1
|
Ganapathy S, Bharathi M, Hirad AH, Alarfaj AA, Thangavelu I, Arulselvan P, Jaganathan R, Ravindran R, Suriyaprakash J, Boopathi TS. Carboplatin-loaded zeolitic imidazolate framework-8: Induction of antiproliferative activity and apoptosis in breast cancer cell. Biotechnol Appl Biochem 2025; 72:683-694. [PMID: 39491814 DOI: 10.1002/bab.2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The challenge with breast cancer is its ongoing high prevalence and difficulties in early detection and access to effective care. A solution lies in creating tailored metal-organic frameworks to encapsulate anticancer drugs, enabling precise and targeted treatment with less adverse effects and improved effectiveness. Zeolitic imidazolate framework-8 (ZIF-8) and carboplatin (CP)-loaded ZIF-8 were synthesized and characterized using various analytical techniques. High Resolution-transmission electron microscopy of ZIF-8 and CP@ZIF-8 indicates that the particles had a spherical shape and were nanosized. The drug release rate of CP is 98% under an acidic medium (pH 5.5) because of the dissolution of ZIF-8 into its coordinating ions, whereas 35% in a physiological medium (pH 7.4) with the addition of CP, the high porosity, and pore diameter of ZIF-8 decrease from 1243 to 1041 m2/g. Breast cancer MCF-7 cells were shown greater IC50 in CP@ZIF-8 (15.01 ± 3.03 µg/mL) than free CP (34.98 ± 4.25 µg/mL) in an in vitro cytotoxicity assessment. The cytotoxicity of the CP@ZIF-8 against MCF-7 cells was studied using the methylthiazolyldiphenyl-tetrazolium bromide method. The morphological changes were examined using fluorescent staining (acridine orange-ethidium bromide and Hoechst 33258) methods. The comet assay assessed the DNA fragmentation (single-cell gel electrophoresis). The results from the study revealed that CP@ZIF-8 can be used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Saravanan Ganapathy
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science, Tiruchengode, Tamil Nadu, India
| | - Muruganantham Bharathi
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Ravindran Jaganathan
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Perak, Malaysia
| | - Rajeswari Ravindran
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Perak, Malaysia
| | - Jagadeesh Suriyaprakash
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Thalakulam Shanmugam Boopathi
- Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
2
|
Sun X, Zhang X, He Y, Du X, Cai Q, Liu Z. CD4 +T and CD8 +T cells profile in lung inflammation and fibrosis: targets and potential therapeutic drugs. Front Immunol 2025; 16:1562892. [PMID: 40433386 PMCID: PMC12107634 DOI: 10.3389/fimmu.2025.1562892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/01/2025] [Indexed: 05/29/2025] Open
Abstract
Pulmonary fibrosis is an interstitial lung disease characterized by chronic progressive fibrosis. It is associated with fibrocyte proliferation and collagen deposition, leading to severe, irreversible lung function decline. Despite extensive research, the diagnosis and treatment of pulmonary fibrosis are complicated and have no effective treatment. During the formation of pulmonary fibrosis, immune dysregulation by inflammatory cell infiltration is the key driver of pulmonary fibrosis. Recently, single-cell sequencing analysis of silicosis mice showed that various cells in the alveolar immune microenvironment are involved in forming pulmonary fibrosis, such as macrophages, fibroblasts, epithelial cells, etc. Among them, T cell subpopulations in silicosis mice were significantly activated, indicating that T lymphocyte subsets play an essential role in the process of pulmonary fibrosis. More and more pulmonary clinical studies show that T lymphocytes in the lung immune microenvironment play an important and multifaceted role. This article summarizes the role of CD4+T cells and CD8+T cells in pulmonary fibrosis. This article provides some new insight into the potential therapy target that can delay the process of pulmonary fibrosis by regulating the proportions of different subpopulations of T lymphocytes and some related signaling pathways.
Collapse
Affiliation(s)
- Xiaobo Sun
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Xinwen Zhang
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Yuhan He
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Xueting Du
- Pathogenic Microbiology Laboratory, Yinchuan Center for Disease Control and Prevention, Yinchuan, China
| | - Qian Cai
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Zhihong Liu
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Aquino A, Franzese O. Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers (Basel) 2025; 17:1547. [PMID: 40361472 PMCID: PMC12072109 DOI: 10.3390/cancers17091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Dysregulated cell movement is a hallmark of cancer progression and metastasis, the leading cause of cancer-related mortality. The metastatic cascade involves tumour cell migration, invasion, intravasation, dissemination, and colonisation of distant organs. These processes are influenced by reciprocal interactions between cancer cells and the tumour microenvironment (TME), including immune cells, stromal components, and extracellular matrix proteins. The epithelial-mesenchymal transition (EMT) plays a crucial role in providing cancer cells with invasive and stem-like properties, promoting dissemination and resistance to apoptosis. Conversely, the mesenchymal-epithelial transition (MET) facilitates metastatic colonisation and tumour re-initiation. Immune cells within the TME contribute to either anti-tumour response or immune evasion. These cells secrete cytokines, chemokines, and growth factors that shape the immune landscape and influence responses to immunotherapy. Notably, immune checkpoint blockade (ICB) has transformed cancer treatment, yet its efficacy is often dictated by the immune composition of the tumour site. Elucidating the molecular cross-talk between immune and cancer cells, identifying predictive biomarkers for ICB response, and developing strategies to convert cold tumours into immune-active environments is critical to overcoming resistance to immunotherapy and improving patient survival.
Collapse
Affiliation(s)
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| |
Collapse
|
4
|
Zhang M, Zhang B. Extracellular matrix stiffness: mechanisms in tumor progression and therapeutic potential in cancer. Exp Hematol Oncol 2025; 14:54. [PMID: 40211368 PMCID: PMC11984264 DOI: 10.1186/s40164-025-00647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Tumor microenvironment (TME) is a complex ecosystem composed of both cellular and non-cellular components that surround tumor tissue. The extracellular matrix (ECM) is a key component of the TME, performing multiple essential functions by providing mechanical support, shaping the TME, regulating metabolism and signaling, and modulating immune responses, all of which profoundly influence cell behavior. The quantity and cross-linking status of stromal components are primary determinants of tissue stiffness. During tumor development, ECM stiffness not only serves as a barrier to hinder drug delivery but also promotes cancer progression by inducing mechanical stimulation that activates cell membrane receptors and mechanical sensors. Thus, a comprehensive understanding of how ECM stiffness regulates tumor progression is crucial for identifying potential therapeutic targets for cancer. This review examines the effects of ECM stiffness on tumor progression, encompassing proliferation, migration, metastasis, drug resistance, angiogenesis, epithelial-mesenchymal transition (EMT), immune evasion, stemness, metabolic reprogramming, and genomic stability. Finally, we explore therapeutic strategies that target ECM stiffness and their implications for tumor progression.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Basic Medicine, China Three Gorges University, 8 Daxue Road, Yichang, 443002, Hubei, China
- Central Laboratory, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Bin Zhang
- School of Basic Medicine, China Three Gorges University, 8 Daxue Road, Yichang, 443002, Hubei, China.
- Central Laboratory, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China.
| |
Collapse
|
5
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Lan H, Yan W, Huang X, Cui J, Hou H. Multi-omics analysis of the dynamic role of STAR+ cells in regulating platinum-based chemotherapy responses and tumor microenvironment in serous ovarian carcinoma. Front Pharmacol 2025; 16:1545762. [PMID: 40098624 PMCID: PMC11911460 DOI: 10.3389/fphar.2025.1545762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Background Serous ovarian carcinoma (SOC) is the most lethal subtype of ovarian cancer, with chemoresistance to platinum-based chemotherapy remaining a major challenge in improving clinical outcomes. The role of the tumor microenvironment (TME), particularly cancer-associated fibroblasts (CAFs), in modulating chemotherapy responses is not yet fully understood. Methods To explore the relationship between CAF subtypes and chemotherapy sensitivity, we employed single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry (IHC), and immunofluorescence (IF). This multi-omics approach enabled the identification, characterization, and functional analysis of CAF subtypes in both chemotherapy-sensitive and chemotherapy-resistant SOC patients. Results We identified steroidogenic acute regulatory protein-positive (STAR+) cells as a novel CAF subtype enriched in chemotherapy-sensitive SOC patients. STAR + cells exhibited unique transcriptional profiles and were functionally enriched in pathways related to P450 drug metabolism, lipid metabolism, and amino acid metabolism, with enhanced pathway activity observed in chemotherapy-sensitive groups. Spatial transcriptomics and IF revealed that STAR + cells were closely localized to tumor cells, suggesting potential cell-cell interactions. Further communication analysis indicated that STAR + cells may suppress WNT signaling in tumor cells, contributing to improved chemotherapy responses. Importantly, STAR expression levels, validated by IHC, were positively correlated with chemotherapy sensitivity and improved patient prognosis. Platinum-based chemotherapy was shown to increase the proportion of STAR + cells, underscoring their dynamic response to treatment. Conclusion Our study identifies STAR + cells as a novel CAF subtype that enhances chemotherapy sensitivity in SOC. By modulating key metabolic pathways and potentially suppressing WNT signaling, STAR + cells could contribute to improved treatment responses. These findings position STAR + cells as a promising biomarker for predicting chemotherapy efficacy in SOC, which warrants further investigation.
Collapse
Affiliation(s)
- Hongwei Lan
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Weihua Yan
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao Huang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiali Cui
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Helei Hou
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Guo Y, Chen M, Yang J, Zhou W, Feng G, Wang Y, Ji T, Zhang Y, Liu Z. CAF-secreted COL5A2 activates the PI3K/AKT pathway to mediate erlotinib resistance in head and neck squamous cell carcinoma. Oral Dis 2025; 31:376-386. [PMID: 39286945 DOI: 10.1111/odi.15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE To investigate the mechanisms behind acquired resistance to erlotinib in head and neck squamous cell carcinoma (HNSCC) with a focus on the role of cancer-associated fibroblasts (CAFs) and the PI3K/AKT signaling pathway. MATERIALS AND METHODS This study analyzed gene expression profiles of erlotinib-sensitive and -resistant HNSCC cell lines using datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. It included microarray and RNA-sequencing data, differentially expressed genes (DEGs) analysis, and pathway enrichment. In vitro experiments assessed the functional role of CAFs and the impact of the extracellular matrix component COL5A2 on erlotinib resistance. RESULTS We identified 124 DEGs associated with erlotinib resistance, with key genes like COL5A2 significantly upregulated. CAFs were found to highly express COL5A2, enhancing erlotinib resistance by activating the PI3K/AKT pathway. Higher erlotinib resistance scores correlated with increased infiltration of CAFs. CONCLUSIONS Erlotinib resistance in HNSCC is significantly influenced by the tumor microenvironment (TME), particularly through CAFs and the PI3K/AKT pathway. Targeting these mechanisms may offer new therapeutic strategies to overcome resistance in HNSCC patients.
Collapse
Affiliation(s)
- Yibo Guo
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingtao Chen
- Department of Oral and Maxillofacial Surgery, Shanghai Fengxian Fengcheng Hospital, Shanghai, China
| | - Jie Yang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenkai Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Guanying Feng
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Yang Wang
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| | - Tong Ji
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| | - Yu Zhang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheqi Liu
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
9
|
Høye E, Kanduri C, Torgunrud A, Lorenz S, Edwin B, Larsen SG, Fretland ÅA, Dagenborg VJ, Flatmark K, Lund-Andersen C. Enrichment of Cancer-Associated Fibroblasts, Macrophages, and Up-Regulated TNF-α Signaling in the Tumor Microenvironment of CMS4 Colorectal Peritoneal Metastasis. Cancer Med 2025; 14:e70521. [PMID: 39739693 DOI: 10.1002/cam4.70521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Metastatic colorectal cancer (mCRC) is the main cause of CRC mortality, with limited treatment options. Although immunotherapy has benefited some cancer patients, mCRC typically lacks the molecular features that respond to this treatment. However, recent studies indicate that the immune microenvironment of mCRC may be modified to enhance the effect of immune checkpoint inhibitors. This study aimed to explore the metastatic tumor microenvironment (TME) by comparing cell populations in colorectal liver (CLM), lung (mLu), and peritoneal (PM) metastases. METHODS RNA isolated from 20 CLM, 15 mLu, and 35 PM samples was subjected to mRNA sequencing and explored through TME deconvolution tools, consensus molecular subtyping (CMS), and differential gene expression and gene set enrichment analysis, with respect to the metastatic sites. Clinical data and KRAS/BRAF hotspot mutation status were also obtained for all the cases. RESULTS The cell type fractions in the TME were relatively similar between the metastatic sites, except for cancer-associated fibroblasts (CAFs), B cells, endothelial cells, and CD4+ T cells. Notably, PM showed enrichment for CAFs and endothelial cells, consistent with distinct pathways associated with metastatic growth and progression in the peritoneal cavity. PM with the mesenchymal subtype, CMS4, had increased CAFs, endothelial cells, and macrophages, along with up-regulated genes related to TNF-α signaling via NF-κB, EMT, and angiogenesis. CONCLUSIONS Tumor samples from different metastatic sites exhibited a broadly similar TME in terms of immune cell composition, with some intriguing differences. Targeting CAF-associated pathways, macrophages, and TNF-α signaling through NR4A could represent potential novel therapeutic approaches in CMS4 PM.
Collapse
Affiliation(s)
- Eirik Høye
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Annette Torgunrud
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Susanne Lorenz
- Department of Core Facilities, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bjørn Edwin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Stein G Larsen
- Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Åsmund A Fretland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Vegar J Dagenborg
- Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Christin Lund-Andersen
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Sato A, Takagi K, Yoshida M, Yamaguchi-Tanaka M, Sagehashi M, Miki Y, Miyashita M, Suzuki T. Discoidin Domain Receptor 2 Contributes to Breast Cancer Progression and Chemoresistance by Interacting with Collagen Type I. Cancers (Basel) 2024; 16:4285. [PMID: 39766183 PMCID: PMC11674238 DOI: 10.3390/cancers16244285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Chemoresistance is an important issue to be solved in breast cancer. It is well known that the content and morphology of collagens in tumor tissues are drastically altered following chemotherapy, and discoidin domain receptor 2 (DDR2) is a unique type of receptor tyrosine kinase (RTK). This RTK is activated by collagens, playing important roles in human malignancies. However, the contribution to the chemoresistance of DDR2 in terms of the association with collagens remains largely unclear in breast cancer. Methods: We immunolocalized DDR2 and collagen type I in 224 breast cancer tissues and subsequently conducted in vitro studies to confirm the role of DDR2 in breast cancer chemoresistance using chemosensitive and chemoresistant cell lines. Results: DDR2 immunoreactivity was positively correlated with aggressive behaviors of breast cancer and was significantly associated with an increased risk of recurrence, especially in those who received chemotherapy. Moreover, in vitro experiments demonstrated that DDR2 promoted the proliferative activity of breast cancer cells, and cell viability after epirubicin treatment was significantly maintained by DDR2 in a collagen I-dependent manner. Conclusions: These data suggested that DDR2 could be a poor prognostic factor associated with cell proliferation and chemotherapy resistance in human breast cancer.
Collapse
Affiliation(s)
- Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
| | - Momoka Yoshida
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
| | - Mio Yamaguchi-Tanaka
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
- Personalized Medicine Center, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Mikoto Sagehashi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Pathology, Tohoku University Hospital, Sendai 980-8574, Japan
| |
Collapse
|
11
|
Raaijmakers KTPM, Adema GJ, Bussink J, Ansems M. Cancer-associated fibroblasts, tumor and radiotherapy: interactions in the tumor micro-environment. J Exp Clin Cancer Res 2024; 43:323. [PMID: 39696386 DOI: 10.1186/s13046-024-03251-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) represent a group of genotypically non-malignant stromal cells in the tumor micro-environment (TME) of solid tumors that encompasses up to 80% of the tumor volume. Even though the phenotypic diversity and plasticity of CAFs complicates research, it is well-established that CAFs can affect many aspects of tumor progression, including growth, invasion and therapy resistance. Although anti-tumorigenic properties of CAFs have been reported, the majority of research demonstrates a pro-tumorigenic role for CAFs via (in)direct signaling to cancer cells, immunomodulation and extracellular matrix (ECM) remodeling. Following harsh therapeutic approaches such as radio- and/or chemotherapy, CAFs do not die but rather become senescent. Upon conversion towards senescence, many pro-tumorigenic characteristics of CAFs are preserved or even amplified. Senescent CAFs continue to promote tumor cell therapy resistance, modulate the ECM, stimulate epithelial-to-mesenchymal transition (EMT) and induce immunosuppression. Consequently, CAFs play a significant role in tumor cell survival, relapse and potentially malignant transformation of surviving cancer cells following therapy. Modulating CAF functioning in the TME therefore is a critical area of research. Proposed strategies to enhance therapeutic efficacy include reverting senescent CAFs towards a quiescent phenotype or selectively targeting (non-)senescent CAFs. In this review, we discuss CAF functioning in the TME before and during therapy, with a strong focus on radiotherapy. In the future, CAF functioning in the therapeutic TME should be taken into account when designing treatment plans and new therapeutic approaches.
Collapse
Affiliation(s)
- Kris T P M Raaijmakers
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
12
|
Hernandez-Hidalgo N, Cortes G, Ortega-Anaya K, Varela H. Fibroblast activation protein inhibitors positron emission tomography/computed tomography: Review of the literature. World J Meta-Anal 2024; 12:95755. [DOI: 10.13105/wjma.v12.i4.95755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
Positron emission tomography/computed tomography (PET/CT) with radiolabeled fibroblast activation protein inhibitors (FAPI) is an increasingly relevant molecular diagnostic image in oncology given the high expression of FAP in cancer associated fibroblast, being present in almost 90% of the epithelial carcinomas, which allows imaging with excellent diagnostic performance and can also become a therapeutic strategy. This review summarizes the literature on FAPI-PET/CT for the cancer evaluation and compares it in some scenarios with the 18F-Fluorodeoxyglucose PET/CT.
Collapse
Affiliation(s)
| | - Gerardo Cortes
- Department of Nuclear Medicine, Instituto Nacional de Cancerologia, Bogota 111321, Colombia
| | - Klissman Ortega-Anaya
- Department of Nuclear Medicine, Fundacion Universitaria Sanitas, Bogota 111321, Colombia
| | - Humberto Varela
- Department of Nuclear Medicine, Instituto Nacional de Cancerologia, Bogota 111321, Colombia
| |
Collapse
|
13
|
Cui JY, Ma J, Gao XX, Sheng ZM, Pan ZX, Shi LH, Zhang BG. Unraveling the role of cancer-associated fibroblasts in colorectal cancer. World J Gastrointest Oncol 2024; 16:4565-4578. [PMID: 39678792 PMCID: PMC11577382 DOI: 10.4251/wjgo.v16.i12.4565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
Within the intricate milieu of colorectal cancer (CRC) tissues, cancer-associated fibroblasts (CAFs) act as pivotal orchestrators, wielding considerable influence over tumor progression. This review endeavors to dissect the multifaceted functions of CAFs within the realm of CRC, thereby highlighting their indispensability in fostering CRC malignant microenvironment and indicating the development of CAFs-targeted therapeutic interventions. Through a comprehensive synthesis of current knowledge, this review delineates insights into CAFs-mediated modulation of cancer cell proliferation, invasiveness, immune evasion, and neovascularization, elucidating the intricate web of interactions that sustain the pro-tumor metabolism and secretion of multiple factors. Additionally, recognizing the high level of heterogeneity within CAFs is crucial, as they encompass a range of subtypes, including myofibroblastic CAFs, inflammatory CAFs, antigen-presenting CAFs, and vessel-associated CAFs. Innovatively, the symbiotic relationship between CAFs and the intestinal microbiota is explored, shedding light on a novel dimension of CRC pathogenesis. Despite remarkable progress, the orchestrated dynamic functions of CAFs remain incompletely deciphered, underscoring the need for continued research endeavors for therapeutic advancements in CRC management.
Collapse
Affiliation(s)
- Jia-Yu Cui
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jing Ma
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Xin-Xin Gao
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zhi-Mei Sheng
- Affiliated Hospital of Shandong Second Medical University, Department of Pathology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zi-Xin Pan
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Li-Hong Shi
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Bao-Gang Zhang
- Department of Pathology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
14
|
Mao Y, Yao C, Zhang S, Zeng Q, Wang J, Sheng C, Chen S. Targeting fibroblast activation protein with chimeric antigen receptor macrophages. Biochem Pharmacol 2024; 230:116604. [PMID: 39489223 DOI: 10.1016/j.bcp.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Under the rapid advancement of chimeric antigen receptor T cell (CAR-T) technology, CAR-macrophages (CAR-Ms) are also being developed currently in the pre-clinical stage and have been shown to inhibit tumor growth in several mouse tumor models. Fibroblast activation protein (FAP) is a type II transmembrane serine protease, which is expressed in stromal fibroblasts of over 90 % of common human epithelial cancers and is upregulated in fibrotic diseases of the liver, lung and colon, etc. In this study, we firstly constructed FAP-CAR macrophages to target FAP+ cells through in vitro phagocytosis assays. In subsequent in vivo assays, we discovered that FAP-CAR-ΔZETA bone marrow-derived macrophages (BMDMs) rather than FAP-CAR BMDMs, exhibited a pronounced anti-tumor effect in mouse subcutaneous MC38 colon cancer model. In addition, FAP-CAR and FAP-CAR-ΔZETA BMDMs therapy could effectively improve CCl4-induced liver fibrosis in mice. Collectively, CAR-Ms targeting FAP demonstrated great therapeutic potential in cancer and liver fibrosis therapy.
Collapse
Affiliation(s)
- Yizhi Mao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Chen Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Shimeng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Qi Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Chunjie Sheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| |
Collapse
|
15
|
Ielpo S, Barberini F, Dabbagh Moghaddam F, Pesce S, Cencioni C, Spallotta F, De Ninno A, Businaro L, Marcenaro E, Bei R, Cifaldi L, Barillari G, Melaiu O. Crosstalk and communication of cancer-associated fibroblasts with natural killer and dendritic cells: New frontiers and unveiled opportunities for cancer immunotherapy. Cancer Treat Rev 2024; 131:102843. [PMID: 39442289 DOI: 10.1016/j.ctrv.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Natural killer (NK) cells and dendritic cells (DCs) are critical mediators of anti-cancer immune responses. In addition to their individual roles, NK cells and DCs are involved in intercellular crosstalk which is essential for the initiation and coordination of adaptive immunity against cancer. However, NK cell and DC activity is often compromised in the tumor microenvironment (TME). Recently, much attention has been paid to one of the major components of the TME, the cancer-associated fibroblasts (CAFs), which not only contribute to extracellular matrix (ECM) deposition and tumor progression but also suppress immune cell functions. It is now well established that CAFs support T cell exclusion from tumor nests and regulate their cytotoxic activity. In contrast, little is currently known about their interaction with NK cells, and DCs. In this review, we describe the interaction of CAFs with NK cells and DCs, by secreting and expressing various mediators in the TME of adult solid tumors. We also provide a detailed overview of ongoing clinical studies evaluating the targeting of stromal factors alone or in combination with immunotherapy based on immune checkpoint inhibitors. Finally, we discuss currently available strategies for the selective depletion of detrimental CAFs and for a better understanding of their interaction with NK cells and DCs.
Collapse
Affiliation(s)
- Simone Ielpo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Barberini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Silvia Pesce
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185, Rome, Italy; Pasteur Institute Italy-Fondazione Cenci Bolognetti, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
16
|
Dharani S, Cho H, Fernandez JP, Juillerat A, Valton J, Duchateau P, Poirot L, Das S. TALEN-edited allogeneic inducible dual CAR T cells enable effective targeting of solid tumors while mitigating off-tumor toxicity. Mol Ther 2024; 32:3915-3931. [PMID: 39169622 PMCID: PMC11573618 DOI: 10.1016/j.ymthe.2024.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/29/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Adoptive cell therapy using chimeric antigen receptor (CAR) T cells has proven to be lifesaving for many cancer patients. However, its therapeutic efficacy has been limited in solid tumors. One key factor for this is cancer-associated fibroblasts (CAFs) that modulate the tumor microenvironment (TME) to inhibit T cell infiltration and induce "T cell dysfunction." Additionally, the sparsity of tumor-specific antigens (TSA) and expression of CAR-directed tumor-associated antigens (TAA) on normal tissues often results in "on-target off-tumor" cytotoxicity, raising safety concerns. Using TALEN-mediated gene editing, we present here an innovative CAR T cell engineering strategy to overcome these challenges. Our allogeneic "Smart CAR T cells" are designed to express a constitutive CAR, targeting FAP+ CAFs in solid tumors. Additionally, a second CAR targeting a TAA such as mesothelin is specifically integrated at a TCR signaling-inducible locus like PDCD1. FAPCAR-mediated CAF targeting induces expression of the mesothelin CAR, establishing an IF/THEN-gated circuit sensitive to dual antigen sensing. Using this approach, we observe enhanced anti-tumor cytotoxicity, while limiting "on-target off-tumor" toxicity. Our study thus demonstrates TALEN-mediated gene editing capabilities for design of allogeneic IF/THEN-gated dual CAR T cells that efficiently target immunotherapy-recalcitrant solid tumors while mitigating potential safety risks, encouraging clinical development of this strategy.
Collapse
MESH Headings
- Humans
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Mice
- Mesothelin
- Gene Editing
- Cell Line, Tumor
- Transcription Activator-Like Effector Nucleases
- Tumor Microenvironment/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/immunology
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- GPI-Linked Proteins/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Membrane Proteins
- Endopeptidases
Collapse
Affiliation(s)
| | - Hana Cho
- Cellectis Inc, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
19
|
Liu Y, Liang J, Zhang Y, Guo Q. Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). Int J Oncol 2024; 65:96. [PMID: 39219258 PMCID: PMC11387120 DOI: 10.3892/ijo.2024.5684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The use of antitumor drugs represents a reliable strategy for cancer therapy. Unfortunately, drug resistance has become increasingly common and contributes to tumor metastasis and local recurrence. The tumor immune microenvironment (TME) consists of immune cells, cytokines and immunomodulators, and collectively they influence the response to treatment. Epigenetic changes including DNA methylation and histone modification, as well as increased drug exportation have been reported to contribute to the development of drug resistance in cancers. In the past few years, the majority of studies on tumors have only focused on the development and progression of a tumor from a mechanistic standpoint; few studies have examined whether the changes in the TME can also affect tumor growth and drug resistance. Recently, emerging evidence have raised more concerns regarding the role of TME in the development of drug resistance. In the present review, it was discussed how the suppressive TME adapts to drug resistance characterized by the cooperation of immune cells, cytokines, immunomodulators, stromal cells and extracellular matrix. Furthermore, it was reviewed how these immunological or metabolic changes alter immuno‑surveillance and thus facilitate tumor drug resistance. In addition, potential targets present in the TME for developing novel therapeutic strategies to improve individualized therapy for cancer treatment were revealed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jun Liang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Yanping Zhang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
20
|
Santi MD, Zhang M, Asam K, Yu G, Dong PM, Sheehan DH, Aouizerat BE, Thomas CM, Viet CT, Ye Y. Perineural Invasion Is Associated With Function-evoked Pain and Altered Extracellular Matrix in Patients With Head and Neck Squamous Cell Carcinoma. THE JOURNAL OF PAIN 2024; 25:104615. [PMID: 38936749 DOI: 10.1016/j.jpain.2024.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is painful, and perineural invasion (PNI) has been associated with the worst pain. Pain due to HNSCC is diverse and may vary based on clinicopathological factors. This study aims to characterize different pain patterns linked with PNI, its influence on daily functioning, and gain insights into molecular changes and pathways associated with PNI-related pain in HNSCC patients. We conducted a cross-sectional study across 3 medical centers (n = 114), assessing pain phenotypes and their impact on daily functioning using 2 self-reported pain questionnaires, given to patients prior to their cancer surgery. Furthermore, we conducted RNA-seq analysis utilizing the The Cancer Genome Atlas dataset of HNSCC tumor from patients (n = 192) to identify genes relevant to both PNI and pain. Upon adjusting for demographic and clinicopathological variables using linear regression models, we found that PNI independently predicted function-evoked pain according to the University of Calfornia San Francisco Oral Cancer Pain Questionnaire, as well as the worst pain intensity reported in the Brief Pain Inventory. Distinct pain patterns were observed to be associated with daily activities in varying manners. Our molecular analyses revealed significant disruptions in pathways associated with the extracellular matrix structure and organization. The top differentially expressed genes linked to the extracellular matrix are implicated in cancer development, pain, and neurodegenerative diseases. Our data underscore the importance of properly categorizing pain phenotypes in future studies aiming to uncover mechanistic underpinnings of pain. Additionally, we have compiled a list of genes of interest that could serve as targets for both cancer and cancer pain management. PERSPECTIVE: PNI independently predicts function-evoked pain. Different pain phenotypes affect daily activities differently. We identified a list of candidate genes involved in the extracellular matrix structure and function that can be targeted for both cancer and cancer pain control.
Collapse
Affiliation(s)
- Maria D Santi
- Translational Research Center, College of Dentistry, New York University, New York, New York; Department of Molecular Pathobiology, Pain Research Center, College of Dentistry, New York University, New York, New York
| | - Morgan Zhang
- Translational Research Center, College of Dentistry, New York University, New York, New York; Department of Molecular Pathobiology, Pain Research Center, College of Dentistry, New York University, New York, New York
| | - Kesava Asam
- Translational Research Center, College of Dentistry, New York University, New York, New York
| | - Gary Yu
- Rory Meyers College of Nursing, New York University, New York, New York
| | - Phuong M Dong
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, California
| | - Delaney H Sheehan
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bradley E Aouizerat
- Translational Research Center, College of Dentistry, New York University, New York, New York
| | - Carissa M Thomas
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chi T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, California
| | - Yi Ye
- Translational Research Center, College of Dentistry, New York University, New York, New York; Department of Molecular Pathobiology, Pain Research Center, College of Dentistry, New York University, New York, New York.
| |
Collapse
|
21
|
Gan L, Lu T, Lu Y, Song H, Zhang J, Zhang K, Lu S, Wu X, Nie F, Di S, Han D, Yang F, Qin W, Wen W. Endosialin-positive CAFs promote hepatocellular carcinoma progression by suppressing CD8 + T cell infiltration. J Immunother Cancer 2024; 12:e009111. [PMID: 39260826 PMCID: PMC11535718 DOI: 10.1136/jitc-2024-009111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND AND AIMS Endosialin, also known as tumor endothelial marker1 or CD248, is a transmembrane glycoprotein that is mainly expressed in cancer-associated fibroblasts (CAFs) in hepatocellular carcinoma (HCC). Our previous study has found that endosialin-positive CAFs could recruit and induce the M2 polarization of macrophages in HCC. However, whether they may regulate other types of immune cells to promoting HCC progression is not known. APPROACH AND RESULTS The growth of both subcutaneous and orthotopic HCC tumors was significantly inhibited in endosialin knockout (ENKO) mice. Single-cell sequencing and flow cytometry analysis showed that tumor tissues from ENKO mice had increased CD8+ T cell infiltration. Mixed HCC tumor with Hepa1-6 cells and endosialin knockdown fibroblasts also showed inhibited growth and increased CD8+ T cell infiltration. Data from in vitro co-culture assay, chemokine array and antibody blocking assay, RNA-seq and validation experiments showed that endosialin inhibits the phosphorylation and nuclear translocation of STAT1 in CAFs. This inhibition leads to a decrease in CXCL9/10 expression and secretion, resulting in the suppression of CD8+ T cell infiltration. High level of endosialin protein expression was correlated with low CD8+ T infiltration in the tumor tissue of HCC patients. The combination therapy of endosialin antibody and PD-1 antibody showed synergistic antitumor effect compared with either antibody used individually. CONCLUSIONS Endosialin could inhibit CD8+ T cell infiltration by inhibiting the expression and secretion of CXCL9/10 in CAFs, thus promote HCC progression. Combination therapy with endosialin antibody could increase the antitumor effect of PD-1 antibody in HCC, which may overcome the resistance to PD-1 blockade.
Collapse
Affiliation(s)
- Lunbiao Gan
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Tong Lu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Lu
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Hongtao Song
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiayu Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiqi Lu
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Xinjie Wu
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Fengze Nie
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Sijia Di
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weihong Wen
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
22
|
Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, Liu G, Chu X, Liu X, Liu W, Tian X, Yang Y. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol 2024; 17:80. [PMID: 39223656 PMCID: PMC11367794 DOI: 10.1186/s13045-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Jianlei Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Guangnian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xinxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
23
|
Zhang G, Tai P, Fang J, Wang Z, Yu R, Yin Z, Cao K. Multi-omics reveals the impact of cancer-associated fibroblasts on the prognosis and treatment response of adult diffuse highest-grade gliomas. Heliyon 2024; 10:e34526. [PMID: 39157370 PMCID: PMC11327523 DOI: 10.1016/j.heliyon.2024.e34526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Background Cancer associated fibroblasts (CAF), an important cancer-promoting and immunosuppressive component of the tumor immune microenvironment (TIME), have recently been found to infiltrate adult diffuse highest-grade gliomas (ADHGG) (gliomas of grade IV). Methods Gene expression and clinical data of ADHGG patients were obtained from the CGGA and TCGA databases. Consensus clustering was used to identify CAF subtypes based on CAF key genes acquired from single-cell omics and spatial transcriptomomics. CIBERSORT, ssGSEA, MCPcounter, and ESTIMATE analyses were used to assess the TIME of GBM. Survival analysis, drug sensitivity analysis, TCIA database, TIDE and cMap algorithms were used to compare the prognosis and treatment response between patients with different CAF subtypes. An artificial neural network (ANN) model based on random forest was constructed to exactly identify CAF subtypes, which was validated in a real-world patient cohort of ADHGG. Results Consensus clustering classified ADHGG into two CAF subtypes. Compared with subtype B, patients with ADHGG subtype A had a poorer prognosis, worse responsiveness to immunotherapy and radiotherapy, higher CAF infiltration in TIME, but higher sensitivity to temozolomide. Furthermore, patients with subtype A had a much lower proportion of IDH mutations. Finally, the ANN model based on five genes (COL3A1, COL1A2, CD248, FN1, and COL1A1) could exactly discriminate CAF subtypes, and the validation of the real-world cohort indicated consistent results with the bioinformatics analyses. Conclusion This study revealed a novel CAF subtype to distinguish ADHGG patients with different prognosis and treatment responsiveness, which may be helpful for accurate clinical decision-making of ADHGG.
Collapse
Affiliation(s)
| | | | - Jianing Fang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui Yu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Yin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Valdivia-Silva J, Chinney-Herrera A. Chemokine receptors and their ligands in breast cancer: The key roles in progression and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:124-161. [PMID: 39260935 DOI: 10.1016/bs.ircmb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokines and their receptors are a family of chemotactic cytokines with important functions in the immune response in both health and disease. Their known physiological roles such as the regulation of leukocyte trafficking and the development of immune organs generated great interest when it was found that they were also related to the control of early and late inflammatory stages in the tumor microenvironment. In fact, in breast cancer, an imbalance in the synthesis of chemokines and/or in the expression of their receptors was attributed to be involved in the regulation of disease progression, including invasion and metastasis. Research in this area is progressing rapidly and the development of new agents based on chemokine and chemokine receptor antagonists are emerging as attractive alternative strategies. This chapter provides a snapshot of the different functions reported for chemokines and their receptors with respect to the potential to regulate breast cancer progression.
Collapse
Affiliation(s)
- Julio Valdivia-Silva
- Centro de Investigación en Bioingenieria (BIO), Universidad de Ingenieria y Tecnologia-UTEC, Barranco, Lima, Peru.
| | - Alberto Chinney-Herrera
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico-UNAM, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, Mexico
| |
Collapse
|
25
|
Rhodes JD, Goldenring JR, Lee SH. Regulation of metaplasia and dysplasia in the stomach by the stromal microenvironment. Exp Mol Med 2024; 56:1322-1330. [PMID: 38825636 PMCID: PMC11263556 DOI: 10.1038/s12276-024-01240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 06/04/2024] Open
Abstract
Research on the microenvironment associated with gastric carcinogenesis has focused on cancers of the stomach and often underestimates premalignant stages such as metaplasia and dysplasia. Since epithelial interactions with T cells, macrophages, and type 2 innate lymphoid cells (ILC2s) are indispensable for the formation of precancerous lesions in the stomach, understanding the cellular interactions that promote gastric precancer warrants further investigation. Although various types of immune cells have been shown to play important roles in gastric carcinogenesis, it remains unclear how stromal cells such as fibroblasts influence epithelial transformation in the stomach, especially during precancerous stages. Fibroblasts exist as distinct populations across tissues and perform different functions depending on the expression patterns of cell surface markers and secreted factors. In this review, we provide an overview of known microenvironmental components in the stroma with an emphasis on fibroblast subpopulations and their roles during carcinogenesis in tissues including breast, pancreas, and stomach. Additionally, we offer insights into potential targets of tumor-promoting fibroblasts and identify open areas of research related to fibroblast plasticity and the modulation of gastric carcinogenesis.
Collapse
Affiliation(s)
- Jared D Rhodes
- Program in Cancer Biology, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James R Goldenring
- Program in Cancer Biology, Nashville, TN, USA.
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Section of Surgical Sciences, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Nashville, TN, USA.
- Nashville VA Medical Center, Nashville, TN, USA.
| | - Su-Hyung Lee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Section of Surgical Sciences, Nashville, TN, USA.
| |
Collapse
|
26
|
Chen X, Wu Y, Jia S, Zhao M. Fibroblast: A Novel Target for Autoimmune and Inflammatory Skin Diseases Therapeutics. Clin Rev Allergy Immunol 2024; 66:274-293. [PMID: 38940997 DOI: 10.1007/s12016-024-08997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Fibroblasts are crucial components of the skin structure. They were traditionally believed to maintain the skin's structure by producing extracellular matrix and other elements. Recent research illuminated that fibroblasts can respond to external stimuli and exhibit diverse functions, such as the secretion of pro-inflammatory factors, adipogenesis, and antigen presentation, exhibiting remarkable heterogeneity and plasticity. This revelation positions fibroblasts as active contributors to the pathogenesis of skin diseases, challenging the traditional perspective that views fibroblasts solely as structural entities. Based on their diverse functions, fibroblasts can be categorized into six subtypes: pro-inflammatory fibroblasts, myofibroblasts, adipogenic fibroblasts, angiogenic fibroblasts, mesenchymal fibroblasts, and antigen-presenting fibroblasts. Cytokines, metabolism, and epigenetics regulate functional abnormalities in fibroblasts. The dynamic changes fibroblasts exhibit in different diseases and disease states warrant a comprehensive discussion. We focus on dermal fibroblasts' aberrant manifestations and pivotal roles in inflammatory and autoimmune skin diseases, including psoriasis, vitiligo, lupus erythematosus, scleroderma, and atopic dermatitis, and propose targeting aberrantly activated fibroblasts as a potential therapeutic strategy for inflammatory and autoimmune skin diseases.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yutong Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
27
|
Qin Q, Yu R, Eriksson JE, Tsai HI, Zhu H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma therapy: Challenges and opportunities. Cancer Lett 2024; 591:216859. [PMID: 38615928 DOI: 10.1016/j.canlet.2024.216859] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.
Collapse
Affiliation(s)
- Qin Qin
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520 Finland
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
28
|
Xu S, Jiemy WF, Brouwer E, Burgess JK, Heeringa P, van der Geest KSM, Alba-Rovira R, Corbera-Bellalta M, Boots AH, Cid MC, Sandovici M. Current evidence on the role of fibroblasts in large-vessel vasculitides: From pathogenesis to therapeutics. Autoimmun Rev 2024; 23:103574. [PMID: 38782083 DOI: 10.1016/j.autrev.2024.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Large-vessel vasculitides (LVV) comprise a group of chronic inflammatory diseases of the aorta and its major branches. The most common forms of LVV are giant cell arteritis (GCA) and Takayasu arteritis (TAK). Both GCA and TAK are characterized by granulomatous inflammation of the vessel wall accompanied by a maladaptive immune and vascular response that promotes vascular damage and remodeling. The inflammatory process in LVV starts in the adventitia where fibroblasts constitute the dominant cell population. Fibroblasts are traditionally recognized for synthesizing and renewing the extracellular matrix thereby being major players in maintenance of normal tissue architecture and in tissue repair. More recently, fibroblasts have emerged as a highly plastic cell population exerting various functions, including the regulation of local immune processes and organization of immune cells at the site of inflammation through production of cytokines, chemokines and growth factors as well as cell-cell interaction. In this review, we summarize and discuss the current knowledge on fibroblasts in LVV. Furthermore, we identify key questions that need to be addressed to fully understand the role of fibroblasts in the pathogenesis of LVV.
Collapse
Affiliation(s)
- Shuang Xu
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - William F Jiemy
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Elisabeth Brouwer
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, the Netherlands
| | - Peter Heeringa
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, the Netherlands
| | - Kornelis S M van der Geest
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Roser Alba-Rovira
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Corbera-Bellalta
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Annemieke H Boots
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Maria C Cid
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Sandovici
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands.
| |
Collapse
|
29
|
Liu Y, Han X, Han Y, Bi J, Wu Y, Xiang D, Zhang Y, Bi W, Xu M, Li J. Integrated transcriptomic analysis systematically reveals the heterogeneity and molecular characterization of cancer-associated fibroblasts in osteosarcoma. Gene 2024; 907:148286. [PMID: 38367852 DOI: 10.1016/j.gene.2024.148286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Osteosarcoma (OS), with a peak incidence during the adolescent growth spurt, is correlated with poor prognosis for its high malignancy. The tumor microenvironment (TME) is highly complicated, with frequent interactions between tumor and stromal cells. The cancer-associated fibroblasts (CAFs) in the TME have been considered to actively involve in the progression, metastasis, and drug resistance of OS. This study aimed to characterize cellular heterogeneity and molecular characterization in CAFs subtypes and explore the potential targeting therapeutic strategies to improve the prognosis of OS patients. METHODS The single-cell atlas of human OS tumor lesions were constructed from the GEO database. Then significant marker genes and potential biological functions for each CAFs subtype were identified and explored using the Seurat R package. Next, by performing the survival analyses and constructing the risk scores for CAFs subtypes, we aimed to identify and characterize the prognostic values of specific marker genes and different CAFs subtypes. Furthermore, we explored the therapeutic targets and innovative drugs targeting different CAFs subtypes based on the GDSC database. Finally, prognoses related CAFs subtypes were further validated through immunohistochemistry (IHC) on clinical OS specimens. RESULTS Overall, nine main cell clusters and five subtypes of CAFs were identified. The differentially expressed marker genes for each CAFs clusters were then identified. Moreover, through Gene Ontology (GO) enrichment analysis, we defined the CAFs_2 (upregulated CXCL14 and C3), which was closely related to leukocyte migration and chemotaxis, as inflammatory CAFs (iCAFs). Likewise, we defined the CAFs_4 (upregulated CD74, HLA-DRA and HLA-DRB1), which was closely related to antigen process and presentation, as antigen-presenting CAFs (apCAFs). Furthermore, Kaplan-Meier analyses showed that CAFs_2 and CAFs_4 were correlated with poor clinical prognosis of OS patients. Meanwhile, therapeutic drugs targeting CAFs_2 and CAFs_4, such as 17-AAG/Docetaxel/Bleomycin and PHA-793887/NG-25/KIN001-102, were also explored, respectively. Finally, IHC assay confirmed the abundant CAFs_2 and CAFs_4 subtypes infiltration in the OS microenvironment compared with adjacent tissues. CONCLUSION Our study revealed the diversity, complexity, and heterogeneity of CAFs in OS, and complemented the single-cell atlas in OS TME.
Collapse
Affiliation(s)
- Yuyang Liu
- Department of Neurosurgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, Yunnan, China; Chinese PLA Spinal Cord Injury Treatment Center, Kunming, Yunnan 650032, China
| | - Xinli Han
- School of Medicine, Nankai University, Tianjin 300074, China
| | - Yuchen Han
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Jingyou Bi
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yanan Wu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Dongquan Xiang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yinglong Zhang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Wenzhi Bi
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; School of Medicine, Nankai University, Tianjin 300074, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Meng Xu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; Medical School of Chinese PLA, Beijing 100853, China.
| | - Jianxiong Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
30
|
Zhang X, Zhu R, Yu D, Wang J, Yan Y, Xu K. Single-cell RNA sequencing to explore cancer-associated fibroblasts heterogeneity: "Single" vision for "heterogeneous" environment. Cell Prolif 2024; 57:e13592. [PMID: 38158643 PMCID: PMC11056715 DOI: 10.1111/cpr.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), a phenotypically and functionally heterogeneous stromal cell, are one of the most important components of the tumour microenvironment. Previous studies have consolidated it as a promising target against cancer. However, variable therapeutic efficacy-both protumor and antitumor effects have been observed not least owing to the strong heterogeneity of CAFs. Over the past 10 years, advances in single-cell RNA sequencing (scRNA-seq) technologies had a dramatic effect on biomedical research, enabling the analysis of single cell transcriptomes with unprecedented resolution and throughput. Specifically, scRNA-seq facilitates our understanding of the complexity and heterogeneity of diverse CAF subtypes. In this review, we discuss the up-to-date knowledge about CAF heterogeneity with a focus on scRNA-seq perspective to investigate the emerging strategies for integrating multimodal single-cell platforms. Furthermore, we summarized the clinical application of scRNA-seq on CAF research. We believe that the comprehensive understanding of the heterogeneity of CAFs form different visions will generate innovative solutions to cancer therapy and achieve clinical applications.
Collapse
Affiliation(s)
- Xiangjian Zhang
- The Dingli Clinical College of Wenzhou Medical UniversityWenzhouZhejiangChina
- Department of Surgical OncologyWenzhou Central HospitalWenzhouZhejiangChina
- The Second Affiliated Hospital of Shanghai UniversityWenzhouZhejiangChina
| | - Ruiqiu Zhu
- Interventional Cancer Institute of Chinese Integrative MedicinePutuo Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Die Yu
- Interventional Cancer Institute of Chinese Integrative MedicinePutuo Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Juan Wang
- School of MedicineShanghai UniversityShanghaiChina
| | - Yuxiang Yan
- The Dingli Clinical College of Wenzhou Medical UniversityWenzhouZhejiangChina
- Department of Surgical OncologyWenzhou Central HospitalWenzhouZhejiangChina
- The Second Affiliated Hospital of Shanghai UniversityWenzhouZhejiangChina
| | - Ke Xu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Wenzhou Institute of Shanghai UniversityWenzhouChina
| |
Collapse
|
31
|
Mai Z, Lin Y, Lin P, Zhao X, Cui L. Modulating extracellular matrix stiffness: a strategic approach to boost cancer immunotherapy. Cell Death Dis 2024; 15:307. [PMID: 38693104 PMCID: PMC11063215 DOI: 10.1038/s41419-024-06697-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
The interplay between extracellular matrix (ECM) stiffness and the tumor microenvironment is increasingly recognized as a critical factor in cancer progression and the efficacy of immunotherapy. This review comprehensively discusses the key factors regulating ECM remodeling, including the activation of cancer-associated fibroblasts and the accumulation and crosslinking of ECM proteins. Furthermore, it provides a detailed exploration of how ECM stiffness influences the behaviors of both tumor and immune cells. Significantly, the impact of ECM stiffness on the response to various immunotherapy strategies, such as immune checkpoint blockade, adoptive cell therapy, oncolytic virus therapy, and therapeutic cancer vaccines, is thoroughly examined. The review also addresses the challenges in translating research findings into clinical practice, highlighting the need for more precise biomaterials that accurately mimic the ECM and the development of novel therapeutic strategies. The insights offered aim to guide future research, with the potential to enhance the effectiveness of cancer immunotherapy modalities.
Collapse
Affiliation(s)
- Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
32
|
Amorós-Pérez B, Rivas-Pardo B, Gómez del Moral M, Subiza JL, Martínez-Naves E. State of the Art in CAR-T Cell Therapy for Solid Tumors: Is There a Sweeter Future? Cells 2024; 13:725. [PMID: 38727261 PMCID: PMC11083689 DOI: 10.3390/cells13090725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has proven to be a powerful treatment for hematological malignancies. The situation is very different in the case of solid tumors, for which no CAR-T-based therapy has yet been approved. There are many factors contributing to the absence of response in solid tumors to CAR-T cells, such as the immunosuppressive tumor microenvironment (TME), T cell exhaustion, or the lack of suitable antigen targets, which should have a stable and specific expression on tumor cells. Strategies being developed to improve CAR-T-based therapy for solid tumors include the use of new-generation CARs such as TRUCKs or bi-specific CARs, the combination of CAR therapy with chemo- or radiotherapy, the use of checkpoint inhibitors, and the use of oncolytic viruses. Furthermore, despite the scarcity of targets, a growing number of phase I/II clinical trials are exploring new solid-tumor-associated antigens. Most of these antigens are of a protein nature; however, there is a clear potential in identifying carbohydrate-type antigens associated with tumors, or carbohydrate and proteoglycan antigens that emerge because of aberrant glycosylations occurring in the context of tumor transformation.
Collapse
Affiliation(s)
- Beatriz Amorós-Pérez
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Inmunotek S.L., 28805 Madrid, Spain;
| | - Benigno Rivas-Pardo
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Manuel Gómez del Moral
- Department of Cellular Biology, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain;
| | | | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
33
|
Li M, Deng Z, Xie C, Chen J, Yuan Z, Rahhal O, Tang Z. Fibroblast activating protein promotes the proliferation, migration, and activation of fibroblasts in oral submucous fibrosis. Oral Dis 2024; 30:1252-1263. [PMID: 37357365 DOI: 10.1111/odi.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVES Fibroblast activating protein (FAP) is associated with various organ fibrosis. However, the expression and molecular function of FAP in oral submucous fibrosis (OSF) is still unclear. MATERIALS AND METHODS The high-performance liquid chromatography was used to detect the presence of alkaloids in areca nut extract (ANE). Real-time qPCR, Western blot, and Immunohistochemistry assay were used to analyze the expression of FAP mRNA or protein in OSF and normal oral tissue. A chi-squared test analyzed the relationship between FAP protein expression and clinicopathological data of OSF patients. CCK-8, Wound-healing, and Transwell migration assay were employed to assess the effect of the proliferation and migration ability of hOMF cells with FAP overexpression or knockdown. The expression level of a-SMA, FSP1, and P13K-Akt signaling pathways-related protein in hOMF cells transfected with FAP overexpression or knockdown plasmid was verified by western blot assay. RESULTS The four specific areca alkaloids (Arecoline, Guvacine, Arecaidine, and Guvacoline) were successfully detected in the ANE. The viability of hOMF cells was significantly improved in the 50 μg/mL ANE group and was inhibited in the 5 and 50 mg/mL ANE groups. The expression of FAP was upregulated in OSF tissues, and hOMF cells treated with 50 μg/mL ANE and was related to pathology grade, clinical stage, and history of chewing betel nut. Additionally, FAP may promote the proliferation, migration, and activation of hOMF cells through the P13K-Akt signaling pathway. CONCLUSIONS This study found that ANE had a bidirectional effect on the viability of hOMF cells, and the FAP gene was a potential therapeutic target in OSF.
Collapse
Affiliation(s)
- Ming Li
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhiyuan Deng
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Changqin Xie
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Juan Chen
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | | | - Omar Rahhal
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
34
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
35
|
Ganguly A, Mukherjee S, Chatterjee K, Spada S. Factors affecting heterogeneity in breast cancer microenvironment: A narrative mini review. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:211-226. [PMID: 38663960 DOI: 10.1016/bs.ircmb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Breast cancer (BC) heterogeneity is a key trait of BC tumors with crucial implications on tumorigenesis, diagnosis, and therapeutic modalities. It is influenced by tumor intrinsic features and by the tumor microenvironment (TME) composition of different intra-tumoral regions, which in turn affect cancer progression within patients. In this mini review, we will highlight the mechanisms that generate cancer heterogeneity in BC and how they affect the responses to cancer therapies.
Collapse
Affiliation(s)
- Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, India
| | - Sumit Mukherjee
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
36
|
Meng F, Yin Z, Lu F, Wang W, Zhang H. Disruption of LPA-LPAR1 pathway results in lung tumor growth inhibition by downregulating B7-H3 expression in fibroblasts. Thorac Cancer 2024; 15:316-326. [PMID: 38124403 PMCID: PMC10834189 DOI: 10.1111/1759-7714.15193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Lysophosphatidic acids (LPAs) belong to a class of bioactive lysophospholipids with multiple functions including immunomodulatory roles in tumor microenvironment (TME). LPA exerts its biological effects via its receptors that are highly expressed in fibroblasts among other cell types. As cancer-associated fibroblasts (CAFs) are a key component of the TME, it is important to understand LPA signaling and regulation of receptors in fibroblasts or CAFs and associated regulatory roles on immunomodulation-related molecules. METHODS Cluster analysis, immunoblotting, real-time quantitative-PCR, CRISPR-Cas9 gene editing system, immunohistochemical staining, coculture model, and in vivo xenograft model were used to investigate the effects of LPA-LPAR1 on B7-H3 in tumor promotion of CAFs. RESULTS In this study, we found that LPAR1 and CD276 (B7-H3) were generally highly expressed in fibroblasts with good expression correlation. LPA induced B7-H3 up-expression through LPAR1, and stimulated fibroblasts proliferation that could be inhibited by silencing LPAR1 or B7-H3 as well as small molecule LPAR1 antagonist (Ki16425). Using engineered fibroblasts and non-small cell lung carcinoma (NSCLC) cell lines, subsequent investigations demonstrated that CAFs promoted the proliferation of NSCLC in vitro and in vivo, and such effect could be inhibited by knocking out LPAR1 or B7-H3. CONCLUSION The present study provided new insights for roles of LPA in CAFs, which could lead to the development of innovative therapies targeting CAFs in the TME. It is also reasonable to postulate a combinatory approach to treat malignant fibrous tumors (such as NSCLC) with LPAR1 antagonists and B7-H3 targeting therapies.
Collapse
Affiliation(s)
- Fanyi Meng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhiyue Yin
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Feifei Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hongjian Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
37
|
Abudukelimu S, de Miranda NFCC, Hawinkels LJAC. Fibroblasts in Orchestrating Colorectal Tumorigenesis and Progression. Cell Mol Gastroenterol Hepatol 2024; 17:821-826. [PMID: 38307492 PMCID: PMC10966773 DOI: 10.1016/j.jcmgh.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are an abundant component of the tumor microenvironment and have been shown to possess critical functions in tumor progression. Although their roles predominantly have been described as tumor-promoting, more recent findings have identified subsets of CAFs with tumor-restraining functions. Accumulating evidence underscores large heterogeneity in fibroblast subsets in which distinct subsets differentially impact the initiation, progression, and metastasis of colorectal cancer. In this review, we summarize and discuss the evolving role of CAFs in colorectal cancer, highlighting the ongoing controversies regarding their distinct origins and multifaceted functions. In addition, we explore how CAFs can confer resistance to current therapies and the challenges of developing effective CAF-directed therapies. Taken together, we believe that, in this rapidly evolving field, it is crucial first to understand CAF dynamics comprehensively, and to bridge existing knowledge gaps regarding CAF heterogeneity and plasticity before further exploring the clinical targeting of CAFs.
Collapse
Affiliation(s)
- Subinuer Abudukelimu
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
38
|
Tian G, Zhang J, Bao Y, Li Q, Hou J. A prognostic model based on Scissor + cancer associated fibroblasts identified from bulk and single cell RNA sequencing data in head and neck squamous cell carcinoma. Cell Signal 2024; 114:110984. [PMID: 38029947 DOI: 10.1016/j.cellsig.2023.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most lethal diseases in the world, which often recur after multimodality treatment approaches, leading to a poor prognosis. Fibroblasts, a heterogeneous component of the tumor microenvironment, can modulate numerous aspects of tumor biology and have been increasingly acknowledged in dictating the clinical outcome of patients with HNSCC. However, the subpopulation of fibroblasts that are related to the prognosis of HNSCC has not yet been fully explored. To do so, we combined a single-cell RNA sequencing (scRNA-seq) dataset and bulk RNA-sequencing dataset with clinical information, identifying the fibroblast population that are related to poor prognosis of HNSCC. We found these specific population of fibroblasts are less differentiated. In addition, to identify the prognostic signatures of HNSCC, bioinformatics analysis included least absolute shrinkage and selection operator (LASSO) analyses and univariate cox and were performed. We selected 12 prognosis-related genes for constructing a risk model using The Cancer Genome Atlas (TCGA). The AUC values and calibration plots of this model indicated good prognostic prediction efficacy. This model also was validated in two Gene Expression Omnibus (GEO) datasets. In conclusion, we constructed an optimal model that was derived from single cell RNA-seq and bulk RNA-seq to predict the survival probability of HNSCC patients. Among this model, AKR1C3 higher expression in cancer associated fibroblasts (CAFs) of HNSCC has been confirmed by preliminary experiments.
Collapse
Affiliation(s)
- Guoli Tian
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jiaqiang Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yong Bao
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Qiuli Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
39
|
Fang Y, Xiao X, Wang J, Dasari S, Pepin D, Nephew KP, Zamarin D, Mitra AK. Cancer associated fibroblasts serve as an ovarian cancer stem cell niche through noncanonical Wnt5a signaling. NPJ Precis Oncol 2024; 8:7. [PMID: 38191909 PMCID: PMC10774407 DOI: 10.1038/s41698-023-00495-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Frequent relapse and chemoresistance cause poor outcome in ovarian cancer (OC) and cancer stem cells (CSCs) are important contributors. While most studies focus exclusively on CSCs, the role of the microenvironment in providing optimal conditions to maintain their tumor-initiating potential remains poorly understood. Cancer associated fibroblasts (CAFs) are a major constituent of the OC tumor microenvironment and we show that CAFs and CSCs are enriched following chemotherapy in patient tumors. CAFs significantly increase OC cell resistance to carboplatin. Using heterotypic CAF-OC cocultures and in vivo limiting dilution assay, we confirm that the CAFs act by enriching the CSC population. CAFs increase the symmetric division of CSCs as well as the dedifferentiation of bulk OC cells into CSCs. The effect of CAFs is limited to OC cells in their immediate neighborhood, which can be prevented by inhibiting Wnt. Analysis of single cell RNA-seq data from OC patients reveal Wnt5a as the highest expressed Wnt in CAFs and that certain subpopulations of CAFs express higher levels of Wnt5a. Our findings demonstrate that Wnt5a from CAFs activate a noncanonical Wnt signaling pathway involving the ROR2/PKC/CREB1 axis in the neighboring CSCs. While canonical Wnt signaling is found to be predominant in interactions between cancer cells in patients, non-canonical Wnt pathway is activated by the CAF-OC crosstalk. Treatment with a Wnt5a inhibitor sensitizes tumors to carboplatin in vivo. Together, our results demonstrate a novel mechanism of CSC maintenance by signals from the microenvironmental CAFs, which can be targeted to treat OC chemoresistance and relapse.
Collapse
Affiliation(s)
- Yiming Fang
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xue Xiao
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ji Wang
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Subramanyam Dasari
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Pepin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Kenneth P Nephew
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anirban K Mitra
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN, USA.
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
40
|
Zheng J, Hao H. The importance of cancer-associated fibroblasts in targeted therapies and drug resistance in breast cancer. Front Oncol 2024; 13:1333839. [PMID: 38273859 PMCID: PMC10810416 DOI: 10.3389/fonc.2023.1333839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a substantial role in the tumor microenvironment, exhibiting a strong association with the advancement of various types of cancer, including breast, pancreatic, and prostate cancer. CAFs represent the most abundant mesenchymal cell population in breast cancer. Through diverse mechanisms, including the release of cytokines and exosomes, CAFs contribute to the progression of breast cancer by influencing tumor energy metabolism, promoting angiogenesis, impairing immune cell function, and remodeling the extracellular matrix. Moreover, CAFs considerably impact the response to treatment in breast cancer. Consequently, the development of interventions targeting CAFs has emerged as a promising therapeutic approach in the management of breast cancer. This article provides an analysis of the role of CAFs in breast cancer, specifically in relation to diagnosis, treatment, drug resistance, and prognosis. The paper succinctly outlines the diverse mechanisms through which CAFs contribute to the malignant behavior of breast cancer cells, including proliferation, invasion, metastasis, and drug resistance. Furthermore, the article emphasizes the potential of CAFs as valuable tools for early diagnosis, targeted therapy, treatment resistance, and prognosis assessment in breast cancer, thereby offering novel approaches for targeted therapy and overcoming treatment resistance in this disease.
Collapse
Affiliation(s)
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
41
|
Gu Y, Chen Q, Yin H, Zeng M, Gao S, Wang X. Cancer-associated fibroblasts in neoadjuvant setting for solid cancers. Crit Rev Oncol Hematol 2024; 193:104226. [PMID: 38056580 DOI: 10.1016/j.critrevonc.2023.104226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Therapeutic approaches for cancer have become increasingly diverse in recent times. A comprehensive understanding of the tumor microenvironment (TME) holds great potential for enhancing the precision of tumor therapies. Neoadjuvant therapy offers the possibility of alleviating patient symptoms and improving overall quality of life. Additionally, it may facilitate the reduction of inoperable tumors and prevent potential preoperative micrometastases. Within the TME, cancer-associated fibroblasts (CAFs) play a prominent role as they generate various elements that contribute to tumor progression. Particularly, extracellular matrix (ECM) produced by CAFs prevents immune cell infiltration into the TME, hampers drug penetration, and diminishes therapeutic efficacy. Therefore, this review provides a summary of the heterogeneity and interactions of CAFs within the TME, with a specific focus on the influence of neoadjuvant therapy on the microenvironment, particularly CAFs. Finally, we propose several potential and promising therapeutic strategies targeting CAFs, which may efficiently eliminate CAFs to decrease stroma density and impair their functions.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China.
| | - Xiaolin Wang
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China.
| |
Collapse
|
42
|
Borzone FR, Giorello MB, Sanmartin MC, Yannarelli G, Martinez LM, Chasseing NA. Mesenchymal stem cells and cancer-associated fibroblasts as a therapeutic strategy for breast cancer. Br J Pharmacol 2024; 181:238-256. [PMID: 35485850 DOI: 10.1111/bph.15861] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is the most common type of cancer and the leading cause of death among women. Recent evidence suggests that mesenchymal stromal/stem cells and cancer-associated fibroblasts (CAFs) have an essential role in cancer progression, invasion and therapy resistance. Therefore, they are considered as highly promising future therapeutic targets against breast cancer. The intrinsic tumour tropism and immunomodulatory capacities of mesenchymal stromal/stem cells are of special relevance for developing mesenchymal stromal/stem cells-based anti-tumour therapies that suppress primary tumour growth and metastasis. In addition, the utilization of therapies that target the stromal components of the tumour microenvironment in combination with standard drugs is an innovative tool that could improve patients' response to therapies and their survival. In this review, we discuss the currently available information regarding the possible use of mesenchymal stromal/stem cells-derived anti-tumour therapies, as well as the utilization of therapies that target CAFs in breast cancer microenvironment. Finally, these data can serve as a guide map for future research in this field, ultimately aiding the effective transition of these results into the clinic. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Sanmartin
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Leandro Marcelo Martinez
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
43
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
45
|
Meng J, Bao W, Liu M, Ma Z, Tian Z. MOFs-Based Nanoagents Enable Sequential Damage to Cancer-Associated Fibroblast and Tumor Cells for Phototriggered Tumor Microenvironment Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304491. [PMID: 37653587 DOI: 10.1002/smll.202304491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Indexed: 09/02/2023]
Abstract
A composite nanoagent capable of phototriggered tumor microenvironment (TME) regulation is developed based on copper (II) metal-organic frameworks (MOFs) with encapsulation of blebbistatin (Bb) and surface modification of fibroblast activation protein-αtargeted peptide (Tp). Tp enables active targeting of the nanoagents to cancer-associated fibroblast (CAF) while near-infrared light triggers Cu2+ -to-Cu+ photoreduction in MOFs, which brings about the collapse of MOFs and the release of Bb and Cu+ . Bb mediates photogeneration of hydroxyl radicals (•OH) and therefore inhibits extracellular matrix production by inducing CAF apoptosis, which facilitates the penetration of nanoagent to deep tumor tissue. The dual-channel generation of •OH based on Bb and the Cu+ species, via distinct mechanisms, synergistically reinforces oxidative stress in TME capable of inducing immunogenic cell death, which activates the antitumor immune response and therefore reverses the immunosuppressive TME. The synergistic antitumor phototherapy efficacy of such a type of nanoagent based on the abovementioned TME remodeling is unequivocally verified in a cell-derived tumor xenograft model.
Collapse
Affiliation(s)
- Jiaqi Meng
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Weier Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Ming Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Zhecheng Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
46
|
Kashyap D, Bhattacharya S, Irinike S, Khare S, Das A, Singh G, Bal A. Cancer associated fibroblasts modulate the cytotoxicity of anti-cancer drugs in breast cancer: An in vitro study. Breast Dis 2024; 43:25-36. [PMID: 38517765 DOI: 10.3233/bd-230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Tumour microenvironment (TME) contributes to resistance to anti-cancer drugs through multiple mechanisms including secretion of pro-survival factors by cancer associated fibroblasts (CAFs). In this study, we determined the chemotherapy resistance producing potential of CAFs in molecular subtypes of breast cancer. METHODS The CAFs were isolated from fresh lumpectomy/mastectomy specimens of different molecular subtypes of breast cancer. The CAFs were cultured and secretome was collected from each breast cancer subtype. Breast cancer cell lines MCF-7, SK-BR3, MDA-MB-231, and MDA-MB-468 were treated with different doses of tamoxifen, trastuzumab, cisplatin, and doxorubicin alone respectively and in combination with secretome of CAFs from respective subtypes. MTT assay was done to check cell death after drug treatment. Liquid chromatography-mass spectrometry (LCMS) analysis of CAF secretome was also done. RESULTS MTT assay showed that anti-cancer drugs alone had growth inhibitory effect on the cancer cells however, presence of CAF secretome reduced the anti-cancer effect of the drugs. Resistant to drugs in the presence of secretome, was determined by increased cell viability i.e., MCF-7, 51.02% to 63.02%; SK-BR-3, 34.22% to 44.88%; MDA-MB-231, 52.59% to 78.63%; and MDA-MB-468, 48.92% to 55.08%. LCMS analysis of the secretome showed the differential abundance of CAFs secreted proteins across breast cancer subtypes. CONCLUSIONS The treatment of breast cancer cell lines with anti-cancer drugs in combination with secretome isolated from molecular subtype specific CAFs, reduced the cytotoxic effect of the drugs. In addition, LCMS data also highlighted different composition of secreted proteins from different breast cancer associated fibroblasts. Thus, TME has heterogenous population of CAFs across the breast cancer subtypes and in vitro experiments highlight their contribution to chemotherapy resistance which needs further validation.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Shalmoli Bhattacharya
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Santosh Irinike
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Siddhant Khare
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Ashim Das
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Gurpreet Singh
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| |
Collapse
|
47
|
Zhang XL, Xiao W, Qian JP, Yang WJ, Xu H, Xu XD, Zhang GW. The Role and Application of Fibroblast Activating Protein. Curr Mol Med 2024; 24:1097-1110. [PMID: 37259211 DOI: 10.2174/1566524023666230530095305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/02/2023]
Abstract
Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is rarely expressed in normal tissues but highly abundant in pathological diseases, including fibrosis, arthritis, and cancer. Ever since its discovery, we have deciphered its structure and biological properties and continue to investigate its roles in various diseases while attempting to utilize it for targeted therapy. To date, no significant breakthroughs have been made in terms of efficacy. However, in recent years, several practical applications in the realm of imaging diagnosis have been discovered. Given its unique expression in a diverse array of pathological tissues, the fundamental biological characteristics of FAP render it a crucial target for disease diagnosis and immunotherapy. To obtain a more comprehensive understanding of the research progress of FAP, its biological characteristics, involvement in diseases, and recent targeted application research have been reviewed. Moreover, we explored its development trend in the direction of clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Xiao-Lou Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-da Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Batra H, Ding Q, Pandurengan R, Ibarguen H, Rabassedas NB, Sahin A, Wistuba I, Parra ER, Raso MG. Exploration of cancer associated fibroblasts phenotypes in the tumor microenvironment of classical and pleomorphic Invasive Lobular Carcinoma. Front Oncol 2023; 13:1281650. [PMID: 38192631 PMCID: PMC10772146 DOI: 10.3389/fonc.2023.1281650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 01/10/2024] Open
Abstract
As the second most common subtype of breast carcinoma, Invasive Lobular Carcinoma (ILC) microenvironment features have not been thoroughly explored. ILC has different histological subtypes and elucidating differences in their microenvironments could lead to a comprehensive development of cancer therapies. We designed a custom-made cancer associated fibroblast (CAFs) panel and used multiplex immunofluorescence to identify the differences in tumor microenvironment between Classic ILC and Pleomorphic ILC. Materials and methods Multiplex immunofluorescence were performed on formalin fixed paraffin embedded tissues using Opal-7 color kit. The antibodies used for phenotyping CAFs were Pan CK (AE1/AE3), CD45, A-SMA, FAP, S100, Thy-1 with optimized dilutions. The images were acquired and analyzed using Vectra 3.0 imaging system and InForm software respectively. Results We studied 19 different CAFs colocalized phenotypes in the tumor, stroma and overall tissue compartments between classic and pleomorphic ILC. Total A-SMA+, A-SMA+FAP+S100+ and A-SMA+S100+ CAFs demonstrated higher densities in classic ILC cases while FAP+S100+ and S-100+ CAFs were increased in the pleomorphic subtype samples. Conclusion Our study explores multiple CAFs phenotypes between classical and pleomorphic ILC. We showed that CAFs subset differ between Classic ILC and Pleomorphic ILC. A-SMA CAFs are more prevalent in the TME of classic ILCs whereas Pleomorphic ILCs are dominated by CAFs without A-SMA expression. This also iterates the importance of exploring this particular type of breast carcinoma in more detail, paving the way for meaningful translational research.
Collapse
Affiliation(s)
- Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingqing Ding
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Renganayaki Pandurengan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Heladio Ibarguen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Neus Bota Rabassedas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aysegul Sahin
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
49
|
Chai K, Wang C, Zhou J, Mu W, Gao M, Fan Z, Lv G. Quenching thirst with poison? Paradoxical effect of anticancer drugs. Pharmacol Res 2023; 198:106987. [PMID: 37949332 DOI: 10.1016/j.phrs.2023.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Anticancer drugs have been developed with expectations to provide long-term or at least short-term survival benefits for patients with cancer. Unfortunately, drug therapy tends to provoke malignant biological and clinical behaviours of cancer cells relating not only to the evolution of resistance to specific drugs but also to the enhancement of their proliferation and metastasis abilities. Thus, drug therapy is suspected to impair long-term survival in treated patients under certain circumstances. The paradoxical therapeutic effects could be described as 'quenching thirst with poison', where temporary relief is sought regardless of the consequences. Understanding the underlying mechanisms by which tumours react on drug-induced stress to maintain viability is crucial to develop rational targeting approaches which may optimize survival in patients with cancer. In this review, we describe the paradoxical adverse effects of anticancer drugs, in particular how cancer cells complete resistance evolution, enhance proliferation, escape from immune surveillance and metastasize efficiently when encountered with drug therapy. We also describe an integrative therapeutic framework that may diminish such paradoxical effects, consisting of four main strategies: (1) targeting endogenous stress response pathways, (2) targeting new identities of cancer cells, (3) adaptive therapy- exploiting subclonal competition of cancer cells, and (4) targeting tumour microenvironment.
Collapse
Affiliation(s)
- Kaiyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianpeng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Menghan Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
50
|
Wu X, Lu W, Zhang W, Zhang D, Mei H, Zhang M, Cui Y, Zhuo Z. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels the heterogeneity of cancer-associated fibroblasts in TNBC. Aging (Albany NY) 2023; 15:12674-12697. [PMID: 37963845 PMCID: PMC10683606 DOI: 10.18632/aging.205205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The treatment of triple-negative breast cancer (TNBC) is one of the main focuses and key difficulties because of its heterogeneity, and the source of this heterogeneity is unclear. METHODS Single-cell RNA (scRNA) and transcriptomics data of TNBC and normal breast samples were retrieved from Gene Expression Omnibus (GEO) database and TCGA-BRCA database. These cells were clustered using the t-SNE and UMAP method, and the marker genes for each cluster were found. We annotated the clusters using the published literature, CellMarker database and "SingleR" R package. RESULTS A total of 1535 cells and 21785 genes from 6 TNBC patients and 2068 cells and 15868 genes from 3 normal breast tissues were used for downstream analyses. The scRNA data were divided into 14 clusters labeled into 8 cell types, including epithelial cells, immunocytes, CAFs/fibroblasts and etc. In the TNBC samples, CAFs were divided into three clusters and labelled as prCAFs, myCAFs and emCAFs, and the marker genes were DCN, FAP and RGS5, respectively. The prCAF subgroup is functionally characterized by promoting proliferation and multi drug resistance; myCAF subgroup is involved in constituting the extracellular matrix and collagen production, matrix composition and collagen production, and the emCAF functionally characterized by energy metabolism. CONCLUSIONS TNBC has inter- and intra-tumor heterogeneity, and CAF is one of the sources of this heterogeneity. CD74, SASH3, CD2, TAGAP and CCR7 served as significant marker genes with prognostic and therapeutic value.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Wenping Lu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Weixuan Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Dongni Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Heting Mei
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Mengfan Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Yongjia Cui
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Zhili Zhuo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| |
Collapse
|