1
|
Cohen ED, Yee M, Roethlin K, Prelipcean I, Small EM, Porter GA, O'Reilly MA. Whole genome transcriptomics reveal distinct atrial versus ventricular responses to neonatal hyperoxia. Am J Physiol Heart Circ Physiol 2025; 328:H832-H845. [PMID: 40047849 DOI: 10.1152/ajpheart.00039.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Preterm infants exposed to supplemental oxygen (hyperoxia) are at risk for developing heart failure later in life. Exposing rodents in early postnatal life to hyperoxia causes heart failure that resembles cardiac disease seen in adult humans who were born preterm. Neonatal hyperoxia exposure affects the left atrium and left ventricle differently, inhibiting the proliferation and survival of atrial cardiomyocytes while enhancing cardiomyocyte differentiation in the ventricle. In this study, whole genome transcriptomics revealed the left atria of neonatal mice are more responsive to hyperoxia than the left ventricle, with the expression of 4,285 genes affected in the atrium and 1,743 in the ventricle. Although hyperoxia activated p53 target genes in both chambers, it caused greater DNA damage, phosphorylation of the DNA damage responsive ataxia-telangiectasia mutated (ATM) kinase, mitochondrial stress, and apoptosis in the atrium. In contrast, hyperoxia induced the expression of genes involved in DNA repair and stress granules in the ventricle. Atrial cells also showed a greater loss of extracellular matrix and superoxide dismutase 3 (SOD3) expression, possibly contributing to the enlargement of the left atrium and reduced velocity of blood flow across the mitral valve seen in mice exposed to hyperoxia. Diastolic dysfunction and heart failure in hyperoxia-exposed mice may thus stem from its effects on the left atrium, suggesting chamber-specific therapies may be needed to address diastolic dysfunction and heart failure in people who were born preterm.NEW & NOTEWORTHY Preterm infants often require oxygen (hyperoxia) at birth, but early exposure increases the risk of heart failure later in life. Previously, we showed neonatal mice exposed to hyperoxia develop adult diastolic dysfunction and heart failure like preterm-born humans. In this study, RNA-sequencing reveals hyperoxia induces broader transcriptional changes in the atrium than ventricle, including upregulation of stress pathways and loss of superoxide dismutase 3 and extracellular matrix genes, highlighting the atrium's heightened vulnerability to hyperoxia.
Collapse
Grants
- HL168812 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL144776 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL133761 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL144867 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL169961 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- AG070585 HHS | NIH | National Institute on Aging (NIA)
- ES001247 HHS | NIH | National Institute of Environmental Health Sciences (DEHS)
- KL2 TR001999 NCATS NIH HHS
Collapse
Affiliation(s)
- E David Cohen
- Department of Pediatrics, Division of Cardiology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| | - Min Yee
- Department of Pediatrics, Division of Neonatology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| | - Kyle Roethlin
- Department of Pediatrics, Division of Neonatology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| | - Irina Prelipcean
- Department of Pediatrics, Division of Cardiology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| | - Eric M Small
- Department of Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| | - Michael A O'Reilly
- Department of Pediatrics, Division of Neonatology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States
| |
Collapse
|
2
|
Fee EL, Usuda H, Carter SWD, Ikeda H, Takahashi T, Takahashi Y, Kumagai Y, Clarke MW, Ireland DJ, Newnham JP, Saito M, Illanes SE, Sesurajan BP, Shen L, Choolani MA, Oguz G, Ramasamy A, Ritchie S, Ritchie A, Jobe AH, Kemp MW. Single-nucleotide polymorphisms in dizygotic twin ovine fetuses are associated with discordant responses to antenatal steroid therapy. BMC Med 2025; 23:65. [PMID: 39901164 PMCID: PMC11792249 DOI: 10.1186/s12916-025-03910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Antenatal steroid (ANS) therapy is given to women at risk of preterm delivery to accelerate fetal lung maturation. However, the benefit of ANS therapy is variable and how maternal and fetal factors contribute to this observed variability is unknown. We aimed to test the degree of concordance in preterm lung function, and correlate this with genomic, transcriptomic, and pharmacokinetic variables in preterm dizygotic twin ovine fetuses. METHODS Thirty-one date-mated ewes carrying twin fetuses at 123 ± 1 days' gestation received maternal intramuscular injections of either (i) 1 × 0.25 mg/kg betamethasone phosphate and acetate (CS1, n = 11 twin pairs) or (ii) 2 × 0.25 mg/kg betamethasone phosphate and acetate, 24 h apart (CS2, n = 10 twin pairs) or (iii) 2 × saline, 24 h apart (negative control, n = 10 twin pairs). Fetuses were surgically delivered 24 h after their final treatment and ventilated for 30 min. RESULTS ANS-exposed female fetuses had lower arterial partial pressure of carbon dioxide (PaCO2) values than male fetuses (76.5 ± 38.0 vs. 97.2 ± 42.5 mmHg), although the observed difference was not statistically significant (p = 0.1). Only 52% of ANS-treated twins were concordant for lung maturation responses. There was no difference in fetal lung tissue or plasma steroid concentrations within or between twin pairs. Genomic analysis identified 13 single-nucleotide polymorphisms (SNPs) statistically associated with ANS-responsiveness, including in the proto-oncogene MET and the transcription activator STAT1. CONCLUSIONS Twin fetal responses and ANS tissue levels were comparable with those from singleton fetuses in earlier studies. Twin ovine fetuses thus benefit from ANS in a similar manner to singleton fetuses, and a larger dose of betamethasone is not required. Assuming no difference in input from the placental or maternal compartments, fetal lung responses to ANS therapy in dizygotic twin preterm lambs are dependent on the fetus itself. These data suggest a potential heritable role in determining ANS responsiveness.
Collapse
Affiliation(s)
- Erin L Fee
- Division of Obstetrics and Gynecology, Medical School, The University of Western Australia, Perth, WA, Australia.
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
| | - Haruo Usuda
- Division of Obstetrics and Gynecology, Medical School, The University of Western Australia, Perth, WA, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Sean W D Carter
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hideyuki Ikeda
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Tsukasa Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuki Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yusaku Kumagai
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael W Clarke
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Center for Microscopy, Characterization and Analysis, Metabolomics Australia, The University of Western Australia, Perth, WA, Australia
| | - Demelza J Ireland
- Division of Obstetrics and Gynecology, Medical School, The University of Western Australia, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - John P Newnham
- Division of Obstetrics and Gynecology, Medical School, The University of Western Australia, Perth, WA, Australia
| | - Masatoshi Saito
- Division of Obstetrics and Gynecology, Medical School, The University of Western Australia, Perth, WA, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Sebastian E Illanes
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Binny Priya Sesurajan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Liang Shen
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mahesh A Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gokce Oguz
- Genome Institute of Singapore. Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, Singapore
| | - Adaikalavan Ramasamy
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore. Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, Singapore
| | | | | | - Alan H Jobe
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Matthew W Kemp
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
- Women and Children's Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Lu S, Chen Y, Song J, Ren L, Du J, Shen D, Peng J, Yin Y, Li X, Wang Y, Gao Y, Han S, Jia Y, Zhao Y, Wang Y. Cortisol regulates neonatal lung development via Smoothened. Respir Res 2025; 26:27. [PMID: 39827090 PMCID: PMC11743026 DOI: 10.1186/s12931-025-03104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Neonatal respiratory distress syndrome (NRDS), one of the main causes of neonatal death, is clinically characterized by progressive dyspnea and cyanosis 1 to 2 h after birth. Corticosteroids are commonly used to prevent NRDS in clinical. However, the protective mechanism of the corticosteroids remains largely unclear. METHODS In this study, the simulation of the molecular docking by Autodock, in vitro binding experiments, and Sonic Hedgehog (SHH) pathway examination in cells were performed to study the directly binding of cortisol to Smoothened (SMO). To explore the effect of cortisol action on the SHH pathway on neonatal lung development, we generated a genetic mouse, in which leucine 116 (L112 in human) of SMO was mutated to alanine 116 (L116A, Smoa/a) by the CRISPR-Cas9, based on sequence differences between human and mice. Then, we performed morphological analysis, single-cell RNA sequencing (scRNA-seq) on lung tissue and fluorescence in situ hybridization (FISH). RESULTS In this study, we reported that cortisol, the endogenous glucocorticoid, inhibited the sonic hedgehog (Shh)/SMO-mediated proliferation of lung fibroblasts to maintain the normal lung development. Specifically, cortisol competed with cholesterol for binding to the cysteine-rich domain (CRD) in SMO to inhibit the activation of Shh/SMO signaling, a critical signaling known for cell proliferation. Cortisol did not inhibit the activation of SMO when L112 in its CRD was mutated to A112. Moreover, Smoa/a (L116A) mice exhibited the immature lungs in which over-proliferation of interstitial fibroblasts and reduction in the surfactant protein were evident. CONCLUSION Together, these results suggested that cortisol regulated cholesterol stimulation of SMO by competitively binding to the CRD to regulate neonatal lung maturation in mice.
Collapse
Affiliation(s)
- Shanshan Lu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yifei Chen
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiawen Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Liangliang Ren
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jun Du
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Donglai Shen
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiayin Peng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yao Yin
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xia Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yuqing Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yan Gao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Siman Han
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yichang Jia
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Medical Science Building, Tsinghua University, Beijing, 100084, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| | - Yizheng Wang
- National Clinical Research Center for Aging and Medicine, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
4
|
Govorova IA, Nikitochkina SY, Vorotelyak EA. Influence of intersignaling crosstalk on the intracellular localization of YAP/TAZ in lung cells. Cell Commun Signal 2024; 22:289. [PMID: 38802925 PMCID: PMC11129370 DOI: 10.1186/s12964-024-01662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024] Open
Abstract
A cell is a dynamic system in which various processes occur simultaneously. In particular, intra- and intercellular signaling pathway crosstalk has a significant impact on a cell's life cycle, differentiation, proliferation, growth, regeneration, and, consequently, on the normal functioning of an entire organ. Hippo signaling and YAP/TAZ nucleocytoplasmic shuttling play a pivotal role in normal development, homeostasis, and tissue regeneration, particularly in lung cells. Intersignaling communication has a significant impact on the core components of the Hippo pathway and on YAP/TAZ localization. This review describes the crosstalk between Hippo signaling and key lung signaling pathways (WNT, SHH, TGFβ, Notch, Rho, and mTOR) using lung cells as an example and highlights the remaining unanswered questions.
Collapse
Affiliation(s)
- I A Govorova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov str, 26, Moscow, 119334, Russia.
| | - S Y Nikitochkina
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov str, 26, Moscow, 119334, Russia
| | - E A Vorotelyak
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov str, 26, Moscow, 119334, Russia
| |
Collapse
|
5
|
La Salvia A, Siciliani A, Rinzivillo M, Verrico M, Baldelli R, Puliani G, Modica R, Zanata I, Persano I, Fanciulli G, Bassi M, Mancini M, Bellino S, Giannetta E, Ibrahim M, Panzuto F, Brizzi MP, Faggiano A. Thyroid transcription factor-1 expression in lung neuroendocrine tumours: a gender-related biomarker? Endocrine 2024; 83:519-526. [PMID: 37775725 PMCID: PMC10850191 DOI: 10.1007/s12020-023-03542-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE Thyroid transcription factor-1 (TTF-1) assessed by immunohistochemistry (IHC) is a specific biomarker for lung adenocarcinoma, and is commonly used to confirm the pulmonary origin of neuroendocrine tumours (NET). The majority of the available data suggest that TTF-1 is favourable prognostic biomarker for lung adenocarcinomas, whereas its role is more conflicting for lung NET. The main aim of this multicenter retrospective study was to investigate the potentially relevant associations between TTF-1 biomarker and clinical and pathological features of the study population, as well as determine TTF-1 prognostic effect on the clinical outcome of the patients. METHODS A multicentre retrospective study was conducted on 155 surgically-removed lung NET, with available IHC TTF-1 assessment. RESULTS Median age was 59.5 years (range 13-86), 97 patients (62.6%) were females, 31 cases (20%) were atypical carcinoids, 4 (2.6%) had TNM stage IV. Mitotic count ≥2 per 10 high-power field was found in 35 (22.6%) subjects, whereas necrosis was detected in 20 patients (12.9%). TTF-1 was positive in 78 cases (50.3%). The median overall survival was 46.9 months (range 0.6-323) and the median progression-free survival was 39.1 months (range 0.6-323). Statistically significant associations were found between (1) TTF-1 positivity and female sex (p = 0.007); and among (2) TTF-1 positivity and the absence of necrosis (p = 0.018). CONCLUSIONS This study highlights that TTF-1 positivity differs according to sex in lung NET, with a more common TTF-1 positive staining in female. Moreover, TTF-1 positivity correlated with the absence of necrosis. These data suggest that TTF-1 could potentially represent a gender-related biomarker for lung NET.
Collapse
Affiliation(s)
- Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome, Italy
| | | | - Maria Rinzivillo
- Digestive Disease Unit, ENETS Center of Excellence, Sant'Andrea University Hospital, Rome, Italy
| | - Monica Verrico
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Baldelli
- Endocrinology Unit, Department of Oncology and Medical Specialities, A.O. San Camillo-Forlanini, Rome, Italy
| | - Giulia Puliani
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Modica
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Isabella Zanata
- Department of Medical Sciences, Section of Endocrinology and Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Irene Persano
- Department of Oncology, A.O.U. San Luigi Gonzaga Hospital, Orbassano, TO, Italy
| | - Giuseppe Fanciulli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Endocrine Oncology Program, Endocrine Unit, Azienda Ospedaliero-Universitaria (AOU) Sassari, Sassari, Italy
| | - Massimiliano Bassi
- Department of Thoracic Surgery, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Massimiliano Mancini
- Division of Morphologic and Molecular Pathology Unit, S. Andrea Hospital, Rome, Italy
| | - Stefania Bellino
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Mohsen Ibrahim
- Department of Thoracic Surgery, Sant'Andrea University Hospital, Rome, Italy
| | - Francesco Panzuto
- Digestive Disease Unit, ENETS Center of Excellence, Sant'Andrea University Hospital, Rome, Italy
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Pia Brizzi
- Department of Oncology, A.O.U. San Luigi Gonzaga Hospital, Orbassano, TO, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, ENETS Center of Excellence, Rome, Italy.
| |
Collapse
|
6
|
Peers de Nieuwburgh M, Wambach JA, Griese M, Danhaive O. Towards personalized therapies for genetic disorders of surfactant dysfunction. Semin Fetal Neonatal Med 2023; 28:101500. [PMID: 38036307 PMCID: PMC10753445 DOI: 10.1016/j.siny.2023.101500] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Genetic disorders of surfactant dysfunction are a rare cause of chronic, progressive or refractory respiratory failure in term and preterm infants. This review explores genetic mechanisms underpinning surfactant dysfunction, highlighting specific surfactant-associated genes including SFTPB, SFTPC, ABCA3, and NKX2.1. Pathogenic variants in these genes contribute to a range of clinical presentations and courses, from neonatal hypoxemic respiratory failure to childhood interstitial lung disease and even adult-onset pulmonary fibrosis. This review emphasizes the importance of early recognition, thorough phenotype assessment, and assessment of variant functionality as essential prerequisites for treatments including lung transplantation. We explore emerging treatment options, including personalized pharmacological approaches and gene therapy strategies. In conclusion, this comprehensive review offers valuable insights into the pathogenic mechanisms of genetic disorders of surfactant dysfunction, genetic fundamentals, available and emerging therapeutic options, and underscores the need for further research to develop personalized therapies for affected infants and children.
Collapse
Affiliation(s)
- Maureen Peers de Nieuwburgh
- Division of Neonatology, Department of Pediatrics, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium.
| | - Jennifer A Wambach
- Washington University School of Medicine/St. Louis Children's Hospital, One Children's Place, St. Louis, Missouri, USA.
| | - Matthias Griese
- Pediatric Pulmonology, Dr von Hauner Children's Hospital, University-Hospital, German Center for Lung Research (DZL), Munich, Germany.
| | - Olivier Danhaive
- Division of Neonatology, Department of Pediatrics, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium; Division of Neonatology, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Ma Z, Lyu X, Qin N, Liu H, Zhang M, Lai Y, Dong B, Lu P. Coactivator-associated arginine methyltransferase 1: A versatile player in cell differentiation and development. Genes Dis 2023; 10:2383-2392. [PMID: 37554200 PMCID: PMC10404874 DOI: 10.1016/j.gendis.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification involved in the regulation of various cellular functions. Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that asymmetrically dimethylates histone H3 and non-histone proteins to regulate gene transcription. CARM1 has been found to play important roles in cell differentiation and development, cell cycle progression, autophagy, metabolism, pre-mRNA splicing and transportation, and DNA replication. In this review, we describe the molecular characteristics of CARM1 and summarize its roles in the regulation of cell differentiation and development in mammals.
Collapse
Affiliation(s)
- Zhongrui Ma
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xinxing Lyu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ning Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haoyu Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Mengrui Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yongchao Lai
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Peiyuan Lu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
8
|
Chen SY, Liu FC. The Fgf9-Nolz1-Wnt2 axis regulates morphogenesis of the lung. Development 2023; 150:dev201827. [PMID: 37497597 DOI: 10.1242/dev.201827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Morphological development of the lung requires complex signal crosstalk between the mesenchymal and epithelial progenitors. Elucidating the genetic cascades underlying signal crosstalk is essential to understanding lung morphogenesis. Here, we identified Nolz1 as a mesenchymal lineage-specific transcriptional regulator that plays a key role in lung morphogenesis. Nolz1 null mutation resulted in a severe hypoplasia phenotype, including a decreased proliferation of mesenchymal cells, aberrant differentiation of epithelial cells and defective growth of epithelial branches. Nolz1 deletion also downregulated Wnt2, Lef1, Fgf10, Gli3 and Bmp4 mRNAs. Mechanistically, Nolz1 regulates lung morphogenesis primarily through Wnt2 signaling. Loss-of-function and overexpression studies demonstrated that Nolz1 transcriptionally activated Wnt2 and downstream β-catenin signaling to control mesenchymal cell proliferation and epithelial branching. Exogenous Wnt2 could rescue defective proliferation and epithelial branching in Nolz1 knockout lungs. Finally, we identified Fgf9 as an upstream regulator of Nolz1. Collectively, Fgf9-Nolz1-Wnt2 signaling represents a novel axis in the control of lung morphogenesis. These findings are relevant to lung tumorigenesis, in which a pathological function of Nolz1 is implicated.
Collapse
Affiliation(s)
- Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
9
|
Kang D, Yang HR, Kim DH, Kim KK, Jeong B, Park BS, Park JW, Kim JG, Lee BJ. Sirtuin1-Mediated Deacetylation of Hypothalamic TTF-1 Contributes to the Energy Deficiency Response. Int J Mol Sci 2023; 24:12530. [PMID: 37569904 PMCID: PMC10419861 DOI: 10.3390/ijms241512530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
TTF-1 stimulates appetite by regulating the expression of agouti-related peptide (AgRP) and proopiomelanocortin (POMC) genes in the hypothalamus of starving animals. However, the mechanism underlying TTF-1's response to decreased energy levels remains elusive. Here, we provide evidence that the NAD+-dependent deacetylase, sirtuin1 (Sirt1), activates TTF-1 in response to energy deficiency. Energy deficiency leads to a twofold increase in the expression of both Sirt1 and TTF-1, leading to the deacetylation of TTF-1 through the interaction between the two proteins. The activation of Sirt1, induced by energy deficiency or resveratrol treatment, leads to a significant increase in the deacetylation of TTF-1 and promotes its nuclear translocation. Conversely, the inhibition of Sirt1 prevents these Sirt1 effects. Notably, a point mutation in a lysine residue of TTF-1 significantly disrupts its deacetylation and thus nearly completely hinders its ability to regulate AgRP and POMC gene expression. These findings highlight the importance of energy-deficiency-induced deacetylation of TTF-1 in the control of AgRP and POMC gene expression.
Collapse
Affiliation(s)
- Dasol Kang
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| | - Hye Rim Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (H.R.Y.); (B.S.P.)
| | - Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bora Jeong
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| | - Byong Seo Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (H.R.Y.); (B.S.P.)
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (H.R.Y.); (B.S.P.)
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| |
Collapse
|
10
|
Brütsch SM, Madzharova E, Pantasis S, Wüstemann T, Gurri S, Steenbock H, Gazdhar A, Kuhn G, Angel P, Bellusci S, Brinckmann J, Auf dem Keller U, Werner S, Bordoli MR. Mesenchyme-derived vertebrate lonesome kinase controls lung organogenesis by altering the matrisome. Cell Mol Life Sci 2023; 80:89. [PMID: 36920550 PMCID: PMC10017657 DOI: 10.1007/s00018-023-04735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Vertebrate lonesome kinase (VLK) is the only known secreted tyrosine kinase and responsible for the phosphorylation of a broad range of secretory pathway-resident and extracellular matrix proteins. However, its cell-type specific functions in vivo are still largely unknown. Therefore, we generated mice lacking the VLK gene (protein kinase domain containing, cytoplasmic (Pkdcc)) in mesenchymal cells. Most of the homozygous mice died shortly after birth, most likely as a consequence of their lung abnormalities and consequent respiratory failure. E18.5 embryonic lungs showed a reduction of alveolar type II cells, smaller bronchi, and an increased lung tissue density. Global mass spectrometry-based quantitative proteomics identified 97 proteins with significantly and at least 1.5-fold differential abundance between genotypes. Twenty-five of these had been assigned to the extracellular region and 15 to the mouse matrisome. Specifically, fibromodulin and matrilin-4, which are involved in extracellular matrix organization, were significantly more abundant in lungs from Pkdcc knockout embryos. These results support a role for mesenchyme-derived VLK in lung development through regulation of matrix dynamics and the resulting modulation of alveolar epithelial cell differentiation.
Collapse
Affiliation(s)
- Salome M Brütsch
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Sophia Pantasis
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Till Wüstemann
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Selina Gurri
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, 3010, Bern, Switzerland.,Department of Biomedical Research, University of Bern, 3010, Bern, Switzerland
| | - Gisela Kuhn
- Department of Health Sciences and Technology, Institute of Biomechanics, ETH Zurich, 8093, Zurich, Switzerland
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Saverio Bellusci
- German Lung Research Center (DCL), Giessen, Germany.,Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Aulweg 130, 35392, Giessen, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany.,Department of Dermatology, University of Lübeck, 23562, Lübeck, Germany
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark.
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland.
| | - Mattia R Bordoli
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
11
|
Noël A, Yilmaz S, Farrow T, Schexnayder M, Eickelberg O, Jelesijevic T. Sex-Specific Alterations of the Lung Transcriptome at Birth in Mouse Offspring Prenatally Exposed to Vanilla-Flavored E-Cigarette Aerosols and Enhanced Susceptibility to Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3710. [PMID: 36834405 PMCID: PMC9967225 DOI: 10.3390/ijerph20043710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Currently, approximately 8 million adult Americans use electronic cigarettes (e-cigs) daily, including women of childbearing age. It is known that more than 10% of women smoke during their pregnancy, and recent surveys show that rates of maternal vaping are similar to rates of maternal cigarette smoking. However, the effects of inhaling e-cig aerosol on the health of fetuses remain unknown. The objective of the present study was to increase our understanding of the molecular effects caused by in utero exposures to e-cig aerosols on developing mouse lungs and, later in life, on the offspring's susceptibility to developing asthma. METHODS Pregnant mice were exposed throughout gestation to either filtered air or vanilla-flavored e-cig aerosols containing 18 mg/mL of nicotine. Male and female exposed mouse offspring were sacrificed at birth, and then the lung transcriptome was evaluated. Additionally, once sub-groups of male offspring mice reached 4 weeks of age, they were challenged with house dust mites (HDMs) for 3 weeks to assess asthmatic responses. RESULTS The lung transcriptomic responses of the mouse offspring at birth showed that in utero vanilla-flavored e-cig aerosol exposure significantly regulated 88 genes in males (62 genes were up-regulated and 26 genes were down-regulated), and 65 genes were significantly regulated in females (17 genes were up-regulated and 48 genes were down-regulated). Gene network analyses revealed that in utero e-cig aerosol exposure affected canonical pathways associated with CD28 signaling in T helper cells, the role of NFAT in the regulation of immune responses, and phospholipase C signaling in males, whereas the dysregulated genes in the female offspring were associated with NRF2-mediated oxidative stress responses. Moreover, we found that in utero exposures to vanilla-flavored e-cig aerosol exacerbated HDM-induced asthma in 7-week-old male mouse offspring compared to respective in utero air + HDM controls. CONCLUSIONS Overall, these data demonstrate that in utero e-cig aerosol exposure alters the developing mouse lung transcriptome at birth in a sex-specific manner and provide evidence that the inhalation of e-cig aerosols is detrimental to the respiratory health of offspring by increasing the offspring' susceptibility to developing lung diseases later in life.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sultan Yilmaz
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tori Farrow
- Department of Environmental Toxicology, Southern University and A & M College, Baton Rouge, LA 70813, USA
| | | | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tomislav Jelesijevic
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
12
|
Smok-Kalwat J, Mertowska P, Mertowski S, Smolak K, Kozińska A, Koszałka F, Kwaśniewski W, Grywalska E, Góźdź S. The Importance of the Immune System and Molecular Cell Signaling Pathways in the Pathogenesis and Progression of Lung Cancer. Int J Mol Sci 2023; 24:1506. [PMID: 36675020 PMCID: PMC9861992 DOI: 10.3390/ijms24021506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is a disease that in recent years has become one of the greatest threats to modern society. Every year there are more and more new cases and the percentage of deaths caused by this type of cancer increases. Despite many studies, scientists are still looking for answers regarding the mechanisms of lung cancer development and progression, with particular emphasis on the role of the immune system. The aim of this literature review was to present the importance of disorders of the immune system and the accompanying changes at the level of cell signaling in the pathogenesis of lung cancer. The collected results showed that in the process of immunopathogenesis of almost all subtypes of lung cancer, changes in the tumor microenvironment, deregulation of immune checkpoints and abnormalities in cell signaling pathways are involved, which contribute to the multistage and multifaceted carcinogenesis of this type of cancer. We, therefore, suggest that in future studies, researchers should focus on a detailed analysis of tumor microenvironmental immune checkpoints, and to validate their validity, perform genetic polymorphism analyses in a wide range of patients and healthy individuals to determine the genetic susceptibility to lung cancer development. In addition, further research related to the analysis of the tumor microenvironment; immune system disorders, with a particular emphasis on immunological checkpoints and genetic differences may contribute to the development of new personalized therapies that improve the prognosis of patients.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Kozińska
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Filip Koszałka
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| |
Collapse
|
13
|
Oxidative stress-triggered Wnt signaling perturbation characterizes the tipping point of lung adeno-to-squamous transdifferentiation. Signal Transduct Target Ther 2023; 8:16. [PMID: 36627278 PMCID: PMC9832009 DOI: 10.1038/s41392-022-01227-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023] Open
Abstract
Lkb1 deficiency confers the Kras-mutant lung cancer with strong plasticity and the potential for adeno-to-squamous transdifferentiation (AST). However, it remains largely unknown how Lkb1 deficiency dynamically regulates AST. Using the classical AST mouse model (Kras LSL-G12D/+;Lkb1flox/flox, KL), we here comprehensively analyze the temporal transcriptomic dynamics of lung tumors at different stages by dynamic network biomarker (DNB) and identify the tipping point at which the Wnt signaling is abruptly suppressed by the excessive accumulation of reactive oxygen species (ROS) through its downstream effector FOXO3A. Bidirectional genetic perturbation of the Wnt pathway using two different Ctnnb1 conditional knockout mouse strains confirms its essential role in the negative regulation of AST. Importantly, pharmacological activation of the Wnt pathway before but not after the tipping point inhibits squamous transdifferentiation, highlighting the irreversibility of AST after crossing the tipping point. Through comparative transcriptomic analyses of mouse and human tumors, we find that the lineage-specific transcription factors (TFs) of adenocarcinoma and squamous cell carcinoma form a "Yin-Yang" counteracting network. Interestingly, inactivation of the Wnt pathway preferentially suppresses the adenomatous lineage TF network and thus disrupts the "Yin-Yang" homeostasis to lean towards the squamous lineage, whereas ectopic expression of NKX2-1, an adenomatous lineage TF, significantly dampens such phenotypic transition accelerated by the Wnt pathway inactivation. The negative correlation between the Wnt pathway and AST is further observed in a large cohort of human lung adenosquamous carcinoma. Collectively, our study identifies the tipping point of AST and highlights an essential role of the ROS-Wnt axis in dynamically orchestrating the homeostasis between adeno- and squamous-specific TF networks at the AST tipping point.
Collapse
|
14
|
Kruk D, Yeung ACY, Faiz A, ten Hacken NHT, Timens W, van Kuppevelt TH, Daamen W, Hof D, Harmsen MC, Rojas M, Heijink IH. Gene expression profiles in mesenchymal stromal cells from bone marrow, adipose tissue and lung tissue of COPD patients and controls. Respir Res 2023; 24:22. [PMID: 36681830 PMCID: PMC9863276 DOI: 10.1186/s12931-023-02314-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/03/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage. Novel regenerative strategies are urgently awaited. Cultured mesenchymal stem/stromal cells (MSCs) have shown promising results in experimental models of COPD, but differences between sources may impact on their potential use in therapeutic strategies in patients. AIM To assess the transcriptome of lung-derived MSCs (LMSCs), bone marrow-derived MSCs (BM-MSC) and adipose-derived MSCs (AD-MSCs) from COPD patients and non-COPD controls. METHODS We studied differences in gene expression profiles between the MSC-subtypes, as well as between COPD and control using RNA sequencing (RNA-seq). RESULTS We show that besides heterogeneity between donors, MSCs from different sources have strongly divergent gene signatures. The growth factors FGF10 and HGF were predominantly expressed in LMSCs. MSCs from all sources displayed altered expression profiles in COPD, with most pronounced significantly up- and downregulated genes in MSCs from adipose tissue. Pathway analysis revealed that the most differentially expressed genes in COPD-derived AD-MSCs are involved in extracellular matrix (ECM) binding and expression. In LMSCs, the gene that differed most strongly between COPD and control was CSGALNACT1, an ECM modulating gene. CONCLUSION Autologous MSCs from COPD patients display abnormalities with respect to their transcriptome, which were surprisingly most profound in MSCs from extrapulmonary sources. LMSCs may be optimally equipped for lung tissue repair because of the expression of specific growth factor genes.
Collapse
Affiliation(s)
- Dennis Kruk
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Groningen The Netherlands ,grid.4494.d0000 0000 9558 4598Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna C. Y. Yeung
- grid.117476.20000 0004 1936 7611Respiratory Bioinformatics and Molecular Biology (RBMB) Group, The University of Technology Sydney, Ultimo, NSW Australia ,grid.1013.30000 0004 1936 834XWoolcock Institute of Medical Research, The University of Sydney, Glebe, NSW Australia
| | - Alen Faiz
- grid.117476.20000 0004 1936 7611Respiratory Bioinformatics and Molecular Biology (RBMB) Group, The University of Technology Sydney, Ultimo, NSW Australia
| | - Nick H. T. ten Hacken
- grid.4494.d0000 0000 9558 4598Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Timens
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Groningen The Netherlands ,grid.4494.d0000 0000 9558 4598Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Toin H. van Kuppevelt
- grid.5590.90000000122931605Department of Biochemistry, University of Nijmegen, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willeke Daamen
- grid.5590.90000000122931605Department of Biochemistry, University of Nijmegen, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Danique Hof
- grid.5590.90000000122931605Department of Biochemistry, University of Nijmegen, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin C. Harmsen
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Groningen The Netherlands
| | - Mauricio Rojas
- grid.261331.40000 0001 2285 7943Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH USA
| | - Irene H. Heijink
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Groningen The Netherlands ,grid.4494.d0000 0000 9558 4598Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Krylova SV, Glickman S, Kalam A, Chemakin K, Yi J, Forrester L, Mishall P, Pinkas A. Hilar Abnormality in the Left Lung: Left Pulmonary Artery Posterior to the Left Mainstem Bronchus. Int Med Case Rep J 2023; 16:135-139. [PMID: 36925951 PMCID: PMC10012904 DOI: 10.2147/imcrj.s388320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The thoracic cavity contains vital cardiovascular and pulmonary structures. Few congenital anatomical variations in the bronchial tree and pulmonary vasculature have been reported. Understanding such variants is crucial during surgical procedures that involve the thorax. During routine dissection of an 89-year-old male cadaver as part of a first-year anatomy course, an anomaly of the bronchial tree was discovered. The left lung hilum was notable for the pulmonary artery being posterior to the mainstem bronchus. The case report describes normal lung development and anatomy and the significance of this novel variation in which has not been previously described in the literature.
Collapse
Affiliation(s)
- Sofia V Krylova
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sara Glickman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ali Kalam
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Katherine Chemakin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Joseph Yi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Linda Forrester
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Priti Mishall
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Adi Pinkas
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
16
|
Kotasová H, Capandová M, Pelková V, Dumková J, Koledová Z, Remšík J, Souček K, Garlíková Z, Sedláková V, Rabata A, Vaňhara P, Moráň L, Pečinka L, Porokh V, Kučírek M, Streit L, Havel J, Hampl A. Expandable Lung Epithelium Differentiated from Human Embryonic Stem Cells. Tissue Eng Regen Med 2022; 19:1033-1050. [PMID: 35670910 PMCID: PMC9478014 DOI: 10.1007/s13770-022-00458-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The progenitors to lung airway epithelium that are capable of long-term propagation may represent an attractive source of cells for cell-based therapies, disease modeling, toxicity testing, and others. Principally, there are two main options for obtaining lung epithelial progenitors: (i) direct isolation of endogenous progenitors from human lungs and (ii) in vitro differentiation from some other cell type. The prime candidates for the second approach are pluripotent stem cells, which may provide autologous and/or allogeneic cell resource in clinically relevant quality and quantity. METHODS By exploiting the differentiation potential of human embryonic stem cells (hESC), here we derived expandable lung epithelium (ELEP) and established culture conditions for their long-term propagation (more than 6 months) in a monolayer culture without a need of 3D culture conditions and/or cell sorting steps, which minimizes potential variability of the outcome. RESULTS These hESC-derived ELEP express NK2 Homeobox 1 (NKX2.1), a marker of early lung epithelial lineage, display properties of cells in early stages of surfactant production and are able to differentiate to cells exhibitting molecular and morphological characteristics of both respiratory epithelium of airway and alveolar regions. CONCLUSION Expandable lung epithelium thus offer a stable, convenient, easily scalable and high-yielding cell source for applications in biomedicine.
Collapse
Affiliation(s)
- Hana Kotasová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Capandová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Vendula Pelková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jana Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Zuzana Koledová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Ján Remšík
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Current Address: Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Karel Souček
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Garlíková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Anas Rabata
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lukáš Pečinka
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Volodymyr Porokh
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Martin Kučírek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Libor Streit
- Department of Plastic and Cosmetic Surgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Plastic and Cosmetic Surgery, St. Anne's Faculty Hospital, Brno, Czech Republic
| | - Josef Havel
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
17
|
Xia D, Liu J, Yong J, Li X, Ji W, Zhao Z, Wang X, Xiao C, Wu S, Liu H, Zhao H, He Y. Strategies for understanding the role of cellular heterogeneity in the pathogenesis of lung cancer: a cell model for chronic exposure to cigarette smoke extract. BMC Pulm Med 2022; 22:333. [PMID: 36056339 PMCID: PMC9438261 DOI: 10.1186/s12890-022-02116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background Human tumors are highly heterogeneous at the cellular, molecular, genetic and functional levels. Tumor heterogeneity has tremendous impact on cancer progression and treatment responses. However, the mechanisms for tumor heterogeneity have been poorly understood due to the lack of experimental models. Methods This study provides a novel exploration and analysis of the impacts of cellular and molecular heterogeneity of human lung epithelial cells on their malignant transformation following chronic exposure to cigarette smoke extracts. Results The ability of cigarette smoke extract (CSE) to cause malignant transformation of the human bronchial epithelial cells (16HBE) is dependent on the sizes of the cells. Epithelial-mesenchymal transition (EMT) plays an important role in this process. Mechanistically, CSE-induced malignant transformation of 16HBE cells was closely linked to the reduced relative telomere length of the larger 16HBE cells, thereby up-regulation of the expression of stemness genes. Conclusions These findings provide novel insights for understanding the impact of cellular heterogeneity in lung cancer development. The in vitro transformation model described in this study could be extrapolated to studying the pathogenesis of other malignancies, as well as for mechanistic studies that are not feasible in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02116-6.
Collapse
Affiliation(s)
- Dong Xia
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jieyi Liu
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Juanjuan Yong
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiang Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, People's Republic of China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Zhiqiang Zhao
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiaohui Wang
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Chen Xiao
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Sai Wu
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Huaixiang Liu
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Heping Zhao
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yun He
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
18
|
Katsman E, Orlanski S, Martignano F, Fox-Fisher I, Shemer R, Dor Y, Zick A, Eden A, Petrini I, Conticello SG, Berman BP. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol 2022; 23:158. [PMID: 35841107 PMCID: PMC9283844 DOI: 10.1186/s13059-022-02710-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
The Oxford Nanopore (ONT) platform provides portable and rapid genome sequencing, and its ability to natively profile DNA methylation without complex sample processing is attractive for point-of-care real-time sequencing. We recently demonstrated ONT shallow whole-genome sequencing to detect copy number alterations (CNAs) from the circulating tumor DNA (ctDNA) of cancer patients. Here, we show that cell type and cancer-specific methylation changes can also be detected, as well as cancer-associated fragmentation signatures. This feasibility study suggests that ONT shallow WGS could be a powerful tool for liquid biopsy.
Collapse
Affiliation(s)
- Efrat Katsman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shari Orlanski
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Ilana Fox-Fisher
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviad Zick
- Department of Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Eden
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iacopo Petrini
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa, Italy
| | - Silvestro G Conticello
- Core Research Laboratory, ISPRO, Florence, Italy.
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
19
|
Sinjab A, Rahal Z, Kadara H. Cell-by-Cell: Unlocking Lung Cancer Pathogenesis. Cancers (Basel) 2022; 14:3424. [PMID: 35884485 PMCID: PMC9320562 DOI: 10.3390/cancers14143424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
For lung cancers, cellular trajectories and fates are strongly pruned by cell intrinsic and extrinsic factors. Over the past couple of decades, the combination of comprehensive molecular and genomic approaches, as well as the use of relevant pre-clinical models, enhanced micro-dissection techniques, profiling of rare preneoplastic lesions and surrounding tissues, as well as multi-region tumor sequencing, have all provided in-depth insights into the early biology and evolution of lung cancers. The advent of single-cell sequencing technologies has revolutionized our ability to interrogate these same models, tissues, and cohorts at an unprecedented resolution. Single-cell tracking of lung cancer pathogenesis is now transforming our understanding of the roles and consequences of epithelial-microenvironmental cues and crosstalk during disease evolution. By focusing on non-small lung cancers, specifically lung adenocarcinoma subtype, this review aims to summarize our knowledge base of tumor cells-of-origin and tumor-immune dynamics that have been primarily fueled by single-cell analysis of lung adenocarcinoma specimens at various stages of disease pathogenesis and of relevant animal models. The review will provide an overview of how recent reports are rewriting the mechanistic details of lineage plasticity and intra-tumor heterogeneity at a magnified scale thanks to single-cell studies of early- to late-stage lung adenocarcinomas. Future advances in single-cell technologies, coupled with analysis of minute amounts of rare clinical tissues and novel animal models, are anticipated to help transform our understanding of how diverse micro-events elicit macro-scale consequences, and thus to significantly advance how basic genomic and molecular knowledge of lung cancer evolution can be translated into successful targets for early detection and prevention of this lethal disease.
Collapse
Affiliation(s)
- Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Z.R.); (H.K.)
| | | | | |
Collapse
|
20
|
Shue YT, Drainas AP, Li NY, Pearsall SM, Morgan D, Sinnott-Armstrong N, Hipkins SQ, Coles GL, Lim JS, Oro AE, Simpson KL, Dive C, Sage J. A conserved YAP/Notch/REST network controls the neuroendocrine cell fate in the lungs. Nat Commun 2022; 13:2690. [PMID: 35577801 PMCID: PMC9110333 DOI: 10.1038/s41467-022-30416-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
The Notch pathway is a conserved cell-cell communication pathway that controls cell fate decisions. Here we sought to determine how Notch pathway activation inhibits the neuroendocrine cell fate in the lungs, an archetypal process for cell fate decisions orchestrated by Notch signaling that has remained poorly understood at the molecular level. Using intratumoral heterogeneity in small-cell lung cancer as a tractable model system, we uncovered a role for the transcriptional regulators REST and YAP as promoters of the neuroendocrine to non-neuroendocrine transition. We further identified the specific neuroendocrine gene programs repressed by REST downstream of Notch in this process. Importantly, we validated the importance of REST and YAP in neuroendocrine to non-neuroendocrine cell fate switches in both developmental and tissue repair processes in the lungs. Altogether, these experiments identify conserved roles for REST and YAP in Notch-driven inhibition of the neuroendocrine cell fate in embryonic lungs, adult lungs, and lung cancer.
Collapse
Affiliation(s)
- Yan Ting Shue
- Departments of Pediatrics, Stanford University, Stanford, CA, USA
- Departments of Genetics, Stanford University, Stanford, CA, USA
| | - Alexandros P Drainas
- Departments of Pediatrics, Stanford University, Stanford, CA, USA
- Departments of Genetics, Stanford University, Stanford, CA, USA
| | - Nancy Yanzhe Li
- Departments of Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Sarah M Pearsall
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Derrick Morgan
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | | | - Susan Q Hipkins
- Departments of Pediatrics, Stanford University, Stanford, CA, USA
- Departments of Genetics, Stanford University, Stanford, CA, USA
| | - Garry L Coles
- Departments of Pediatrics, Stanford University, Stanford, CA, USA
- Departments of Genetics, Stanford University, Stanford, CA, USA
| | - Jing Shan Lim
- Departments of Pediatrics, Stanford University, Stanford, CA, USA
- Departments of Genetics, Stanford University, Stanford, CA, USA
| | - Anthony E Oro
- Departments of Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Kathryn L Simpson
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Julien Sage
- Departments of Pediatrics, Stanford University, Stanford, CA, USA.
- Departments of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
21
|
Cahill KM, Gartia MR, Sahu S, Bergeron SR, Heffernan LM, Paulsen DB, Penn AL, Noël A. In utero exposure to electronic-cigarette aerosols decreases lung fibrillar collagen content, increases Newtonian resistance and induces sex-specific molecular signatures in neonatal mice. Toxicol Res 2022; 38:205-224. [PMID: 35415078 PMCID: PMC8960495 DOI: 10.1007/s43188-021-00103-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Approximately 7% of pregnant women in the United States use electronic-cigarette (e-cig) devices during pregnancy. There is, however, no scientific evidence to support e-cig use as being 'safe' during pregnancy. Little is known about the effects of fetal exposures to e-cig aerosols on lung alveologenesis. In the present study, we tested the hypothesis that in utero exposure to e-cig aerosol impairs lung alveologenesis and pulmonary function in neonates. Pregnant BALB/c mice were exposed 2 h a day for 20 consecutive days during gestation to either filtered air or cinnamon-flavored e-cig aerosol (36 mg/mL of nicotine). Lung tissue was collected in offspring during lung alveologenesis on postnatal day (PND) 5 and PND11. Lung function was measured at PND11. Exposure to e-cig aerosol in utero led to a significant decrease in body weights at birth which was sustained through PND5. At PND5, in utero e-cig exposures dysregulated genes related to Wnt signaling and epigenetic modifications in both females (~ 120 genes) and males (40 genes). These alterations were accompanied by reduced lung fibrillar collagen content at PND5-a time point when collagen content is close to its peak to support alveoli formation. In utero exposure to e-cig aerosol also increased the Newtonian resistance of offspring at PND11, suggesting a narrowing of the conducting airways. At PND11, in females, transcriptomic dysregulation associated with epigenetic alterations was sustained (17 genes), while WNT signaling dysregulation was largely resolved (10 genes). In males, at PND11, the expression of only 4 genes associated with epigenetics was dysregulated, while 16 Wnt related-genes were altered. These data demonstrate that in utero exposures to cinnamon-flavored e-cig aerosols alter lung structure and function and induce sex-specific molecular signatures during lung alveologenesis in neonatal mice. This may reflect epigenetic programming affecting lung disease development later in life.
Collapse
Affiliation(s)
- Kerin M. Cahill
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA 70803 USA
| | - Manas R. Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Sushant Sahu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504 USA
| | - Sarah R. Bergeron
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA 70803 USA
| | - Linda M. Heffernan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA 70803 USA
| | - Daniel B. Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Arthur L. Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA 70803 USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA 70803 USA
| |
Collapse
|
22
|
Clowers MJ, Moghaddam SJ. Cell Type-Specific Roles of STAT3 Signaling in the Pathogenesis and Progression of K-ras Mutant Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14071785. [PMID: 35406557 PMCID: PMC8997152 DOI: 10.3390/cancers14071785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Lung adenocarcinomas with mutations in the K-ras gene are hard to target pharmacologically and highly lethal. As a result, there is a need to identify other therapeutic targets that influence K-ras oncogenesis. One contender is STAT3, a transcription factor that is associated with K-ras mutations and aids tumor development and progression through tumor cell intrinsic and extrinsic mechanisms. In this review, we summarize the lung epithelial and infiltrating immune cells that express STAT3, the roles of STAT3 in K-ras mutant lung adenocarcinoma, and therapies that may be able to target STAT3. Abstract Worldwide, lung cancer, particularly K-ras mutant lung adenocarcinoma (KM-LUAD), is the leading cause of cancer mortality because of its high incidence and low cure rate. To treat and prevent KM-LUAD, there is an urgent unmet need for alternative strategies targeting downstream effectors of K-ras and/or its cooperating pathways. Tumor-promoting inflammation, an enabling hallmark of cancer, strongly participates in the development and progression of KM-LUAD. However, our knowledge of the dynamic inflammatory mechanisms, immunomodulatory pathways, and cell-specific molecular signals mediating K-ras-induced lung tumorigenesis is substantially deficient. Nevertheless, within this signaling complexity, an inflammatory pathway is emerging as a druggable target: signal transducer and activator of transcription 3 (STAT3). Here, we review the cell type-specific functions of STAT3 in the pathogenesis and progression of KM-LUAD that could serve as a new target for personalized preventive and therapeutic intervention for this intractable form of lung cancer.
Collapse
Affiliation(s)
- Michael J. Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
23
|
LKB1 drives stasis and C/EBP-mediated reprogramming to an alveolar type II fate in lung cancer. Nat Commun 2022; 13:1090. [PMID: 35228570 PMCID: PMC8885825 DOI: 10.1038/s41467-022-28619-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
LKB1 is among the most frequently altered tumor suppressors in lung adenocarcinoma. Inactivation of Lkb1 accelerates the growth and progression of oncogenic KRAS-driven lung tumors in mouse models. However, the molecular mechanisms by which LKB1 constrains lung tumorigenesis and whether the cancer state that stems from Lkb1 deficiency can be reverted remains unknown. To identify the processes governed by LKB1 in vivo, we generated an allele which enables Lkb1 inactivation at tumor initiation and subsequent Lkb1 restoration in established tumors. Restoration of Lkb1 in oncogenic KRAS-driven lung tumors suppressed proliferation and led to tumor stasis. Lkb1 restoration activated targets of C/EBP transcription factors and drove neoplastic cells from a progenitor-like state to a less proliferative alveolar type II cell-like state. We show that C/EBP transcription factors govern a subset of genes that are induced by LKB1 and depend upon NKX2-1. We also demonstrate that a defining factor of the alveolar type II lineage, C/EBPα, constrains oncogenic KRAS-driven lung tumor growth in vivo. Thus, this key tumor suppressor regulates lineage-specific transcription factors, thereby constraining lung tumor development through enforced differentiation.
Collapse
|
24
|
Regulation of Lysosomal Associated Membrane Protein 3 (LAMP3) in Lung Epithelial Cells by Coronaviruses (SARS-CoV-1/2) and Type I Interferon Signaling. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2022. [DOI: 10.1515/cmb-2022-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract
Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) infection is a major risk factor for mortality and morbidity in critical care hospitals around the world. Lung epithelial type II cells play a major role in the recognition and clearance of respiratory viruses as well as repair of lung injury in response to environmental toxicants. Gene expression profiling studies revealed that mouse lung epithelial type II cells express several cell-specific markers including surfactant proteins and Lysosomal associated membrane protein 3 (LAMP3) located in lysosomes, endosomes and lamellar bodies. These intracellular organelles are involved in vesicular transport and facilitate viral entry and release of the viral genome into the host cell cytoplasm. In this study, regulation of LAMP3 expression in human lung epithelial cells by several respiratory viruses and type I interferon signaling was investigated. Respiratory viruses including SARS-CoV-1 and SARS-CoV-2 significantly induced LAMP3 expression in lung epithelial cells within 24 hours after infection that required the presence of ACE2 viral entry receptors. Time course experiments revealed that the induced expression of LAMP3 was correlated with the induced expression of Interferon–beta (IFNB1) and STAT1 at mRNA levels. LAMP3 was also induced by direct IFN-beta treatment in multiple lung epithelial cell lines or by infection with influenza virus lacking the non-structural protein1(NS1) in NHBE bronchial epithelial cells. LAMP3 expression was also induced by several respiratory viruses in human lung epithelial cells including RSV and HPIV3. Location in lysosomes and endosomes aswell as induction by respiratory viruses and type I Interferon suggests that LAMP3 may have an important role in inter-organellar regulation of innate immunity and a potential target for therapeutic modulation in health and disease. Furthermore, bioinformatics revealed that a subset of lung type II genes were differentially regulated in the lungs of COVID-19 patients.
Collapse
|
25
|
SARS-CoV-2 Exposed Mesenchymal Stromal Cell from Congenital Pulmonary Airway Malformations: Transcriptomic Analysis and the Expression of Immunomodulatory Genes. Int J Mol Sci 2021; 22:ijms222111814. [PMID: 34769246 PMCID: PMC8584055 DOI: 10.3390/ijms222111814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
The inflammatory response plays a central role in the complications of congenital pulmonary airway malformations (CPAM) and severe coronavirus disease 2019 (COVID-19). The aim of this study was to evaluate the transcriptional changes induced by SARS-CoV-2 exposure in pediatric MSCs derived from pediatric lung (MSCs-lung) and CPAM tissues (MSCs-CPAM) in order to elucidate potential pathways involved in SARS-CoV-2 infection in a condition of exacerbated inflammatory response. MSCs-lung and MSCs-CPAM do not express angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TRMPSS2). SARS-CoV-2 appears to be unable to replicate in MSCs-CPAM and MSCs-lung. MSCs-lung and MSCs-CPAM maintained the expression of stemness markers MSCs-lung show an inflammatory response (IL6, IL1B, CXCL8, and CXCL10), and the activation of Notch3 non-canonical pathway; this route appears silent in MSCs-CPAM, and cytokine genes expression is reduced. Decreased value of p21 in MSCs-lung suggested no cell cycle block, and cells did not undergo apoptosis. MSCs-lung appears to increase genes associated with immunomodulatory function but could contribute to inflammation, while MSCs-CPAM keeps stable or reduce the immunomodulatory receptors expression, but they also reduce their cytokines expression. These data indicated that, independently from their perilesional or cystic origin, the MSCs populations already present in a patient affected with CPAM are not permissive for SARS-CoV-2 entry, and they will not spread the disease in case of infection. Moreover, these MSCs will not undergo apoptosis when they come in contact with SARS-CoV-2; on the contrary, they maintain their staminality profile.
Collapse
|
26
|
Yogosawa S, Ohkido M, Horii T, Okazaki Y, Nakayama J, Yoshida S, Toyokuni S, Hatada I, Morimoto M, Yoshida K. Mice lacking DYRK2 exhibit congenital malformations with lung hypoplasia and altered Foxf1 expression gradient. Commun Biol 2021; 4:1204. [PMID: 34671097 PMCID: PMC8528819 DOI: 10.1038/s42003-021-02734-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Congenital malformations cause life-threatening diseases in pediatrics, yet the molecular mechanism of organogenesis is poorly understood. Here we show that Dyrk2-deficient mice display congenital malformations in multiple organs. Transcriptome analysis reveals molecular pathology of Dyrk2-deficient mice, particularly with respect to Foxf1 reduction. Mutant pups exhibit sudden death soon after birth due to respiratory failure. Detailed analyses of primordial lungs at the early developmental stage demonstrate that Dyrk2 deficiency leads to altered airway branching and insufficient alveolar development. Furthermore, the Foxf1 expression gradient in mutant lung mesenchyme is disrupted, reducing Foxf1 target genes, which are necessary for proper airway and alveolar development. In ex vivo lung culture system, we rescue the expression of Foxf1 and its target genes in Dyrk2-deficient lung by restoring Shh signaling activity. Taken together, we demonstrate that Dyrk2 is essential for embryogenesis and its disruption results in congenital malformation.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Makiko Ohkido
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
27
|
Tanaka I, Dayde D, Tai MC, Mori H, Solis LM, Tripathi SC, Fahrmann JF, Unver N, Parhy G, Jain R, Parra ER, Murakami Y, Aguilar-Bonavides C, Mino B, Celiktas M, Dhillon D, Casabar JP, Nakatochi M, Stingo F, Baladandayuthapani V, Wang H, Katayama H, Dennison JB, Lorenzi PL, Do KA, Fujimoto J, Behrens C, Ostrin EJ, Rodriguez-Canales J, Hase T, Fukui T, Kajino T, Kato S, Yatabe Y, Hosoda W, Kawaguchi K, Yokoi K, Chen-Yoshikawa TF, Hasegawa Y, Gazdar AF, Wistuba II, Hanash S, Taguchi A. SRGN-Triggered Aggressive and Immunosuppressive Phenotype in a Subset of TTF-1-Negative Lung Adenocarcinomas. J Natl Cancer Inst 2021; 114:290-301. [PMID: 34524427 DOI: 10.1093/jnci/djab183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND About 20% of lung adenocarcinoma (LUAD) is negative for the lineage-specific oncogene Thyroid transcription factor 1 (TTF-1) and exhibits worse clinical outcome with a low frequency of actionable genomic alterations. To identify molecular features associated with TTF-1-negative LUAD, we compared the transcriptomic and proteomic profiles of LUAD cell lines. SRGN, a chondroitin sulfate proteoglycan Serglycin, was identified as a markedly overexpressed gene in TTF-1-negative LUAD. We therefore investigated the roles and regulation of SRGN in TTF-1-negative LUAD. METHODS Proteomic and metabolomic analyses of 41 LUAD cell lines were done using mass spectrometry. The function of SRGN was investigated in 3 TTF-1-negative and 4 TTF-1-positive LUAD cell lines and in a syngeneic mouse model (n = 5 to 8 mice per group). Expression of SRGN in was evaluated in 94 and 105 surgically resected LUAD tumor specimens using immunohistochemistry. All statistical tests were two-sided. RESULTS SRGN was markedly overexpressed at mRNA and protein levels in TTF-1-negative LUAD cell lines (P < .001 for both mRNA and protein levels). Expression of SRGN in LUAD tumor tissue was associated with poor outcome (hazard ratio = 4.22, 95% confidential interval = 1.12 to 15.86; likelihood ratio test, P = .03), and with higher expression of Programmed cell death 1 ligand 1 (PD-L1) in tumor cells and higher infiltration of Programmed cell death protein 1 (PD-1)-positive lymphocytes. SRGN regulated expression of PD-L1, as well as proinflammatory cytokines including Interleukin-6 (IL-6), Interleukin-8 (IL-8), and C-X-C motif chemokine 1 (CXCL1) in LUAD cell lines, and increased migratory and invasive properties of LUAD cells and fibroblasts, and enhanced angiogenesis. SRGN was induced by DNA de-methylation resulting from Nicotinamide N-methyltransferase (NNMT)-mediated impairment of methionine metabolism. CONCLUSION Our findings suggest that SRGN plays a pivotal role in tumor-stromal interaction and reprogramming into an aggressive and immunosuppressive tumor microenvironment in TTF-1-negative LUAD.
Collapse
Affiliation(s)
- Ichidai Tanaka
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Delphine Dayde
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mei Chee Tai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haruki Mori
- Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nese Unver
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gargy Parhy
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rekha Jain
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yoshiko Murakami
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | | | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Muge Celiktas
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dilsher Dhillon
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Julian Phillip Casabar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Francesco Stingo
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veera Baladandayuthapani
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin J Ostrin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taisuke Kajino
- Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Seiichi Kato
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Koji Kawaguchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology, Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ayumu Taguchi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
28
|
Llabata P, Torres-Diz M, Gomez A, Tomas-Daza L, Romero OA, Grego-Bessa J, Llinas-Arias P, Valencia A, Esteller M, Javierre BM, Zhang X, Sanchez-Cespedes M. MAX mutant small-cell lung cancers exhibit impaired activities of MGA-dependent noncanonical polycomb repressive complex. Proc Natl Acad Sci U S A 2021; 118:e2024824118. [PMID: 34493659 PMCID: PMC8449313 DOI: 10.1073/pnas.2024824118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
The MYC axis is disrupted in cancer, predominantly through activation of the MYC family oncogenes but also through inactivation of the MYC partner MAX or of the MAX partner MGA. MGA and MAX are also members of the polycomb repressive complex, ncPRC1.6. Here, we use genetically modified MAX-deficient small-cell lung cancer (SCLC) cells and carry out genome-wide and proteomics analyses to study the tumor suppressor function of MAX. We find that MAX mutant SCLCs have ASCL1 or NEUROD1 or combined ASCL1/NEUROD1 characteristics and lack MYC transcriptional activity. MAX restitution triggers prodifferentiation expression profiles that shift when MAX and oncogenic MYC are coexpressed. Although ncPRC1.6 can be formed, the lack of MAX restricts global MGA occupancy, selectively driving its recruitment toward E2F6-binding motifs. Conversely, MAX restitution enhances MGA occupancy to repress genes involved in different functions, including stem cell and DNA repair/replication. Collectively, these findings reveal that MAX mutant SCLCs have either ASCL1 or NEUROD1 or combined characteristics and are MYC independent and exhibit deficient ncPRC1.6-mediated gene repression.
Collapse
Affiliation(s)
- Paula Llabata
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain
| | - Manuel Torres-Diz
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 Barcelona, Spain
| | - Antonio Gomez
- Rheumatology Research Group, Vall d'Hebron Research Institute, 08035 Barcelona, Spain
| | - Laureano Tomas-Daza
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain
| | - Octavio A Romero
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain
| | - Joaquim Grego-Bessa
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 Barcelona, Spain
| | - Pere Llinas-Arias
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain
| | - Alfonso Valencia
- Computational Biology Life Sciences Group, Barcelona Supercomputing Centre, 08034 Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer, 28029 Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - Biola M Javierre
- Rheumatology Research Group, Vall d'Hebron Research Institute, 08035 Barcelona, Spain
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | | |
Collapse
|
29
|
Xu X, Nie Y, Wang W, Ullah I, Tung WT, Ma N, Lendlein A. Generation of 2.5D lung bud organoids from human induced pluripotent stem cells. Clin Hemorheol Microcirc 2021; 79:217-230. [PMID: 34487028 DOI: 10.3233/ch-219111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising cell source to generate the patient-specific lung organoid given their superior differentiation potential. However, the current 3D cell culture approach is tedious and time-consuming with a low success rate and high batch-to-batch variability. Here, we explored the establishment of lung bud organoids by systematically adjusting the initial confluence levels and homogeneity of cell distribution. The efficiency of single cell seeding and clump seeding was compared. Instead of the traditional 3D culture, we established a 2.5D organoid culture to enable the direct monitoring of the internal structure via microscopy. It was found that the cell confluence and distribution prior to induction were two key parameters, which strongly affected hiPSC differentiation trajectories. Lung bud organoids with positive expression of NKX 2.1, in a single-cell seeding group with homogeneously distributed hiPSCs at 70% confluence (SC_70%_hom) or a clump seeding group with heterogeneously distributed cells at 90% confluence (CL_90%_het), can be observed as early as 9 days post induction. These results suggest that a successful lung bud organoid formation with single-cell seeding of hiPSCs requires a moderate confluence and homogeneous distribution of cells, while high confluence would be a prominent factor to promote the lung organoid formation when seeding hiPSCs as clumps. 2.5D organoids generated with defined culture conditions could become a simple, efficient, and valuable tool facilitating drug screening, disease modeling and personalized medicine.
Collapse
Affiliation(s)
- Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Yan Nie
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Weiwei Wang
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Imran Ullah
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Wing Tai Tung
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| |
Collapse
|
30
|
Zhang T, Joubert P, Ansari-Pour N, Zhao W, Hoang PH, Lokanga R, Moye AL, Rosenbaum J, Gonzalez-Perez A, Martínez-Jiménez F, Castro A, Muscarella LA, Hofman P, Consonni D, Pesatori AC, Kebede M, Li M, Gould Rothberg BE, Peneva I, Schabath MB, Poeta ML, Costantini M, Hirsch D, Heselmeyer-Haddad K, Hutchinson A, Olanich M, Lawrence SM, Lenz P, Duggan M, Bhawsar PMS, Sang J, Kim J, Mendoza L, Saini N, Klimczak LJ, Islam SMA, Otlu B, Khandekar A, Cole N, Stewart DR, Choi J, Brown KM, Caporaso NE, Wilson SH, Pommier Y, Lan Q, Rothman N, Almeida JS, Carter H, Ried T, Kim CF, Lopez-Bigas N, Garcia-Closas M, Shi J, Bossé Y, Zhu B, Gordenin DA, Alexandrov LB, Chanock SJ, Wedge DC, Landi MT. Genomic and evolutionary classification of lung cancer in never smokers. Nat Genet 2021; 53:1348-1359. [PMID: 34493867 PMCID: PMC8432745 DOI: 10.1038/s41588-021-00920-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/15/2021] [Indexed: 12/26/2022]
Abstract
Lung cancer in never smokers (LCINS) is a common cause of cancer mortality but its genomic landscape is poorly characterized. Here high-coverage whole-genome sequencing of 232 LCINS showed 3 subtypes defined by copy number aberrations. The dominant subtype (piano), which is rare in lung cancer in smokers, features somatic UBA1 mutations, germline AR variants and stem cell-like properties, including low mutational burden, high intratumor heterogeneity, long telomeres, frequent KRAS mutations and slow growth, as suggested by the occurrence of cancer drivers' progenitor cells many years before tumor diagnosis. The other subtypes are characterized by specific amplifications and EGFR mutations (mezzo-forte) and whole-genome doubling (forte). No strong tobacco smoking signatures were detected, even in cases with exposure to secondhand tobacco smoke. Genes within the receptor tyrosine kinase-Ras pathway had distinct impacts on survival; five genomic alterations independently doubled mortality. These findings create avenues for personalized treatment in LCINS.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Naser Ansari-Pour
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rachel Lokanga
- Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aaron L Moye
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francisco Martínez-Jiménez
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Castro
- Department of Medicine, Division of Medical Genetics, University of California San Diego, San Diego, CA, USA
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, University Hospital Federation OncoAge, Nice Hospital, University Côte d'Azur, Nice, France
| | - Dario Consonni
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela C Pesatori
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Michael Kebede
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mengying Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bonnie E Gould Rothberg
- Smilow Cancer Hospital, Yale-New Haven Health, New Haven, CT, USA
- Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Iliana Peneva
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Maria Luana Poeta
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Manuela Costantini
- Department of Urology, Istituto di Ricovero e Cura a Carattere Scientifico Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Hirsch
- Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary Olanich
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott M Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Petra Lenz
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maire Duggan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Praphulla M S Bhawsar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Laura Mendoza
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - S M Ashiqul Islam
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Burcak Otlu
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Nathan Cole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jonas S Almeida
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, San Diego, CA, USA
| | - Thomas Ried
- Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
- Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
31
|
Archer F, Bobet-Erny A, Gomes M. State of the art on lung organoids in mammals. Vet Res 2021; 52:77. [PMID: 34078444 PMCID: PMC8170649 DOI: 10.1186/s13567-021-00946-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/04/2021] [Indexed: 02/08/2023] Open
Abstract
The number and severity of diseases affecting lung development and adult respiratory function have stimulated great interest in developing new in vitro models to study lung in different species. Recent breakthroughs in 3-dimensional (3D) organoid cultures have led to new physiological in vitro models that better mimic the lung than conventional 2D cultures. Lung organoids simulate multiple aspects of the real organ, making them promising and useful models for studying organ development, function and disease (infection, cancer, genetic disease). Due to their dynamics in culture, they can serve as a sustainable source of functional cells (biobanking) and be manipulated genetically. Given the differences between species regarding developmental kinetics, the maturation of the lung at birth, the distribution of the different cell populations along the respiratory tract and species barriers for infectious diseases, there is a need for species-specific lung models capable of mimicking mammal lungs as they are of great interest for animal health and production, following the One Health approach. This paper reviews the latest developments in the growing field of lung organoids.
Collapse
Affiliation(s)
- Fabienne Archer
- UMR754, IVPC, INRAE, EPHE, Univ Lyon, Université Claude Bernard Lyon 1, 69007, Lyon, France.
| | - Alexandra Bobet-Erny
- UMR754, IVPC, INRAE, EPHE, Univ Lyon, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Maryline Gomes
- UMR754, IVPC, INRAE, EPHE, Univ Lyon, Université Claude Bernard Lyon 1, 69007, Lyon, France
| |
Collapse
|
32
|
Stuart WD, Fink-Baldauf IM, Tomoshige K, Guo M, Maeda Y. CRISPRi-mediated functional analysis of NKX2-1-binding sites in the lung. Commun Biol 2021; 4:568. [PMID: 33980985 PMCID: PMC8115294 DOI: 10.1038/s42003-021-02083-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/08/2021] [Indexed: 11/11/2022] Open
Abstract
The transcription factor NKX2-1/TTF-1 is involved in lung pathophysiology, including breathing, innate defense and tumorigenesis. To understand the mechanism by which NKX2-1 regulates genes involved in such pathophysiology, we have previously performed ChIP-seq and identified genome-wide NKX2-1-binding sites, which revealed that NKX2-1 binds to not only proximal promoter regions but also multiple intra- and inter-genic regions of the genes regulated by NKX2-1. However, the roles of such regions, especially non-proximal ones, bound by NKX2-1 have not yet been determined. Here, using CRISPRi (CRISPR/dCas9-KRAB), we scrutinize the functional roles of 19 regions/sites bound by NKX2-1, which are located in genes involved in breathing and innate defense (SFTPB, LAMP3, SFTPA1, SFTPA2) and lung tumorigenesis (MYBPH, LMO3, CD274/PD-L1). Notably, the CRISPRi approach reveals that a portion of NKX2-1-binding sites are functionally indispensable while the rest are dispensable for the expression of the genes, indicating that functional roles of NKX2-1-binding sites are unequally yoked.
Collapse
Affiliation(s)
- William D Stuart
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA
| | - Iris M Fink-Baldauf
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA
| | - Koichi Tomoshige
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA
| | - Yutaka Maeda
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine (CCHMC and UC), Cincinnati, OH, USA.
| |
Collapse
|
33
|
Woeller CF, Lim SA, Roztocil E, Yee M, Beier EE, Puzas JE, O'Reilly MA. Neonatal hyperoxia impairs adipogenesis of bone marrow-derived mesenchymal stem cells and fat accumulation in adult mice. Free Radic Biol Med 2021; 167:287-298. [PMID: 33757863 PMCID: PMC8096722 DOI: 10.1016/j.freeradbiomed.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
Preterm birth is a risk factor for growth failure and development of respiratory disease in children and young adults. Their early exposure to oxygen may contribute to lung disease because adult mice exposed to hyperoxia as neonates display reduced lung function, changes in the host response to respiratory viral infections, and develop pulmonary hypertension and heart failure that shortens their lifespan. Here, we provide new evidence that neonatal hyperoxia also impairs growth by inhibiting fat accumulation. Failure to accumulate fat may reflect a systemic defect in adipogenic potential of stem cells because bone marrow-derived mesenchymal cells (BMSCs) isolated from the mice grew slower and were more oxidized compared to controls. They also displayed reduced capacity to accumulate lipid and differentiate into adipocytes. BMSCs from adult mice exposed to neonatal hyperoxia express lower levels of peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor that drives adipocyte differentiation. The defect in adipogenesis was rescued by expressing PPARγ in these cells. These findings reveal early life exposure to high levels of oxygen may suppresses fat accumulation and impair adipogenic differentiation upstream of PPARγ signaling, thus potentially contributing to growth failure seen in people born preterm.
Collapse
Affiliation(s)
- Collynn F Woeller
- Departments of Ophthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| | - Sydney A Lim
- Departments of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Elisa Roztocil
- Departments of Ophthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Min Yee
- Departments of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Eric E Beier
- Departments of Orthopaedics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - J Edward Puzas
- Departments of Orthopaedics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Michael A O'Reilly
- Departments of Ophthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA; Departments of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
34
|
Fazal S, Bisserier M, Hadri L. Molecular and Genetic Profiling for Precision Medicines in Pulmonary Arterial Hypertension. Cells 2021; 10:638. [PMID: 33805595 PMCID: PMC7999465 DOI: 10.3390/cells10030638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and chronic lung disease characterized by progressive occlusion of the small pulmonary arteries, which is associated with structural and functional alteration of the smooth muscle cells and endothelial cells within the pulmonary vasculature. Excessive vascular remodeling is, in part, responsible for high pulmonary vascular resistance and the mean pulmonary arterial pressure, increasing the transpulmonary gradient and the right ventricular "pressure overload", which may result in right ventricular (RV) dysfunction and failure. Current technological advances in multi-omics approaches, high-throughput sequencing, and computational methods have provided valuable tools in molecular profiling and led to the identification of numerous genetic variants in PAH patients. In this review, we summarized the pathogenesis, classification, and current treatments of the PAH disease. Additionally, we outlined the latest next-generation sequencing technologies and the consequences of common genetic variants underlying PAH susceptibility and disease progression. Finally, we discuss the importance of molecular genetic testing for precision medicine in PAH and the future of genomic medicines, including gene-editing technologies and gene therapies, as emerging alternative approaches to overcome genetic disorders in PAH.
Collapse
Affiliation(s)
| | | | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (S.F.); (M.B.)
| |
Collapse
|
35
|
Isomura H, Taguchi A, Kajino T, Asai N, Nakatochi M, Kato S, Suzuki K, Yanagisawa K, Suzuki M, Fujishita T, Yamaguchi T, Takahashi M, Takahashi T. Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci 2021; 112:1614-1623. [PMID: 33506575 PMCID: PMC8019194 DOI: 10.1111/cas.14825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 12/13/2022] Open
Abstract
We previously reported that ROR1 is a crucial downstream gene for the TTF‐1/NKX2‐1 lineage‐survival oncogene in lung adenocarcinoma, while others have found altered expression of ROR1 in multiple cancer types. Accumulated evidence therefore indicates ROR1 as an attractive molecular target, though it has yet to be determined whether targeting Ror1 can inhibit tumor development and growth in vivo. To this end, genetically engineered mice carrying homozygously floxed Ror1 alleles and an SP‐C promoter–driven human mutant EGFR transgene were generated. Ror1 ablation resulted in marked retardation of tumor development and progression in association with reduced malignant characteristics and significantly better survival. Interestingly, gene set enrichment analysis identified a hypoxia‐induced gene set (HALLMARK_HYPOXIA) as most significantly downregulated by Ror1 ablation in vivo, which led to findings showing that ROR1 knockdown diminished HIF‐1α expression under normoxia and clearly hampered HIF‐1α induction in response to hypoxia in human lung adenocarcinoma cell lines. The present results directly demonstrate the importance of Ror1 for in vivo development and progression of lung adenocarcinoma, and also identify Ror1 as a novel regulator of Hif‐1α. Thus, a future study aimed at the development of a novel therapeutic targeting ROR1 for treatment of solid tumors such as seen in lung cancer, which are frequently accompanied with a hypoxic tumor microenvironment, is warranted.
Collapse
Affiliation(s)
- Hisanori Isomura
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taisuke Kajino
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pathology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiichi Kato
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Keiko Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Yanagisawa
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Molecular Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Teruaki Fujishita
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tomoya Yamaguchi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Cancer Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
36
|
Khaledian B, Taguchi A, Shin-Ya K, Kondo-Ida L, Kagaya N, Suzuki M, Kajino T, Yamaguchi T, Shimada Y, Takahashi T. Inhibition of heat shock protein 90 destabilizes receptor tyrosine kinase ROR1 in lung adenocarcinoma. Cancer Sci 2021; 112:1225-1234. [PMID: 33370472 PMCID: PMC7935804 DOI: 10.1111/cas.14786] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023] Open
Abstract
We have previously identified receptor tyrosine kinase‐like orphan receptor 1 (ROR1) as a direct transcriptional target of TTF‐1/NKX2‐1, a lineage‐survival oncogene in lung adenocarcinoma. ROR1 sustains prosurvival signaling from multiple receptor tyrosine kinases including epidermal growth factor receptor, MET, and insulin‐like growth factor 1 receptor in part by maintaining the caveolae structure as a scaffold protein of cavin‐1 and caveolin‐1. In this study, a high throughput screening of the natural product library containing 2560 compounds was undertaken using a cell‐based FluoPPI assay detecting ROR1‐cavin‐1 interaction. As a result, geldanamycin (GA), a known inhibitor of heat shock protein 90 (HSP90), was identified as a potential inhibitor of ROR1. Geldanamycin, as well as two GA derivatives tested in the clinic, 17‐allylamino‐17‐demethoxygeldanamycin (17‐AAG) and 17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin (17‐DMAG), decreased ROR1 protein expression. We found that ROR1 physically interacted with HSP90α, but not with other HSP90 paralogs, HSP90β or GRP94. Geldanamycin in turn destabilized and degraded ROR1 protein in a dose‐ and time‐dependent manner through the ubiquitin/proteasome pathway, resulting in a significant suppression of cell proliferation in lung adenocarcinoma cell lines, for which the kinase domain of ROR1, but not its kinase activity or N‐glycosylation, was required. Our findings indicate that HSP90 is required to sustain expression of ROR1 crucial for lung adenosarcoma survival, suggesting that inhibition of HSP90 could be a promising therapeutic strategy in ROR1‐positive lung adenocarcinoma.
Collapse
Affiliation(s)
- Behnoush Khaledian
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Lisa Kondo-Ida
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noritaka Kagaya
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Taisuke Kajino
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoya Yamaguchi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Yukako Shimada
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
37
|
Karolak JA, Gambin T, Szafranski P, Stankiewicz P. Potential interactions between the TBX4-FGF10 and SHH-FOXF1 signaling during human lung development revealed using ChIP-seq. Respir Res 2021; 22:26. [PMID: 33478486 PMCID: PMC7818749 DOI: 10.1186/s12931-021-01617-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Background The epithelial-mesenchymal signaling involving SHH-FOXF1, TBX4-FGF10, and TBX2 pathways is an essential transcriptional network operating during early lung organogenesis. However, precise regulatory interactions between different genes and proteins in this pathway are incompletely understood. Methods To identify TBX2 and TBX4 genome-wide binding sites, we performed chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) in human fetal lung fibroblasts IMR-90. Results We identified 14,322 and 1,862 sites strongly-enriched for binding of TBX2 and TBX4, respectively, 43.95% and 18.79% of which are located in the gene promoter regions. Gene Ontology, pathway enrichment, and DNA binding motif analyses revealed a number of overrepresented cues and transcription factor binding motifs relevant for lung branching that can be transcriptionally regulated by TBX2 and/or TBX4. In addition, TBX2 and TBX4 binding sites were found enriched around and within FOXF1 and its antisense long noncoding RNA FENDRR, indicating that the TBX4-FGF10 cascade may directly interact with the SHH-FOXF1 signaling. Conclusions We highlight the complexity of transcriptional network driven by TBX2 and TBX4 and show that disruption of this crosstalk during morphogenesis can play a substantial role in etiology of lung developmental disorders.
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781, Poznan, Poland
| | - Tomasz Gambin
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Institute of Computer Science, Warsaw University of Technology, 00-665, Warsaw, Poland
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Wang A, Chiou J, Poirion OB, Buchanan J, Valdez MJ, Verheyden JM, Hou X, Kudtarkar P, Narendra S, Newsome JM, Guo M, Faddah DA, Zhang K, Young RE, Barr J, Sajti E, Misra R, Huyck H, Rogers L, Poole C, Whitsett JA, Pryhuber G, Xu Y, Gaulton KJ, Preissl S, Sun X, NHLBI LungMap Consortium. Single-cell multiomic profiling of human lungs reveals cell-type-specific and age-dynamic control of SARS-CoV2 host genes. eLife 2020; 9:e62522. [PMID: 33164753 PMCID: PMC7688309 DOI: 10.7554/elife.62522] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory failure associated with COVID-19 has placed focus on the lungs. Here, we present single-nucleus accessible chromatin profiles of 90,980 nuclei and matched single-nucleus transcriptomes of 46,500 nuclei in non-diseased lungs from donors of ~30 weeks gestation,~3 years and ~30 years. We mapped candidate cis-regulatory elements (cCREs) and linked them to putative target genes. We identified distal cCREs with age-increased activity linked to SARS-CoV-2 host entry gene TMPRSS2 in alveolar type 2 cells, which had immune regulatory signatures and harbored variants associated with respiratory traits. At the 3p21.31 COVID-19 risk locus, a candidate variant overlapped a distal cCRE linked to SLC6A20, a gene expressed in alveolar cells and with known functional association with the SARS-CoV-2 receptor ACE2. Our findings provide insight into regulatory logic underlying genes implicated in COVID-19 in individual lung cell types across age. More broadly, these datasets will facilitate interpretation of risk loci for lung diseases.
Collapse
Affiliation(s)
- Allen Wang
- Center for Epigenomics & Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Joshua Chiou
- Biomedical Sciences Graduate Program, University of California San DiegoLa JollaUnited States
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Olivier B Poirion
- Center for Epigenomics & Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Justin Buchanan
- Center for Epigenomics & Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Michael J Valdez
- Biomedical Sciences Graduate Program, University of California San DiegoLa JollaUnited States
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Jamie M Verheyden
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Xiaomeng Hou
- Center for Epigenomics & Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Parul Kudtarkar
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Sharvari Narendra
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Jacklyn M Newsome
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Minzhe Guo
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States
- Divisions of Pulmonary Biology and Biomedical Informatics, University of Cincinnati College of MedicineCincinnatiUnited States
| | | | - Kai Zhang
- Ludwig Institute for Cancer ResearchLa JollaUnited States
| | - Randee E Young
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-MadisonMadisonUnited States
| | - Justinn Barr
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Eniko Sajti
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Ravi Misra
- Department of Pediatrics and Clinical & Translational Science Institute, University of Rochester Medical CenterRochesterUnited States
| | - Heidie Huyck
- Department of Pediatrics and Clinical & Translational Science Institute, University of Rochester Medical CenterRochesterUnited States
| | - Lisa Rogers
- Department of Pediatrics and Clinical & Translational Science Institute, University of Rochester Medical CenterRochesterUnited States
| | - Cory Poole
- Department of Pediatrics and Clinical & Translational Science Institute, University of Rochester Medical CenterRochesterUnited States
| | - Jeffery A Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States
- Divisions of Pulmonary Biology and Biomedical Informatics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Gloria Pryhuber
- Department of Pediatrics and Clinical & Translational Science Institute, University of Rochester Medical CenterRochesterUnited States
| | - Yan Xu
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States
- Divisions of Pulmonary Biology and Biomedical Informatics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Kyle J Gaulton
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
| | - Sebastian Preissl
- Center for Epigenomics & Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Xin Sun
- Department of Pediatrics, University of California-San DiegoLa JollaUnited States
- Department of Biological Sciences, University of California-San DiegoLa JollaUnited States
| | | |
Collapse
|
39
|
Dost AFM, Moye AL, Vedaie M, Tran LM, Fung E, Heinze D, Villacorta-Martin C, Huang J, Hekman R, Kwan JH, Blum BC, Louie SM, Rowbotham SP, Sainz de Aja J, Piper ME, Bhetariya PJ, Bronson RT, Emili A, Mostoslavsky G, Fishbein GA, Wallace WD, Krysan K, Dubinett SM, Yanagawa J, Kotton DN, Kim CF. Organoids Model Transcriptional Hallmarks of Oncogenic KRAS Activation in Lung Epithelial Progenitor Cells. Cell Stem Cell 2020; 27:663-678.e8. [PMID: 32891189 PMCID: PMC7541765 DOI: 10.1016/j.stem.2020.07.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Mutant KRAS is a common driver in epithelial cancers. Nevertheless, molecular changes occurring early after activation of oncogenic KRAS in epithelial cells remain poorly understood. We compared transcriptional changes at single-cell resolution after KRAS activation in four sample sets. In addition to patient samples and genetically engineered mouse models, we developed organoid systems from primary mouse and human induced pluripotent stem cell-derived lung epithelial cells to model early-stage lung adenocarcinoma. In all four settings, alveolar epithelial progenitor (AT2) cells expressing oncogenic KRAS had reduced expression of mature lineage identity genes. These findings demonstrate the utility of our in vitro organoid approaches for uncovering the early consequences of oncogenic KRAS expression. This resource provides an extensive collection of datasets and describes organoid tools to study the transcriptional and proteomic changes that distinguish normal epithelial progenitor cells from early-stage lung cancer, facilitating the search for targets for KRAS-driven tumors.
Collapse
Affiliation(s)
- Antonella F M Dost
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron L Moye
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marall Vedaie
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Linh M Tran
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eileen Fung
- Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dar Heinze
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; Section of Gastroenterology and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ryan Hekman
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Julian H Kwan
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sharon M Louie
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel P Rowbotham
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Julio Sainz de Aja
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mary E Piper
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA 02115, USA
| | - Preetida J Bhetariya
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA 02115, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biology, Boston University, Boston, MA 02215, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; Section of Gastroenterology and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William D Wallace
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steven M Dubinett
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jane Yanagawa
- Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Lee JY, Na Q, Shin NE, Shin HE, Kang Y, Chudnovets A, Lei J, Song H, Burd I. Melatonin for prevention of fetal lung injury associated with intrauterine inflammation and for improvement of lung maturation. J Pineal Res 2020; 69:e12687. [PMID: 32737901 DOI: 10.1111/jpi.12687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/03/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is associated with injury to immature lungs, and melatonin administration to preterm newborns with acute respiratory distress improves pulmonary outcomes. We hypothesized that maternally administered melatonin may reduce inflammation, oxidative stress, and structural injury in fetal lung and help fetal lung maturation in a mouse model of intrauterine inflammation (IUI). Mice were randomized to the following groups: control (C), melatonin (M), lipopolysaccharide (LPS; a model of IUI) (L), and LPS with melatonin (ML). Pro-inflammatory cytokines, components of the Hippo pathway, and Yap1/Taz were analyzed in the fetal lung at E18 by real-time RT-qPCR. Confirmatory histochemistry and immunohistochemical analyses (surfactant protein B, vimentin, HIF-1β, and CXCR2) were performed. The gene expression of IL1β in the fetal lung was significantly increased in L compared to C, M, and ML. Taz expression was significantly decreased in L compared to C and M. Taz gene expression in L was significantly decreased compared with those in ML. Immunohistochemical analyses showed that the expression of HIF-1β and CXCR2 was significantly increased in L compared to C, M, and ML. The area of surfactant protein B and vimentin were significantly decreased in L than C, M, or ML in the fetal and neonatal lung. Antenatal maternally administered melatonin appears to prevent fetal lung injury induced by IUI and to help lung maturation. The results from this study results suggest that melatonin could serve as a novel safe preventive and/or therapeutic medicine for preventing fetal lung injury from IUI and for improving lung maturation in prematurity.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Quan Na
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Na E Shin
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ha Eun Shin
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Yeomin Kang
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Chudnovets
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Taylor B, Rice A, Nicholson AG, Hind M, Dean CH. Mechanism of lung development in the aetiology of adult congenital pulmonary airway malformations. Thorax 2020; 75:1001-1003. [PMID: 32732323 PMCID: PMC7569368 DOI: 10.1136/thoraxjnl-2020-214752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/04/2022]
Abstract
Congenital pulmonary airway malformations (CPAMs) are rare lung abnormalities that result in cyst formation and are associated with respiratory distress in infants and malignant potential in adults. The pathogenesis of CPAMs remains unknown but data suggest disruption of the normal proximo-distal programme of airway branching and differentiation. Here, we demonstrate that adult human CPAM are lined with epithelium that retains SOX-2 and thyroid transcription factor-1 immunohistochemical markers, characteristic of the developing lung. However, RALDH-1, another key marker, is absent. This suggests a more complex aetiology for CPAM than complete focal arrest of lung development and may provide insight to the associated risk of malignancy.
Collapse
Affiliation(s)
- Bethany Taylor
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alexandra Rice
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, UK.,Respiratory Medicine, Department of Respiratory Medicine and National Institute for Health research Respiratory Biomedical Research Unit at the Royal Brompton NHS Foundation Trust and Imperial College, London, UK
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
42
|
Kerschner JL, Paranjapye A, Yin S, Skander DL, Bebek G, Leir SH, Harris A. A functional genomics approach to investigate the differentiation of iPSCs into lung epithelium at air-liquid interface. J Cell Mol Med 2020; 24:9853-9870. [PMID: 32692488 PMCID: PMC7520342 DOI: 10.1111/jcmm.15568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/02/2020] [Accepted: 06/13/2020] [Indexed: 01/24/2023] Open
Abstract
The availability of robust protocols to differentiate induced pluripotent stem cells (iPSCs) into many human cell lineages has transformed research into the origins of human disease. The efficacy of differentiating iPSCs into specific cellular models is influenced by many factors including both intrinsic and extrinsic features. Among the most challenging models is the generation of human bronchial epithelium at air‐liquid interface (HBE‐ALI), which is the gold standard for many studies of respiratory diseases including cystic fibrosis. Here, we perform open chromatin mapping by ATAC‐seq and transcriptomics by RNA‐seq in parallel, to define the functional genomics of key stages of the iPSC to HBE‐ALI differentiation. Within open chromatin peaks, the overrepresented motifs include the architectural protein CTCF at all stages, while motifs for the FOXA pioneer and GATA factor families are seen more often at early stages, and those regulating key airway epithelial functions, such as EHF, are limited to later stages. The RNA‐seq data illustrate dynamic pathways during the iPSC to HBE‐ALI differentiation, and also the marked functional divergence of different iPSC lines at the ALI stages of differentiation. Moreover, a comparison of iPSC‐derived and lung donor‐derived HBE‐ALI cultures reveals substantial differences between these models.
Collapse
Affiliation(s)
- Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Shiyi Yin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Dannielle L Skander
- Systems Biology and Bioinformatics Graduate Program, Case Western Reserve University, Cleveland, OH, USA
| | - Gurkan Bebek
- Systems Biology and Bioinformatics Graduate Program, Case Western Reserve University, Cleveland, OH, USA.,Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Electrical Engineering and Computer Science Department, Case Western Reserve University, Cleveland, OH, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
43
|
Bolte C, Kalin TV, Kalinichenko VV. Molecular, cellular, and bioengineering approaches to stimulate lung regeneration after injury. Semin Cell Dev Biol 2020; 100:101-108. [PMID: 31669132 DOI: 10.1016/j.semcdb.2019.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 01/03/2023]
Abstract
The lung is susceptible to damage from a variety of sources throughout development and in adulthood. As a result, the lung has great capacities for repair and regeneration, directed by precisely controlled sequences of molecular and signaling pathways. Impairments or alterations in these signaling events can have deleterious effects on lung structure and function, ultimately leading to chronic lung disorders. When lung injury is too severe for the normal pathways to repair, or if those pathways do not function properly, lung regenerative medicine is needed to restore adequate structure and function. Great progress has been made in recent years in the number of regenerative techniques and their efficacy. This review will address recent progress in lung regenerative medicine focusing on pharmacotherapy including the expanding role of nanotechnology, stem cell-based therapies, and bioengineering techniques. The use of these techniques individually and collectively has the potential to significantly improve morbidity and mortality associated with congenital and acquired lung disorders.
Collapse
Affiliation(s)
- Craig Bolte
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States.
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States.
| |
Collapse
|
44
|
Liu Y, Chen X, Choi YJ, Yang N, Song Z, Snedecor ER, Liang W, Leung ELH, Zhang L, Qin C, Chen J. GORAB promotes embryonic lung maturation through antagonizing AKT phosphorylation, versican expression, and mesenchymal cell migration. FASEB J 2020; 34:4918-4933. [PMID: 32067289 DOI: 10.1096/fj.201902075r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 11/11/2022]
Abstract
Embryonic development of the alveolar sac of the lung is dependent upon multiple signaling pathways to coordinate cell growth, migration, and the formation of the extracellular matrix. Here, we identify GORAB as a regulator of embryonic alveolar sac formation as genetically disrupting the Gorab gene in mice resulted in fatal saccular maturation defects characterized by a thickened lung mesenchyme. This abnormality is not associated with impairments in cellular proliferation and death, but aberrantly increased protein kinase B (AKT) phosphorylation, elevated Vcan transcription, and enhanced migration of mesenchymal fibroblasts. Genetically augmenting PDGFRα, a potent activator of AKT in lung mesenchymal cells, recapitulated the alveolar phenotypes, whereas disrupting PDGFRα partially rescued alveolar phenotypes in Gorab-deficient mice. Overexpressing or suppressing Vcan in primary embryonic lung fibroblasts could, respectively, mimic or attenuate alveolar sac-like phenotypes in a co-culture model. These findings suggest a role of GORAB in negatively regulating AKT phosphorylation, the expression of Vcan, and the migration of lung mesenchyme fibroblasts, and suggest that alveolar sac formation resembles a patterning event that is orchestrated by molecular signaling and the extracellular matrix in the mesenchyme.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Xi Chen
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yeon Ja Choi
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Ning Yang
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Zhongya Song
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA.,Department of Dermatology, Peking University First Hospital, Beijing, China
| | | | - Wei Liang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Jiang Chen
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China.,Department of Pathology, Stony Brook University, Stony Brook, NY, USA.,Department of Dermatology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
45
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
46
|
Xu Y, Zheng M, Wang N, Wang R. Comprehensive Study of Surgical Treated Lung Adenocarcinoma with Ground Glass Nodule Component. Med Sci Monit 2019; 25:8492-8498. [PMID: 31710020 PMCID: PMC6873643 DOI: 10.12659/msm.919532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND More and more patients with lung adenocarcinoma were detected with ground glass nodule (GGN) due to the popularity of low-dose spiral computed tomography (LDCT) recently. The clinicopathological characteristics and epidermal growth factor receptor (EGFR) mutation features were unclear. MATERIAL AND METHODS This retrospective study enrolled patients with surgical resected primary lung adenocarcinomas with GGN component. The clinicopathological data included age, gender, smoking history, tumor staging, lymph node staging, surgical methods, subtypes, thyroid transcription factor-1 (TTF-1) expression, EGFR gene mutation and follow-up records were investigated. RESULTS There were 338 lung adenocarcinoma patients with GGN component eligible for our analysis: 219 patients (64.8%) harbored the EGFR mutation. In addition, the EGFR mutation rate was higher in patients with TTF-1+ than in patients with TTF-1- (72 out of 108 patients, 66.7% versus 147 out of 231 patients, 63.6%). In multivariable analysis, surgical procedure, tumor size, nodal stage, and subtype were still significant factors for relapse-free survival (RFS) while only subtype acted as the significant factor for overall survival (OS). In subgroup analyses, patients with TTF-1- had better prognosis in RFS (log-rank P=0.0142) when compared with those with TTF-1+ but not in OS (log-rank P=0.1113). Furthermore, patients with high-risk subtype had worse outcomes than those with low-risk subtype (RFS: log-rank P<0.0001; OS: log-rank P<0.0001). Patients who underwent limited resection experienced high risk of relapse (log-rank P<0.0001) while there was no statistical significance in OS (log-rank P=0.1644) between patients underwent lobectomy and those underwent limited resection. CONCLUSIONS The prognosis of lung adenocarcinomas with GGN component depends mainly on the pathological subtype and there is no significant correlation between EGFR mutation and prognosis. Lobectomy should be performed actively in patients whose preoperative puncture biopsy or intraoperative freezing indicates an invasive or worse subtype. For postoperative patients, we should consider follow-up more frequently.
Collapse
Affiliation(s)
- Ye Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Min Zheng
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Ning Wang
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Rui Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China (mainland)
| |
Collapse
|
47
|
Ren X, Ustiyan V, Guo M, Wang G, Bolte C, Zhang Y, Xu Y, Whitsett JA, Kalin TV, Kalinichenko VV. Postnatal Alveologenesis Depends on FOXF1 Signaling in c-KIT + Endothelial Progenitor Cells. Am J Respir Crit Care Med 2019; 200:1164-1176. [PMID: 31233341 PMCID: PMC6888649 DOI: 10.1164/rccm.201812-2312oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/24/2019] [Indexed: 11/16/2022] Open
Abstract
Rationale: Disruption of alveologenesis is associated with severe pediatric lung disorders, including bronchopulmonary dysplasia (BPD). Although c-KIT+ endothelial cell (EC) progenitors are abundant in embryonic and neonatal lungs, their role in alveolar septation and the therapeutic potential of these cells remain unknown.Objectives: To determine whether c-KIT+ EC progenitors stimulate alveologenesis in the neonatal lung.Methods: We used single-cell RNA sequencing of neonatal human and mouse lung tissues, immunostaining, and FACS analysis to identify transcriptional and signaling networks shared by human and mouse pulmonary c-KIT+ EC progenitors. A mouse model of perinatal hyperoxia-induced lung injury was used to identify molecular mechanisms that are critical for the survival, proliferation, and engraftment of c-KIT+ EC progenitors in the neonatal lung.Measurements and Main Results: Pulmonary c-KIT+ EC progenitors expressing PECAM-1, CD34, VE-Cadherin, FLK1, and TIE2 lacked mature arterial, venal, and lymphatic cell-surface markers. The transcriptomic signature of c-KIT+ ECs was conserved in mouse and human lungs and enriched in FOXF1-regulated transcriptional targets. Expression of FOXF1 and c-KIT was decreased in the lungs of infants with BPD. In the mouse, neonatal hyperoxia decreased the number of c-KIT+ EC progenitors. Haploinsufficiency or endothelial-specific deletion of Foxf1 in mice increased apoptosis and decreased proliferation of c-KIT+ ECs. Inactivation of either Foxf1 or c-Kit caused alveolar simplification. Adoptive transfer of c-KIT+ ECs into the neonatal circulation increased lung angiogenesis and prevented alveolar simplification in neonatal mice exposed to hyperoxia.Conclusions: Cell therapy involving c-KIT+ EC progenitors can be beneficial for the treatment of BPD.
Collapse
Affiliation(s)
- Xiaomeng Ren
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Vladimir Ustiyan
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | | | - Guolun Wang
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Craig Bolte
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Yufang Zhang
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Yan Xu
- Division of Pulmonary Biology, and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Research Foundation, Cincinnati, Ohio; and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tanya V. Kalin
- Division of Pulmonary Biology, and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Vladimir V. Kalinichenko
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Research Foundation, Cincinnati, Ohio; and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
48
|
Comprehensive anatomic ontologies for lung development: A comparison of alveolar formation and maturation within mouse and human lung. J Biomed Semantics 2019; 10:18. [PMID: 31651362 PMCID: PMC6814058 DOI: 10.1186/s13326-019-0209-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although the mouse is widely used to model human lung development, function, and disease, our understanding of the molecular mechanisms involved in alveolarization of the peripheral lung is incomplete. Recently, the Molecular Atlas of Lung Development Program (LungMAP) was funded by the National Heart, Lung, and Blood Institute to develop an integrated open access database (known as BREATH) to characterize the molecular and cellular anatomy of the developing lung. To support this effort, we designed detailed anatomic and cellular ontologies describing alveolar formation and maturation in both mouse and human lung. DESCRIPTION While the general anatomic organization of the lung is similar for these two species, there are significant variations in the lung's architectural organization, distribution of connective tissue, and cellular composition along the respiratory tract. Anatomic ontologies for both species were constructed as partonomic hierarchies and organized along the lung's proximal-distal axis into respiratory, vascular, neural, and immunologic components. Terms for developmental and adult lung structures, tissues, and cells were included, providing comprehensive ontologies for application at varying levels of resolution. Using established scientific resources, multiple rounds of comparison were performed to identify common, analogous, and unique terms that describe the lungs of these two species. Existing biological and biomedical ontologies were examined and cross-referenced to facilitate integration at a later time, while additional terms were drawn from the scientific literature as needed. This comparative approach eliminated redundancy and inconsistent terminology, enabling us to differentiate true anatomic variations between mouse and human lungs. As a result, approximately 300 terms for fetal and postnatal lung structures, tissues, and cells were identified for each species. CONCLUSION These ontologies standardize and expand current terminology for fetal and adult lungs, providing a qualitative framework for data annotation, retrieval, and integration across a wide variety of datasets in the BREATH database. To our knowledge, these are the first ontologies designed to include terminology specific for developmental structures in the lung, as well as to compare common anatomic features and variations between mouse and human lungs. These ontologies provide a unique resource for the LungMAP, as well as for the broader scientific community.
Collapse
|
49
|
Spadafora R, Lu J, Khetani RS, Zhang C, Iberg A, Li H, Shi Y, Lerou PH. Lung-Resident Mesenchymal Stromal Cells Reveal Transcriptional Dynamics of Lung Development in Preterm Infants. Am J Respir Crit Care Med 2019; 198:961-964. [PMID: 29757681 DOI: 10.1164/rccm.201801-0024le] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Junjie Lu
- 2 Massachusetts General Hospital Boston, Massachusetts
| | | | | | - Aimee Iberg
- 5 Boston Children's Hospital Boston, Massachusetts
| | - Hu Li
- 4 Mayo Clinic Rochester, Minnesota and
| | - Yang Shi
- 5 Boston Children's Hospital Boston, Massachusetts
| | - Paul H Lerou
- 2 Massachusetts General Hospital Boston, Massachusetts
| |
Collapse
|
50
|
Wang G, Lou HH, Salit J, Leopold PL, Driscoll S, Schymeinsky J, Quast K, Visvanathan S, Fine JS, Thomas MJ, Crystal RG. Characterization of an immortalized human small airway basal stem/progenitor cell line with airway region-specific differentiation capacity. Respir Res 2019; 20:196. [PMID: 31443657 PMCID: PMC6708250 DOI: 10.1186/s12931-019-1140-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Background The pathology of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and most lung cancers involves the small airway epithelium (SAE), the single continuous layer of cells lining the airways ≥ 6th generations. The basal cells (BC) are the stem/progenitor cells of the SAE, responsible for the differentiation into intermediate cells and ciliated, club and mucous cells. To facilitate the study of the biology of the human SAE in health and disease, we immortalized and characterized a normal human SAE basal cell line. Methods Small airway basal cells were purified from brushed SAE of a healthy nonsmoker donor with a characteristic normal SAE transcriptome. The BC were immortalized by retrovirus-mediated telomerase reverse transcriptase (TERT) transduction and single cell drug selection. The resulting cell line (hSABCi-NS1.1) was characterized by RNAseq, TaqMan PCR, protein immunofluorescence, differentiation capacity on an air-liquid interface (ALI) culture, transepithelial electrical resistance (TEER), airway region-associated features and response to genetic modification with SPDEF. Results The hSABCi-NS1.1 single-clone-derived cell line continued to proliferate for > 200 doubling levels and > 70 passages, continuing to maintain basal cell features (TP63+, KRT5+). When cultured on ALI, hSABCi-NS1.1 cells consistently formed tight junctions and differentiated into ciliated, club (SCGB1A1+), mucous (MUC5AC+, MUC5B+), neuroendocrine (CHGA+), ionocyte (FOXI1+) and surfactant protein positive cells (SFTPA+, SFTPB+, SFTPD+), observations confirmed by RNAseq and TaqMan PCR. Annotation enrichment analysis showed that “cilium” and “immunity” were enriched in functions of the top-1500 up-regulated genes. RNAseq reads alignment corroborated expression of CD4, CD74 and MHC-II. Compared to the large airway cell line BCi-NS1.1, differentiated of hSABCi-NS1.1 cells on ALI were enriched with small airway epithelial genes, including surfactant protein genes, LTF and small airway development relevant transcription factors NKX2–1, GATA6, SOX9, HOPX, ID2 and ETV5. Lentivirus-mediated expression of SPDEF in hSABCi-NS1.1 cells induced secretory cell metaplasia, accompanied with characteristic COPD-associated SAE secretory cell changes, including up-regulation of MSMB, CEACAM5 and down-regulation of LTF. Conclusions The immortalized hSABCi-NS1.1 cell line has diverse differentiation capacities and retains SAE features, which will be useful for understanding the biology of SAE, the pathogenesis of SAE-related diseases, and testing new pharmacologic agents. Electronic supplementary material The online version of this article (10.1186/s12931-019-1140-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Howard H Lou
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Philip L Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Sharon Driscoll
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | | | - Karsten Quast
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Jay S Fine
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Matthew J Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
| |
Collapse
|