1
|
Lahouty M, Fadaee M, Aghaei R, Alizadeh F, Jafari A, Sharifi Y. Gut microbiome and colorectal cancer: From pathogenesis to treatment. Pathol Res Pract 2025; 271:156034. [PMID: 40412026 DOI: 10.1016/j.prp.2025.156034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/06/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Colorectal cancer (CRC) continues to rank among the most prevalent cancers worldwide. A growing body of research indicates that the microbiome significantly influences the onset, development, and progression of CRC, in addition to affecting the efficacy of various systemic therapies. The composition of the microbiome, shaped by factors such as bacterial strains, geography, ethnicity, gender, and dietary habits, provides essential information for CRC screening, early diagnosis, and the prediction of treatment responses. Modulating the microbiome presents a highly promising medical strategy for improving individual health. This review aims to present a thorough overview of recent research concerning the interplay between host microbiota and CRC, along with its implications for screening and the immune response against tumors in the context of cancer treatment.
Collapse
Affiliation(s)
- Masoud Lahouty
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.
| | - Reza Aghaei
- Department of veterinary medicine, Shab.C, Islamic Azad University, Shabestar, Iran
| | - Fatemeh Alizadeh
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirmohammad Jafari
- Department of veterinary medicine, Shab.C, Islamic Azad University, Shabestar, Iran
| | - Yaeghob Sharifi
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Li G, Ma J, Wu L, Zhang H, Lin Y, Xu H, Gu M, Li K, Dong H, Huang Y, Wu H. Moxibustion regulates KDM4D expression and modulates lipid metabolism to inhibit tumor proliferation in CAC mice. Cancer Cell Int 2025; 25:173. [PMID: 40325472 PMCID: PMC12054041 DOI: 10.1186/s12935-025-03798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Lysine demethylase 4D (KDM4D) and aberrant lipid metabolism are implicated in the development and progression of colitis-associated cancer (CAC). Moxibustion, a therapeutic approach in traditional Chinese medicine, can inhibit intestinal inflammation and improve the intestinal mucosa. METHODS Mice were intraperitoneally injected with AOM, and three cycles of 3-2-2% DSS-free drinking water were administered to establish a CAC mouse model. Moxibustion and KDM4D inhibitor 5-c-8HQ intervention were performed for 30 days after modeling was completed. IHC staining was used to observe the expression of the nuclear-associated antigen Ki67 (Ki67), proliferating cell nuclear antigen (PCNA), and IL-33 in the colon. The expression of colon KDM4D and β-Catenin was observed by immunofluorescence staining and RT‒qPCR. LC‒MS pseudotargeted metabolomic sequencing was used to semiquantitatively detect the expression levels of lipids. RESULTS Moxibustion inhibited the proliferation of colon tumors in CAC mice, improved histopathology, and reduced the expression of PCNA and Ki67 in the colon. Using kdm4d knockout technology, it was initially confirmed that kdm4d is a key gene affecting CAC tumor proliferation. The inhibition of colon tumor proliferation in CAC mice by moxibustion is associated with the suppression of abnormal activation of the colon KDM4D/β-Catenin signaling pathway. LC-MS-targeted metabolomics revealed abnormal lipid metabolism in the colons of CAC mice. Moxibustion may affect the cholinergic metabolism pathway in the colon of CAC mice and regulate lipids such as sphingomyelin SM (d18:1/26:0) and triacylglycerol TAG58:7 (18:0). After kdm4d knockout, lipid disorders in the colons of CAC mice were partially restored. The kdm4d gene may be involved in the mechanism underlying the effect of moxibustion on lipid metabolism in the CAC colon. CONCLUSIONS Moxibustion inhibited the proliferation of colon tumors in CAC mice, inhibited the activation of the tumor-promoting signaling pathway KDM4D/β-Catenin, and improved lipid metabolism disorders in the colon, thus providing a promising strategy for the clinical adjuvant treatment of colorectal cancer.
Collapse
Affiliation(s)
- Guona Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, 650 Wanping Road, Shanghai, 200030, China
| | - Jindan Ma
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 568 Xinhua Road, Shanghai, 200052, China
| | - Luyi Wu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Hanxiao Zhang
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Yaying Lin
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Hongxiao Xu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Muen Gu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Kunshan Li
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, 650 Wanping Road, Shanghai, 200030, China
| | - Hongsheng Dong
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, 650 Wanping Road, Shanghai, 200030, China.
| | - Yan Huang
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, 650 Wanping Road, Shanghai, 200030, China.
| | - Huangan Wu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, 650 Wanping Road, Shanghai, 200030, China.
| |
Collapse
|
3
|
Liu QD, Pan GX, Yan YJ, Li JW, Zhang JJ, Liu HL, Li CQ, Meng Y, Liu YX, Ruan Y. Metabolomic profiles in allergic rhinitis: A systematic review and meta-analysis. Ann Allergy Asthma Immunol 2025; 134:594-602.e2. [PMID: 39824455 DOI: 10.1016/j.anai.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND Allergic rhinitis (AR) is a prevalent chronic inflammatory condition that significantly affects patient quality of life and poses a substantial public health burden. Recent advancements in metabolomics have facilitated a deeper understanding of the metabolic pathways involved in AR, offering potential for new biomarkers and therapeutic targets. OBJECTIVE To conduct a systematic review and meta-analysis of clinical studies summarizing the metabolomic profiles of AR to gain deeper insights into the metabolic changes and pathologic processes underlying AR. METHODS A comprehensive literature search was conducted across PubMed, Embase, Scopus, and Web of Science databases up to October 2024. A qualitative review of the screened studies was performed, followed by meta-analyses of metabolites reported in at least 2 studies. High-impact targets, pathways, and their associations were identified using bioinformatic analyses. RESULTS A total of 21 studies, encompassing 84 metabolites associated with AR, met the inclusion criteria. There were 7 metabolites that consistently exhibited up-regulation in AR across multiple studies and were included in the meta-analysis. Pathway enrichment analyses revealed significant involvement of pathways such as "valine, leucine, and isoleucine biosynthesis" and "linoleic acid metabolism" in AR pathogenesis. The metabolite-pathway-gene network analysis highlighted key functional connections between metabolites, pathways, and immune response genes. CONCLUSION This comprehensive analysis indicates that differential metabolites may play pivotal roles in AR pathogenesis, offering potential biomarkers and therapeutic targets. Further studies are necessary to validate these findings and elucidate the complex metabolic pathways involved in AR.
Collapse
Affiliation(s)
- Qin-Dong Liu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China; Department of Otolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People's Republic of China
| | - Guang-Xia Pan
- Pediatrics, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, People's Republic of China
| | - Ya-Jie Yan
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China; Otorhinolaryngology Head and Neck Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People's Republic of China
| | - Jing-Wei Li
- Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Jia-Jun Zhang
- Department of Otorhinolaryngology, The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong Province, People's Republic of China
| | - Hao-Lan Liu
- School of Medicine, Jishou University, Jishou, People's Republic of China
| | - Chun-Qiao Li
- Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yu Meng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yuan-Xian Liu
- Department of Otolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People's Republic of China
| | - Yan Ruan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China; Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China; Lingnan Institute of Otolaryngology, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
4
|
Torshizi Esfahani A, Zafarjafarzadeh N, Vakili F, Bizhanpour A, Mashaollahi A, Karimi Kordestani B, Baratinamin M, Mohammadpour S. Gut microbiome in colorectal cancer: metagenomics from bench to bedside. JNCI Cancer Spectr 2025; 9:pkaf026. [PMID: 40045177 DOI: 10.1093/jncics/pkaf026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/27/2024] [Accepted: 02/27/2025] [Indexed: 05/27/2025] Open
Abstract
Colorectal cancer (CRC) is a major global health challenge. Emerging research highlights the pivotal role of the gut microbiota in influencing CRC risk, progression, and treatment response. Metagenomic approaches, especially high-throughput shotgun sequencing, have provided unprecedented insights into the intricate connections between the gut microbiome and CRC. By enabling comprehensive taxonomic and functional profiling, metagenomics has revealed microbial signatures, activities, and biomarkers associated with colorectal tumorigenesis. Furthermore, metagenomics has shown a potential to guide patient stratification, predict treatment outcomes, and inform microbiome-targeted interventions. Despite remaining challenges in multi-omics data integration, taxonomic gaps, and validation across diverse cohorts, metagenomics has propelled our comprehension of the intricate gut microbiome-CRC interplay. This review underscores the clinical relevance of microbial signatures as potential diagnostic and prognostic tools in CRC. Furthermore, it discusses personalized treatment strategies guided by this omics' approach.
Collapse
Affiliation(s)
- Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Fatemeh Vakili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Anahita Bizhanpour
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Amirhesam Mashaollahi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Bita Karimi Kordestani
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Mahdieh Baratinamin
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Nan K, Zhong Z, Yue Y, Shen Y, Zhang H, Wang Z, Zhuma K, Yu B, Fu Y, Wang L, Sun X, Qu M, Chen Z, Guo M, Zhang J, Chu Y, Liu R, Miao C. Fasting-mimicking diet-enriched Bifidobacterium pseudolongum suppresses colorectal cancer by inducing memory CD8 + T cells. Gut 2025; 74:775-786. [PMID: 39870395 DOI: 10.1136/gutjnl-2024-333020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND Fasting-mimicking diet (FMD) boosts the antitumour immune response in patients with colorectal cancer (CRC). The gut microbiota is a key host immunity regulator, affecting physiological homeostasis and disease pathogenesis. OBJECTIVE We aimed to investigate how FMD protects against CRC via gut microbiota modulation. DESIGN We assessed probiotic species enrichment in FMD-treated CRC mice using faecal metagenomic sequencing. The candidate species were verified in antibiotic-treated conventional and germ-free mouse models. Immune landscape alterations were evaluated using single-cell RNA sequencing and multicolour flow cytometry. The microbiota-derived antitumour metabolites were identified using metabolomic profiling. RESULTS Faecal metagenomic profiling revealed Bifidobacterium pseudolongum enrichment in FMD-treated CRC mice. B. pseudolongum mediates the FMD antitumour effects by increasing the tissue-resident memory CD8+ T-cell (TRM) population in CRC mice. The level of L-arginine, a B. pseudolongum functional metabolite, increased in FMD-treated CRC mice; furthermore, L-arginine induced the TRM phenotype in vivo and in vitro. Mechanistically, L-arginine is transported by the solute carrier family 7-member 1 (SLC7A1) receptor in CD8+ T cells. Both FMD and B. pseudolongum improved anti-CTLA-4 efficacy in the orthotopic mouse CRC model. In FMD-treated patients with CRC, the CD8+ TRM cell number increased as B. pseudolongum and L-arginine accumulated. The abundance of CD8+ TRM cells and B. pseudolongum was associated with a better prognosis in patients with CRC. CONCLUSION B. pseudolongum contributes to the FMD antitumour effects in CRC by producing L-arginine. This promotes CD8+ T-cell differentiation into memory cells. B. pseudolongum administration is a potential CRC therapeutic strategy.
Collapse
Affiliation(s)
- Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Yang Shen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kameina Zhuma
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xingfeng Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Anesthesiology, Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Miaomiao Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronghua Liu
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| |
Collapse
|
6
|
Navarro-Sánchez A, Nieto-Vitoria MÁ, López-López JA, Martínez-Crespo JJ, Navarro-Mateu F. Is the oral pathogen, Porphyromona gingivalis, associated to colorectal cancer?: a systematic review. BMC Cancer 2025; 25:395. [PMID: 40038641 PMCID: PMC11881450 DOI: 10.1186/s12885-025-13770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The association between the oral pathogen Porphyromonas gingivalis (PG) and the gut microbiota in colorectal cancer (CRC) patients has been explored with inconsistent results. This study aims to systematically assess this potential association. MATERIALS AND METHODS A systematic review was conducted across three databases (Pubmed, Embase and Web of Science) from inception up to January 2023 and updated until November 2024. Inclusion criteria were observational studies examining PG in the microbiota of adults with CRC compared to healthy controls. Exclusion criteria were studies without control group of healthy individuals, other designs or without full-text access. Two reviewers independently selected and extracted data following a pre-registered protocol. Disagreements were resolved by consensus or with a third reviewer. Risk of bias (RoB) was assessed using the Newcastle-Ottawa Scale (NOS). Results were summarized with a flow diagram, tables, and narrative descriptions. Meta-analysis was not feasible, so Fisher's method for combining p-values and the sign test were used as alternative integration methods. RESULTS Finally, 18 studies, with 23 analysis units were included, providing a total sample of 4,373 participants (48.0% cases and 52.0%controls), 38.2% men and 61.8% women, with a similar distribution among cases and controls. The mean (SD) age of cases was 63.3 (4.382) years old and 57.0 (7.753) years for controls. Most of the studies analyzed the presence of PG in feces (70.0%) collected before colonoscopy (55.0%) and were classified with good quality (70.0%) in the RoB assessment. Results suggested an effect (Fisher's test, p = .000006) with some evidence towards a positive association of PG in CRC patients compared to healthy controls (Sign test, p = .039). CONCLUSIONS Results of the systematic review suggest that PG is associated with the microbiota of CRC patients. Lack of information to calculate the effect size prevented the performance of a meta-analysis. Future research should aim for standardized protocols and statistical approaches. FUNDING No funding was received for this work. SYSTEMATIC REVIEW REGISTRATION The research protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on 2023 (registration number: CRD42023399382).
Collapse
Affiliation(s)
| | | | - José Antonio López-López
- University of Murcia, Murcia, Spain
- Department of Methodology and Basic Psychology, Meta-Analysis Unit, University of Murcia, Murcia, Spain
- Research Institute IMIB-Pascual Parrilla, Murcia, Spain
| | | | - Fernando Navarro-Mateu
- University of Murcia, Murcia, Spain.
- Research Institute IMIB-Pascual Parrilla, Murcia, Spain.
- Mental Health Research and Training Unit, Murcian Health Service, Murcia, Spain.
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
7
|
Zhang L, Fu X, Li J, Xiao W, Xiong X, Lv H, Zhang Z, Ju J. Treatment of Acute Ulcerative Colitis with Zinc Hyaluronate in Mice. J Microbiol Biotechnol 2025; 35:e2408050. [PMID: 39947703 PMCID: PMC11876020 DOI: 10.4014/jmb.2408.08050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 03/06/2025]
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease arising from numerous factors, while UC patients face insufficient treatment options and a high incidence of adverse reactions to the current therapies. As a functional food additive, hyaluronic acid plays a certain role in intestinal repair. In this study, we constructed a mouse model of dextran sulfate sodium (DSS)-induced UC to examine the effects and underlying mechanisms of action of zinc hyaluronate (ZnHA) on the pathogenesis of UC. ZnHA effectively alleviated key clinical UC symptoms, such as weight loss, loose stools, and bloody stools. Mechanistically, ZnHA attenuated the expression of inflammatory factors, such as tumor necrosis factor-α, interleukin (IL)-6, and myeloperoxidase while upregulating the expression of IL-10. Furthermore, through intestinal flora and short-chain fatty acid analyses, ZnHA was found to promote propionic acid production by enriching beneficial bacteria. ZnHA simultaneously enhanced the expression of tight junction proteins, specifically ZO-1 and occludin, thereby restoring intestinal barrier function. Overall, our findings elucidate the therapeutic potential of ZnHA in treating acute UC by inhibiting intestinal inflammation and regulating flora, while also providing further theoretical support for development of hyaluronic acid to treat this disease.
Collapse
Affiliation(s)
- Lan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xuedan Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Jiazheng Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Wan Xiao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Xi Xiong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Huixia Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
8
|
Cohen Z, Choi J, Peregrina K, Khan S, Wolfson S, Sherman C, Augenlicht L, Kelly L. Diet links gut chemistry with cancer risk in C57Bl/6 mice and human colorectal cancer patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635083. [PMID: 39975138 PMCID: PMC11838269 DOI: 10.1101/2025.01.27.635083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background & Aims Western-style diets, characterized by higher fat and protein, and low micronutrient levels, promote the development of colorectal cancer (CRC). Here, we investigate the role of a Western diet on microbiome composition, sulfide production, and intestinal epithelial damage in pre-CRC mice, and validate taxonomic changes in a meta-analysis of human CRC patients. Methods NWD1 is a purified Western-style diet that produces sporadic intestinal and colon tumors in wild-type C57BL/6 mice in the absence of genetic or carcinogen exposure. To determine how this diet influences cancer risk by shaping microbial composition and sulfide chemistry, mice were fed NWD1 or a purified control diet for 24 weeks. Microbiome composition, sulfide production, and intestinal stem cell mRNA expression were assessed. Observed microbiome changes were validated in a human CRC meta-analysis. Results Fecal sulfide levels were tripled in NWD1-fed mice ( P< 0.00001 ), concurrent with increased abundance of the sulfidogenic Erysipelotrichaceae family. NWD1-fed mice had increased expression of mitochondrial sulfide oxidation genes in Lgr5 hi intestinal stem cells, demonstrating an adaptive response to elevated sulfide. In a meta-analysis of human CRC studies, we observed that Erysipelotrichaceae were associated with CRC, validating both canonical CRC microbes such as Solobacterium moorei and highlighting the potential contribution of previously unrecognized, disease-associated microbes. Conclusions Our analyses connect the risk factors of Western diet, sulfide, and epithelial damage in a pre-cancer mouse model to microbiome changes observed in human CRC patients and suggest that microbial signatures of CRC and gut ecosystem alteration may manifest long before disease development.
Collapse
|
9
|
Chen Y, Qin Y, Fan T, Qiu C, Zhang Y, Dai M, Zhou Y, Sun Q, Guo Y, Hao Y, Jiang Y. Solobacterium moorei promotes tumor progression via the Integrin α2/β1-PI3K-AKT-mTOR-C-myc signaling pathway in colorectal cancer. Int J Biol Sci 2025; 21:1497-1512. [PMID: 39990665 PMCID: PMC11844286 DOI: 10.7150/ijbs.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/07/2025] [Indexed: 02/25/2025] Open
Abstract
More and more evidences show that the imbalance of intestinal flora homeostasis can contribute to the progression of colorectal cancer (CRC). Solobacterium moorei (S. moorei), an anaerobic Gram-positive bacillus, was found to be enriched in fecal samples from CRC patients. However, the signaling regulatory mechanism of S. moorei promoting CRC progression remain unknown. Three CRC mouse models (ApcMin/+ mice, AOM/DSS-treated mice and subcutaneous colorectal xenograft mice) and two cell lines (DLD-1 and HT-29) were used to investigate the biological functions and molecular mechanisms of S. moorei on tumor progression of CRC in vivo and in vitro. S. moorei abundance increased in fecal samples and tumor tissues, and was significantly positively correlated with tumor staging of CRC. S. moorei promoted tumor progression in various CRC mouse models and it selectively adhered to cancer cells in comparison to colonic mucosal epithelial cells, enhancing CRC cell proliferation and inhibiting cell apoptosis. Mechanistically, S. moorei cellwall protein Cna B-type domain-containing protein binds to integrin α2/β1 on CRC cells, leading to the activation of PI3K-AKT-mTOR-C-myc pathway via phospho-FAK, thereby promoted tumor cell growth and progression. Blockade of integrin α2/β1 abolished S. moorei-mediated oncogenic response in vitro and in vivo. In summary, this study demonstrated that S. moorei promoted tumor progression via the integrin α2/β1-PI3K-AKT-mTOR-C-myc signaling pathway, which is a novel specific pathogen-mediated mechanism that might be a new potential target for CRC prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Cheng Qiu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Yijie Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Mengmeng Dai
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Yaoyao Zhou
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Qinsheng Sun
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuan Guo
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yue Hao
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuyang Jiang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Nhung PTT, Le HTT, Nguyen QH, Huyen DT, Quyen DV, Song LH, Van Thuan T, Tran TTT. Identifying fecal microbiota signatures of colorectal cancer in a Vietnamese cohort. Front Microbiol 2024; 15:1388740. [PMID: 39777151 PMCID: PMC11704495 DOI: 10.3389/fmicb.2024.1388740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background Colorectal cancer (CRC) is among the top three causes of global cancer mortality. In Vietnam, CRC is the third leading cause of death in women and the fourth cause of cancer mortality in men. A large number of metagenomic studies have reported the relationship between altered composition and function of the gut microbiota with CRC, but this relationship in low- and middle-income countries including Vietnam (with an estimated population of 100.3 million people in 2023, ranking 16th largest country by population in the world) is not well-explored. Methods We collected clinical data and fecal samples from 43 CRC patients and 44 healthy control subjects. The total community DNA of microorganisms was extracted from the fecal samples and analyzed for microbiota composition using Illumina MiSeq amplicon sequencing targeting the V3-V4 region of the 16S rRNA gene. Results We identified a significant difference in the overall fecal microbiota composition between CRC patients and healthy controls, and we detected several CRC-associated microbial signatures in fecal samples of Vietnamese patients with CRC, which overlapped with signatures from other countries and meta-analyses. Although patients with (n = 8) and without (n = 35) type 2 diabetes (T2D) exhibited distinct gut microbiota composition compared to healthy controls, increased relative abundances of putatively pathogenic species including Parvimonas micra, Peptostreptococcus stomatis, and Prevotella intermedia were consistent biomarkers for CRC. In contrast, several health-associated species were significantly depleted in CRC patients such as Lactobacillus johnsonii and Bifidobacterium longum in CRC/non-T2D patients, Ruminococcus species, Bacteroides uniformis, and Phascolarctobacterium faecium in CRC/T2D patients, and Butyricicoccus pullicaecorum in both CRC groups combined. Conclusion Our findings confirm alterations in gut microbiota composition in CRC in a pilot Vietnamese cohort and highlight several gut microbial taxa that may have inhibitory or driver roles in CRC. This and future studies will enable the development of cancer diagnostics and treatment strategies for CRC in Vietnam, with a focus on targeting the microbiota.
Collapse
Affiliation(s)
- Pham Thi Tuyet Nhung
- Hanoi Medical University, Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Hang Thi Thu Le
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Quang Huy Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dao Thi Huyen
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Dong Van Quyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Molecular Microbiology Lab, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Le Huu Song
- 108 Military Central Hospital, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | | | - Tam Thi Thanh Tran
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
11
|
Nguyen L, Shanmugan S. A Review Article: The Relationship Between Obesity and Colorectal Cancer. Curr Diab Rep 2024; 25:8. [PMID: 39621160 PMCID: PMC11611961 DOI: 10.1007/s11892-024-01556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
PURPOSE OF REVIEW This article aims to review the recent literature assessing the relationship between obesity and colorectal carcinogenesis, the effect of obesity on the treatment of colorectal cancer (CRC), tools available to help augment the increased risk, and outcomes for patients who are affected by both obesity and colorectal cancer. RECENT FINDINGS The biochemical mechanisms contributing to CRC carcinogenesis are not well understood but are suspected to be related to adipose tissue leading to a pro-inflammatory state and changes in the gut microbiome. Individuals with obesity are at higher risk for CRC development, worse oncologic outcomes, and increased rates of post-operative complications. Bariatric surgery decreases CRC risk but results with GLP-1 agonists are heterogeneous. Prehabilitation is the only weight loss method that has been demonstrated to decrease risks of post-operative morbidity in this population. Obesity augments CRC risk and outcomes. There are persistent knowledge gaps in etiology and epidemiology for the increased CRC risk in obese patients and more research is required to identify the therapeutic advantage of weight loss on CRC risk.
Collapse
Affiliation(s)
- Lily Nguyen
- Department of Surgery, Division of Colon and Rectal Surgery, University of California, 333 The City Blvd West, Suite 1600, Suite 1600, Irvine, CA, USA, 92868-3298
| | - Skandan Shanmugan
- Department of Surgery, Division of Colon and Rectal Surgery, University of California, 333 The City Blvd West, Suite 1600, Suite 1600, Irvine, CA, USA, 92868-3298.
| |
Collapse
|
12
|
Wu Z, Sun Y, Huang W, Jin Z, You F, Li X, Xiao C. Direct and indirect effects of estrogens, androgens and intestinal microbiota on colorectal cancer. Front Cell Infect Microbiol 2024; 14:1458033. [PMID: 39660281 PMCID: PMC11628516 DOI: 10.3389/fcimb.2024.1458033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Sex differences in colorectal cancer (CRC) has received considerable research attention recently, particularly regarding the influence of sex hormones and the intestinal microbiota. Estrogen, at the genetic and epigenetic levels, directly inhibits CRC cell proliferation by enhancing DNA mismatch repair, regulating miRNAs, blocking the cell cycle, and modulating ion channels. However, estradiol's activation of GPER promotes oncogene expression. Conversely, androgen contributes to epigenetic dysregulation and CRC progression via nuclear receptors while inducing apoptosis through membrane receptors. Specific gut microorganisms produce genotoxins and oncogenic metabolites that damage colonic cell DNA and contribute to cancer induction. Regarding the tumor microenvironment, estrogen mitigates intestinal inflammation, reverses immunosuppression, increases gut microbiome diversity and commensal bacteria abundance, and decreases pathogen enrichment. On the contrary, androgen disrupts intestinal microecology, diminish immunotherapy efficacy, and exacerbate colonic inflammation and tumor growth. The impact of estrogen and androgen is closely tied to their receptor status, elucidating their dual roles in CRC pathogenesis. This review comprehensively discusses the direct and indirect effects of sex hormones and the intestinal microbiota on CRC, considering environmental factors such as diet and lifestyle to propose novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Zihong Wu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Sun
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenbo Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenzhen Jin
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueke Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Wu L, Wu H, Huang F, Mu S, Li XY, Zhang BF, Zhen YH, Li HY. Mendelian randomization and bioinformatics unveil potential links between gut microbial genera and colorectal cancer. Front Genet 2024; 15:1379003. [PMID: 39639918 PMCID: PMC11617565 DOI: 10.3389/fgene.2024.1379003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Background Colorectal cancer (CRC) poses a significant global health burden, with high incidence and mortality rates. Despite advances in diagnostic and therapeutic modalities, early diagnosis remains critical for improved outcomes. Recent research has realized the important role of gut microbiota in CRC development, highlighting the need to elucidate potential relationships. Methods In this study, we employed Mendelian randomization (MR) to establish a robust potential link between gut microbial genera and CRC. Data from the MiBioGen database provided curated genome-wide association study (GWAS) summary datasets for microbial genera, while the Finngen database provided CRC outcome data. Instrumental variables (IVs) were identified based on genetic variants associated with gut microbiota. Various MR methods, including Inverse Variance Weighted (IVW), Weighted Median, Weighted Mode, Simple Mode, and MR-Egger, were employed to estimate potential effects. Functional analysis of genes near single nucleotide polymorphisms (SNPs) was performed to unravel potential pathways. Results Analysis of microbial genera identified five potentially associated with CRC: Eubacterium fissicatena group, Anaerofilum, Defluviitaleaceae UCG011, Ruminococcus 2, and Sutterella. Notably, Defluviitaleaceae UCG011 emerged as the only risk factor. Gene analysis revealed hub genes PTPRD and DSCAM near Defluviitaleaceae UCG011 associated SNPs. Expression analysis showed that PTPRD decreased in colon cancer and DSCAM decreased in rectal cancer. The methylation status of the PTPRD gene promoter region indicated potential regulatory alterations. Conclusion This study establishes a potential relationship between five specific gut microbial genera, particularly Defluviitaleaceae UCG011, and CRC. Hub genes PTPRD and DSCAM provide insights into potential molecular mechanisms, suggesting the potential role of Defluviitaleaceae UCG011 in modulating the initiation and progression of CRC. Further research is essential to validate these associations and delve deeper into therapeutic implications.
Collapse
Affiliation(s)
- Long Wu
- Department of Anus and Intestinal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huan Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fei Huang
- Department of Anus and Intestinal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Song Mu
- Department of Anus and Intestinal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiao-Yun Li
- Department of Anus and Intestinal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bao-Fang Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yun-Huan Zhen
- Department of Anus and Intestinal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hai-Yang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Yu J, Li L, Tao X, Chen Y, Dong D. Metabolic interactions of host-gut microbiota: New possibilities for the precise diagnosis and therapeutic discovery of gastrointestinal cancer in the future-A review. Crit Rev Oncol Hematol 2024; 203:104480. [PMID: 39154670 DOI: 10.1016/j.critrevonc.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
Gastrointestinal (GI) cancer continues to pose a significant global health challenge. Recent advances in our understanding of the complex relationship between the host and gut microbiota have shed light on the critical role of metabolic interactions in the pathogenesis and progression of GI cancer. In this study, we examined how microbiota interact with the host to influence signalling pathways that impact the formation of GI tumours. Additionally, we investigated the potential therapeutic approach of manipulating GI microbiota for use in clinical settings. Revealing the complex molecular exchanges between the host and gut microbiota facilitates a deeper understanding of the underlying mechanisms that drive cancer development. Metabolic interactions hold promise for the identification of microbial signatures or metabolic pathways associated with specific stages of cancer. Hence, this study provides potential strategies for the diagnosis, treatment and management of GI cancers to improve patient outcomes.
Collapse
Affiliation(s)
- Jianing Yu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; College of Pharmacy, Dalian Medical University, China
| | - Lu Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yanwei Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
15
|
Chen L, Zhang J, Ding L, Gu T, Andoh V, Ma A, Yao C. Transcriptomics analyses combined with intestinal microorganism survey suggest Resveratrol (RSV) anti-aging and anti-oxidant effects in silkworm (Bombyx mori). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101344. [PMID: 39426068 DOI: 10.1016/j.cbd.2024.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The growing elderly population presents a significant concern, with the prolongation of life expectancy, aging diseases are becoming increasingly common. Resveratrol (RSV) has emerged as a promising compound for disease prevention. However, the effect of RSV on lifespan extension in different organisms, particularly the model organism silkworm, remains inconsistent. We conducted aging experiments using silkworm (B. mori) and employed transcriptomics to investigate the therapeutic effects of RSV on lifespan extension and healthy lifespan in silkworms. RSV increased the survival rate by 8.57 %-12.12 % and enhanced the antioxidant capacity of silkworms. Transcriptomic analysis demonstrated that genes in signaling pathways such as AMPK and FoxO were significantly upregulated. 16SrRNA sequencing of gut contents showed an increase in beneficial bacterial strains under the action of RSV. This study aims to enhance our understanding of lifespan regulation mechanisms using the silkworm model and provide new targets for anti-aging antioxidants research to delay the onset of age-related diseases.
Collapse
Affiliation(s)
- Liang Chen
- School of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Jiaxin Zhang
- School of Life Sciences, Jiangsu University, 212013 Zhenjiang, China
| | - Lei Ding
- School of Life Sciences, Jiangsu University, 212013 Zhenjiang, China
| | - Tongyu Gu
- School of Life Sciences, Jiangsu University, 212013 Zhenjiang, China
| | - Vivian Andoh
- School of Life Sciences, Jiangsu University, 212013 Zhenjiang, China
| | - Aiqin Ma
- Qingdao Vland Animal Health Group Co., Ltd., Qingdao 266100, China
| | - Chun Yao
- Department of Stomatology, Zhenjiang First People's Hospital, Department of Stomatology, People's Hospital Affiliated to Jiangsu University, Zhenjiang 212002, China.
| |
Collapse
|
16
|
Endo K, Ichinose M, Kobayashi E, Ueno T, Hirai N, Nakanishi Y, Kondo S, Yoshizaki T. Head and Neck Cancer and Sarcopenia: An Integrative Clinical and Functional Review. Cancers (Basel) 2024; 16:3460. [PMID: 39456555 PMCID: PMC11506384 DOI: 10.3390/cancers16203460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Sarcopenia is recognized as a crucial factor impacting the prognosis, treatment responses, and quality of life of HNC patients. This review discusses various mechanisms, including common etiological factors, such as aging, chronic inflammation, and metabolic dysregulation. Cancer-related factors, including tumor locations and treatment modalities, contribute to the development of sarcopenia. The clinical implications of sarcopenia in HNC patients extend beyond reduced muscle strength; it affects overall mobility, reduces quality of life, and increases the risk of falls and fractures. Sarcopenia serves as an independent predictor of postoperative complications, chemotherapy dose-limiting toxicity, and treatment outcomes, which affect therapy planning and perioperative management decisions. Methods to assess sarcopenia in HNC patients encompass various techniques. A sarcopenia assessment offers a potentially efficient and readily available tool for clinical practice. Interventions and management strategies for sarcopenia involve exercise interventions as a cornerstone; however, challenges arise due to patient-specific limitations during cancer treatment. A routine body composition analysis is proposed as a valuable addition to HNC patient management, with ongoing research required to refine preoperative exercise and nutrition programs for improved treatment outcomes and survival.
Collapse
Affiliation(s)
- Kazuhira Endo
- Division of Otolaryngology, Head & Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan; (M.I.); (E.K.); (T.U.); (N.H.); (Y.N.); (S.K.); (T.Y.)
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Collatuzzo G, Teglia F, Boffetta P. Gastrointestinal cancer and occupational diesel exhaust exposure: a meta-analysis of cohort studies. Occup Med (Lond) 2024; 74:438-448. [PMID: 39313244 DOI: 10.1093/occmed/kqae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Diesel exhaust exposure and cancer other than the lungs have been limitedly investigated. AIMS To conduct a systematic review and meta-analysis on the association between occupational exposure to diesel exhaust and gastrointestinal cancers. METHODS Two researchers performed a systematic literature review to identify all cohort studies on occupational exposure to diesel exhaust and risk of cancers other than lung. Of the 30 retained studies, 10 reported risk estimates for oesophageal, 18 on gastric, 15 on colon and 14 on rectal cancer. We performed random-effects meta-analyses to calculate summary relative risks (RRs) and 95% confidence intervals (CIs) for ever-exposure to diesel exhaust. RESULTS We calculated summary RR = 1.08 (95% CI 0.97-1.21, P heterogeneity = 0.06) for oesophageal, 1.06 (95% CI 0.99-1.14, P < 0.001) for gastric, 0.98 (95% CI 0.96-1.00, P = 0.453) for colon, and RR = 1.04 (95% CI 0.97-1.11, P = 0.013) for rectal cancer. Drivers showed an association with oesophageal (RR = 1.26, 95% CI 0.99-1.62), gastric (RR = 1.20, 95% CI 0.91-1.59) and rectal cancer (RR = 1.41, 95% CI 1.13-1.75); machine operators with oesophageal (RR = 1.09, 95% CI 1.00-1.20) and gastric (RR = 1.15, 95% CI 1.10-1.20) and handlers with oesophageal cancer (RR = 1.95, 95% CI 1.23-3.09). Studies from Europe revealed an association with gastric cancer while those from North America did not (P < 0.05). No difference was found by quality score except for gastric cancer, where high-quality studies but not low-quality ones showed increased risk (P heterogeneity = 0.04). There was no evidence of publication bias. CONCLUSIONS An increased but insignificant risk of oesophageal, gastric and rectal, but not colon cancer, was suggested in workers exposed to diesel exhaust. Residual confounding cannot be excluded.
Collapse
Affiliation(s)
- G Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - F Teglia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - P Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
18
|
Li J, O’Toole PW. Disease-associated microbiome signature species in the gut. PNAS NEXUS 2024; 3:pgae352. [PMID: 39228810 PMCID: PMC11370893 DOI: 10.1093/pnasnexus/pgae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
There is an accumulation of evidence that the human gut microbiota plays a role in maintaining health, and that an altered gut microbiota (sometimes called dysbiosis) associates with risk for many noncommunicable diseases. However, the dynamics of disease-linked bacteria in the gut and other body sites remain unclear. If microbiome alterations prove causative in particular diseases, therapeutic intervention may be possible. Furthermore, microbial signature taxa have been established for the diagnosis of some diseases like colon cancer. We identified 163 disease-enriched and 98 disease-depleted gut microbiome signature taxa at species-level resolution (signature species) from 10 meta-analyses of multiple diseases such as colorectal cancer, ulcerative colitis, Crohn's disease, irritable bowel syndrome, pancreatic cancer, and COVID-19 infection. Eight signature species were enriched and nine were depleted across at least half of the diseases studied. Compared with signature species depleted in diseases, a significantly higher proportion of disease-enriched signature species were identified as extra-intestinal (primarily oral) inhabitants, had been reported in bacteremia cases from the literature, and were aerotolerant anaerobes. These findings highlight the potential involvement of oral microbes, bacteremia isolates, and aerotolerant anaerobes in disease-associated gut microbiome alterations, and they have implications for patient care and disease management.
Collapse
Affiliation(s)
- Junhui Li
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| | - Paul W O’Toole
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
19
|
Hou B, Wang X, He Z, Liu H. Integrative approach using network pharmacology, bioinformatics, and experimental methods to explore the mechanism of cantharidin in treating colorectal cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6745-6761. [PMID: 38507104 DOI: 10.1007/s00210-024-03041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Cantharidin, a terpenoid produced by blister beetles, has been used in traditional Chinese medicine to treat various ailments and cancers. However, its biological activity, impact, and anticancer mechanisms remain unclear. The Cantharidin chemical gene connections were identified using various databases. The GSE21815 dataset was used to collect the gene expression information. Differential gene analysis and gene ontology analyses were performed. Gene set enrichment analysis was used to assess the activation of disease pathways. Weighted gene co-expression network analysis and differential analysis were used to identify illness-associated genes, examine differential genes, and discover therapeutic targets via protein-protein interactions. MCODE analysis of major subgroup networks was used to identify critical genes influenced by Cantharidin, examine variations in the expression of key clustered genes in colorectal cancer vs. control samples, and describe the subject operators. Single-cell GSE188711 dataset was preprocessed to investigate Cantharidin's therapeutic targets and signaling pathways in colorectal cancer. Single-cell RNA sequencing was utilized to identify 22 cell clusters and marker genes for two different cell types in each cluster. The effects of different Cantharidin concentrations on colorectal cancer cells were studied in vitro. One hundred and ninety-seven Cantharidin-associated target genes and 480 critical genes implicated in the development of the illness were identified. Cantharidin significantly inhibited the proliferation and migration of HCT116 cells and promoted apoptosis at certain concentrations. Patients on current therapy develop inherent and acquired resistance. Our study suggests that Cantharidin may play an anti-CRC role by modulating immune function.
Collapse
Affiliation(s)
- Benchao Hou
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688, Meiling Avenue, Wanli District, Nanchang, 330004, Jiangxi, China
| | - Zhijian He
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 Beijing East Road, Qingshanhu District, Nanchang, 330029, Jiangxi, China.
| | - Haiyun Liu
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688, Meiling Avenue, Wanli District, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
20
|
Hamamah S, Lobiuc A, Covasa M. Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:9026. [PMID: 39201713 PMCID: PMC11354872 DOI: 10.3390/ijms25169026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts, when supplemented through probiotics, can affect tumor microenvironments to enhance treatment efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally, we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific therapeutic interventions such as cancer immunotherapy.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| |
Collapse
|
21
|
Güven Gülhan Ü, Nikerel E, Çakır T, Erdoğan Sevilgen F, Durmuş S. Species-level identification of enterotype-specific microbial markers for colorectal cancer and adenoma. Mol Omics 2024; 20:397-416. [PMID: 38780313 DOI: 10.1039/d4mo00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Enterotypes have been shown to be an important factor for population stratification based on gut microbiota composition, leading to a better understanding of human health and disease states. Classifications based on compositional patterns will have implications for personalized microbiota-based solutions. There have been limited enterotype based studies on colorectal adenoma and cancer. Here, an enterotype-based meta-analysis of fecal shotgun metagenomic studies was performed, including 1579 samples of healthy controls (CTR), colorectal adenoma (ADN) and colorectal cancer (CRC) in total. Gut microbiota of healthy people were clustered into three enterotypes (Ruminococcus-, Bacteroides- and Prevotella-dominated enterotypes). Reference-based enterotype assignments were performed for CRC and ADN samples, using the supervised machine learning algorithm, K-nearest neighbors. Differential abundance analyses and random forest classification were conducted on each enterotype between healthy controls and CRC-ADN groups, revealing novel enterotype-specific microbial markers for non-invasive CRC screening strategies. Furthermore, we identified microbial species unique to each enterotype that play a role in the production of secondary bile acids and short-chain fatty acids, unveiling the correlation between cancer-associated gut microbes and dietary patterns. The enterotype-based approach in this study is promising in elucidating the mechanisms of differential gut microbiome profiles, thereby improving the efficacy of personalized microbiota-based solutions.
Collapse
Affiliation(s)
- Ünzile Güven Gülhan
- Department of Bioengineering, Gebze Technical University, Gebze, TR 41400, Turkey.
| | - Emrah Nikerel
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, TR 34755, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, TR 41400, Turkey.
- PhiTech Bioinformatics, Gebze, TR 41470, Turkey
| | - Fatih Erdoğan Sevilgen
- The Institute for Data Science & Artificial Intelligence, Boğaziçi University, Istanbul, TR 34342, Turkey
- PhiTech Bioinformatics, Gebze, TR 41470, Turkey
| | - Saliha Durmuş
- Department of Bioengineering, Gebze Technical University, Gebze, TR 41400, Turkey.
- PhiTech Bioinformatics, Gebze, TR 41470, Turkey
| |
Collapse
|
22
|
Shinoda A, Lkhagvajav T, Mishima R, Therdtatha P, Jamiyan D, Purevdorj C, Sonomtseren S, Chimeddorj B, Namdag B, Lee YK, Demberel S, Nakayama J. Gut microbiome signatures associated with type 2 diabetes in obesity in Mongolia. Front Microbiol 2024; 15:1355396. [PMID: 38983625 PMCID: PMC11231203 DOI: 10.3389/fmicb.2024.1355396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Mongolian people possess a unique dietary habit characterized by high consumption of meat and dairy products and fewer vegetables, resulting in the highest obesity rate in East Asia. Although obesity is a known cause of type 2 diabetes (T2D), the T2D rate is moderate in this population; this is known as the "Mongolian paradox." Since the gut microbiota plays a key role in energy and metabolic homeostasis as an interface between food and body, we investigated gut microbial factors involved in the prevention of the co-occurrence of T2D with obesity in Mongolians. We compared the gut microbiome and metabolome of Mongolian adults with obesity with T2D (DO: n = 31) or without T2D (NDO: n = 35). Dysbiotic signatures were found in the gut microbiome of the DO group; lower levels of Faecalibacterium and Anaerostipes which are known as short-chain fatty acid (SCFA) producers and higher levels of Methanobrevibacter, Desulfovibrio, and Solobacterium which are known to be associated with certain diseases. On the other hand, the NDO group exhibited a higher level of fecal SCFA concentration, particularly acetate. This is consistent with the results of the whole shotgun metagenomic analysis, which revealed a higher relative abundance of SCFA biosynthesis-related genes encoded largely by Anaerostipes hadrus in the NDO group. Multiple logistic regression analysis including host demographic parameters indicated that acetate had the highest negative contribution to the onset of T2D. These findings suggest that SCFAs produced by the gut microbial community participate in preventing the development of T2D in obesity in Mongolians.
Collapse
Affiliation(s)
- Akari Shinoda
- Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Tsogtbaatar Lkhagvajav
- Laboratory of Physiology and Pathology of Young Animals, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Riko Mishima
- Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Phatthanaphong Therdtatha
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Dugersuren Jamiyan
- Laboratory of Physiology and Pathology of Young Animals, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | | | - Sainbileg Sonomtseren
- Department of Endocrinology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Battogtokh Chimeddorj
- Department of Microbiology and Infection Prevention Control, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Bira Namdag
- Department of the Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Shirchin Demberel
- Laboratory of Physiology and Pathology of Young Animals, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Jiro Nakayama
- Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Chawrylak K, Leśniewska M, Mielniczek K, Sędłak K, Pelc Z, Pawlik TM, Polkowski WP, Rawicz-Pruszyński K. Gut Microbiota-Adversary or Ally? Its Role and Significance in Colorectal Cancer Pathogenesis, Progression, and Treatment. Cancers (Basel) 2024; 16:2236. [PMID: 38927941 PMCID: PMC11201452 DOI: 10.3390/cancers16122236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
In 2022, colorectal cancer (CRC) was the third most prevalent malignancy worldwide. The therapeutic approach for CRC typically involves a multimodal regimen. The human gut microbiota comprises over 35,000 bacterial species. The composition of the gut microbiota is influenced by dietary intake, which plays a crucial role in food absorption, nutrient extraction, and the development of low-grade inflammation. Dysbiosis in the gut microbiota is a key driver of inflammation and is strongly associated with CRC development. While the gut microbiome influences CRC initiation and progression, emerging evidence suggests a role for the gut microbiome in modulating the efficacy and toxicity of cancer treatments. Therapeutic strategies targeting the gut microbiome, such as probiotics, hold promise as effective interventions in the modern therapeutical approach to CRC. For example, Microbiota Implementation to Reduce Anastomotic Colorectal Leaks (MIRACLe) implementation has resulted in improvements in clinical outcomes, including reduced incidence of anastomotic leakage (AL), surgical site infections (SSIs), reoperation, as well as shorter recovery times and hospital stays compared with the control group. Therefore, this review aims to describe the current state of knowledge regarding the involvement of the gut microbiota in CRC pathogenesis and its potential therapeutic implications to treat CRC.
Collapse
Affiliation(s)
- Katarzyna Chawrylak
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St., 20-080 Lublin, Poland; (K.C.); (M.L.); (K.S.); (Z.P.); (W.P.P.); (K.R.-P.)
| | - Magdalena Leśniewska
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St., 20-080 Lublin, Poland; (K.C.); (M.L.); (K.S.); (Z.P.); (W.P.P.); (K.R.-P.)
| | - Katarzyna Mielniczek
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St., 20-080 Lublin, Poland; (K.C.); (M.L.); (K.S.); (Z.P.); (W.P.P.); (K.R.-P.)
| | - Katarzyna Sędłak
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St., 20-080 Lublin, Poland; (K.C.); (M.L.); (K.S.); (Z.P.); (W.P.P.); (K.R.-P.)
| | - Zuzanna Pelc
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St., 20-080 Lublin, Poland; (K.C.); (M.L.); (K.S.); (Z.P.); (W.P.P.); (K.R.-P.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Wojciech P. Polkowski
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St., 20-080 Lublin, Poland; (K.C.); (M.L.); (K.S.); (Z.P.); (W.P.P.); (K.R.-P.)
| | - Karol Rawicz-Pruszyński
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St., 20-080 Lublin, Poland; (K.C.); (M.L.); (K.S.); (Z.P.); (W.P.P.); (K.R.-P.)
| |
Collapse
|
24
|
Moreira MM, Carriço M, Capelas ML, Pimenta N, Santos T, Ganhão-Arranhado S, Mäkitie A, Ravasco P. The impact of pre-, pro- and synbiotics supplementation in colorectal cancer treatment: a systematic review. Front Oncol 2024; 14:1395966. [PMID: 38807764 PMCID: PMC11130488 DOI: 10.3389/fonc.2024.1395966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction The effectiveness of the supplementation of prebiotics, probiotics and synbiotics as a therapeutic approach in colorectal cancer (CRC) remains unclear. The aim of this systematic review is to critically examine the current scientific evidence on the impact of modulating the microbiota, through the use of prebiotics, probiotics and synbiotics, in patients diagnosed with CRC undergoing treatment, to determine the potential therapeutic use of this approach. Methods This systematic review was made according to the PRISMA 2020 guidelines. Inclusion criteria were randomized controlled trials (RCT) comparing the impact of pre-, pro-, or synbiotic supplementation with placebo or standard care in patients with CRC undergoing treatment. Exclusion criteria were non-human studies, non-RCTs, and studies in languages other than English or Portuguese. Six databases were consulted, namely, Cochrane Library, Pubmed, Scopus, Cinahl, MedicLatina and Web of Science until May of 2023. RAYYAN software was used to manage the search results and risk of bias was assessed according to the guidelines of the Cochrane Collaboration using the Rob 2.0 tool. Results Twenty-four RCTs met the inclusion criteria and were included in this review. Administration of pre-, pro-, or synbiotics improved surgical outcomes such as the incidence of infectious and non-infectious postoperative complications, return to normal gut function, hospital length of stay, and antibiotic usage. The supplementation of these microorganisms also alleviated some symptoms from chemotherapy and radiotherapy, mainly diarrhea. Evidence on the best approach in terms of types of strains, dosage and duration of intervention is still scarce. Conclusions Pre-, pro-, and synbiotics supplementation appears to be a beneficial therapeutic approach in CRC treatment to improve surgical outcomes and to alleviate side-effects such as treatment toxicity. More RCTs with larger sample sizes and less heterogeneity are needed to confirm these potential benefits and to determine the best strains, dosage, and duration of administration in each situation. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42023413958.
Collapse
Affiliation(s)
- Mariana Melo Moreira
- Universidade Católica Portuguesa, Faculty of Health Sciences and Nursing (FCSE), Lisboa, Portugal
| | - Marta Carriço
- Champalimaud Foundation, Nutrition Service of Champalimaud Clinical Center, Lisbon, Portugal
| | - Manuel Luís Capelas
- Universidade Católica Portuguesa, Faculty of Health Sciences and Nursing (FCSE), Lisboa, Portugal
- Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Lisbon, Portugal
| | - Nuno Pimenta
- Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Lisbon, Portugal
- Polytechnic Institute of Santarém, Sport Sciences School of Rio Maior, Rio Maior, Portugal
- Sport Physical Activity and Health Research and Innovation Center (SPRINT), Santarém Polytechnic University, Rio Maior, Portugal
| | - Teresa Santos
- Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Lisbon, Portugal
- Faculdade de Ciências Sociais e Tecnologia, Universidade Europeia de Lisboa, Lisbon, Portugal
| | - Susana Ganhão-Arranhado
- Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Lisbon, Portugal
- Atlântica, Instituto Universitário, Barcarena, Portugal
- CINTESIS, Centre for Health Technology and Services Research, Porto, Portugal
| | - Antti Mäkitie
- Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Lisbon, Portugal
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Paula Ravasco
- Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Lisbon, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Rio de Mouro, Portugal
- Center for Interdisciplinary Research Egas Moniz, Egas Moniz School of Health & Science, Almada, Portugal
| |
Collapse
|
25
|
Valsecchi AA, Ferrari G, Paratore C, Dionisio R, Vignani F, Sperone P, Vellani G, Novello S, Di Maio M. Gut and local microbiota in patients with cancer: increasing evidence and potential clinical applications. Crit Rev Oncol Hematol 2024; 197:104328. [PMID: 38490281 DOI: 10.1016/j.critrevonc.2024.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
In recent years, cancer research has highlighted the role of disrupted microbiota in carcinogenesis and cancer recurrence. However, microbiota may also interfere with drug metabolism, influencing the efficacy of cancer drugs, especially immunotherapy, and modulating the onset of adverse events. Intestinal micro-organisms can be altered by external factors, such as use of antibiotics, proton pump inhibitors treatment, lifestyle and the use of prebiotics or probiotics. The aim of our review is to provide a picture of the current evidence about preclinical and clinical data of the role of gut and local microbiota in malignancies and its potential clinical role in cancer treatments. Standardization of microbiota sequencing approaches and its modulating strategies within prospective clinical trials could be intriguing for two aims: first, to provide novel potential biomarkers both for early cancer detection and for therapeutic effectiveness; second, to propose personalized and "microbiota-tailored" treatment strategies.
Collapse
Affiliation(s)
- Anna Amela Valsecchi
- Department of Oncology, University of Turin, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Giorgia Ferrari
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Chiara Paratore
- Department of Oncology, ASL TO4, Ivrea Community Hospital, Ivrea, Italy.
| | - Rossana Dionisio
- Department of Oncology, University of Turin, Mauriziano Hospital, Turin, Italy
| | - Francesca Vignani
- Department of Oncology, University of Turin, Mauriziano Hospital, Turin, Italy
| | - Paola Sperone
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Giorgio Vellani
- Department of Oncology, ASL TO4, Ivrea Community Hospital, Ivrea, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
26
|
Schwenger KJP, Sharma D, Ghorbani Y, Xu W, Lou W, Comelli EM, Fischer SE, Jackson TD, Okrainec A, Allard JP. Links between gut microbiome, metabolome, clinical variables and non-alcoholic fatty liver disease severity in bariatric patients. Liver Int 2024; 44:1176-1188. [PMID: 38353022 DOI: 10.1111/liv.15864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND AIMS Bacterial species and microbial pathways along with metabolites and clinical parameters may interact to contribute to non-alcoholic fatty liver disease (NAFLD) and disease severity. We used integrated machine learning models and a cross-validation approach to assess this interaction in bariatric patients. METHODS 113 patients undergoing bariatric surgery had clinical and biochemical parameters, blood and stool metabolite measurements as well as faecal shotgun metagenome sequencing to profile the intestinal microbiome. Liver histology was classified as normal liver obese (NLO; n = 30), simple steatosis (SS; n = 41) or non-alcoholic steatohepatitis (NASH; n = 42); fibrosis was graded F0 to F4. RESULTS We found that those with NASH versus NLO had an increase in potentially harmful E. coli, a reduction of potentially beneficial Alistipes putredinis and an increase in ALT and AST. There was higher serum glucose, faecal 3-(3-hydroxyphenyl)-3-hydroxypropionic acid and faecal cholic acid and lower serum glycerophospholipids. In NAFLD, those with severe fibrosis (F3-F4) versus F0 had lower abundance of anti-inflammatory species (Eubacterium ventriosum, Alistipes finegoldii and Bacteroides dorei) and higher AST, serum glucose, faecal acylcarnitines, serum isoleucine and homocysteine as well as lower serum glycerophospholipids. Pathways involved with amino acid biosynthesis and degradation were significantly more represented in those with NASH compared to NLO, with severe fibrosis having an overall stronger significant association with Superpathway of menaquinol-10 biosynthesis and Peptidoglycan biosynthesis IV. CONCLUSIONS In bariatric patients, NASH and severe fibrosis were associated with specific bacterial species, metabolic pathways and metabolites that may contribute to NAFLD pathogenesis and disease severity.
Collapse
Affiliation(s)
| | - Divya Sharma
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yasaman Ghorbani
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Wendy Lou
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Fischer
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy D Jackson
- Division of General Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Allan Okrainec
- Division of General Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Junaid M, Lu H, Din AU, Yu B, Liu Y, Li Y, Liu K, Yan J, Qi Z. Deciphering Microbiome, Transcriptome, and Metabolic Interactions in the Presence of Probiotic Lactobacillus acidophilus against Salmonella Typhimurium in a Murine Model. Antibiotics (Basel) 2024; 13:352. [PMID: 38667028 PMCID: PMC11047355 DOI: 10.3390/antibiotics13040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), a foodborne pathogen that poses significant public health risks to humans and animals, presents a formidable challenge due to its antibiotic resistance. This study explores the potential of Lactobacillus acidophilus (L. acidophilus 1.3251) probiotics as an alternative strategy to combat antibiotic resistance associated with S. Typhimurium infection. In this investigation, twenty-four BALB/c mice were assigned to four groups: a non-infected, non-treated group (CNG); an infected, non-treated group (CPG); a group fed with L. acidophilus but not infected (LAG); and a group fed with L. acidophilus and challenged with Salmonella (LAST). The results revealed a reduction in Salmonella levels in the feces of mice, along with restored weight and improved overall health in the LAST compared to the CPG. The feeding of L. acidophilus was found to downregulate pro-inflammatory cytokine mRNA induced by Salmonella while upregulating anti-inflammatory cytokines. Additionally, it influenced the expression of mRNA transcript, encoding tight junction protein, oxidative stress-induced enzymes, and apoptosis-related mRNA expression. Furthermore, the LEfSe analysis demonstrated a significant shift in the abundance of critical commensal genera in the LAST, essential for maintaining gut homeostasis, metabolic reactions, anti-inflammatory responses, and butyrate production. Transcriptomic analysis revealed 2173 upregulated and 506 downregulated differentially expressed genes (DEGs) in the LAST vs. the CPG. Functional analysis of these DEGs highlighted their involvement in immunity, metabolism, and cellular development. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis indicated their role in tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), chemokine, Forkhead box O (FOXO), and transforming growth factor (TGF-β) signaling pathway. Moreover, the fecal metabolomic analysis identified 929 differential metabolites, with enrichment observed in valine, leucine, isoleucine, taurine, glycine, and other metabolites. These findings suggest that supplementation with L. acidophilus promotes the growth of beneficial commensal genera while mitigating Salmonella-induced intestinal disruption by modulating immunity, gut homeostasis, gut barrier integrity, and metabolism.
Collapse
Affiliation(s)
| | - Hongyu Lu
- Medical College, Guangxi University, Nanning 530004, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Bin Yu
- Medical College, Guangxi University, Nanning 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning 530004, China
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, China
| | - Kefei Liu
- Tianjin Shengji Group., Co., Ltd., No. 2, Hai Tai Development 2nd Road, Huayuan Industrial Zone, Tianjin 300384, China
| | - Jianhua Yan
- Medical College, Guangxi University, Nanning 530004, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China
| |
Collapse
|
28
|
Aljarrah D, Chalour N, Zorgani A, Nissan T, Pranjol MZI. Exploring the gut microbiota and its potential as a biomarker in gliomas. Biomed Pharmacother 2024; 173:116420. [PMID: 38471271 DOI: 10.1016/j.biopha.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Gut microbiome alterations are associated with various cancers including brain tumours such as glioma and glioblastoma. The gut communicates with the brain via a bidirectional pathway known as the gut-brain axis (GBA) which is essential for maintaining homeostasis. The gut microbiota produces many metabolites including short chain fatty acids (SCFAs) and essential amino acids such as glutamate, glutamine, arginine and tryptophan. Through the modulation of these metabolites the gut microbiome is able to regulate several functions of brain cells, immune cells and tumour cells including DNA methylation, mitochondrial function, the aryl hydrocarbon receptor (AhR), T-cell proliferation, autophagy and even apoptosis. Here, we summarise current findings on gut microbiome with respect to brain cancers, an area of research that is widely overlooked. Several studies investigated the relationship between gut microbiota and brain tumours. However, it remains unclear whether the gut microbiome variation is a cause or product of cancer. Subsequently, a biomarker panel was constructed for use as a predictive, prognostic and diagnostic tool with respect to multiple cancers including glioma and glioblastoma multiforme (GBM). This review further presents the intratumoural microbiome, a fascinating microenvironment within the tumour as a possible treatment target that can be manipulated to maximise effectiveness of treatment via personalised therapy. Studies utilising the microbiome as a biomarker and therapeutic strategy are necessary to accurately assess the effectiveness of the gut microbiome as a clinical tool with respect to brain cancers.
Collapse
Affiliation(s)
- Dana Aljarrah
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Naima Chalour
- Cognitive and Behavioural Neuroscience laboratory, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria; Faculty of Biological Sciences, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria.
| | - Amine Zorgani
- The Microbiome Mavericks, 60 rue Christian Lacouture, Bron 69500, France.
| | - Tracy Nissan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Md Zahidul I Pranjol
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
29
|
Muller E, Shiryan I, Borenstein E. Multi-omic integration of microbiome data for identifying disease-associated modules. Nat Commun 2024; 15:2621. [PMID: 38521774 PMCID: PMC10960825 DOI: 10.1038/s41467-024-46888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Multi-omic studies of the human gut microbiome are crucial for understanding its role in disease across multiple functional layers. Nevertheless, integrating and analyzing such complex datasets poses significant challenges. Most notably, current analysis methods often yield extensive lists of disease-associated features (e.g., species, pathways, or metabolites), without capturing the multi-layered structure of the data. Here, we address this challenge by introducing "MintTea", an intermediate integration-based approach combining canonical correlation analysis extensions, consensus analysis, and an evaluation protocol. MintTea identifies "disease-associated multi-omic modules", comprising features from multiple omics that shift in concord and that collectively associate with the disease. Applied to diverse cohorts, MintTea captures modules with high predictive power, significant cross-omic correlations, and alignment with known microbiome-disease associations. For example, analyzing samples from a metabolic syndrome study, MintTea identifies a module with serum glutamate- and TCA cycle-related metabolites, along with bacterial species linked to insulin resistance. In another dataset, MintTea identifies a module associated with late-stage colorectal cancer, including Peptostreptococcus and Gemella species and fecal amino acids, in line with these species' metabolic activity and their coordinated gradual increase with cancer development. This work demonstrates the potential of advanced integration methods in generating systems-level, multifaceted hypotheses underlying microbiome-disease interactions.
Collapse
Affiliation(s)
- Efrat Muller
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Shiryan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
30
|
Yu S, Wang X, Li Z, Jin D, Yu M, Li J, Li Y, Liu X, Zhang Q, Liu Y, Liu R, Wang X, Fang B, Zhang C, Wang R, Ren F. Solobacterium moorei promotes the progression of adenomatous polyps by causing inflammation and disrupting the intestinal barrier. J Transl Med 2024; 22:169. [PMID: 38368407 DOI: 10.1186/s12967-024-04977-3if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/11/2024] [Indexed: 07/26/2024] Open
Abstract
BACKGROUND Adenomatous polyps (APs) with inflammation are risk factors for colorectal cancer. However, the role of inflammation-related gut microbiota in promoting the progression of APs is unknown. METHODS Sequencing of the 16S rRNA gene was conducted to identify characteristic bacteria in AP tissues and normal mucosa. Then, the roles of inflammation-related bacteria were clarified by Spearman correlation analysis. Furthermore, colorectal HT-29 cells, normal colon NCM460 cells, and azoxymethane-treated mice were used to investigate the effects of the characteristic bacteria on progression of APs. RESULTS The expression levels of inflammation-related markers (diamine oxidase, D-lactate, C-reactive protein, tumor necrosis factor-α, interleukin-6 and interleukin-1β) were increased, whereas the expression levels of anti-inflammatory factors (interleukin-4 and interleukin-10) were significantly decreased in AP patients as compared to healthy controls. Solobacterium moorei (S. moorei) was enriched in AP tissues and fecal samples, and significantly positively correlated with serum inflammation-related markers. In vitro, S. moorei preferentially attached to HT-29 cells and stimulated cell proliferation and production of pro-inflammatory factors. In vivo, the incidence of intestinal dysplasia was significantly increased in the S. moorei group. Gavage of mice with S. moorei upregulated production of pro-inflammatory factors, suppressed proliferation of CD4+ and CD8+cells, and disrupted the integrity of the intestinal barrier, thereby accelerating progression of APs. CONCLUSIONS S. moorei accelerated the progression of AP in mice via activation of the NF-κB signaling pathway, chronic low-grade inflammation, and intestinal barrier disruption. Targeted reduction of S. moorei presents a potential strategy to prevent the progression of APs.
Collapse
Affiliation(s)
- Shoujuan Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, 10032, USA
| | - Ziyang Li
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Dekui Jin
- Department of General Practice, The Third Centers of Chinese PLA General Hospital, Beijing, 100039, China
| | - Mengyang Yu
- Department of General Practice, The Third Centers of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaoxue Liu
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Qi Zhang
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Yinghua Liu
- Department of Nutrition, The First Center of Chinese PLA General Hospital, Beijing, 100037, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaoyu Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Chengying Zhang
- Department of General Practice, The Third Centers of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China.
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
31
|
Yu S, Wang X, Li Z, Jin D, Yu M, Li J, Li Y, Liu X, Zhang Q, Liu Y, Liu R, Wang X, Fang B, Zhang C, Wang R, Ren F. Solobacterium moorei promotes the progression of adenomatous polyps by causing inflammation and disrupting the intestinal barrier. J Transl Med 2024; 22:169. [PMID: 38368407 PMCID: PMC10874563 DOI: 10.1186/s12967-024-04977-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Adenomatous polyps (APs) with inflammation are risk factors for colorectal cancer. However, the role of inflammation-related gut microbiota in promoting the progression of APs is unknown. METHODS Sequencing of the 16S rRNA gene was conducted to identify characteristic bacteria in AP tissues and normal mucosa. Then, the roles of inflammation-related bacteria were clarified by Spearman correlation analysis. Furthermore, colorectal HT-29 cells, normal colon NCM460 cells, and azoxymethane-treated mice were used to investigate the effects of the characteristic bacteria on progression of APs. RESULTS The expression levels of inflammation-related markers (diamine oxidase, D-lactate, C-reactive protein, tumor necrosis factor-α, interleukin-6 and interleukin-1β) were increased, whereas the expression levels of anti-inflammatory factors (interleukin-4 and interleukin-10) were significantly decreased in AP patients as compared to healthy controls. Solobacterium moorei (S. moorei) was enriched in AP tissues and fecal samples, and significantly positively correlated with serum inflammation-related markers. In vitro, S. moorei preferentially attached to HT-29 cells and stimulated cell proliferation and production of pro-inflammatory factors. In vivo, the incidence of intestinal dysplasia was significantly increased in the S. moorei group. Gavage of mice with S. moorei upregulated production of pro-inflammatory factors, suppressed proliferation of CD4+ and CD8+cells, and disrupted the integrity of the intestinal barrier, thereby accelerating progression of APs. CONCLUSIONS S. moorei accelerated the progression of AP in mice via activation of the NF-κB signaling pathway, chronic low-grade inflammation, and intestinal barrier disruption. Targeted reduction of S. moorei presents a potential strategy to prevent the progression of APs.
Collapse
Affiliation(s)
- Shoujuan Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, 10032, USA
| | - Ziyang Li
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Dekui Jin
- Department of General Practice, The Third Centers of Chinese PLA General Hospital, Beijing, 100039, China
| | - Mengyang Yu
- Department of General Practice, The Third Centers of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaoxue Liu
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Qi Zhang
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Yinghua Liu
- Department of Nutrition, The First Center of Chinese PLA General Hospital, Beijing, 100037, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaoyu Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Chengying Zhang
- Department of General Practice, The Third Centers of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China.
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
32
|
Zhou T, Wu J, Tang H, Liu D, Jeon BH, Jin W, Wang Y, Zheng Y, Khan A, Han H, Li X. Enhancing tumor-specific recognition of programmable synthetic bacterial consortium for precision therapy of colorectal cancer. NPJ Biofilms Microbiomes 2024; 10:6. [PMID: 38245564 PMCID: PMC10799920 DOI: 10.1038/s41522-024-00479-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Probiotics hold promise as a potential therapy for colorectal cancer (CRC), but encounter obstacles related to tumor specificity, drug penetration, and dosage adjustability. In this study, genetic circuits based on the E. coli Nissle 1917 (EcN) chassis were developed to sense indicators of tumor microenvironment and control the expression of therapeutic payloads. Integration of XOR gate amplify gene switch into EcN biosensors resulted in a 1.8-2.3-fold increase in signal output, as confirmed by mathematical model fitting. Co-culturing programmable EcNs with CRC cells demonstrated a significant reduction in cellular viability ranging from 30% to 50%. This approach was further validated in a mouse subcutaneous tumor model, revealing 47%-52% inhibition of tumor growth upon administration of therapeutic strains. Additionally, in a mouse tumorigenesis model induced by AOM and DSS, the use of synthetic bacterial consortium (SynCon) equipped with multiple sensing modules led to approximately 1.2-fold increased colon length and 2.4-fold decreased polyp count. Gut microbiota analysis suggested that SynCon maintained the abundance of butyrate-producing bacteria Lactobacillaceae NK4A136, whereas reducing the level of gut inflammation-related bacteria Bacteroides. Taken together, engineered EcNs confer the advantage of specific recognition of CRC, while SynCon serves to augment the synergistic effect of this approach.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
33
|
Zhu X, Xu P, Zhu R, Gao W, Yin W, Lan P, Zhu L, Jiao N. Multi-kingdom microbial signatures in excess body weight colorectal cancer based on global metagenomic analysis. Commun Biol 2024; 7:24. [PMID: 38182885 PMCID: PMC10770074 DOI: 10.1038/s42003-023-05714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Excess body weight (EBW) increases the risk of colorectal cancer (CRC) and is linked to lower colonoscopy compliance. Here, we extensively analyzed 981 metagenome samples from multiple cohorts to pinpoint the specific microbial signatures and their potential capability distinguishing EBW patients with CRC. The gut microbiome displayed considerable variations between EBW and lean CRC. We identify 44 and 37 distinct multi-kingdom microbial species differentiating CRC and controls in EBW and lean populations, respectively. Unique bacterial-fungal associations are also observed between EBW-CRC and lean-CRC. Our analysis revealed specific microbial functions in EBW-CRC, including D-Arginine and D-ornithine metabolism, and lipopolysaccharide biosynthesis. The best-performing classifier for EBW-CRC, comprising 12 bacterial and three fungal species, achieved an AUROC of 0.90, which was robustly validated across three independent cohorts (AUROC = 0.96, 0.94, and 0.80). Pathogenic microbial species, Anaerobutyricum hallii, Clostridioides difficile and Fusobacterium nucleatum, are EBW-CRC specific signatures. This work unearths the specific multi-kingdom microbial signatures for EBW-CRC and lean CRC, which may contribute to precision diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Xinyue Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Pingping Xu
- Department of Colorectal Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Ruixin Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China.
| | - Wenxing Gao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Wenjing Yin
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Ping Lan
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; Biomedical Innovation Center, Sun Yat-Sen University, Guangzhou, PR China
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Lixin Zhu
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; Biomedical Innovation Center, Sun Yat-Sen University, Guangzhou, PR China.
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China.
| | - Na Jiao
- National Clinical Research Center for Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
34
|
Kwao-Zigah G, Bediako-Bowan A, Boateng PA, Aryee GK, Abbang SM, Atampugbire G, Quaye O, Tagoe EA. Microbiome Dysbiosis, Dietary Intake and Lifestyle-Associated Factors Involve in Epigenetic Modulations in Colorectal Cancer: A Narrative Review. Cancer Control 2024; 31:10732748241263650. [PMID: 38889965 PMCID: PMC11186396 DOI: 10.1177/10732748241263650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Background: Colorectal cancer is the second cause of cancer mortality and the third most commonly diagnosed cancer worldwide. Current data available implicate epigenetic modulations in colorectal cancer development. The health of the large bowel is impacted by gut microbiome dysbiosis, which may lead to colon and rectum cancers. The release of microbial metabolites and toxins by these microbiotas has been shown to activate epigenetic processes leading to colorectal cancer development. Increased consumption of a 'Westernized diet' and certain lifestyle factors such as excessive consumption of alcohol have been associated with colorectal cancer.Purpose: In this review, we seek to examine current knowledge on the involvement of gut microbiota, dietary factors, and alcohol consumption in colorectal cancer development through epigenetic modulations.Methods: A review of several published articles focusing on the mechanism of how changes in the gut microbiome, diet, and excessive alcohol consumption contribute to colorectal cancer development and the potential of using these factors as biomarkers for colorectal cancer diagnosis.Conclusions: This review presents scientific findings that provide a hopeful future for manipulating gut microbiome, diet, and alcohol consumption in colorectal cancer patients' management and care.
Collapse
Affiliation(s)
- Genevieve Kwao-Zigah
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Antionette Bediako-Bowan
- Department of Surgery, University of Ghana Medical School, Accra, Ghana
- Department of Surgery, Korle Bu Teaching Hospital, Accra, Ghana
| | - Pius Agyenim Boateng
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gloria Kezia Aryee
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Stacy Magdalene Abbang
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gabriel Atampugbire
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Emmanuel A. Tagoe
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
35
|
Li J, Duan J, Sun Y, Yang R, Yang H, Li W. Phillygenin rescues impaired autophagy flux by modulating the PI3K/Akt/mToR signaling pathway in a rat model of severe acute pancreatitis. Int J Immunopathol Pharmacol 2024; 38:3946320241309260. [PMID: 39688211 DOI: 10.1177/03946320241309260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
To investigate the mechanism of pancreatic alveolar cell autophagy in rats with severe acute pancreatitis (SAP) by phillygenin (PHI) based on the PI3K/Akt/mToR pathway. Rats were randomly divided into control group (CON group), SAP model group (SAP group) and PHI treatment group (SAP+PHI group), with 10 rats in each group. 5% sodium taurocholate was injected retrogradely into the biliopancreatic duct to establish a SAP rat model, and PHI was injected intraperitoneally into the pancreas after successful establishment of the model. The colorimetric assay was used to determine serum amylase and lipase activity levels. Pancreatic morphology and histological changes were assessed by H&E staining. Autophagy-related indices were determined by immunohistochemistry: LC3-II, P62, LAMP. Autophagy pathway-related indices were determined by western blotting assay: p-PI3K, PI3K, p-Akt, Akt, p-mToR, mToR. Autophagy vesicle alteration. Compared with the SAP group, the SAP+PHI group showed a decrease in amylase, lipase and pathological score, an increase in the expression of LAMP-2, and a decrease in the expression of p62, p-PI3K, p-Akt and p-mToR, with a statistically significant difference (p < 0.05). Electron microscopy showed that autophagic flux was restored and accumulated autophagic vehicles were relatively reduced by PHI intervention. PHI can rescue the impaired autophagic flux by inhibiting the PI3K/Akt/mToR pathway, allowing abnormal autophagic vesicles to complete autophagy to protect the rat.
Collapse
Affiliation(s)
- Jiaxing Li
- Department of General Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jiming Duan
- Department of General Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yiwen Sun
- Department of General Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ruifeng Yang
- Department of General Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong Yang
- Department of General Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Wenxing Li
- Department of General Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
36
|
Yun H, Wang X, Wei C, Liu Q, Li X, Li N, Zhang G, Cui D, Liu R. Alterations of the intestinal microbiome and metabolome in women with rheumatoid arthritis. Clin Exp Med 2023; 23:4695-4706. [PMID: 37572155 DOI: 10.1007/s10238-023-01161-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Rheumatoid arthritis (RA) is more common in women, and many reports of sex differences have been reported in various aspects of RA. However, there has been a lack of specific research on women's gut flora. To assess the association between the gut flora and RA patients, this study combined the microbiome with metabolomics. Fecal samples from RA patients and healthy controls were collected for 16S rRNA sequencing. Nontargeted liquid chromatography-mass spectrometry was used to detect metabolites in fecal samples. We comprehensively used various analytical methods to reveal changes in intestinal flora and metabolites in female patients. The gut flora of RA patients was significantly different from that of healthy women. The abundance of Bacteroides, Megamonas and Oscillospira was higher in RA patients, while the abundance of Prevotella, Gemmiger and Roseburia was lower than that of healthy women. Gemmiger, Bilophila and Odoribacter represented large differences in microflora between RA and healthy women and could be used as potential microorganisms in the diagnosis. Fatty acid biosynthesis was significantly different between RA patients and healthy women in terms of metabolic pathways. There were different degrees of correlation between the gut flora and metabolites. Lys-Phe-Lys and heptadecasphin-4-enine can be used as potential markers for RA diagnosis. There was an extremely significant positive correlation between Megamonas, Dialister and rheumatoid factors, which was found for the first time. These findings indicated that alterations of these gut microbiome and metabolome may contribute to the diagnosis and treatment of RA patients.
Collapse
Affiliation(s)
- Haifeng Yun
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, People's Republic of China
| | - Xinxin Wang
- Jinling Institute of Technology, Nanjing, 211100, People's Republic of China
| | - Changjiang Wei
- Department of Surgery, The Fifth People's Hospital of Suzhou, 10 Guangqian Road, Suzhou, 215000, People's Republic of China
| | - Qiuhong Liu
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, People's Republic of China
| | - Xianyan Li
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, People's Republic of China
| | - Na Li
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, People's Republic of China
| | - Guoxing Zhang
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, 79 Qinchun Road, Hangzhou, 310003, People's Republic of China.
| | - Rui Liu
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, People's Republic of China.
| |
Collapse
|
37
|
Liu J, Shao N, Qiu H, Zhao J, Chen C, Wan J, He Z, Zhao X, Xu L. Intestinal microbiota: A bridge between intermittent fasting and tumors. Biomed Pharmacother 2023; 167:115484. [PMID: 37708691 DOI: 10.1016/j.biopha.2023.115484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Intestinal microbiota and their metabolites are essential for maintaining intestinal health, regulating inflammatory responses, and enhancing the body's immune function. An increasing number of studies have shown that the intestinal microbiota is tightly tied to tumorigenesis and intervention effects. Intermittent fasting (IF) is a method of cyclic dietary restriction that can improve energy metabolism, prolong lifespan, and reduce the progression of various diseases, including tumors. IF can affect the energy metabolism of tumor cells, inhibit tumor cell growth, improve the function of immune cells, and promote an anti-tumor immune response. Interestingly, recent research has further revealed that the intestinal microbiota can be impacted by IF, in particular by changes in microbial composition and metabolism. These findings suggest the complexity of the IF as a promising tumor intervention strategy, which merits further study to better understand and encourage the development of clinical tumor intervention strategies. In this review, we aimed to outline the characteristics of the intestinal microbiota and its mechanisms in different tumors. Of note, we summarized the impact of IF on intestinal microbiota and discussed its potential association with tumor suppressive effects. Finally, we proposed some key scientific issues that need to be addressed and envision relevant research prospects, which might provide a theoretical basis and be helpful for the application of IF and intestinal microbiota as new strategies for clinical interventions in the future.
Collapse
Affiliation(s)
- Jing Liu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nan Shao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hui Qiu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiajia Wan
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou University Medical College, Guiyang 550025, Guizhou Province, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
38
|
White MG, Damania A, Alshenaifi J, Sahasrabhojane P, Peacock O, Losh J, Wong MC, Lutter-Berkova Z, Chang GJ, Futreal A, Wargo JA, Ajami NJ, Kopetz S, You YN. Young-onset Rectal Cancer: Unique Tumoral Microbiome and Correlation With Response to Neoadjuvant Therapy. Ann Surg 2023; 278:538-548. [PMID: 37465976 PMCID: PMC10528779 DOI: 10.1097/sla.0000000000006015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
OBJECTIVE External exposures, the host, and the microbiome interact in oncology. We aimed to investigate tumoral microbiomes in young-onset rectal cancers (YORCs) for profiles potentially correlative with disease etiology and biology. BACKGROUND YORC is rapidly increasing, with 1 in 4 new rectal cancer cases occurring under the age of 50 years. Its etiology is unknown. METHODS YORC (<50 y old) or later-onset rectal cancer (LORC, ≥50 y old) patients underwent pretreatment biopsied of tumor and tumor-adjacent normal (TAN) tissue. After whole genome sequencing, metagenomic analysis quantified microbial communities comparing tumors versus TANs and YORCs versus LORCs, controlling for multiple testing. Response to neoadjuvant therapy (NT) was categorized as major pathological response (MPR, ≤10% residual viable tumor) versus non-MPR. RESULTS Our 107 tumors, 75 TANs from 37 (35%) YORCs, and 70 (65%) LORCs recapitulated bacterial species were previously associated with colorectal cancers (all P <0.0001). YORC and LORC tumoral microbiome signatures were distinct. After NT, 13 patients (12.4%) achieved complete pathologic response, whereas MPR occurred in 47 patients (44%). Among YORCs, MPR was associated with Fusobacterium nucleaum , Bacteroides dorei, and Ruminococcus bromii (all P <0.001), but MPR in LORC was associated with R. bromii ( P <0.001). Network analysis of non-MPR tumors demonstrated a preponderance of oral bacteria not observed in MPR tumors. CONCLUSIONS Microbial signatures were distinct between YORC and LORC. Failure to achieve an MPR was associated with oral bacteria in tumors. These findings urge further studies to decipher correlative versus mechanistic associations but suggest a potential for microbial modulation to augment current treatments.
Collapse
Affiliation(s)
- Michael G. White
- Department of Colon & Rectal Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ashish Damania
- Platform for Innovative Microbiome and Translational research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jumanah Alshenaifi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pranoti Sahasrabhojane
- Platform for Innovative Microbiome and Translational research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Oliver Peacock
- Department of Colon & Rectal Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jillian Losh
- Platform for Innovative Microbiome and Translational research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew C Wong
- Platform for Innovative Microbiome and Translational research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zuzana Lutter-Berkova
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George J. Chang
- Department of Colon & Rectal Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A. Wargo
- Platform for Innovative Microbiome and Translational research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nadim J. Ajami
- Platform for Innovative Microbiome and Translational research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Y. Nancy You
- Department of Colon & Rectal Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
39
|
Aitmanaitė L, Širmonaitis K, Russo G. Microbiomes, Their Function, and Cancer: How Metatranscriptomics Can Close the Knowledge Gap. Int J Mol Sci 2023; 24:13786. [PMID: 37762088 PMCID: PMC10531294 DOI: 10.3390/ijms241813786] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The interaction between the microbial communities in the human body and the onset and progression of cancer has not been investigated until recently. The vast majority of the metagenomics research in this area has concentrated on the composition of microbiomes, attempting to link the overabundance or depletion of certain microorganisms to cancer proliferation, metastatic behaviour, and its resistance to therapies. However, studies elucidating the functional implications of the microbiome activity in cancer patients are still scarce; in particular, there is an overwhelming lack of studies assessing such implications directly, through analysis of the transcriptome of the bacterial community. This review summarises the contributions of metagenomics and metatranscriptomics to the knowledge of the microbial environment associated with several cancers; most importantly, it highlights all the advantages that metatranscriptomics has over metagenomics and suggests how such an approach can be leveraged to advance the knowledge of the cancer bacterial environment.
Collapse
Affiliation(s)
| | | | - Giancarlo Russo
- EMBL Partnership Institute for Gene Editing, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (L.A.); (K.Š.)
| |
Collapse
|
40
|
Fan JQ, Zhao WF, Lu QW, Zha FR, Lv LB, Ye GL, Gao HL. Fecal microbial biomarkers combined with multi-target stool DNA test improve diagnostic accuracy for colorectal cancer. World J Gastrointest Oncol 2023; 15:1424-1435. [PMID: 37663945 PMCID: PMC10473925 DOI: 10.4251/wjgo.v15.i8.1424] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/20/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a major global health burden. The current diagnostic tests have shortcomings of being invasive and low accuracy. AIM To explore the combination of intestinal microbiome composition and multi-target stool DNA (MT-sDNA) test in the diagnosis of CRC. METHODS We assessed the performance of the MT-sDNA test based on a hospital clinical trial. The intestinal microbiota was tested using 16S rRNA gene sequencing. This case-control study enrolled 54 CRC patients and 51 healthy controls. We identified biomarkers of bacterial structure, analyzed the relationship between different tumor markers and the relative abundance of related flora components, and distinguished CRC patients from healthy subjects by the linear discriminant analysis effect size, redundancy analysis, and random forest analysis. RESULTS MT-sDNA was associated with Bacteroides. MT-sDNA and carcinoembryonic antigen (CEA) were positively correlated with the existence of Parabacteroides, and alpha-fetoprotein (AFP) was positively associated with Faecalibacterium and Megamonas. In the random forest model, the existence of Streptococcus, Escherichia, Chitinophaga, Parasutterella, Lachnospira, and Romboutsia can distinguish CRC from health controls. The diagnostic accuracy of MT-sDNA combined with the six genera and CEA in the diagnosis of CRC was 97.1%, with a sensitivity and specificity of 98.1% and 92.3%, respectively. CONCLUSION There is a positive correlation of MT-sDNA, CEA, and AFP with intestinal microbiome. Eight biomarkers including six genera of gut microbiota, MT-sDNA, and CEA showed a prominent sensitivity and specificity for CRC prediction, which could be used as a non-invasive method for improving the diagnostic accuracy for this malignancy.
Collapse
Affiliation(s)
- Jin-Qing Fan
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Wang-Fang Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Qi-Wen Lu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Fu-Rong Zha
- Department of Bioinformation Analysis, Shanghai BIOZERON Biotechnology Co., Shanghai 201800, China
| | - Le-Bin Lv
- Department of Preventive Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Guo-Liang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Han-Lu Gao
- Department of Preventive Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
41
|
Alhhazmi AA, Alhamawi RM, Almisned RM, Almutairi HA, Jan AA, Kurdi SM, Almutawif YA, Mohammed-Saeid W. Gut Microbial and Associated Metabolite Markers for Colorectal Cancer Diagnosis. Microorganisms 2023; 11:2037. [PMID: 37630597 PMCID: PMC10457972 DOI: 10.3390/microorganisms11082037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Globally, colorectal cancer (CRC) is the second most common cause of mortality worldwide. Considerable evidence indicates that dysbiosis of the gut microbial community and its metabolite secretions play a fundamental role in advanced adenoma (ADA) and CRC development and progression. This study is a systematic review that aims to assess the clinical association between gut microbial markers and/or gut and circulating metabolites with ADA and CRC. Five electronic databases were searched by four independent reviewers. Only controlled trials that compared ADA and/or CRC with healthy control (HC) using either untargeted (16s rRNA gene or whole genome sequencing) or targeted (gene-based real-time PCR) identification methods for gut microbiome profile, or untargeted or targeted metabolite profiling approaches from the gut or serum/plasma, were eligible. Three independent reviewers evaluated the quality of the studies using the Cochrane Handbook for Systematic Reviews of Interventions. Twenty-four studies were eligible. We identified strong evidence of two microbial markers Fusobacterium and Porphyromonas for ADA vs. CRC, and nine microbial markers Lachnospiraceae-Lachnoclostridium, Ruminococcaceae-Ruminococcus, Parvimonas spp., Parvimonas micra, Enterobacteriaceae, Fusobacterium spp., Bacteroides, Peptostreptococcus-Peptostreptococcus stomatis, Clostridia spp.-Clostridium hylemonae, Clostridium symbiosum, and Porphyromonas-Porphyromonas asaccharolytica for CRC vs. HC. The remaining metabolite marker evidence between the various groups, including ADA vs. HC, ADA vs. HC, and CRC vs. HC, was not of sufficient quality to support additional findings. The identified gut microbial markers can be used in a panel for diagnosing ADA and/or CRC. Further research in the metabolite markers area is needed to evaluate the possibility to use in diagnostic or prognostic markers for colorectal cancer.
Collapse
Affiliation(s)
- Areej A. Alhhazmi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Renad M. Alhamawi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Reema M. Almisned
- Seha Polyclinic, P.O. Box 150, Al-Madinah Al-Munawarah 41311, Saudi Arabia;
| | - Hanouf A. Almutairi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), P.O. Box 6900, Thuwal 23955, Saudi Arabia;
| | - Ahdab A. Jan
- Abdulla Fouad Medical Supplies and Services (AFMS), P.O. Box 150, Al-Madinah Al-Munawarah 21414, Saudi Arabia;
| | - Shahad M. Kurdi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Yahya A. Almutawif
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Waleed Mohammed-Saeid
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
| |
Collapse
|
42
|
Gong D, Adomako-Bonsu AG, Wang M, Li J. Three specific gut bacteria in the occurrence and development of colorectal cancer: a concerted effort. PeerJ 2023; 11:e15777. [PMID: 37554340 PMCID: PMC10405800 DOI: 10.7717/peerj.15777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Colorectal cancer (CRC), which develops from the gradual evolution of tubular adenomas and serrated polyps in the colon and rectum, has a poor prognosis and a high mortality rate. In addition to genetics, lifestyle, and chronic diseases, intestinal integrity and microbiota (which facilitate digestion, metabolism, and immune regulation) could promote CRC development. For example, enterotoxigenic Bacteroides fragilis, genotoxic Escherichia coli (pks+ E. coli), and Fusobacterium nucleatum, members of the intestinal microbiota, are highly correlated in CRC. This review describes the roles and mechanisms of these three bacteria in CRC development. Their interaction during CRC initiation and progression has also been proposed. Our view is that in the precancerous stage of colorectal cancer, ETBF causes inflammation, leading to potential changes in intestinal ecology that may provide the basic conditions for pks+ E. coli colonization and induction of oncogenic mutations, when cancerous intestinal epithelial cells can further recruit F. nucleatum to colonise the lesion site and F. nucleatum may contribute to CRC advancement by primarily the development of cancer cells, stemization, and proliferation, which could create new and tailored preventive, screening and therapeutic interventions. However, there is the most dominant microbiota in each stage of CRC development, not neglecting the possibility that two or even all three bacteria could be engaged at any stage of the disease. The relationship between the associated gut microbiota and CRC development may provide important information for therapeutic strategies to assess the potential use of the associated gut microbiota in CRC studies, antibiotic therapy, and prevention strategies.
Collapse
Affiliation(s)
- Dengmei Gong
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Amma G Adomako-Bonsu
- Institute of Toxicology and Pharmacology, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Maijian Wang
- Gastrointestinal Surgery, Affiliate Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jida Li
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
43
|
Fukuoka H, Tourlousse DM, Ohashi A, Suzuki S, Nakagawa K, Ozawa M, Ishibe A, Endo I, Sekiguchi Y. Elucidating colorectal cancer-associated bacteria through profiling of minimally perturbed tissue-associated microbiota. Front Cell Infect Microbiol 2023; 13:1216024. [PMID: 37593761 PMCID: PMC10432157 DOI: 10.3389/fcimb.2023.1216024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023] Open
Abstract
Sequencing-based interrogation of gut microbiota is a valuable approach for detecting microbes associated with colorectal cancer (CRC); however, such studies are often confounded by the effect of bowel preparation. In this study, we evaluated the viability of identifying CRC-associated mucosal bacteria through centimeter-scale profiling of the microbiota in tumors and adjacent noncancerous tissue from eleven patients who underwent colonic resection without preoperative bowel preparation. High-throughput 16S rRNA gene sequencing revealed that differences between on- and off-tumor microbiota varied considerably among patients. For some patients, phylotypes affiliated with genera previously implicated in colorectal carcinogenesis, as well as genera with less well-understood roles in CRC, were enriched in tumor tissue, whereas for other patients, on- and off-tumor microbiota were very similar. Notably, the enrichment of phylotypes in tumor-associated mucosa was highly localized and no longer apparent even a few centimeters away from the tumor. Through short-term liquid culturing and metagenomics, we further generated more than one-hundred metagenome-assembled genomes, several representing bacteria that were enriched in on-tumor samples. This is one of the first studies to analyze largely unperturbed mucosal microbiota in tissue samples from the resected colons of unprepped CRC patients. Future studies with larger cohorts are expected to clarify the causes and consequences of the observed variability in the emergence of tumor-localized microbiota among patients.
Collapse
Affiliation(s)
- Hironori Fukuoka
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Dieter M. Tourlousse
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Akiko Ohashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Shinsuke Suzuki
- Department of Surgery, Fujisawa Shonandai Hospital, Fujisawa, Japan
| | - Kazuya Nakagawa
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Mayumi Ozawa
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Ishibe
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
44
|
Wang J, Yu C, Zhang J, Liu R, Xiao J. Aberrant gut microbiota and fecal metabolites in patients with coal-burning endemic fluorosis in Guizhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69913-69926. [PMID: 37140865 DOI: 10.1007/s11356-023-27051-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
Chronic exposure to excessive environmental fluoride has caused fluorosis to become a major public health problem worldwide. Although studies on stress pathways, signaling pathways, and apoptosis induced by fluoride have provided an in-depth understanding of the mechanism of this disease, its exact pathogenesis remains unclear. We hypothesized that the human gut microbiota and metabolome are associated with the pathogenesis of this disease. To get further insight into the profiles of intestinal microbiota and metabolome in coal-burning-induced endemic fluorosis patients, we conducted 16S rRNA sequencing of the intestinal microbial DNA and carried out non-targeted metabolomics of fecal samples from 32 patients with skeletal fluorosis and 33 matched healthy controls in Guizhou, China. We found that the gut microbiota of coal-burning endemic fluorosis patients displayed significant differences in composition, diversity, and abundance compared with healthy controls. This was characterized by an increase in the relative abundance of Verrucomicrobiota, Desulfobacterota, Nitrospirota, Crenarchaeota, Chloroflexi, Myxococcota, Acidobacteriota, Proteobacteria, and unidentified_Bacteria, and a significant decrease in the relative abundance of Firmicutes and Bacteroidetes at the phylum level. Additionally, at the genus level, the relative abundance of some beneficial bacteria, such as Bacteroides, Megamonas, Bifidobacterium, and Faecalibacterium, was significantly reduced. We also demonstrated that, at the genus level, some gut microbial markers, including Anaeromyxobacter, MND1, oc32, Haliangium, and Adurb.Bin063_1, showed potential for identifying coal-burning endemic fluorosis. Moreover, non-targeted metabolomics and correlation analysis revealed the changes in the metabolome, particularly the gut microbiota-derived tryptophan metabolites such as tryptamine, 5-hydroxyindoleacetic acid, and indoleacetaldehyde. Our results indicated that excessive fluoride might cause xenobiotic-mediated dysbiosis of human gut microbiota and metabolic disorders. These findings suggest that the alterations in gut microbiota and metabolome play vital roles in regulating disease susceptibility and multi-organ damage after excessive fluoride exposure.
Collapse
Affiliation(s)
- Jianbin Wang
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Department of Endocrinology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Chao Yu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Jiarong Zhang
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Ruming Liu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Jianhui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Department of Endocrinology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
| |
Collapse
|
45
|
Goodoory VC, Ford AC. Antibiotics and Probiotics for Irritable Bowel Syndrome. Drugs 2023; 83:687-699. [PMID: 37184752 DOI: 10.1007/s40265-023-01871-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2023] [Indexed: 05/16/2023]
Abstract
Irritable bowel syndrome (IBS) is a disorder of a gut-brain interaction characterised by abdominal pain and a change in stool form or frequency. Current symptom-based definitions and the classification of IBS promote heterogeneity amongst patients, meaning that there may be several different pathophysiological abnormalities leading to similar symptoms. Although our understanding of IBS is incomplete, there are several indicators that the microbiome may be involved in a subset of patients. Techniques including a faecal sample analysis, colonic biopsies, duodenal aspirates or surrogate markers, such as breath testing, have been used to examine the gut microbiota in individuals with IBS. Because of a lack of a clear definition of what constitutes a healthy gut microbiota, and the fact that alterations in gut microbiota have only been shown to be associated with IBS, a causal relationship is yet to be established. We discuss several hypotheses as to how dysbiosis may be responsible for IBS symptoms, as well as potential treatment strategies. We review the current evidence for the use of antibiotics and probiotics to alter the microbiome in an attempt to improve IBS symptoms. Rifaximin, a non-absorbable antibiotic, is the most studied antibiotic and has now been licensed for use in IBS with diarrhoea in the USA, but the drug remains unavailable in many countries for this indication. Current evidence also suggests that certain probiotics, including Lactobacillus plantarum DSM 9843 and Bifidobacterium bifidum MIMBb75, may be efficacious in some patients with IBS. Finally, we describe the future challenges facing us in our attempt to modulate the microbiome to treat IBS.
Collapse
Affiliation(s)
- Vivek C Goodoory
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
- Leeds Gastroenterology Institute, St. James's University Hospital, Room 125, 4th Floor, Bexley Wing, Beckett Street, Leeds, LS9 7TF, UK
| | - Alexander C Ford
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK.
- Leeds Gastroenterology Institute, St. James's University Hospital, Room 125, 4th Floor, Bexley Wing, Beckett Street, Leeds, LS9 7TF, UK.
| |
Collapse
|
46
|
Liu Y, Pei Z, Pan T, Wang H, Chen W, Lu W. Indole metabolites and colorectal cancer: Gut microbial tryptophan metabolism, host gut microbiome biomarkers, and potential intervention mechanisms. Microbiol Res 2023; 272:127392. [PMID: 37119643 DOI: 10.1016/j.micres.2023.127392] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Tryptophan (Trp) functions in host-disease interactions. Its metabolism is a multi-pathway process. Indole and its derivatives are Trp metabolites unique to the human gut microbiota. Changes in Trp metabolism have also been detected in colorectal cancer (CRC). Here, combined with the existing CRC biomarkers, we ascribed it to the altered bacteria having the indole-producing ability by making a genomic prediction. We also reviewed the anti-inflammatory and possible anti-cancer mechanisms of indoles, including their effects on tumor cells, the ability to repair the gut barrier, regulation of the host immune system, and provide resistance against oxidative stress. Indole and its derivatives, along with related bacteria, could be targeted as auxiliary strategies to restrain cancer development in the future.
Collapse
Affiliation(s)
- Yufei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Tong Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
47
|
Lu Y, Li Z, Peng X. Regulatory effects of oral microbe on intestinal microbiota and the illness. Front Cell Infect Microbiol 2023; 13:1093967. [PMID: 36816583 PMCID: PMC9928999 DOI: 10.3389/fcimb.2023.1093967] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Over the past decade, the association between oral health, intestinal microbiota, and systemic diseases has been further validated. Some oral microbial species have been isolated from pathological intestine mucosa or feces and identified as biomarkers for intestinal diseases. A small proportion of oral microbiome passes through or colonizes the lower gastrointestinal tract, even in healthy individuals. Opportunistic pathogens from the oral cavity may expand and participate in the occurrence and progression of intestinal diseases when the anatomical barrier is disrupted. These disruptors interact with the intestinal microbiota, disturbing indigenous microorganisms, and mucosal barriers through direct colonization, blood circulation, or derived metabolite pathways. While interacting with the host's immune system, oral-derived pathogens stimulate inflammation responses and guide the transition of the intestinal microenvironment from a healthy state to a pre-disease state. Therefore, the oral-gut microbiome axis sheds light on new clinical therapy options, and gastrointestinal tract ecology balance necessitates simultaneous consideration of both oral and gut microbiomes. This review summarizes possible routes of oral microbes entering the intestine and the effects of certain oral bacteria on intestinal microbiota and the host's immune responses.
Collapse
|
48
|
Yuan H, Gui R, Wang Z, Fang F, Zhao H. Gut microbiota: A novel and potential target for radioimmunotherapy in colorectal cancer. Front Immunol 2023; 14:1128774. [PMID: 36798129 PMCID: PMC9927011 DOI: 10.3389/fimmu.2023.1128774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with a high mortality rate, and is a major burden on human health worldwide. Gut microbiota regulate human immunity and metabolism through producing numerous metabolites, which act as signaling molecules and substrates for metabolic reactions in various biological processes. The importance of host-gut microbiota interactions in immunometabolic mechanisms in CRC is increasingly recognized, and interest in modulating the microbiota to improve patient's response to therapy has been raising. However, the specific mechanisms by which gut microbiota interact with immunotherapy and radiotherapy remain incongruent. Here we review recent advances and discuss the feasibility of gut microbiota as a regulatory target to enhance the immunogenicity of CRC, improve the radiosensitivity of colorectal tumor cells and ameliorate complications such as radiotoxicity. Currently, great breakthroughs in the treatment of non-small cell lung cancer and others have been achieved by radioimmunotherapy, but radioimmunotherapy alone has not been effective in CRC patients. By summarizing the recent preclinical and clinical evidence and considering regulatory roles played by microflora in the gut, such as anti-tumor immunity, we discuss the potential of targeting gut microbiota to enhance the efficacy of radioimmunotherapy in CRC and expect this review can provide references and fresh ideas for the clinical application of this novel strategy.
Collapse
Affiliation(s)
- Hanghang Yuan
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Fang Fang
- National Health Commission (NHC) Key laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China,*Correspondence: Fang Fang, ; Hongguang Zhao,
| | - Hongguang Zhao
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China,*Correspondence: Fang Fang, ; Hongguang Zhao,
| |
Collapse
|
49
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
50
|
Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe? World J Gastroenterol 2023; 29:19-42. [PMID: 36683718 PMCID: PMC9850957 DOI: 10.3748/wjg.v29.i1.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is currently considered an external organ of the human body that provides important mechanisms of metabolic regulation and protection. The gut microbiota encodes over 3 million genes, which is approximately 150 times more than the total number of genes present in the human genome. Changes in the qualitative and quantitative composition of the microbiome lead to disruption in the synthesis of key bacterial metabolites, changes in intestinal barrier function, and inflammation and can cause the development of a wide variety of diseases, such as diabetes, obesity, gastrointestinal disorders, cardiovascular issues, neurological disorders and oncological concerns. In this review, I consider issues related to the role of the microbiome in the regulation of intestinal barrier function, its influence on physiological and pathological processes occurring in the body, and potential new therapeutic strategies aimed at restoring the gut microbiome. Herewith, it is important to understand that the gut microbiota and human body should be considered as a single biological system, where change of one element will inevitably affect its other components. Thus, the study of the impact of the intestinal microbiota on health should be considered only taking into account numerous factors, the role of which has not yet been fully elucidated.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|