and methodology in investigations of populations studied to date. Furthermore, while the oral microbiome seems to differ between foraging and industrialized populations, we lack insight into whether transitions to and away from agrarian lifestyles shape the oral microbiota. Given the growing interest in so-called "vanishing microbiomes" potentially being a risk factor for increased disease prevalence in industrialized populations, it is important that we distinguish lifestyle from geography in the study of microbiomes across populations. RESULTS Here, we investigate salivary microbiomes of 63 Nepali individuals representing a spectrum of lifestyles: foraging, subsistence farming (individuals that transitioned from foraging to farming within the last 50 years), agriculturalists (individuals that have transitioned to farming for at least 300 years), and industrialists (expatriates that immigrated to the USA within the last 20 years). We characterize the role of lifestyle in microbial diversity, identify microbes that differ between lifestyles, and pinpoint specific lifestyle factors that may be contributing to differences in the microbiomes across populations. Contrary to prevailing views, when geography is controlled for, oral microbiome alpha diversity does not differ significantly across lifestyles. Microbiome composition, however, follows the gradient of lifestyles from foraging through agrarianism to industrialism, supporting the notion that lifestyle indeed plays a role in the oral microbiome. Relative abundances of several individual taxa, including Streptobacillus and an unclassified Porphyromonadaceae genus, also mirror lifestyle. Finally, we identify specific lifestyle factors associated with microbiome composition across the gradient of lifestyles, including smoking and grain sources. CONCLUSION Our findings demonstrate that by studying populations within Nepal, we can isolate an important role of lifestyle in determining oral microbiome composition. In doing so, we highlight the potential contributions of several lifestyle factors, underlining the importance of carefully examining the oral microbiome across lifestyles to improve our understanding of global microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Erica P Ryu
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Yoshina Gautam
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Diana M Proctor
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dinesh Bhandari
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Sarmila Tandukar
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- Organization for Public Health and Environment Management, Lalitpur, Bagmati, Nepal
| | - Meera Gupta
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Sidney Kimmel Medical College, Philadelphia, PA, UAE
| | | | - David A Relman
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Section of Infectious Diseases, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ahmed A Shibl
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Aashish R Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Emily R Davenport
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
10
|
Vinerbi E, Morini G, Picozzi C, Tofanelli S. Human Salivary Microbiota Diversity According to Ethnicity, Sex, TRPV1 Variants and Sensitivity to Capsaicin. Int J Mol Sci 2024; 25:11585. [PMID: 39519137 PMCID: PMC11546822 DOI: 10.3390/ijms252111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The salivary microbiota of Italian and sub-Saharan African individuals was investigated using Nanopore sequencing technology (ONT: Oxford Nanopore Technologies). We detected variations in community composition in relation to endogenous (ethnicity, sex, and diplotypic variants of the TRPV1 gene) and exogenous (sensitivity to capsaicin) factors. The results showed that Prevotella, Haemophilus, Neisseria, Streptococcus, Veillonella, and Rothia are the most abundant genera, in accordance with the literature. However, alpha diversity and frequency spectra differed significantly between DNA pools. The microbiota in African, male TRPV1 bb/ab diplotype and capsaicin low-sensitive DNA pools was more diverse than Italian, female TRPV1 aa diplotype and capsaicin high-sensitive DNA pools. Relative abundance differed at the phylum, genus, and species level.
Collapse
Affiliation(s)
- Elena Vinerbi
- Dipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), 09042 Monserrato, Italy
| | | | - Claudia Picozzi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università Degli Studi di Milano, 20133 Milano, Italy
| | | |
Collapse
|
11
|
Fleskes RE, Johnson SJ, Honap TP, Abin CA, Gilmore JK, Oubré L, Bueschgen WD, Abel SM, Ofunniyin AA, Lewis CM, Schurr TG. Oral microbial diversity in 18th century African individuals from South Carolina. Commun Biol 2024; 7:1213. [PMID: 39342044 PMCID: PMC11439080 DOI: 10.1038/s42003-024-06893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
As part of the Anson Street African Burial Ground Project, we characterized the oral microbiomes of twelve 18th century African-descended individuals (Ancestors) from Charleston, South Carolina, USA, to study their oral health and diet. We found that their oral microbiome composition resembled that of other historic (18th-19th century) dental calculus samples but differed from that of modern samples, and was not influenced by indicators of oral health and wear observed in the dentition. Phylogenetic analysis of the oral bacteria, Tannerella forsythia and Pseudoramibacter alactolyticus, revealed varied patterns of lineage diversity and replacement in the Americas, with the Ancestors carrying strains similar to historic period Europeans and Africans. Functional profiling of metabolic pathways suggested that the Ancestors consumed a diet low in animal protein. Overall, our study reveals important insights into the oral microbial histories of African-descended individuals, particularly oral health and diet in colonial North American enslavement contexts.
Collapse
Affiliation(s)
- Raquel E Fleskes
- Department of Anthropology, Dartmouth College, Hanover, NH, USA.
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA.
| | - Sarah J Johnson
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Tanvi P Honap
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Christopher A Abin
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Joanna K Gilmore
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
- Department of Sociology and Anthropology, College of Charleston, Charleston, SC, USA
| | - La'Sheia Oubré
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
| | | | - Suzanne M Abel
- Charleston County Coroner's Office, North Charleston, SC, USA
| | - Ade A Ofunniyin
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
- Department of Sociology and Anthropology, College of Charleston, Charleston, SC, USA
| | - Cecil M Lewis
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA.
- Department of Anthropology, University of Oklahoma, Norman, OK, USA.
| | - Theodore G Schurr
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA.
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Jin X, Tian S, Zhang H, Ren Z, Wang Q, Liu Y, Zheng H, Yang M, Huang J. Succession changes of microbial community for inferring the time since deposition of saliva. Electrophoresis 2024; 45:1644-1653. [PMID: 38775223 DOI: 10.1002/elps.202300267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 09/29/2024]
Abstract
Saliva is a common biological examination material at crime scenes and has high application value in forensic case investigations. It can reflect the suspect's time of crime at the scene and provide evidence of the suspect's criminal facts. Even though many researchers have proposed their experimental protocols for estimating the time since deposition (TsD) of saliva, there is still a relative lack of research on the use of microorganisms to estimate TsD. In the current study, the succession change of microbial community in saliva with different TsD values was explored to discern the microbial markers related to TsD of saliva. We gathered saliva samples from six unrelated healthy Han individuals living in Guizhou, China and exposed these samples to indoor conditions at six time points (0, 1, 3, 7, 15, and 28 days). Temporal changes of microbial compositions in these samples were investigated by 16S rRNA sequencing (V3-V4 regions). By assessing temporal variation patterns of microbial abundance at the genus level, four bacteria (Brucella, Prevotella, Pseudomonas, and Fusobacterium) were observed to show good time dependence in these samples. In addition, the hierarchical clustering and principal co-ordinates analysis results revealed that these saliva samples could be classified into t-short (≤7 days) and t-long (>7 days) groups. In the end, the random forest model was developed to predict the TsD of these samples. For the model, the root mean square error, R2, and mean absolute error between predicted and actual TsD values were 1.5213, 0.9851, and 1.1969, respectively. To sum up, we identified TsD-related microbial markers in saliva samples, which could be viewed as valuable markers for inferring the TsD of saliva.
Collapse
Affiliation(s)
- Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Shunyi Tian
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Hao Zheng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| |
Collapse
|
13
|
Bingöl M, Cardilli A, Bingöl AC, Löber U, Bang C, Franke A, Bartzela T, Beblo S, Mönch E, Stolz S, Schaefer AS, Forslund SK, Richter GM. Oral microbiota of patients with phenylketonuria: A nation-based cross-sectional study. J Clin Periodontol 2024; 51:1081-1092. [PMID: 38745393 DOI: 10.1111/jcpe.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
AIM The oral microenvironment contributes to microbial composition and immune equilibrium. It is considered to be influenced by dietary habits. Phenylketonuria (PKU) patients, who follow a lifelong low-protein diet, exhibit higher prevalence of oral diseases such as periodontitis, offering a suitable model to explore the interplay between diet, oral microbiota and oral health. MATERIALS AND METHODS We conducted 16S rDNA sequencing on saliva and subgingival plaque from 109 PKU patients (ages 6-68 years) and 114 age-matched controls and correlated oral microbial composition and dental health. RESULTS PKU patients exhibited worse dental health, reduced oral microbial diversity and a difference in the abundance of specific taxa, especially Actinobacteriota species, compared to controls. PKU patients with poor periodontal health exhibited higher alpha diversity than the orally healthy ones, marked by high abundance of the genus Tannerella. Notably, the observed taxonomic differences in PKU patients with normal indices of decayed/missing/filled teeth, plaque control record, gingival bleeding index and periodontal screening and recording index generally differed from microbial signatures of periodontitis. CONCLUSIONS PKU patients' reduced microbial diversity may be due to their diet's metabolic challenges disrupting microbial and immune balance, thus increasing oral inflammation. Higher alpha diversity in PKU patients with oral inflammation is likely related to expanded microbial niches.
Collapse
Affiliation(s)
- Memduh Bingöl
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alessio Cardilli
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Anne Carolin Bingöl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Löber
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Theodosia Bartzela
- Department of Orthodontics, Technische Universität Dresden, Dresden, Germany
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Centre for Pediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Eberhard Mönch
- Campus Virchow-Klinikum, Interdisciplinary Metabolism Centre, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Simone Stolz
- Department of Pediatric and Adolescent Medicine, Carl-Thiem-Klinikum Cottbus, Cottbus, Germany
| | - Arne S Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sofia Kirke Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Gesa M Richter
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
14
|
Ryu EP, Gautam Y, Proctor DM, Bhandari D, Tandukar S, Gupta M, Gautam GP, Relman DA, Shibl AA, Sherchand JB, Jha AR, Davenport ER. Nepali oral microbiomes reflect a gradient of lifestyles from traditional to industrialized. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601557. [PMID: 39005279 PMCID: PMC11244963 DOI: 10.1101/2024.07.01.601557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Lifestyle plays an important role in shaping the gut microbiome. However, its contributions to the oral microbiome remains less clear, due to the confounding effects of geography and methodology in investigations of populations studied to date. Furthermore, while the oral microbiome seems to differ between foraging and industrialized populations, we lack insight into whether transitions to and away from agrarian lifestyles shape the oral microbiota. Given the growing interest in so-called 'vanishing microbiomes' potentially being a risk factor for increased disease prevalence in industrialized populations, it is important that we distinguish lifestyle from geography in the study of microbiomes across populations. Results Here, we investigate salivary microbiomes of 63 Nepali individuals representing a spectrum of lifestyles: foraging, subsistence farming (individuals that transitioned from foraging to farming within the last 50 years), agriculturalists (individuals that have transitioned to farming for at least 300 years), and industrialists (expatriates that immigrated to the United States within the last 20 years). We characterize the role of lifestyle in microbial diversity, identify microbes that differ between lifestyles, and pinpoint specific lifestyle factors that may be contributing to differences in the microbiomes across populations. Contrary to prevailing views, when geography is controlled for, oral microbiome alpha diversity does not differ significantly across lifestyles. Microbiome composition, however, follows the gradient of lifestyles from foraging through agrarianism to industrialism, supporting the notion that lifestyle indeed plays a role in the oral microbiome. Relative abundances of several individual taxa, including Streptobacillus and an unclassified Porphyromonadaceae genus, also mirror lifestyle. Finally, we identify specific lifestyle factors associated with microbiome composition across the gradient of lifestyles, including smoking and grain source. Conclusion Our findings demonstrate that by controlling for geography, we can isolate an important role for lifestyle in determining oral microbiome composition. In doing so, we highlight the potential contributions of several lifestyle factors, underlining the importance of carefully examining the oral microbiome across lifestyles to improve our understanding of global microbiomes.
Collapse
Affiliation(s)
- Erica P. Ryu
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Yoshina Gautam
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Diana M. Proctor
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Dinesh Bhandari
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- School of Public Health, University of Adelaide, South Australia, Australia
| | - Sarmila Tandukar
- Public Health Research Laboratory, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
- Organization for Public Health and Environment Management, Lalitpur, Bagmati, Nepal
| | - Meera Gupta
- Department of Biology, Pennsylvania State University, University Park, PA
| | | | - David A. Relman
- Departments of Medicine, and of Microbiology & Immunology, Stanford University, Stanford, CA
- Section of Infectious Diseases, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Ahmed A. Shibl
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Aashish R. Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, and Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Emily R. Davenport
- Department of Biology, Pennsylvania State University, University Park, PA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
15
|
Remschmidt B, Muallah D, Rieder M, Liu DT. Public interest and seasonal peaks for wisdom teeth related web inquiries - A google trends analysis. Health Informatics J 2024; 30:14604582241270759. [PMID: 39324598 DOI: 10.1177/14604582241270759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Objective: The study aimed to analyze the public interest in wisdom teeth-related search terms as well as regional and seasonal trends based on information from the Google search engine. METHODS With the help of the online search query tool, Google Trends, the public interest in the primary search term "wisdom teeth" for the timeframe between January 1st, 2004 and September 31st, 2021 was analyzed. To do so, a country-specific search was conducted in English-speaking countries (the USA, the UK, Canada, and Australia) in the northern and southern hemispheres. The extracted time series was examined for reliability, and a Cosinor analysis evaluated the statistical significance of seasonal interest peaks. RESULTS The reliability of averaged time series data on the search term "wisdom teeth" was excellent in all examined countries. In all countries analyzed, "wisdom teeth removal" was one of the most common related search terms. Significant interest peaks for wisdom teeth-related search terms were found in Canada and the USA during summer (p < .001). In Canada and the USA, significant seasonal patterns with the highest interest during the summer months, could be displayed. CONCLUSION This phenomenon could be caused by increased wisdom teeth-related complaints induced by seasonal climate changes.
Collapse
Affiliation(s)
- Bernhard Remschmidt
- Division of Oral and Maxillofacial Surgery, Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria
| | - David Muallah
- Devision of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Rieder
- Division of Oral and Maxillofacial Surgery, Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria
| | - David T Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Missa KF, Diallo K, Bla KB, Tuo KJ, Gboko KDT, Tiémélé LS, Ouattara AF, Gragnon BG, Ngoi JM, Wilkinson RJ, Awandare GA, Bonfoh B. Association of symptomatic upper respiratory tract infections with the alteration of the oropharyngeal microbiome in a cohort of school children in Côte d'Ivoire. Front Microbiol 2024; 15:1412923. [PMID: 38993497 PMCID: PMC11238735 DOI: 10.3389/fmicb.2024.1412923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction The oropharyngeal microbiome plays an important role in protection against infectious agents when in balance. Despite use of vaccines and antibiotic therapy to prevent respiratory tract infections, they remain one of the major causes of mortality and morbidity in Low- and middle-income countries. Hence the need to explore other approaches to prevention by identifying microbial biomarkers that could be leveraged to modify the microbiota in order to enhance protection against pathogenic bacteria. The aim of this study was to analyze the oropharyngeal microbiome (OPM) of schoolchildren in Côte d'Ivoire presenting symptoms of upper respiratory tract infections (URTI) for better prevention strategy. Methods Primary schools' children in Korhogo (n = 37) and Abidjan (n = 39) were followed for six months with monthly oropharyngeal sampling. Clinical diagnostic of URT infection was performed and nucleic acid extracted from oropharyngeal swabs were used for 16S rRNA metagenomic analysis and RT-PCR. Results The clinical examination of children's throat in Abidjan and Korhogo identified respectively 17 (43.59%) and 15 (40.54%) participants with visible symptoms of URTIs, with 26 episodes of infection in Abidjan and 24 in Korhogo. Carriage of Haemophilus influenzae (12%), Streptococcus pneumoniae (6%) and SARS-CoV-2 (6%) was confirmed by PCR. A significant difference in alpha diversity was found between children colonized by S. pneumoniae and those that were not (p = 0.022). There was also a significant difference in alpha diversity between children colonised with H. influenzae and those who were not (p = 0.017). No significant difference was found for SARS-CoV-2. Sphingomonas, Ralstonia and Rothia were significantly enriched in non-carriers of S. pneumoniae; Actinobacillus was significantly enriched in non-carriers of H. influenzae; Actinobacillus and Porphyromonas were significantly enriched in non-carriers of SARS-CoV-2 (p < 0.001). Discussion Nearly 40% of children showed clinical symptoms of infection not related to geographical location. The OPM showed an imbalance during H. influenzae and S. pneumoniae carriage. This study provides a baseline understanding of microbiome markers in URTIs in children for future research, to develop targeted interventions aimed at restoring the microbial balance and reducing the symptoms associated with RTIs.
Collapse
Affiliation(s)
- Kouassi Firmin Missa
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d'Ivoire
| | - Kanny Diallo
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- West African Centre for Cell Biology of Infectious Pathogens, Accra, Ghana
| | - Kouakou Brice Bla
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d'Ivoire
| | - Kolotioloman Jérémie Tuo
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Laboratoire de Microbiologie, Biotechnologies et Bio-informatique, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Kossia Debia Thérèse Gboko
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Laurent-Simon Tiémélé
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Allassane Foungoye Ouattara
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Laboratoire de Cytologie et Biologie Animale, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Biego Guillaume Gragnon
- Laboratoire de Cytologie et Biologie Animale, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | | | - Robert J Wilkinson
- Laboratoire National d'Appui au Développement Agricole, Laboratoire Régional de Korhogo, Korhogo, Côte d'Ivoire
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Accra, Ghana
| | - Bassirou Bonfoh
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| |
Collapse
|
17
|
Wang S, Song F, Guo X, Gu L, Tan W, Wu P, Liang W, Luo H, Wang Y. A preliminary report on the exploration of salivary bacterial diversity by the multiplex SNaPshot assay. Forensic Sci Int Genet 2024; 70:103032. [PMID: 38503203 DOI: 10.1016/j.fsigen.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Salivary bacterial community composition is associated with the host's internal and environmental factors, which have potential applications in forensic practice. The 16S rRNA gene sequencing is the most commonly used strategy for detecting salivary bacterial diversity; however, its platforms are not compatible with capillary electrophoresis (CE) platforms commonly used for forensic applications. Therefore, we attempted to detect the salivary bacterial diversity using a single nucleotide polymorphism (SNP) assay. Salivary bacterial diversity varies among diverse geographic locations, making it a potential supplementary biomarker for forensic geographic sourcing. To evaluate the performance of the multiplex SNaPshot assay, saliva samples from three geographic locations in China were analyzed using the multiplex SNaPshot assay and 16S rRNA gene sequencing. We screened SNPs from two high-relative-abundance salivary genera (Streptococcus and Veillonella) to construct a multiplex SNaPshot system that can be used on the CE platform. The stability and sensitivity of the multiplex SNaPshot system were also tested. A random forest classification model was used to classify samples from different regions to explore the ability of salivary bacteria to discriminate between geographic sources. Six bacterial SNPs were screened and a multiplex SNaPshot system was constructed. The stability results showed that the typing of salivary stains that were placed indoors for different days was not affected in this study. Two-thirds of mocked salivary stain samples showed more than 90% of typing results obtained for salivary stain samples with an input of 0.1 µl saliva. The results of principal coordinate analysis based on salivary bacterial diversity showed significant differences between samples from the three different geographic locations. The accuracy of the random forest classification was 66.67% based on the multiplex SNaPshot assay and 83.33% based on the 16S rRNA gene sequencing. In conclusion, this is the first attempt to detect salivary bacterial diversity using a multiplex SNaPshot bacterial SNP assay. The geographic difference in human salivary bacterial community composition was significant, as revealed by the multiplex SNaPshot assay; however, its performance in discriminating geographic sources was lower than that of 16S rRNA gene sequencing. This strategy based on bacterial SNP loci may favor the detection of human bacterial diversity in common forensic laboratories but requires further exploration in larger sample sizes and more bacterial SNP loci.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiangnan Guo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Liya Gu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Weijia Tan
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Peiyan Wu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Zheng L, Shi L, Wu X, Hu P, Zhang B, Han X, Wang K, Li X, Yang F, Wang Y, Li X, Qiao R. Advances in Research on Pig Salivary Analytes: A Window to Reveal Pig Health and Physiological Status. Animals (Basel) 2024; 14:374. [PMID: 38338017 PMCID: PMC10854898 DOI: 10.3390/ani14030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Saliva is an important exocrine fluid that is easy to collect and is a complex mixture of proteins and other molecules from multiple sources from which considerable biological information can be mined. Pig saliva, as an easily available biological liquid rich in bioactive ingredients, is rich in nucleic acid analytes, such as eggs, enzymes, amino acids, sugars, etc. The expression levels of these components in different diseases have received extensive attention, and the analysis of specific proteins, metabolites, and biological compositions in pig saliva has become a new direction for disease diagnosis and treatment. The study of the changes in analytes in pig saliva can provide a new strategy for early diagnosis, prognosis assessment, and treatment of diseases. In this paper, the detection methods and research progress of porcine salivary analytes are reviewed, the application and research progress of porcine salivary analytes in diseases are discussed, and the future application prospect is presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (L.S.)
| |
Collapse
|
19
|
Pourali G, Kazemi D, Chadeganipour AS, Arastonejad M, Kashani SN, Pourali R, Maftooh M, Akbarzade H, Fiuji H, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Avan A. Microbiome as a biomarker and therapeutic target in pancreatic cancer. BMC Microbiol 2024; 24:16. [PMID: 38183010 PMCID: PMC10768369 DOI: 10.1186/s12866-023-03166-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Studying the effects of the microbiome on the development of different types of cancer has recently received increasing research attention. In this context, the microbial content of organs of the gastrointestinal tract has been proposed to play a potential role in the development of pancreatic cancer (PC). Proposed mechanisms for the pathogenesis of PC include persistent inflammation caused by microbiota leading to an impairment of antitumor immune surveillance and altered cellular processes in the tumor microenvironment. The limited available diagnostic markers that can currently be used for screening suggest the importance of microbial composition as a non-invasive biomarker that can be used in clinical settings. Samples including saliva, stool, and blood can be analyzed by 16 s rRNA sequencing to determine the relative abundance of specific bacteria. Studies have shown the potentially beneficial effects of prebiotics, probiotics, antibiotics, fecal microbial transplantation, and bacteriophage therapy in altering microbial diversity, and subsequently improving treatment outcomes. In this review, we summarize the potential impact of the microbiome in the pathogenesis of PC, and the role these microorganisms might play as biomarkers in the diagnosis and determining the prognosis of patients. We also discuss novel treatment methods being used to minimize or prevent the progression of dysbiosis by modulating the microbial composition. Emerging evidence is supportive of applying these findings to improve current therapeutic strategies employed in the treatment of PC.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | | | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
20
|
Dinis M, Tran NC. Oral immune system and microbes. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:147-228. [DOI: 10.1016/b978-0-323-90144-4.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Mir TUG, Manhas S, Khurshid Wani A, Akhtar N, Shukla S, Prakash A. Alterations in microbiome of COVID-19 patients and its impact on forensic investigations. Sci Justice 2024; 64:81-94. [PMID: 38182316 DOI: 10.1016/j.scijus.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
The human microbiome is vital for maintaining human health and has garnered substantial attention in recent years, particularly in the context of the coronavirus disease 2019 (COVID-19) outbreak. Studies have underscored significant alterations in the microbiome of COVID-19 patients across various body niches, including the gut, respiratory tract, oral cavity, skin, and vagina. These changes manifest as shifts in microbiota composition, characterized by an increase in opportunistic pathogens and a decrease in beneficial commensal bacteria. Such microbiome transformations may play a pivotal role in influencing the course and severity of COVID-19, potentially contributing to the inflammatory response. This ongoing relationship between COVID-19 and the human microbiome serves as a compelling subject of research, underscoring the necessity for further investigations into the underlying mechanisms and their implications for patient health. Additionally, these alterations in the microbiome may have significant ramifications for forensic investigations, given the microbiome's potential in establishing individual characteristics. Consequently, changes in the microbiome could introduce a level of complexity into forensic determinations. As research progresses, a more profound understanding of the human microbiome within the context of COVID-19 may offer valuable insights into disease prevention, treatment strategies, and its potential applications in forensic science. Consequently, this paper aims to provide an overarching review of microbiome alterations due to COVID-19 and the associated impact on forensic applications, bridging the gap between the altered microbiome of COVID-19 patients and the challenges forensic investigations may encounter when analyzing this microbiome as a forensic biomarker.
Collapse
Affiliation(s)
- Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; State Forensic Science Laboratory, Srinagar, Jammu and Kashmir 190001, India.
| | - Sakshi Manhas
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Yadav S, Tripathi V, Saran V. Identification of habit specific bacteria in human saliva through Next-Generation Sequencing. Forensic Sci Int 2023; 353:111871. [PMID: 37939434 DOI: 10.1016/j.forsciint.2023.111871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Characterization of human saliva through Next-Generation Sequencing has emerged as a valuable tool for understanding the complex microbial communities residing in the oral cavity. This study aims to investigate the habit-based variations in the salivary microbiome using Next-Generation Sequencing technology. Saliva samples were collected from a diverse population representing different habits, including smoking, alcohol consumption, and vegan diet. The DNA from the samples was extracted, and the V3-V4 region of the 16 S rRNA gene was amplified for Next-Generation Sequencing analysis. The obtained sequences were processed and analysed using bioinformatics tools to determine the microbial composition and diversity. Preliminary results revealed distinct microbial profiles associated with different habits, indicating the potential influence of different habits on the salivary microbiome. Smokers exhibited a higher abundance of certain pathogenic bacteria, while alcohol consumers showed alterations in microbial diversity compared to non-consumers. Furthermore, individuals with vegan diet demonstrated an increased prevalence of specific bacteria. These findings highlight the significance of habit-based characterization of the salivary microbiome and its potential implications in the presence of certain bacteria. Understanding the relationship between habits and the salivary microbiome could contribute to developing personalized approaches for estimating and identifying any particular individual. Further research is warranted to explore additional factors and expand the scope of habit-based analysis in saliva-based microbial characterization through Next-Generation Sequencing.
Collapse
Affiliation(s)
- Shubham Yadav
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology And Sciences, Prayagraj, Uttar Pradesh, India.
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology And Sciences, Prayagraj, Uttar Pradesh, India; Department of Microbiology, Graphic Era Deemed to be University, Clement Town, Dehradun, U.K.-248002, India
| | - Vaibhav Saran
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology And Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
23
|
Chun Giok K, Menon RK. The Microbiome of Peri-Implantitis: A Systematic Review of Next-Generation Sequencing Studies. Antibiotics (Basel) 2023; 12:1610. [PMID: 37998812 PMCID: PMC10668804 DOI: 10.3390/antibiotics12111610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
(1) Introduction: Current evidence shows that mechanical debridement augmented with systemic and topical antibiotics may be beneficial for the treatment of peri-implantitis. The microbial profile of peri-implantitis plays a key role in identifying the most suitable antibiotics to be used for the treatment and prevention of peri-implantitis. This systematic review aimed to summarize and critically analyze the methodology and findings of studies which have utilized sequencing techniques to elucidate the microbial profiles of peri-implantitis. (2) Results: Fusobacterium, Treponema, and Porphyromonas sp. are associated with peri-implantitis. Veillonella sp. are associated with healthy implant sites and exhibit a reduced prevalence in deeper pockets and with greater severity of disease progression. Streptococcus sp. have been identified both in diseased and healthy sites. Neisseria sp. have been associated with healthy implants and negatively correlate with the probing depth. Methanogens and AAGPRs were also detected in peri-implantitis sites. (3) Methods: The study was registered with the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42023459266). The PRISMA criteria were used to select articles retrieved from a systematic search of the Scopus, Cochrane, and Medline databases until 1 August 2023. Title and abstract screening was followed by a full-text review of the included articles. Thirty-two articles were included in the final qualitative analysis. (4) Conclusions: A distinct microbial profile could not be identified from studies employing sequencing techniques to identify the microbiome. Further studies are needed with more standardization to allow a comparison of findings. A universal clinical parameter for the diagnosis of peri-implantitis should be implemented in all future studies to minimize confounding factors. The subject pool should also be more diverse and larger to compensate for individual differences, and perhaps a distinct microbial profile can be seen with a larger sample size.
Collapse
Affiliation(s)
- Koay Chun Giok
- School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia;
| | | |
Collapse
|
24
|
Saha S, Boesch C, Maycock J, Wood S, Do T. Sweet Orange Juice Processing By-Product Extracts: A Caries Management Alternative to Chlorhexidine. Biomolecules 2023; 13:1607. [PMID: 38002290 PMCID: PMC10669069 DOI: 10.3390/biom13111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Dental caries is one of the most prevalent chronic diseases globally in both children and adults. This study investigated the potential of industrial sweet orange waste extracts (ISOWE) as a substitute for chlorhexidine (CHX) in managing dental caries. First, the cytotoxicity of ISOWE (40, 80, 120 mg/mL) and CHX (0.1 and 0.2%) on buccal epithelial cells was determined. ISOWE exhibited no overall toxicity, whereas CHX strongly affected cell viability. The combination of ISOWE and CHX significantly enhanced cell proliferation compared to CHX alone. Next, the antimicrobial efficacy of ISOWE, CHX, and their combination was assessed against a 7-day complex biofilm model inoculated with oral samples from human volunteers. CHX exhibited indiscriminate antimicrobial action, affecting both pathogenic and health-associated oral microorganisms. ISOWE demonstrated lower antimicrobial efficacy than CHX but showed enhanced efficacy against pathogenic species while preserving the oral microbiome's balance. When applied to a cariogenic biofilm, the combined treatment of ISOWE with 0.1% CHX showed similar efficacy to 0.2% CHX treatment alone. Overall, the findings suggest that ISOWE is a promising natural anti-cariogenic agent with lower toxicity and enhanced selectivity for pathogenic species compared to CHX.
Collapse
Affiliation(s)
- Suvro Saha
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (S.S.)
- School of Dentistry, Division of Oral Biology, Faculty of Medicine & Health, University of Leeds, Leeds LS9 7TF, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (S.S.)
| | - Joanne Maycock
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (S.S.)
| | - Simon Wood
- School of Dentistry, Division of Oral Biology, Faculty of Medicine & Health, University of Leeds, Leeds LS9 7TF, UK
| | - Thuy Do
- School of Dentistry, Division of Oral Biology, Faculty of Medicine & Health, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
25
|
Arredondo A, Àlvarez G, Isabal S, Teughels W, Laleman I, Contreras MJ, Isbej L, Huapaya E, Mendoza G, Mor C, Nart J, Blanc V, León R. Comparative 16S rRNA gene sequencing study of subgingival microbiota of healthy subjects and patients with periodontitis from four different countries. J Clin Periodontol 2023; 50:1176-1187. [PMID: 37246304 DOI: 10.1111/jcpe.13827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/15/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
AIM To investigate the differences between the subgingival microbiota of healthy subjects (HS) and periodontitis patients (PP) from four different countries through a metagenomic approach. MATERIALS AND METHODS Subgingival samples were obtained from subjects from four different countries. Microbial composition was analysed through high-throughput sequencing of the V3-V4 region of the 16S rRNA gene. The country of origin, diagnosis and clinical and demographic variables of the subjects were used to analyse the microbial profiles. RESULTS In total, 506 subgingival samples were analysed: 196 from HS and 310 from patients with periodontitis. Differences in richness, diversity and microbial composition were observed when comparing samples pertaining to different countries of origin and different subject diagnoses. Clinical variables, such as bleeding on probing, did not significantly affect the bacterial composition of the samples. A highly conserved core of microbiota associated with periodontitis was detected, while the microbiota associated with periodontally HS was much more diverse. CONCLUSIONS Periodontal diagnosis of the subjects was the main variable explaining the composition of the microbiota in the subgingival niche. Nevertheless, the country of origin also had a significant impact on the microbiota and is therefore an important factor to consider when describing subgingival bacterial communities.
Collapse
Affiliation(s)
- A Arredondo
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| | - G Àlvarez
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| | - S Isabal
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| | - W Teughels
- Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - I Laleman
- Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - M J Contreras
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L Isbej
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Pharmacology and Toxicology Programme, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - E Huapaya
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
| | - G Mendoza
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
- Department of Periodontics, University of Pennsylvania, School of dental Medicine, Philadelphia, Pennsylvania, USA
| | - C Mor
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - J Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - V Blanc
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| | - R León
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| |
Collapse
|
26
|
Araújo V, Fehn AM, Phiri A, Wills J, Rocha J, Gayà-Vidal M. Oral microbiome homogeneity across diverse human groups from southern Africa: first results from southwestern Angola and Zimbabwe. BMC Microbiol 2023; 23:226. [PMID: 37596536 PMCID: PMC10436416 DOI: 10.1186/s12866-023-02970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND While the human oral microbiome is known to play an important role in systemic health, its average composition and diversity patterns are still poorly understood. To gain better insights into the general composition of the microbiome on a global scale, the characterization of microbiomes from a broad range of populations, including non-industrialized societies, is needed. Here, we used the portion of non-human reads obtained through an expanded exome capture sequencing approach to characterize the saliva microbiomes of 52 individuals from eight ethnolinguistically diverse southern African populations from Angola (Kuvale, Kwepe, Himba, Tjimba, Kwisi, Twa, !Xun) and Zimbabwe (Tshwa), including foragers, food-producers, and peripatetic groups (low-status communities who provide services to their dominant neighbors). RESULTS Our results indicate that neither host genetics nor livelihood seem to influence the oral microbiome profile, with Neisseria, Streptococcus, Prevotella, Rothia, and Porphyromonas being the five most frequent genera in southern African groups, in line with what has been shown for other human populations. However, we found that some Tshwa and Twa individuals display an enrichment of pathogenic genera from the Enterobacteriaceae family (i.e. Enterobacter, Citrobacter, Salmonella) of the Proteobacteria phylum, probably reflecting deficient sanitation and poor health conditions associated with social marginalization. CONCLUSIONS Taken together, our results suggest that socio-economic status, rather than ethnolinguistic affiliation or subsistence mode, is a key factor in shaping the salivary microbial profiles of human populations in southern Africa.
Collapse
Affiliation(s)
- Vítor Araújo
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- Program in Genomics, Biodiversity and Land Planning, CIBIO, BIOPOLIS, Campus de Vairão, Vairão, 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, 4169-007, Portugal
| | - Anne-Maria Fehn
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- Program in Genomics, Biodiversity and Land Planning, CIBIO, BIOPOLIS, Campus de Vairão, Vairão, 4485-661, Portugal
| | - Admire Phiri
- Department of Linguistics and Language Practice, University of Free State, Bloemfontein, South Africa
| | | | - Jorge Rocha
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- Program in Genomics, Biodiversity and Land Planning, CIBIO, BIOPOLIS, Campus de Vairão, Vairão, 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, 4169-007, Portugal
| | - Magdalena Gayà-Vidal
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal.
- Program in Genomics, Biodiversity and Land Planning, CIBIO, BIOPOLIS, Campus de Vairão, Vairão, 4485-661, Portugal.
| |
Collapse
|
27
|
Nilendu D. Toward Oral Thanatomicrobiology-An Overview of the Forensic Implications of Oral Microflora. Acad Forensic Pathol 2023; 13:51-60. [PMID: 37457549 PMCID: PMC10338735 DOI: 10.1177/19253621231176411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/01/2023] [Indexed: 07/18/2023]
Abstract
Introduction The oral cavity is home to numerous microorganisms including bacteria, fungi, and viruses which together form the oral microflora. It is the second most diverse microbial site in the human body after the gastrointestinal tract. Microbial degradation is a common phenomenon that occurs after death, with the early and advanced stages of decomposition being closely associated with oral microbial activity. Methods This article reviews the current state of knowledge on the role of the oral microflora in postmortem events, and highlights the growing importance of terms such as forensic microbiology and thanatomicrobiome. This article also discusses next-generation sequencing, metagenomic sequencing studies, and RNA sequencing to study the oral thanatomicrobiome and epinecrotic communities in forensic oral genetics. Results The indigenous microorganisms in the oral cavity are among the first to respond to the process of decomposition. DNA/RNA sequencing is a relatively simple, precise, and cost-effective method to estimate biological diversity during various stages of postmortem decomposition. The field of thanatomicrobiology is rapidly evolving into a key area in forensic research. Conclusion This article briefly narrates oral microflora and its implications in forensic odontology. The role of microbial activity in postmortem events is gaining importance in forensic research, and further studies are needed to fully understand the potential applications of advanced technology in the study of the oral thanatomicrobiome.
Collapse
Affiliation(s)
- Debesh Nilendu
- Debesh Nilendu PhD, Department of Oral Medicine and Radiology, K. M. Shah Dental College and Hospital, Sumandeep Vidyapeeth Deemed to be University, Waghodia Road, Piparia, Taluk Waghodia, Vadodara, Gujarat 391760, India,
| |
Collapse
|
28
|
Nearing JT, DeClercq V, Langille MGI. Investigating the oral microbiome in retrospective and prospective cases of prostate, colon, and breast cancer. NPJ Biofilms Microbiomes 2023; 9:23. [PMID: 37127667 PMCID: PMC10151362 DOI: 10.1038/s41522-023-00391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
The human microbiome has been proposed as a potentially useful biomarker for several cancers. To examine this, we made use of salivary samples from the Atlantic Partnership for Tomorrow's Health (PATH) project and Alberta's Tomorrow Project (ATP). Sample selection was divided into both a retrospective and prospective case control design examining prostate, breast, and colon cancer. In total 89 retrospective and 260 prospective cancer cases were matched to non-cancer controls and saliva samples were sequenced using 16S rRNA gene sequencing. We found no significant differences in alpha diversity. All beta diversity measures were insignificant except for unweighted UniFrac profiles in retrospective breast cancer cases and weighted UniFrac, Bray-Curtis and Robust Atchinson's distances in colon cancer after testing with age and sex adjusted MiRKAT models. Differential abundance (DA) analysis showed several taxa that were associated with previous cancer in all three groupings. Only one genus (Clostridia UCG-014) in breast cancer and one ASV (Fusobacterium periodonticum) in colon cancer was identified by more than one DA tool. In prospective cases three ASVs were associated with colon cancer, one ASV with breast cancer, and one ASV with prostate cancer. Random Forest classification showed low levels of signal in both study designs in breast and prostate cancer. Contrastingly, colon cancer did show signal in our retrospective analysis (AUC: 0.737) and in one of two prospective cohorts (AUC: 0.717). Our results indicate that it is unlikely that reliable microbial oral biomarkers for breast and prostate cancer exist.. However, further research into the oral microbiome and colon cancer could be fruitful.
Collapse
Affiliation(s)
- Jacob T Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| | - Vanessa DeClercq
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
29
|
Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut 2023; 72:772-786. [PMID: 36720630 PMCID: PMC10086306 DOI: 10.1136/gutjnl-2022-328970] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
The microbiome has been proven to be associated with many diseases and has been used as a biomarker and target in disease prevention and intervention. Currently, the vital role of the microbiome in pregnant women and newborns is increasingly emphasised. In this review, we discuss the interplay of the microbiome and the corresponding immune mechanism between mothers and their offspring during the perinatal period. We aim to present a comprehensive picture of microbial transmission and potential immune imprinting before and after delivery. In addition, we discuss the possibility of in utero microbial colonisation during pregnancy, which has been highly debated in recent studies, and highlight the importance of the microbiome in infant development during the first 3 years of life. This holistic view of the role of the microbial interplay between mothers and infants will refine our current understanding of pregnancy complications as well as diseases in early life and will greatly facilitate the microbiome-based prenatal diagnosis and treatment of mother-infant-related diseases.
Collapse
Affiliation(s)
- Liwen Xiao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of System Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
30
|
Yuan H, Wang Z, Wang Z, Zhang F, Guan D, Zhao R. Trends in forensic microbiology: From classical methods to deep learning. Front Microbiol 2023; 14:1163741. [PMID: 37065115 PMCID: PMC10098119 DOI: 10.3389/fmicb.2023.1163741] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Forensic microbiology has been widely used in the diagnosis of causes and manner of death, identification of individuals, detection of crime locations, and estimation of postmortem interval. However, the traditional method, microbial culture, has low efficiency, high consumption, and a low degree of quantitative analysis. With the development of high-throughput sequencing technology, advanced bioinformatics, and fast-evolving artificial intelligence, numerous machine learning models, such as RF, SVM, ANN, DNN, regression, PLS, ANOSIM, and ANOVA, have been established with the advancement of the microbiome and metagenomic studies. Recently, deep learning models, including the convolutional neural network (CNN) model and CNN-derived models, improve the accuracy of forensic prognosis using object detection techniques in microorganism image analysis. This review summarizes the application and development of forensic microbiology, as well as the research progress of machine learning (ML) and deep learning (DL) based on microbial genome sequencing and microbial images, and provided a future outlook on forensic microbiology.
Collapse
Affiliation(s)
- Huiya Yuan
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang, China
| | - Ziwei Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhi Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Fuyuan Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Dawei Guan
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang, China
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Rui Zhao
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang, China
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| |
Collapse
|
31
|
Impact of high altitude on composition and functional profiling of oral microbiome in Indian male population. Sci Rep 2023; 13:4038. [PMID: 36899053 PMCID: PMC10006418 DOI: 10.1038/s41598-023-30963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
The oral cavity of human contains bacteria that are critical for maintaining the homeostasis of the body. External stressors such as high altitude (HA) and low oxygen affect the human gut, skin and oral microbiome. However, compared to the human gut and skin microbiome, studies demonstrating the impact of altitude on human oral microbiota are currently scarce. Alterations in the oral microbiome have been reported to be associated with various periodontal diseases. In light of the increased occurrence of HA oral health related problems, the effect of HA on the oral salivary microbiome was investigated. We conducted a pilot study in 16 male subjects at two different heights i.e., H1 (210 m) and H2 (4420 m). Total of 31 saliva samples,16 at H1 and 15 at H2 were analyzed by utilizing the 16S rRNA high-throughput sequencing, to explore the relationship between the HA environment and salivary microbiota. The preliminary results suggesting that, the most abundant microbiome at the phylum level are: Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Interestingly, 11 genera were identified at the both heights with different relative abundances. In addition, the salivary microbiome was more diverse at H1 compared to H2 as demonstrated by decreased alpha diversity. Further, predicted functional results indicate that microbial metabolic profiles significantly decreased at H2 as compared to H1, including two major metabolic pathways involving carbohydrates, and amino acids. Our findings show that HA induces shifts in the composition and structure of human oral microbiota which can affect host health homeostasis.
Collapse
|
32
|
Herreros-Pomares A, Hervás D, Bagan-Debón L, Jantus-Lewintre E, Gimeno-Cardona C, Bagan J. On the Oral Microbiome of Oral Potentially Malignant and Malignant Disorders: Dysbiosis, Loss of Diversity, and Pathogens Enrichment. Int J Mol Sci 2023; 24:ijms24043466. [PMID: 36834903 PMCID: PMC9961214 DOI: 10.3390/ijms24043466] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The role of dysbiosis in the development and progression of oral potentially malignant disorders (OPMDs) remains largely unknown. Here, we aim to characterize and compare the oral microbiome of homogeneous leucoplakia (HL), proliferative verrucous leukoplakia (PVL), oral squamous cell carcinoma (OSCC), and OSCC preceded by PVL (PVL-OSCC). Fifty oral biopsies from HL (n = 9), PVL (n = 12), OSCC (n = 10), PVL-OSCC (n = 8), and healthy (n = 11) donors were obtained. The sequence of the V3-V4 region of the 16S rRNA gene was used to analyze the composition and diversity of bacterial populations. In the cancer patients, the number of observed amplicon sequence variants (ASVs) was lower and Fusobacteriota constituted more than 30% of the microbiome. PVL and PVL-OSCC patients had a higher abundance of Campilobacterota and lower Proteobacteria than any other group analyzed. A penalized regression was performed to determine which species were able to distinguish groups. HL is enriched in Streptococcus parasanguinis, Streptococcus salivarius, Fusobacterium periodonticum, Prevotella histicola, Porphyromonas pasteri, and Megasphaera micronuciformis; PVL is enriched in Prevotella salivae, Campylobacter concisus, Dialister pneumosintes, and Schaalia odontolytica; OSCC is enriched in Capnocytophaga leadbetteri, Capnocytophaga sputigena, Capnocytophaga gingivalis, Campylobacter showae, Metamycoplasma salivarium, and Prevotella nanceiensis; and PVL-OSCC is enriched in Lachnospiraceae bacterium, Selenomonas sputigena, and Prevotella shahii. There is differential dysbiosis in patients suffering from OPMDs and cancer. To the best of our knowledge, this is the first study comparing the oral microbiome alterations in these groups; thus, additional studies are needed.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (A.H.-P.); (J.B.)
| | - David Hervás
- Department of Applied Statistics and Operational Research, and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Leticia Bagan-Debón
- Medicina Oral Unit, Stomatology Department, Valencia University, 46010 Valencia, Spain
| | - Eloísa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | | | - José Bagan
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Medicina Oral Unit, Stomatology Department, Valencia University, 46010 Valencia, Spain
- Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Precancer and Oral Cancer Research Group, Valencia University, 46010 Valencia, Spain
- Correspondence: (A.H.-P.); (J.B.)
| |
Collapse
|
33
|
Quagliariello A, Modi A, Innocenti G, Zaro V, Conati Barbaro C, Ronchitelli A, Boschin F, Cavazzuti C, Dellù E, Radina F, Sperduti A, Bondioli L, Ricci S, Lognoli M, Belcastro MG, Mariotti V, Caramelli D, Mariotti Lippi M, Cristiani E, Martino ME, Muntoni IM, Lari M. Ancient oral microbiomes support gradual Neolithic dietary shifts towards agriculture. Nat Commun 2022; 13:6927. [PMID: 36414613 PMCID: PMC9681849 DOI: 10.1038/s41467-022-34416-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The human microbiome has recently become a valuable source of information about host life and health. To date little is known about how it may have evolved during key phases along our history, such as the Neolithic transition towards agriculture. Here, we shed light on the evolution experienced by the oral microbiome during this transition, comparing Palaeolithic hunter-gatherers with Neolithic and Copper Age farmers that populated a same restricted area in Italy. We integrate the analysis of 76 dental calculus oral microbiomes with the dietary information derived from the identification of embedded plant remains. We detect a stronger deviation from the hunter-gatherer microbiome composition in the last part of the Neolithic, while to a lesser extent in the early phases of the transition. Our findings demonstrate that the introduction of agriculture affected host microbiome, supporting the hypothesis of a gradual transition within the investigated populations.
Collapse
Affiliation(s)
- Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020, Italy.
| | - Alessandra Modi
- Department of Biology, Laboratory of Molecular Anthropology and Paleogenetics, University of Florence, Florence, 50122, Italy.
| | - Gabriel Innocenti
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020, Italy
| | - Valentina Zaro
- Department of Biology, Laboratory of Molecular Anthropology and Paleogenetics, University of Florence, Florence, 50122, Italy
| | - Cecilia Conati Barbaro
- Dipartimento di Scienze dell'Antichita, "Sapienza" University of Rome, Rome, 00185, Italy
| | - Annamaria Ronchitelli
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, University of Siena, Siena, 53100, Italy
| | - Francesco Boschin
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, University of Siena, Siena, 53100, Italy
| | - Claudio Cavazzuti
- Dipartimento di Storia Culture Civiltà, University of Bologna, Bologna, 40126, Italy
| | - Elena Dellù
- Soprintendenza ABAP per la Città Metropolitana di Bari, Bari, 70121, Italy
| | - Francesca Radina
- Soprintendenza ABAP per la Città Metropolitana di Bari, Bari, 70121, Italy
| | - Alessandra Sperduti
- Sezione di Bioarcheologia - Museo delle Civiltà, Roma, 00144, Italy
- Dipartimento Asia, Africa e Mediterraneo, "L'Orientale" University of Neaples, Neaples, Italy
| | - Luca Bondioli
- Sezione di Bioarcheologia - Museo delle Civiltà, Roma, 00144, Italy
- Dipartimento dei Beni Culturali, University of Padua, Padova, 35139, Italy
| | - Stefano Ricci
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, University of Siena, Siena, 53100, Italy
| | - Miriam Lognoli
- Department of Biology, Laboratory of Palynology, University of Florence, Florence, 50121, Italy
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Valentina Mariotti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - David Caramelli
- Department of Biology, Laboratory of Molecular Anthropology and Paleogenetics, University of Florence, Florence, 50122, Italy
| | - Marta Mariotti Lippi
- Department of Biology, Laboratory of Palynology, University of Florence, Florence, 50121, Italy
| | - Emanuela Cristiani
- DANTE - Diet and ANcient TEchnology laboratory, Department of Maxillo-Facial Sciences, "Sapienza" University of Rome, Rome, 00161, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020, Italy
| | - Italo Maria Muntoni
- Soprintendenza Archeologia, Belle Arti e Paesaggio per le Province di Barletta - Andria - Trani e Foggia, Foggia, 71121, Italy
| | - Martina Lari
- Department of Biology, Laboratory of Molecular Anthropology and Paleogenetics, University of Florence, Florence, 50122, Italy
| |
Collapse
|
34
|
Sampling from four geographically divergent young female populations demonstrates forensic geolocation potential in microbiomes. Sci Rep 2022; 12:18547. [PMID: 36329122 PMCID: PMC9633824 DOI: 10.1038/s41598-022-21779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Studies of human microbiomes using new sequencing techniques have increasingly demonstrated that their ecologies are partly determined by the lifestyle and habits of individuals. As such, significant forensic information could be obtained from high throughput sequencing of the human microbiome. This approach, combined with multiple analytical techniques demonstrates that bacterial DNA can be used to uniquely identify an individual and to provide information about their life and behavioral patterns. However, the transformation of these findings into actionable forensic information, including the geolocation of the samples, remains limited by incomplete understanding of the effects of confounding factors and the paucity of diverse sequences. We obtained 16S rRNA sequences of stool and oral microbiomes collected from 206 young and healthy females from four globally diverse populations, in addition to supporting metadata, including dietary and medical information. Analysis of these microbiomes revealed detectable geolocation signals between the populations, even for populations living within the same city. Accounting for other lifestyle variables, such as diet and smoking, lessened but does not remove the geolocation signal.
Collapse
|
35
|
Expression of salivary LINC01206, LINC01209, LINC01994, and ABCC5-AS1 may serve as diagnostic tools in laryngeal cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Ruan X, Luo J, Zhang P, Howell K. The salivary microbiome shows a high prevalence of core bacterial members yet variability across human populations. NPJ Biofilms Microbiomes 2022; 8:85. [PMID: 36266278 PMCID: PMC9584946 DOI: 10.1038/s41522-022-00343-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Human saliva contains diverse bacterial communities, reflecting health status, dietary patterns and contributing to variability in the sensory perception of food. Many descriptions of the diversity of the salivary microbiome have focused on the changes induced by certain diseased states, but the commonalities and differences within healthy saliva have not been fully described. Here, we define and explore the core membership of the human salivary microbial community by collecting and re-analysing raw 16S rRNA amplicon sequencing data from 47 studies with 2206 saliva samples. We found 68 core bacterial taxa that were consistently detected. Differences induced by various host intrinsic and behaviour factors, including gender, age, geographic location, tobacco usage and alcohol consumption were evident. The core of the salivary microbiome was verified by collecting and analysing saliva in an independent study. These results suggest that the methods used can effectively define a core microbial community in human saliva. The core salivary microbiome demonstrated both stability and variability among populations. Geographic location was identified as the host factor that is most associated with the structure of salivary microbiota. The independent analysis confirmed the prevalence of the 68 core OTUs we defined from the global data and provides information about how bacterial taxa in saliva varies across human populations.
Collapse
Affiliation(s)
- Xinwei Ruan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Jiaqiang Luo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
37
|
Differences in the subgingival microbiome according to stage of periodontitis: A comparison of two geographic regions. PLoS One 2022; 17:e0273523. [PMID: 35998186 PMCID: PMC9398029 DOI: 10.1371/journal.pone.0273523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
No microbiological criteria were included in the 2018 EFP-AAP classification of periodontal diseases that could be used to differentiate between stages and grades. Furthermore, differences in the subgingival microbiome depending on stage and grade have not been established. Sixty subgingival biofilm samples were collected in Spain (n = 30) and Colombia (n = 30) from three distinct patient categories: those with periodontal health/gingivitis (n = 20), those with stage I-II periodontitis (n = 20), and those with stage III-IV periodontitis (n = 20). Patients were evaluated by 16S rRNA gene amplification sequencing. Amplicon sequence variants were used to assign taxonomic categories compared to the Human Oral Microbiome Database (threshold ≥97% identity). Alpha diversity was established by Shannon and Simpson indices, and principal coordinate analysis, ANOSIM, and PERMANOVA of the UNIFRAC distances were performed using QIIME2. Although differences in the alpha diversity were observed between samples according to country, Filifactor alocis, Peptostreptococcaceae [XI][G-4] bacterium HMT 369, Fretibacterium fastidiosum, Lachnospiraceae [G-8] bacterium HMT 500, Peptostreptococcaceae [XI][G-5] [Eubacterium] saphenum, Peptostreptococcus stomatis, and Tannerella forsythia were associated with periodontitis sites in all stages. However, only F. alocis, Peptostreptococcaceae [XI][G-4] bacterium HMT 369, Peptostreptococcaceae [XI][G-9] [Eubacterium] brachy, Peptostreptococcaceae [XI][G-5] [Eubacterium] saphenum, and Desulfobulbus sp. HMT 041 were consistent in stage III-IV periodontitis in both countries. Porphyromonas gingivalis and Tannerella forsythia were differentially expressed in severe lesions in the countries studied. Although some non-cultivable microorganisms showed differential patterns between the different stages of periodontitis, they were not the same in the two countries evaluated. Further studies using larger samples with advanced next-generation techniques for high-throughput sequencing of phyla and non-cultivable bacteria within the subgingival microbiome could provide more insight into the differences between stages of periodontitis.
Collapse
|
38
|
Mosterd CM, Hayfron-Benjamin CF, van den Born BJH, Maitland-van der Zee AH, Agyemang C, van Raalte DH. Ethnic disparities in the association between low-grade inflammation biomarkers and chronic kidney disease: The HELIUS Cohort Study. J Diabetes Complications 2022; 36:108238. [PMID: 35791984 DOI: 10.1016/j.jdiacomp.2022.108238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
AIMS Ethnic differences exist in the prevalence and progression of chronic kidney disease (CKD). However, underlying mechanisms remain unclear. It has been proposed that chronic low-grade inflammation plays an important role in CKD pathogenesis. In the current analysis, we study the association between systemic inflammatory biomarkers and CKD prevalence in different ethnic groups. METHODS We examined cross-sectional associations between biomarkers of low-grade inflammation, including serum high-sensitive (hs)-CRP, fibrinogen, and D-dimer, and CKD prevalence in different ethnic groups residing in Amsterdam, the Netherlands. We included 5740 participants (similar-sized Dutch, African Surinamese, South-Asian Surinamese, Ghanaian, Turkish and Moroccan populations) aged 18 to 70 years of the Healthy Life in an Urban Setting study (HELIUS) cohort. RESULTS In the fully adjusted models, adjusted for ethnicity-specific cut-off values, elevated fibrinogen [odds ratio 2.50 (95 % confidence interval 1.10-5.78)] and D-dimer [2.99 (1.28-7.00)] were significantly associated with CKD in Dutch. In South-Asian Surinamese, a significant association with elevated D-dimer [2.66 (1.32-5.37)] was found. CONCLUSIONS Our study shows that there are both differences in biomarker levels and the association with CKD across ethnic groups. Future research to identify potential drivers of the differential associations and susceptibility of CKD among ethnic groups to reduce the CKD burden is necessary.
Collapse
Affiliation(s)
- Charlotte M Mosterd
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| | - Charles F Hayfron-Benjamin
- Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Anesthesiology/Critical Care, University of Ghana Medical School, Ghana; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Bert-Jan H van den Born
- Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | | | - Charles Agyemang
- Department of Public Health, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Daniel H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
39
|
Sharon I, Quijada NM, Pasolli E, Fabbrini M, Vitali F, Agamennone V, Dötsch A, Selberherr E, Grau JH, Meixner M, Liere K, Ercolini D, de Filippo C, Caderni G, Brigidi P, Turroni S. The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept. Nutrients 2022; 14:2872. [PMID: 35889831 PMCID: PMC9323970 DOI: 10.3390/nu14142872] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
The core microbiome, which refers to a set of consistent microbial features across populations, is of major interest in microbiome research and has been addressed by numerous studies. Understanding the core microbiome can help identify elements that lead to dysbiosis, and lead to treatments for microbiome-related health states. However, defining the core microbiome is a complex task at several levels. In this review, we consider the current state of core human microbiome research. We consider the knowledge that has been gained, the factors limiting our ability to achieve a reliable description of the core human microbiome, and the fields most likely to improve that ability. DNA sequencing technologies and the methods for analyzing metagenomics and amplicon data will most likely facilitate higher accuracy and resolution in describing the microbiome. However, more effort should be invested in characterizing the microbiome's interactions with its human host, including the immune system and nutrition. Other components of this holobiontic system should also be emphasized, such as fungi, protists, lower eukaryotes, viruses, and phages. Most importantly, a collaborative effort of experts in microbiology, nutrition, immunology, medicine, systems biology, bioinformatics, and machine learning is probably required to identify the traits of the core human microbiome.
Collapse
Affiliation(s)
- Itai Sharon
- Migal-Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| | - Narciso Martín Quijada
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria; (N.M.Q.); (E.S.)
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, A-3430 Tulln an der Donau, Austria
| | - Edoardo Pasolli
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, 80055 Portici, Italy; (E.P.); (D.E.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Marco Fabbrini
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (M.F.); (S.T.)
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; (F.V.); (C.d.F.)
| | - Valeria Agamennone
- Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, The Netherlands;
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany;
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria; (N.M.Q.); (E.S.)
| | - José Horacio Grau
- Amedes Genetics, Amedes Medizinische Dienstleistungen GmbH, 10117 Berlin, Germany; (J.H.G.); (M.M.); (K.L.)
- Center for Species Survival, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA
| | - Martin Meixner
- Amedes Genetics, Amedes Medizinische Dienstleistungen GmbH, 10117 Berlin, Germany; (J.H.G.); (M.M.); (K.L.)
| | - Karsten Liere
- Amedes Genetics, Amedes Medizinische Dienstleistungen GmbH, 10117 Berlin, Germany; (J.H.G.); (M.M.); (K.L.)
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, 80055 Portici, Italy; (E.P.); (D.E.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Carlotta de Filippo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; (F.V.); (C.d.F.)
| | - Giovanna Caderni
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (M.F.); (S.T.)
| |
Collapse
|
40
|
Comparison of the Oral Microbiota Structure among People from the Same Ethnic Group Living in Different Environments. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6544497. [PMID: 35800217 PMCID: PMC9256442 DOI: 10.1155/2022/6544497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
Abstract
The characteristics of the oral microbiota may depend on oral health, age, diet, and geography, but the influence of the geographic setting on the oral microbiota has received limited attention. The characteristics of oral microbiota have been reported to differ between urban and rural environments. In order to minimize the influence of genetic background, we recruited 54 volunteers from the same ethnic group, living in urban and rural areas of Gansu Province, China. We collected dental plaque samples and divided them into four groups according to the participant's area of residence and dental caries status. We sequenced the 16S rRNA of these samples using the Pacific Biosciences sequencing platform and analyzed the correlation between the geographic area and the characteristics of the oral microbiota. Analysis of the alpha and beta diversity revealed that there were significant differences in diversity and composition of dental plaque microflora among the four groups. Cluster analysis revealed that geographic area played an important role in determining the oral microbiota. Network analysis of oral microorganisms showed that geographic differences had major influence on the composition characteristics and internal structure of oral microorganisms. We found that some dominant strains which may play a key role in maintaining oral health, such as Streptococcus oralis, Capnocytophaga sputigena, Porphyromonas catoniae, Corynebacterium matruchotii, Haemophilus parainfluenzae, and Prevotella loescheii, were less affected by the geographic setting. These results provide a deeper understanding of factors influencing the composition of the oral microbiota and could contribute to early diagnosis and effective prevention of dental caries in different settings.
Collapse
|
41
|
Liang X, Han X, Liu C, Du W, Zhong P, Huang L, Huang M, Fu L, Liu C, Chen L. Integrating the salivary microbiome in the forensic toolkit by 16S rRNA gene: potential application in body fluid identification and biogeographic inference. Int J Legal Med 2022; 136:975-985. [PMID: 35536322 DOI: 10.1007/s00414-022-02831-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
Saliva is a common body fluid with significant forensic value used to investigate criminal cases such as murder and assault. In the past, saliva identification often relied on the α-amylase test; however, this method has low specificity and is prone to false positives. Accordingly, forensic researchers have been working to find new specific molecular markers to refine the current saliva identification approach. At present, research on immunological methods, mRNA, microRNA, circRNA, and DNA methylation is still in the exploratory stage, and the application of these markers still has various limitations. It has been established that salivary microorganisms exhibit good specificity and stability. In this study, 16S rDNA sequencing technology was used to sequence the V3-V4 hypervariable regions in saliva samples from five regions to reveal the role of regional location on the heterogeneity in microbial profile information in saliva. Although the relative abundance of salivary flora was affected to a certain extent by geographical factors, the salivary flora of each sample was still dominated by Streptococcus, Neisseria, and Rothia. In addition, the microbial community in the saliva samples in this study was significantly different from that in the vaginal secretions, semen, and skin samples reported in our previous studies. Accordingly, saliva can be distinguished from the other three body fluids and tissues. Moreover, we established a prediction model based on the random forest algorithm that could distinguish saliva between different regions at the genus level even though the model has a certain probability of misjudgment which needs more in-depth research. Overall, the microbial community information in saliva stains might have prospects for potential application in body fluid identification and biogeographic inference.
Collapse
Affiliation(s)
- Xiaomin Liang
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiaolong Han
- Guangzhou Forensic Science Institute, Guangzhou, 510030, People's Republic of China
| | - Changhui Liu
- Guangzhou Forensic Science Institute, Guangzhou, 510030, People's Republic of China
| | - Weian Du
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Peiwen Zhong
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Litao Huang
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Manling Huang
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Linhe Fu
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Chao Liu
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangzhou Forensic Science Institute, Guangzhou, 510030, People's Republic of China.
| | - Ling Chen
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
42
|
The Effects of Alcohol Drinking on Oral Microbiota in the Chinese Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095729. [PMID: 35565124 PMCID: PMC9103016 DOI: 10.3390/ijerph19095729] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 01/04/2023]
Abstract
The dysbiosis of oral microbiota is linked to numerous diseases and is associated with personal lifestyles, such as alcohol drinking. However, there is inadequate data to study the effect of alcohol drinking on oral microbiota from the Chinese population. Here, we profiled the oral microbiota of 150 healthy subjects in the Chinese population by 16S rRNA gene sequencing. The results showed that drinkers had significantly higher alpha diversity than non-drinkers. A significant difference in overall microbiota composition was observed between non-drinkers and drinkers. Additionally, using DESeq analysis, we found genus Prevotella and Moryella, and species Prevotella melaninogenica and Prevotella tannerae were significantly enriched in drinkers; meanwhile, the genus Lautropia, Haemophilus and Porphyromonas, and species Haemophilus parainfluenzae were significantly depleted in drinkers. PICRUSt analysis showed that significantly different genera were mainly related to metabolism pathways. The oxygen-independent pathways, including galactose, fructose and mannose metabolism pathways, were enriched in drinkers and positively associated with genera enriched in drinkers; while the pyruvate metabolism pathway, an aerobic metabolism pathway, was decreased in drinkers and negatively associated with genera enriched in drinkers. Our results suggested that alcohol drinking may affect health by altering oral microbial composition and potentially affecting microbial functional pathways. These findings may have implications for better understanding the potential role those oral bacteria play in alcohol-related diseases.
Collapse
|
43
|
Kioukis A, Pourjam M, Neuhaus K, Lagkouvardos I. Taxonomy Informed Clustering, an Optimized Method for Purer and More Informative Clusters in Diversity Analysis and Microbiome Profiling. FRONTIERS IN BIOINFORMATICS 2022; 2:864597. [PMID: 36304326 PMCID: PMC9580952 DOI: 10.3389/fbinf.2022.864597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial diversity is often analyzed using 16S rRNA gene amplicon sequencing. Commonly, sequences are clustered based on similarity cutoffs to obtain groups reflecting molecular species, genera, or families. Due to the amount of the generated sequencing data, greedy algorithms are preferred for their time efficiency. Such algorithms rely only on pairwise sequence similarities. Thus, sometimes sequences with diverse phylogenetic background are clustered together. In contrast, taxonomic classifiers use position specific taxonomic information in assigning a probable taxonomy to a given sequence. Here we introduce Taxonomy Informed Clustering (TIC), a novel approach that utilizes classifier-assigned taxonomy to restrict clustering to only those sequences that share the same taxonomic path. Based on this concept, we offer a complete and automated pipeline for processing of 16S rRNA amplicon datasets in diversity analyses. First, raw reads are processed to form denoised amplicons. Next, the denoised amplicons are taxonomically classified. Finally, the TIC algorithm progressively assigning clusters at molecular species, genus and family levels. TIC outperforms greedy clustering algorithms like USEARCH and VSEARCH in terms of clusters’ purity and entropy, when using data from the Living Tree Project as test samples. Furthermore, we applied TIC on a dataset containing all Bifidobacteriaceae-classified sequences from the IMNGS database. Here, TIC identified evidence for 1000s of novel molecular genera and species. These results highlight the straightforward application of the TIC pipeline and superior results compared to former methods in diversity studies. The pipeline is freely available at: https://github.com/Lagkouvardos/TIC.
Collapse
Affiliation(s)
| | - Mohsen Pourjam
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technical University Munich, Freising, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technical University Munich, Freising, Germany
| | - Ilias Lagkouvardos
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technical University Munich, Freising, Germany
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- *Correspondence: Ilias Lagkouvardos,
| |
Collapse
|
44
|
Yeo LF, Lee SC, Palanisamy UD, Khalid BAK, Ayub Q, Lim SY, Lim YAL, Phipps ME. The Oral, Gut Microbiota and Cardiometabolic Health of Indigenous Orang Asli Communities. Front Cell Infect Microbiol 2022; 12:812345. [PMID: 35531342 PMCID: PMC9074829 DOI: 10.3389/fcimb.2022.812345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
The Orang Asli (OA) of Malaysia have been relatively understudied where little is known about their oral and gut microbiomes. As human health is closely intertwined with the human microbiome, this study first assessed the cardiometabolic health in four OA communities ranging from urban, rural to semi-nomadic hunter-gatherers. The urban Temuan suffered from poorer cardiometabolic health while rural OA communities were undergoing epidemiological transition. The oral microbiota of the OA were characterised by sequencing the V4 region of the 16S rRNA gene. The OA oral microbiota were unexpectedly homogenous, with comparably low alpha diversity across all four communities. The rural Jehai and Temiar PP oral microbiota were enriched for uncharacterised bacteria, exhibiting potential for discoveries. This finding also highlights the importance of including under-represented populations in large cohort studies. The Temuan oral microbiota were also elevated in opportunistic pathogens such as Corynebacterium, Prevotella, and Mogibacterium, suggesting possible oral dysbiosis in these urban settlers. The semi-nomadic Jehai gut microbiota had the highest alpha diversity, while urban Temuan exhibited the lowest. Rural OA gut microbiota were distinct from urban-like microbiota and were elevated in bacteria genera such as Prevotella 2, Prevotella 9, Lachnospiraceae ND3007, and Solobacterium. Urban Temuan microbiota were enriched in Odoribacter, Blautia, Parabacetroides, Bacteroides and Ruminococcacecae UCG-013. This study brings to light the current health trend of these indigenous people who have minimal access to healthcare and lays the groundwork for future, in-depth studies in these populations.
Collapse
Affiliation(s)
- Li-Fang Yeo
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Maude Elvira Phipps, ; Li-Fang Yeo,
| | - Soo Ching Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - BAK. Khalid
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Qasim Ayub
- Tropical Medicine and Biology Multidisciplinary Platform, School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- Monash University Malaysia Genomics Facility, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Shu Yong Lim
- Monash University Malaysia Genomics Facility, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yvonne AL. Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Maude Elvira Phipps
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Maude Elvira Phipps, ; Li-Fang Yeo,
| |
Collapse
|
45
|
Bowland GB, Weyrich LS. The Oral-Microbiome-Brain Axis and Neuropsychiatric Disorders: An Anthropological Perspective. Front Psychiatry 2022; 13:810008. [PMID: 35432038 PMCID: PMC9005879 DOI: 10.3389/fpsyt.2022.810008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
In the 21st century, neuropsychiatric disorders (NPDs) are on the rise, yet the causal mechanisms behind this global epidemic remain poorly understood. A key to these unknowns may lie within the vast communities of bacteria, fungi, and viruses in the body (microbiota), which are intimately linked with health and disease. NPDs were recently shown to be connected to gut microbiota, which can communicate with and influence the brain through the Gut-Brain-Axis (GBA). Parallel studies examining oral microbiota and their connections to the brain also suggest that microbes in the mouth can similarly influence NPD outcomes. However, the mechanisms and pathways that illuminate how oral microbiota and brain communicate in NPDs remain unknown. Here, we review identified mechanisms and pathways that oral microbiota use to engage the brain, and we lay the theoretical foundation for an oral-microbiota-brain axis (OMBA). Specifically, we examine established neuroinflammatory and immune system activation responses that underpin interactions between the oral microbiota and the central nervous system (CNS), detailing four specific mechanisms: (1) microbial and metabolite escape, (2) neuroinflammation, (3) CNS signaling, and (4) response to neurohormones. We then scrutinize why including the OMBA, in addition to the GBA, is critically needed to elucidate specific causal relationships between microbial dysbiosis and observed NPD development and progression. Furthermore, we argue for comprehensive, interdisciplinary approaches that integrate lab-based microbiome research and population-level studies that examine the OMBA to improve NPDs. We specifically identify key anthropological perspectives that integrate sociocultural, epidemiological, genetic, and environmental factors that shape the oral microbiome and its interactions with NPDs. Together, future studies of the OMBA in conjunction with interdisciplinary approaches can be used to identify NPD risks and improve outcomes, as well as develop novel intervention and treatment strategies.
Collapse
Affiliation(s)
- Grace B. Bowland
- Department of Anthropology, Pennsylvania State University, University Park, PA, United States
| | - Laura S. Weyrich
- Department of Anthropology, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
46
|
Cheema AS, Trevenen ML, Turlach BA, Furst AJ, Roman AS, Bode L, Gridneva Z, Lai CT, Stinson LF, Payne MS, Geddes DT. Exclusively Breastfed Infant Microbiota Develops over Time and Is Associated with Human Milk Oligosaccharide Intakes. Int J Mol Sci 2022; 23:2804. [PMID: 35269946 PMCID: PMC8910998 DOI: 10.3390/ijms23052804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Temporal development of maternal and infant microbiomes during early life impacts short- and long-term infant health. This study aimed to characterize bacterial dynamics within maternal faecal, human milk (HM), infant oral, and infant faecal samples during the exclusive breastfeeding period and to document associations between human milk oligosaccharide (HMO) intakes and infant oral and faecal bacterial profiles. Maternal and infant samples (n = 10) were collected at 2−5, 30, 60, 90 and 120 days postpartum and the full-length 16S ribosomal RNA (rRNA) gene was sequenced. Nineteen HMOs were quantitated using high-performance liquid chromatography. Bacterial profiles were unique to each sample type and changed significantly over time, with a large degree of intra- and inter-individual variation in all sample types. Beta diversity was stable over time within infant faecal, maternal faecal and HM samples, however, the infant oral microbiota at day 2−5 significantly differed from all other time points (all p < 0.02). HMO concentrations and intakes significantly differed over time, and HMO intakes showed differential associations with taxa observed in infant oral and faecal samples. The direct clinical relevance of this, however, is unknown. Regardless, future studies should account for intakes of HMOs when modelling the impact of HM on infant growth, as it may have implications for infant microbiota development.
Collapse
Affiliation(s)
- Ali Sadiq Cheema
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Michelle Louise Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Berwin Ashoka Turlach
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Annalee June Furst
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Sophia Roman
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Matthew Scott Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia;
- Women and Infants Research Foundation, Subiaco, WA 6008, Australia
| | - Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| |
Collapse
|
47
|
Reynoso-García J, Narganes-Storde Y, Santiago-Rodriguez TM, Toranzos GA. Mycobiome-Host Coevolution? The Mycobiome of Ancestral Human Populations Seems to Be Different and Less Diverse Than Those of Extant Native and Urban-Industrialized Populations. Microorganisms 2022; 10:microorganisms10020459. [PMID: 35208912 PMCID: PMC8877467 DOI: 10.3390/microorganisms10020459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Few data exist on the human gut mycobiome in relation to lifestyle, ethnicity, and dietary habits. To understand the effect of these factors on the structure of the human gut mycobiome, we analyzed sequences belonging to two extinct pre-Columbian cultures inhabiting Puerto Rico (the Huecoid and Saladoid) and compared them to coprolite samples found in Mexico and Ötzi, the Iceman’s large intestine. Stool mycobiome samples from extant populations in Peru and urban cultures from the United States were also included. The ancient Puerto Rican cultures exhibited a lower fungal diversity in comparison to the extant populations. Dissimilarity distances showed that the Huecoid gut mycobiome resembled that from ancient Mexico. Fungal genera including Aspergillus spp., Penicillium spp., Rasamsonia spp., Byssochlamys spp., Talaromyces spp., Blastomyces spp., Monascus spp., and Penicilliopsis spp. were differentially abundant in the ancient and extant populations. Despite cultural differences, certain fungal taxa were present in all samples. These results suggest that culture and diet may impact the gut mycobiome and emphasize that modern lifestyles could be associated with the alteration of gut mycobiome diversity. The present study presents data on ancient and extant human gut mycobiomes in terms of lifestyle, ethnicity, and diet in the Americas.
Collapse
Affiliation(s)
- Jelissa Reynoso-García
- Environmental Microbiology Laboratory, Biology Department, University of Puerto Rico, San Juan 00931, Puerto Rico;
- Correspondence:
| | - Yvonne Narganes-Storde
- Center for Archaeological Research, Río Piedras Campus, University of Puerto Rico, San Juan 00931, Puerto Rico;
| | | | - Gary A. Toranzos
- Environmental Microbiology Laboratory, Biology Department, University of Puerto Rico, San Juan 00931, Puerto Rico;
| |
Collapse
|
48
|
Xiao W, Gao D, Chen HD, Qiao Y, Ma ZS, Duan L. Diversity Scaling Analysis of Chinese Gut Microbiomes Across Ethnicities and Lifestyles. Front Microbiol 2021; 12:736393. [PMID: 34956110 PMCID: PMC8692740 DOI: 10.3389/fmicb.2021.736393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/21/2021] [Indexed: 12/28/2022] Open
Abstract
Diversity scaling (changes) of human gut microbiome is important because it measures the inter-individual heterogeneity of diversity and other important parameters of population-level diversity. Understanding the heterogeneity of microbial diversity can be used as a reference for the personalized medicine of microbiome-associated diseases. Similar to diversity per se, diversity scaling may also be influenced by host factors, especially lifestyles and ethnicities. Nevertheless, this important topic regarding Chinese populations has not been addressed, to our best knowledge. Here, we fill the gap by applying a recent extension to the classic species–area relationship (SAR), i.e., diversity–area relationship (DAR), to reanalyze a large dataset of Chinese gut microbiomes covering the seven biggest Chinese ethnic groups (covering > 95% Chinese) living rural and urban lifestyles. Four DAR profiles were constructed to investigate the diversity scaling, diversity overlap, potential maximal diversity, and the ratio of local to global diversity of Chinese gut microbiomes. We discovered the following: (i) The diversity scaling parameters (z) at various taxon levels are little affected by either ethnicity or lifestyles, as exhibited by less than 0.5% differences in pairwise comparisons. (ii) The maximal accrual diversity (potential diversity) exhibited difference in only about 5% of pairwise comparisons, and all of the differences occurred in ethnicity comparisons (i.e., lifestyles had no effects). (iii) Ethnicity seems to have stronger effects than lifestyles across all taxon levels, and this may reflect the reality that China has been experiencing rapid urbanization in the last few decades, while the ethnic-related genetic background may change relatively little during the same period.
Collapse
Affiliation(s)
- Wanmeng Xiao
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Depei Gao
- Radiology Department, The 3rd-Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongju Daisy Chen
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Yuting Qiao
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Lincan Duan
- The 2nd Thoracic Surgery Department, The 3rd-Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
49
|
Abstract
The microorganisms associated with an organism, the microbiome, have a strong and wide impact in their host biology. In particular, the microbiome modulates both the host defense responses and immunity, thus influencing the fate of infections by pathogens. Indeed, this immune modulation and/or interaction with pathogenic viruses can be essential to define the outcome of viral infections. Understanding the interplay between the microbiome and pathogenic viruses opens future venues to fight viral infections and enhance the efficacy of antiviral therapies. An increasing number of researchers are focusing on microbiome-virus interactions, studying diverse combinations of microbial communities, hosts, and pathogenic viruses. Here, we aim to review these studies, providing an integrative overview of the microbiome impact on viral infection across different pathosystems.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Valencia, Spain
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Valencia, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
50
|
Widyarman AS, Theodorea CF, Udawatte NS, Drestia AM, Bachtiar EW, Astoeti TE, Bachtiar BM. Diversity of Oral Microbiome of Women From Urban and Rural Areas of Indonesia: A Pilot Study. FRONTIERS IN ORAL HEALTH 2021; 2:738306. [PMID: 35048055 PMCID: PMC8757682 DOI: 10.3389/froh.2021.738306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: The studies on the influence of geographical and socio-economic factors on the oral microbiome remain underrepresented. The Indonesia basic health research (RISKESDAS) 2018, showed an increasing trend in non-communicable diseases compared with the previous report in 2013. The prevalence of diabetes, heart disease, hypertension, and obesity are reported to be higher in urban areas than in rural areas. Interestingly, non-communicable diseases were found to be more prevalent in women than men. This pilot study aimed to examine the oral health and oral microbiome derived from tongue samples of healthy Indonesian women from urban and rural areas. Methods: Twenty women aged 21-47 years old from West Jakarta, residents of DKI Jakarta (n = 10) as representative of the urban area, and residents of Ende, Nangapanda, East Nusa Tenggara (n = 10) as representative of the rural area were recruited for this pilot study. The participants were evaluated by the Simplified Oral Hygiene Index (OHI-S) according to the criteria of Greene and Vermillion and divided into three groups. High-throughput DNA sequencing was performed on an Illumina iSeq 100 platform. Results: The principal component analysis displayed a marked difference in the bacterial community profiles between the urban and rural localities. The presence of manifest was associated with increased diversity and an altered oral bacterial community profile in the urban women. Two bacterial taxa were present at significantly higher levels (adjusted p < 0.01) in the urban oral microflora (Genus Prevotella and Leptotricia) could account for this difference irrespective of the individual oral hygiene status. The linear discriminant analysis effect size (LEfSe) analysis revealed several distinct urban biomarkers. At the species level, Leptotrichia wadei, Prevotella melaninogenica, Prevotella jejuni, and P. histicola, show an excellent discriminatory potential for distinguishing the oral microflora in women between urban and rural areas. Further, using SparCC co-occurrence network analysis, the co-occurrence pattern in the dominant core oral microbiome assembly was observed to be specific to its ecological niche between two populations. Conclusions: This is the first pilot study demonstrating the characterization of the oral microbiome in Indonesian women in urban and rural areas. We found that the oral microbiome in women displays distinct patterns consistent with geographic locality. The specific characterization of the microbiota of Indonesian women is likely linked to geographical specific dietary habits, cultural habits, and socio-economic status or the population studied.
Collapse
Affiliation(s)
- Armelia Sari Widyarman
- Department Head of Microbiology, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia
| | | | - Nadeeka S. Udawatte
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore (NDRIS) National Dental Centre Singapore, Oral Health ACP, Duke NUS Medical School, Singapore, Singapore
| | | | - Endang W. Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Central Jakarta, Indonesia
| | - Tri Erri Astoeti
- Department Preventive and Public Health Dentistry, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia
| | - Boy M. Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Central Jakarta, Indonesia
| |
Collapse
|