1
|
Wolf G, Leippe P, Onstein S, Goldmann U, Frommelt F, Teoh ST, Girardi E, Wiedmer T, Superti-Furga G. The genetic interaction map of the human solute carrier superfamily. Mol Syst Biol 2025:10.1038/s44320-025-00105-5. [PMID: 40355755 DOI: 10.1038/s44320-025-00105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Solute carriers (SLCs), the largest superfamily of transporter proteins in humans with about 450 members, control the movement of molecules across membranes. A typical human cell expresses over 200 different SLCs, yet their collective influence on cell phenotypes is not well understood due to overlapping substrate specificities and expression patterns. To address this, we performed systematic pairwise gene double knockouts using CRISPR-Cas12a and -Cas9 in human colon carcinoma cells. A total of 1,088,605 guide combinations were used to interrogate 35,421 SLC-SLC and SLC-enzyme double knockout combinations across multiple growth conditions, uncovering 1236 genetic interactions with a growth phenotype. Further exploration of an interaction between the mitochondrial citrate/malate exchanger SLC25A1 and the zinc transporter SLC39A1 revealed an unexpected role for SLC39A1 in metabolic reprogramming and anti-apoptotic signaling. This full-scale genetic interaction map of human SLC transporters is the backbone for understanding the intricate functional network of SLCs in cellular systems and generates hypotheses for pharmacological target exploitation in cancer and other diseases. The results are available at https://re-solute.eu/resources/dashboards/genomics/ .
Collapse
Affiliation(s)
- Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Solgate GmbH, IST Park Building, 3400, Klosterneuburg, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
- Fondazione Ri.MED, Palermo, Italy.
| |
Collapse
|
2
|
Qiu N, Tan H, Pechalrieu D, Abegg D, Fnu D, Powers DC, Adibekian A. Proteome-Wide Covalent Targeting of Acidic Residues with Tunable N-Aryl Aziridines. J Am Chem Soc 2025. [PMID: 40343844 DOI: 10.1021/jacs.5c04685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Carboxylate side chains in aspartic and glutamic acids play critical roles in protein structure and function due to their polarity and negative charge. These acidic residues, which are abundant in high-value drug targets, represent attractive yet underexplored hotspots for covalent inhibitor discovery. In this study, we introduce N-aryl aziridines as a systematically tunable, chemoselective scaffold for covalent targeting of carboxylates across the proteome. Using a library of N-pyridinium aziridine-based fragments combined with chemoproteomics-enabled target deconvolution, we identified lead hits for aspartates and glutamates in proteins such as mitochondrial carrier homologue 2 (MTCH2), RUN and FYVE domain-containing protein 1 (RUFY1), and delta(24)-sterol reductase (DHCR24). Modular build-and-couple synthetic logic enabled fragment evolution via Ni-catalyzed cross-coupling to access N-aryl aziridines with enhanced affinities for MTCH2 and RUFY1. Notably, N-aryl aziridine 5b selectively modified RUFY1 at E502, disrupting its interactions within the endosomal trafficking network and impairing receptor recycling. This work establishes N-aryl aziridines as versatile carboxylate-targeting covalent inhibitor scaffolds, broadening the scope of covalent ligand discovery.
Collapse
Affiliation(s)
- Nan Qiu
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Skaggs Graduate School and Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Hao Tan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dany Pechalrieu
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Deepanshu Fnu
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Alexander Adibekian
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois 60607, United States
- University of Illinois Cancer Center, Chicago, Illinois 60607, United States
- UICentre, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
3
|
Zhao X, Zhao B, Li H, Liu Y, Wang B, Li A, Zeng T, Hui HX, Sun J, Cikes D, Gheldof N, Hager J, Mi J, Laybutt DR, Deng Y, Shi Y, Neely GG, Wang Q. MTCH2 Suppresses Thermogenesis by Regulating Autophagy in Adipose Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416598. [PMID: 40051328 PMCID: PMC12061245 DOI: 10.1002/advs.202416598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/17/2025] [Indexed: 05/10/2025]
Abstract
Stimulating adipose tissue thermogenesis has emerged as a promising strategy for combating obesity, with uncoupling protein 1 (UCP1) playing a central role in this process. However, the mechanisms that suppress adipose thermogenesis and energy dissipation in obesity are not fully understood. This study identifies mitochondrial carrier homolog 2 (MTCH2), an obesity susceptibility gene, as a negative regulator of energy homeostasis across flies, rodents, and humans. Notably, adipose-specific MTCH2 depletion in mice protects against high-fat-diet (HFD)-induced obesity and metabolic disorders. Mechanistically, MTCH2 deficiency promotes energy expenditure by stimulating thermogenesis in brown adipose tissue (BAT) and browning of subcutaneous white adipose tissue (scWAT), accompanied by upregulated UCP1 protein expression, enhanced mitochondrial biogenesis, and increased lipolysis in BAT and scWAT. Using integrated RNA sequencing and proteomic analyses, this study demonstrates that MTCH2 is a key suppressor of thermogenesis by negatively regulating autophagy via Bcl-2-dependent mechanism. These findings highlight MTCH2's critical role in energy homeostasis and reveal a previously unrecognized link between MTCH2, thermogenesis, and autophagy in adipose tissue biology, positioning MTCH2 as a promising therapeutic target for obesity and related metabolic disorders. This study provides new opportunities to develop treatments that enhance energy expenditure.
Collapse
Affiliation(s)
- Xin‐Yuan Zhao
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Ben‐Chi Zhao
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Hui‐Lin Li
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Ying Liu
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Bei Wang
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - An‐Qi Li
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Tian‐Shu Zeng
- Wuhan Union HospitalHuazhong University of Science and TechnologyWuhan430022China
| | - Hannah Xiaoyan Hui
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jia Sun
- Department of EndocrinologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Domagoj Cikes
- Institute of Physiology and PathophysiologyJohannes Kepler University LinzLinz4020Austria
| | - Nele Gheldof
- Ecole Polytechnique de Lausanne (EPFL)LausanneCH‐1015Switzerland
| | - Jorg Hager
- Nestlé Institute of Health SciencesLausanneCH‐1015Switzerland
| | - Jian‐Xun Mi
- Key Laboratory of Big Data Intelligent ComputingChongqing University of Posts and TelecommunicationsChongqing400065China
- Chongqing Key Laboratory of Image CognitionChongqing University of Posts and TelecommunicationsChongqing400065China
- College of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqing400065China
| | - D. Ross Laybutt
- Garvan Institute of Medical ResearchSt Vincent's Clinical SchoolUNSW SydneyDarlinghurstSydneyNSW2010Australia
| | - Yin‐Yue Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Yan‐Chuan Shi
- Neuroendocrinology GroupGarvan Institute of Medical ResearchDarlinghurstSydneyNSW2010Australia
- St Vincent's Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNSW2010Australia
| | - G. Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional GenomicsCharles Perkins Centre and School of Life & Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Qiao‐Ping Wang
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Guangdong Provincial Key Laboratory of DiabetologyGuangzhou Key Laboratory of Mechanistic and Translational Obesity ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- State Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| |
Collapse
|
4
|
Özdemir M, Oeljeklaus S, Schendzielorz A, Morgenstern M, Valpadashi A, Yousefi R, Warscheid B, Dennerlein S. Definition of the human mitochondrial TOM interactome reveals TRABD as a new interacting protein. J Cell Sci 2025; 138:jcs263576. [PMID: 40105103 DOI: 10.1242/jcs.263576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
The mitochondrial proteome arises from dual genetic origins. Nuclear-encoded proteins need to be transported across or inserted into two distinguished membranes, and the translocase of the outer mitochondrial membrane (TOM) complex represents the main translocase in the outer mitochondrial membrane. Its composition and regulation have been extensively investigated within yeast cells. However, we have little knowledge of the TOM complex composition within human cells. Here, we have defined the TOM interactome in a comprehensive manner using biochemical approaches to isolate the TOM complex in combination with quantitative mass spectrometry analyses. With these studies, we defined the pleiotropic nature of the human TOM complex, including new interactors, such as TRABD. Our studies provide a framework to understand the various biogenesis pathways that merge at the TOM complex within human cells.
Collapse
Affiliation(s)
- Metin Özdemir
- Institute for Cellular Biochemistry, University of Goettingen, D-37073 Goettingen, Germany
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, D-97074 Wuerzburg, Germany
| | - Alexander Schendzielorz
- Institute for Biology II, Faculty for Biology, Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany
| | - Marcel Morgenstern
- Institute for Biology II, Faculty for Biology, Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany
| | - Anusha Valpadashi
- Institute for Cellular Biochemistry, University of Goettingen, D-37073 Goettingen, Germany
| | - Roya Yousefi
- Institute for Cellular Biochemistry, University of Goettingen, D-37073 Goettingen, Germany
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, D-97074 Wuerzburg, Germany
- Institute for Biology II, Faculty for Biology, Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University of Goettingen, D-37073 Goettingen, Germany
| |
Collapse
|
5
|
McKenna MJ, Kraus F, Coelho JP, Vasandani M, Zhang J, Adams BM, Paulo JA, Harper JW, Shao S. ARMC1 partitions between distinct complexes and assembles MIRO with MTFR to control mitochondrial distribution. SCIENCE ADVANCES 2025; 11:eadu5091. [PMID: 40203102 PMCID: PMC11980836 DOI: 10.1126/sciadv.adu5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Maintaining an optimal mitochondrial distribution is critical to ensure an adequate supply of energy and metabolites to support important cellular functions. How cells balance dynamic mitochondrial processes to achieve homeostasis is incompletely understood. Here, we show that ARMC1 partitioning between distinct mitochondrial protein complexes is a key determinant of mitochondrial distribution. In one complex, the mitochondrial trafficking adaptor MIRO recruits ARMC1, which mediates the assembly of a mitochondrial fission regulator (MTFR). MTFR stability depends on ARMC1, and MIRO-MTFR complexes specifically antagonize retrograde mitochondrial movement. In another complex, DNAJC11 facilitates ARMC1 release from mitochondria. Disrupting MIRO-MTFR assembly fails to rescue aberrant mitochondrial distributions clustered in the perinuclear area observed with ARMC1 deletion, while disrupting ARMC1 interaction with DNAJC11 leads to excessive mitochondrially localized ARMC1 and distinct mitochondrial defects. Thus, the abundance and trafficking impact of MIRO-MTFR complexes require ARMC1, whose mito-cytoplasmic shuttling balanced by DNAJC11 tunes steady-state mitochondrial distributions.
Collapse
Affiliation(s)
- Michael J. McKenna
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Felix Kraus
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - João P.L. Coelho
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Muskaan Vasandani
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Benjamin M. Adams
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
6
|
Jackson J, Becker T. Unclogging of the TOM complex under import stress. Biol Chem 2025:hsz-2025-0110. [PMID: 40148274 DOI: 10.1515/hsz-2025-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Mitochondrial functions and biogenesis depend on the import of more than 1,000 proteins which are synthesized as precursor proteins on cytosolic ribosomes. Mitochondrial protein translocases sort the precursor proteins into the mitochondrial sub-compartments: outer and inner membrane, the intermembrane space and the matrix. The translocase of the outer mitochondrial membrane (TOM complex) constitutes the major import site for most of these precursor proteins. Defective protein translocases, premature folding of the precursor, or depletion of the membrane potential can cause clogging of the TOM channel by a precursor protein. This clogging impairs further protein import and leads to accumulation of precursor proteins in the cell that perturbates protein homeostasis, leading to proteotoxic stress in the cell. Therefore, unclogging of the translocon is critical for maintaining mitochondrial and cellular function. Ubiquitylation and AAA-ATPases play a central role in the extraction of the precursor proteins to deliver them to the proteasome for degradation. Here we summarize our understanding of the molecular mechanisms that remove such translocation-stalled precursor proteins from the translocation channel to regenerate the TOM complex for protein import.
Collapse
Affiliation(s)
- Joshua Jackson
- Faculty of Medicine, 9374 Institute of Biochemistry and Molecular Biology, University of Bonn , Nußallee 11, D-53113 Bonn, Germany
| | - Thomas Becker
- Faculty of Medicine, 9374 Institute of Biochemistry and Molecular Biology, University of Bonn , Nußallee 11, D-53113 Bonn, Germany
| |
Collapse
|
7
|
Liu H, Tan S, Zhao Z, Tang X, Li Z, Qi J. METTL3/YTDHF1 Stabilizes MTCH2 mRNA to Regulate Ferroptosis in Glioma Cells. FRONT BIOSCI-LANDMRK 2025; 30:25718. [PMID: 40018930 DOI: 10.31083/fbl25718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Gliomas are aggressive brain tumors known for their poor prognosis and resistance to standard treatment options. Ferroptosis is an iron-dependent form of regulated cell death that has emerged as a promising target for cancer treatment. This study examined how the methyltransferase-like 3/YTH domain family protein 1 (METTL3/YTHDF1) axis influences ferroptosis and glioma progression by stabilizing mitochondrial carrier homolog 2 (MTCH2) messenger RNA (mRNA). METHODS MTCH2 expression in glioma tissues and cell lines was evaluated through quantitative real-time polymerase chain reaction (PCR) and western blot analyses. To assess the effects of MTCH2 knockdown and overexpression on glioma cell functions, we performed a series of functional assays, including cell viability, colony formation, and measurements of lipid reactive oxygen species (lipid ROS) and malondialdehyde (MDA) levels. Additionally, we conducted RNA immunoprecipitation (RIP) and RNA stability assays to explore the underlying mechanisms governing the interaction between METTL3, YTHDF1, and the stability of MTCH2 mRNA. RESULTS MTCH2 was significantly upregulated in glioma tissues and cell lines. Silencing of MTCH2 resulted in decreased glioma cell proliferation and induced ferroptosis, as evidenced by increased lipid peroxidation and ROS accumulation. Conversely, overexpression of MTCH2 enhanced glioma cell survival and reduced ferroptosis. METTL3-mediated N6-methyladenosine (m6A) modification enhanced MTCH2 mRNA stability by enabling YTHDF1 to bind and protect the modified mRNA from degradation. CONCLUSION The METTL3/YTHDF1/MTCH2 axis plays a critical role in glioma progression by inhibiting ferroptosis and promoting tumor cell survival. Targeting this pathway may provide a new and effective treatment strategy for glioma patients.
Collapse
Affiliation(s)
- Hongjun Liu
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Shasha Tan
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Zhenyu Zhao
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Xiaoping Tang
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Zhou Li
- Department of Neurosurgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Jian Qi
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| |
Collapse
|
8
|
Zhao Y, Wu S, Cao G, Song P, Lan CG, Zhang L, Sang YH. Mitochondrial carrier homolog 2 is important for mitochondrial functionality and non-small cell lung cancer cell growth. Cell Death Dis 2025; 16:95. [PMID: 39948081 PMCID: PMC11825924 DOI: 10.1038/s41419-025-07419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/13/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
Discovering new molecular targets for non-small cell lung cancer (NSCLC) is critically important. Enhanced mitochondrial function can promote NSCLC progression by enabling metabolic reprogramming, resistance to apoptosis, and increased cell proliferation. Mitochondrial carrier homolog 2 (MTCH2), located in the outer mitochondrial membrane, is pivotal in regulating mitochondrial activities. This study examines MTCH2 expression and its functional role in NSCLC. Bioinformatic analysis showed that MTCH2 is overexpressed in NSCLC tissues, correlating with poor prognosis and other key clinical parameters of the patients. In addition, single-cell sequencing data revealed higher MTCH2 expression levels in cancer cells of NSCLC tumor mass. Moreover, MTCH2 is also upregulated in locally-treated NSCLC tissues and multiple primary/established human NSCLC cells. In various NSCLC cells, silencing MTCH2 via targeted shRNA or knockout (KO) using the CRISPR/Cas9 method significantly hindered cell proliferation, migration and invasion, while inducing apoptosis. MTCH2 knockdown or KO robustly impaired mitochondrial function, as indicated by reduced mitochondrial respiration, decreased complex I activity, lower ATP levels, lower mitochondrial membrane potential (mitochondrial depolarization), and increased reactive oxygen species (ROS) production. Conversely, ectopic overexpression of MTCH2 in primary NSCLC cells enhanced mitochondrial complex I activity and ATP production, promoting cell proliferation and migration. In vivo, the intratumoral injection of MTCH2 shRNA adeno-associated virus (aav) impeded the growth of subcutaneous xenografts of primary NSCLC cells in nude mice. In MTCH2 shRNA aav-injected NSCLC xenograft tissues, there was decreases in MTCH2 expression, mitochondrial complex I activity, ATP content, and the glutathione (GSH)/glutathione disulfide (GSSG) ratio, but increase in thiobarbituric acid reactive substances (TBAR) activity. Additionally, MTCH2 silencing led to reduced Ki-67 staining but increased apoptosis in NSCLC xenografts. Collectively, these findings demonstrate that overexpressed MTCH2 promotes NSCLC cell growth potentially through the maintenance of mitochondrial hyper-function, highlighting MTCH2 as a novel and promising therapeutic target for treating this disease.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Siyang Wu
- Respiratory Intensive Care Unit, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Guohong Cao
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Peidong Song
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang-Gong Lan
- Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, China.
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Lin Zhang
- Department of Thoracic Surgery, Suzhou Ninth People's Hospital Affiliated to Soochow University, Suzhou, China.
| | - Yong-Hua Sang
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Liu Y, Chen A, Wu Y, Ni J, Wang R, Mao Y, Sun N, Mi Y. Identification of mitochondrial carrier homolog 2 as an important therapeutic target of castration-resistant prostate cancer. Cell Death Dis 2025; 16:70. [PMID: 39910035 PMCID: PMC11799199 DOI: 10.1038/s41419-025-07406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/12/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
We here investigate the expression of the mitochondrial carrier homolog 2 (MTCH2) and its potential function in castration-resistant prostate cancer (CRPC). Bioinformatic analyses reveal that MTCH2 overexpression is associated with critical clinical parameters of prostate cancer. Single-cell sequencing data indicate elevated MTCH2 expression in the prostate cancer epithelium. MTCH2 is also upregulated in locally treated CRPC tissue and various primary human CRPC cells. Using genetic silencing via shRNA and knockout (KO) through the CRISPR-sgRNA approach, we showed that the depletion of MTCH2 impaired mitochondrial function, resulting in a reduced oxygen consumption rate, diminished complex I activity, and decreased ATP levels, mitochondrial depolarization, and increased reactive oxygen species production in primary CRPC cells. The silencing or KO of MTCH2 significantly inhibited cell viability, proliferation, and migration, together with a marked increase in apoptosis in the primary CRPC cells. In contrast, ectopic expression of MTCH2 provided CRPC cells with pro-tumorigenic properties, enhancing ATP production and promoting cell proliferation and migration. MTCH2 silencing also markedly inhibited the growth of subcutaneous xenografts of the primary CRPC cells in nude mice. The MTCH2-silenced xenografts exhibited increased apoptosis, elevated lipid peroxidation, and decreased ATP levels. These results provide new insights into the role of MTCH2 in supporting mitochondrial function and CRPC progression.
Collapse
Affiliation(s)
- Yankui Liu
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Anjie Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yufan Wu
- Department of Urology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
10
|
Guo L. Mitochondrial permeability transition mediated by MTCH2 and F-ATP synthase contributes to ferroptosis defense. FEBS Lett 2025; 599:352-366. [PMID: 39227319 DOI: 10.1002/1873-3468.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/16/2024] [Accepted: 07/12/2024] [Indexed: 09/05/2024]
Abstract
The opening of the mitochondrial permeability transition pore (PTP), a Ca2+-dependent pore located in the inner mitochondrial membrane, triggers mitochondrial outer membrane permeabilization (MOMP) and induces organelle rupture. However, the underlying mechanism of PTP-induced MOMP remains unclear. Mitochondrial carrier homolog 2 (MTCH2) mediates MOMP process by facilitating the recruitment of tBID to mitochondria. Here, we show that MTCH2 binds to cyclophilin D (CyPD) and promotes the dimerization of F-ATP synthase via interaction with subunit j. The interplay between MTCH2 and subunit j coordinates MOMP and PTP to mediate the occurrence of mitochondrial permeability transition. Knockdown of CyPD, MTCH2 and subunit j markedly sensitizes cells to RSL3-induced ferroptosis, which is prevented by MitoTEMPO, suggesting that mitochondrial permeability transition mediates ferroptosis defense.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Pfanner N, den Brave F, Becker T. Mitochondrial protein import stress. Nat Cell Biol 2025; 27:188-201. [PMID: 39843636 DOI: 10.1038/s41556-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025]
Abstract
Mitochondria have to import a large number of precursor proteins from the cytosol. Chaperones keep these proteins in a largely unfolded state and guide them to the mitochondrial import sites. Premature folding, mitochondrial stress and import defects can cause clogging of import sites and accumulation of non-imported precursors, representing a critical burden for cellular proteostasis. Here we discuss how cells respond to mitochondrial protein import stress by regenerating clogged import sites and inducing stress responses. The mitochondrial protein import machinery has a dual role by serving as sensor for detecting mitochondrial dysfunction and inducing stress-response pathways. The production of chaperones that fold or sequester precursor proteins in deposits is induced and the proteasomal activity is increased to remove the excess precursor proteins. Together, these pathways reveal how mitochondria are tightly integrated into a cellular proteostasis and stress response network to maintain cell viability.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMB, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
12
|
Chourasia S, Petucci C, Shoffler C, Abbasian D, Wang H, Han X, Sivan E, Brandis A, Mehlman T, Malitsky S, Itkin M, Sharp A, Rotkopf R, Dassa B, Regev L, Zaltsman Y, Gross A. MTCH2 controls energy demand and expenditure to fuel anabolism during adipogenesis. EMBO J 2025; 44:1007-1038. [PMID: 39753955 PMCID: PMC11832942 DOI: 10.1038/s44318-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 02/19/2025] Open
Abstract
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites. Lipidomics analysis revealed a strategic adaptive reduction in membrane lipids and an increase in storage lipids in MTCH2 knockout cells. Importantly, MTCH2 knockout cells showed an increase in mitochondrial oxidative function, which may explain the higher energy demand. Interestingly, this imbalance in energy metabolism and reductive potential triggered by MTCH2-deletion prevents NIH3T3L1 preadipocytes from differentiating into mature adipocytes, an energy consuming reductive biosynthetic process. In summary, the loss of MTCH2 leads to increased mitochondrial oxidative activity and energy demand, creating a catabolic and oxidative environment that fails to fuel the anabolic processes required for lipid accumulation and adipocyte differentiation.
Collapse
Affiliation(s)
- Sabita Chourasia
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clarissa Shoffler
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dina Abbasian
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Tevie Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ayala Sharp
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Limor Regev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yehudit Zaltsman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Atan Gross
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
13
|
Sarker A, Uddin B, Ahmmed R, Mahmud S, Ajadee A, Pappu MAA, Aziz MA, Mollah MNH. Discovery of mutated oncodriver genes associated with glioblastoma originated from stem cells of subventricular zone through whole exome sequence profile analysis, and drug repurposing. Heliyon 2025; 11:e42052. [PMID: 39906820 PMCID: PMC11791140 DOI: 10.1016/j.heliyon.2025.e42052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers due to its high mortality rate in spite of intensive treatment. It may be happened because of drug resistance against their typical receptors, since these receptor genes are often mutated by environmental stress. So identifying mutated oncodriver genes which could be used as potential drug target is essential in order to develop effective new therapeutic drugs as well as better prognosis for GBM patients. In this study, we analyzed whole exome sequencing (WES) profiles of NCBI database on GBM and matched-normal (control) samples originated from astrocyte like neural stem cells (NSC) of subventricular zone (SVZ) to explore GBM-causing mutated oncodriver genes, since SVZ is considered as the origin of GBM development. We detected 16 mutated oncodriver genes. Then, filtering by differential co-expression analysis based on independent RNA-Seq profiles of CGGA database revealed 10 genes as dysregulated oncodriver genes. Following that, 3 significantly overexpressed oncodriver genes (MTCH2, VWF, and WDR89) were identified as potential drug targets. Then molecular mechanisms of GBM development were investigated by these three overexpressed driver genes through gene ontology (GO), KEGG-pathways, Gene regulatory network (GRN) and mutation analysis. Finally, overexpressed oncodriver genes guided top-ranked six drug agents (Irinotecan, Imatinib, etoposide, pazopanib, trametinib and cabozanitinib) were recommended against GBM through molecular docking study. Most of our findings received support by the literature review also. Therefore, the findings of this study might carry potential values to the wet-lab researchers for further investigation in terms of diagnosis and therapies of GBM.
Collapse
Affiliation(s)
- Arnob Sarker
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Burhan Uddin
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Reaz Ahmmed
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sabkat Mahmud
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Alvira Ajadee
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Al Amin Pappu
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Abdul Aziz
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
14
|
Latorre-Muro P, Vitale T, Ravichandran M, Zhang K, Palozzi JM, Bennett CF, Lamas-Paz A, Sohn JH, Jackson TD, Jedrychowski M, Gygi SP, Kajimura S, Schmoker A, Jeon H, Eck MJ, Puigserver P. Chaperone-mediated insertion of mitochondrial import receptor TOM70 protects against diet-induced obesity. Nat Cell Biol 2025; 27:130-140. [PMID: 39753947 DOI: 10.1038/s41556-024-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/04/2024] [Indexed: 01/18/2025]
Abstract
Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood. Here the stress-induced cytosolic chaperone PPID (peptidyl-prolyl isomerase D/cyclophilin 40/Cyp40) drives OMM insertion of the mitochondrial import receptor TOM70 that regulates body temperature and weight in obese mice, and respiratory/thermogenic function in brown adipocytes. PPID PPIase activity and C-terminal tetratricopeptide repeats, which show specificity towards TOM70 core and C-tail domains, facilitate OMM insertion. Our results provide an unprecedented role for endoplasmic-reticulum-stress-activated chaperones in controlling energy metabolism through a selective OMM protein insertion mechanism with implications in adaptation to cold temperatures and high-calorie diets.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tevis Vitale
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Katherine Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan M Palozzi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Arantza Lamas-Paz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jee Hyung Sohn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas D Jackson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Anna Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Qiu B, Xie X, Xi Y. Mitochondrial quality control: the real dawn of intervertebral disc degeneration? J Transl Med 2024; 22:1126. [PMID: 39707402 DOI: 10.1186/s12967-024-05943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Intervertebral disc degeneration is the most common disease in chronic musculoskeletal diseases and the main cause of low back pain, which seriously endangers social health level and increases people's economic burden. Disc degeneration is characterized by NP cell apoptosis, extracellular matrix degradation and disc structure changes. It progresses with age and under the influence of mechanical overload, oxidative stress and genetics. Mitochondria are not only the energy factories of cells, but also participate in a variety of cellular functions such as calcium homeostasis, regulation of cell proliferation, and control of apoptosis. The mitochondrial quality control system involves many mechanisms such as mitochondrial gene regulation, mitochondrial protein import, mitophagy, and mitochondrial dynamics. A large number of studies have confirmed that mitochondrial dysfunction is a key factor in the pathological mechanism of aging and intervertebral disc degeneration, and balancing mitochondrial quality control is extremely important for delaying and treating intervertebral disc degeneration. In this paper, we first demonstrate the molecular mechanism of mitochondrial quality control in detail by describing mitochondrial biogenesis and mitophagy. Then, we describe the ways in which mitochondrial dysfunction leads to disc degeneration, and review in detail the current research on targeting mitochondria for the treatment of disc degeneration, hoping to draw inspiration from the current research to provide innovative perspectives for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Ba Qiu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxing Xie
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
16
|
Pines O, Horwitz M, Herrmann JM. Privileged proteins with a second residence: dual targeting and conditional re-routing of mitochondrial proteins. FEBS J 2024; 291:5379-5393. [PMID: 38857249 PMCID: PMC11653698 DOI: 10.1111/febs.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Almost all mitochondrial proteins are encoded by nuclear genes and synthesized in the cytosol as precursor proteins. Signals in the amino acid sequence of these precursors ensure their targeting and translocation into mitochondria. However, in many cases, only a certain fraction of a specific protein is transported into mitochondria, while the rest either remains in the cytosol or undergoes reverse translocation to the cytosol, and can populate other cellular compartments. This phenomenon is called dual localization which can be instigated by different mechanisms. These include alternative start or stop codons, differential transcripts, and ambiguous or competing targeting sequences. In many cases, dual localization might serve as an economic strategy to reduce the number of required genes; for example, when the same groups of enzymes are required both in mitochondria and chloroplasts or both in mitochondria and the nucleus/cytoplasm. Such cases frequently employ ambiguous targeting sequences to distribute proteins between both organelles. However, alternative localizations can also be used for signaling, for example when non-imported precursors serve as mitophagy signals or when they represent transcription factors in the nucleus to induce the mitochondrial unfolded stress response. This review provides an overview regarding the mechanisms and the physiological consequences of dual targeting.
Collapse
Affiliation(s)
- Ophry Pines
- Microbiology and Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Margalit Horwitz
- Microbiology and Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
17
|
Kalinin IA, Peled-Zehavi H, Barshap ABD, Tamari SA, Weiss Y, Nevo R, Fluman N. Features of membrane protein sequence direct post-translational insertion. Nat Commun 2024; 15:10198. [PMID: 39587101 PMCID: PMC11589881 DOI: 10.1038/s41467-024-54575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
The proper folding of multispanning membrane proteins (MPs) hinges on the accurate insertion of their transmembrane helices (TMs) into the membrane. Predominantly, TMs are inserted during protein translation, via a conserved mechanism centered around the Sec translocon. Our study reveals that the C-terminal TMs (cTMs) of numerous MPs across various organisms bypass this cotranslational route, necessitating an alternative posttranslational insertion strategy. We demonstrate that evolution has refined the hydrophilicity and length of the C-terminal tails of these proteins to optimize cTM insertion. Alterations in the C-tail sequence disrupt cTM insertion in both E. coli and human, leading to protein defects, loss of function, and genetic diseases. In E. coli, we identify YidC, a member of the widespread Oxa1 family, as the insertase facilitating cTMs insertion, with C-tail mutations disrupting the productive interaction of cTMs with YidC. Thus, MP sequences are fine-tuned for effective collaboration with the cellular biogenesis machinery, ensuring proper membrane protein folding.
Collapse
Affiliation(s)
- Ilya A Kalinin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Peled-Zehavi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon B D Barshap
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shai A Tamari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yarden Weiss
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Fluman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
18
|
Ganesan I, Busto JV, Pfanner N, Wiedemann N. Biogenesis of mitochondrial β-barrel membrane proteins. FEBS Open Bio 2024; 14:1595-1609. [PMID: 39343721 PMCID: PMC11452307 DOI: 10.1002/2211-5463.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
β-barrel membrane proteins in the mitochondrial outer membrane are crucial for mediating the metabolite exchange between the cytosol and the mitochondrial intermembrane space. In addition, the β-barrel membrane protein subunit Tom40 of the translocase of the outer membrane (TOM) is essential for the import of the vast majority of mitochondrial proteins encoded in the nucleus. The sorting and assembly machinery (SAM) in the outer membrane is required for the membrane insertion of mitochondrial β-barrel proteins. The core subunit Sam50, which has been conserved from bacteria to humans, is itself a β-barrel protein. The β-strands of β-barrel precursor proteins are assembled at the Sam50 lateral gate forming a Sam50-preprotein hybrid barrel. The assembled precursor β-barrel is finally released into the outer mitochondrial membrane by displacement of the nascent β-barrel, termed the β-barrel switching mechanism. SAM forms supercomplexes with TOM and forms a mitochondrial outer-to-inner membrane contact site with the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. SAM shares subunits with the ER-mitochondria encounter structure (ERMES), which forms a membrane contact site between the mitochondrial outer membrane and the endoplasmic reticulum. Therefore, β-barrel membrane protein biogenesis is closely connected to general mitochondrial protein and lipid biogenesis and plays a central role in mitochondrial maintenance.
Collapse
Affiliation(s)
- Iniyan Ganesan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
| | - Jon V. Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
- CIBSS Centre for Integrative Biological Signalling StudiesUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
- CIBSS Centre for Integrative Biological Signalling StudiesUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
| |
Collapse
|
19
|
Sun G, Song Y, Li C, Sun B, Li C, Sun J, Xiao P, Zhang Z. MTCH2 promotes the malignant progression of ovarian cancer through the upregulation of AIMP2 expression levels, mitochondrial dysfunction and by mediating energy metabolism. Oncol Lett 2024; 28:492. [PMID: 39185493 PMCID: PMC11342418 DOI: 10.3892/ol.2024.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
Ovarian cancer (OC) is a gynecological malignancy that ranks among the most common female cancers worldwide and notably reduces a patient's quality of life. Mitochondrial carrier homology 2 (MTCH2) is a mitochondrial outer membrane protein that serves a regulatory role in mitochondrial metabolism and cell death. The precise contribution and underlying molecular pathways of MTCH2 in the context of OC development is currently unclear. The present study aimed to investigate the roles of MTCH2 in the energy metabolism, cell proliferation and metastatic potential of OC cells and evaluate the regulatory relationship between MTCH2, aminoacyl transfer RNA synthetase-interacting multifunctional protein 2 (AIMP2) and claudin-3. An analysis of 67 patients with high-grade serous OC demonstrated increased expression levels of MTCH2, AIMP2 and claudin-3 in OC tumor tissue samples compared with in corresponding normal tissues adjacent to OC tissue samples. MTCH2 overexpression was significantly associated with the International Federation of Gynecology and Obstetrics stage and tumor differentiation of the OC tumor samples. In vitro experiments using the SK-OV-3 OC cell line demonstrated that MTCH2 exerts a regulatory effect on the cell proliferation, invasion and migratory capabilities of these cells. Knockdown of MTCH2 reduced ATP production, induced mitochondrial dysfunction and promoted cytoskeleton remodeling and apoptosis in SK-OV-3 OC cells. In addition, MTCH2 knockdown downregulated the expression levels of both claudin-3 and AIMP2 proteins. Knockdown of AIMP2 inhibited the regulatory effect of MTCH2. Co-immunoprecipitation experiments demonstrated that MTCH2 interacts with AIMP2 and claudin-3. The present study provides novel insights into the treatment of OC metastasis, as MTCH2 was demonstrated to serve roles in the progression of OC cells through the regulation of claudin-3 via AIMP2, which could provide novel insights into the treatment of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Guangyu Sun
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yanmin Song
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Congxian Li
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Bo Sun
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Chengcheng Li
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Jinbao Sun
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Ping Xiao
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zhengmao Zhang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Hebei Cancer Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
20
|
Kizmaz B, Nutz A, Egeler A, Herrmann JM. Protein insertion into the inner membrane of mitochondria: routes and mechanisms. FEBS Open Bio 2024; 14:1627-1639. [PMID: 38664330 PMCID: PMC11452304 DOI: 10.1002/2211-5463.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 10/06/2024] Open
Abstract
The inner membrane of mitochondria contains hundreds of different integral membrane proteins. These proteins transport molecules into and out of the matrix, they carry out multifold catalytic reactions and they promote the biogenesis or degradation of mitochondrial constituents. Most inner membrane proteins are encoded by nuclear genes and synthesized in the cytosol from where they are imported into mitochondria by translocases in the outer and inner membrane. Three different import routes direct proteins into the inner membrane and allow them to acquire their appropriate membrane topology. First, mitochondrial import intermediates can be arrested at the level of the TIM23 inner membrane translocase by a stop-transfer sequence to reach the inner membrane by lateral insertion. Second, proteins can be fully translocated through the TIM23 complex into the matrix from where they insert into the inner membrane in an export-like reaction. Carriers and other polytopic membrane proteins embark on a third insertion pathway: these hydrophobic proteins employ the specialized TIM22 translocase to insert from the intermembrane space (IMS) into the inner membrane. This review article describes these three targeting routes and provides an overview of the machinery that promotes the topogenesis of mitochondrial inner membrane proteins.
Collapse
Affiliation(s)
- Büsra Kizmaz
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | - Annika Nutz
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | - Annika Egeler
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | | |
Collapse
|
21
|
Mussulini BHM, Wasilewski M, Chacinska A. Methods to monitor mitochondrial disulfide bonds. Methods Enzymol 2024; 706:125-158. [PMID: 39455213 DOI: 10.1016/bs.mie.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain numerous proteins that utilize the chemistry of cysteine residues, which can be reversibly oxidized. These proteins are involved in mitochondrial biogenesis, protection against oxidative stress, metabolism, energy transduction to adenosine triphosphate, signaling and cell death among other functions. Many proteins located in the mitochondrial intermembrane space are imported by the mitochondrial import and assembly pathway the activity of which is based on the reversible oxidation of cysteine residues and oxidative trapping of substrates. Oxidative modifications of cysteine residues are particularly difficult to study because of their labile character. Here we present techniques that allow for monitoring the oxidative state of mitochondrial proteins as well as to investigate the mitochondrial import and assembly pathway. This chapter conveys basic concepts on sample preparation and techniques to monitor the redox state of cysteine residues in mitochondrial proteins as well as the strategies to study mitochondrial import and assembly pathway.
Collapse
|
22
|
Page KR, Nguyen VN, Pleiner T, Tomaleri GP, Wang ML, Guna A, Hazu M, Wang TY, Chou TF, Voorhees RM. Role of a holo-insertase complex in the biogenesis of biophysically diverse ER membrane proteins. Mol Cell 2024; 84:3302-3319.e11. [PMID: 39173640 DOI: 10.1016/j.molcel.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/19/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
Mammalian membrane proteins perform essential physiologic functions that rely on their accurate insertion and folding at the endoplasmic reticulum (ER). Using forward and arrayed genetic screens, we systematically studied the biogenesis of a panel of membrane proteins, including several G-protein-coupled receptors (GPCRs). We observed a central role for the insertase, the ER membrane protein complex (EMC), and developed a dual-guide approach to identify genetic modifiers of the EMC. We found that the back of Sec61 (BOS) complex, a component of the multipass translocon, was a physical and genetic interactor of the EMC. Functional and structural analysis of the EMC⋅BOS holocomplex showed that characteristics of a GPCR's soluble domain determine its biogenesis pathway. In contrast to prevailing models, no single insertase handles all substrates. We instead propose a unifying model for coordination between the EMC, the multipass translocon, and Sec61 for the biogenesis of diverse membrane proteins in human cells.
Collapse
Affiliation(s)
- Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Vy N Nguyen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Tino Pleiner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Ting-Yu Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
23
|
Borgert L, Becker T, den Brave F. Conserved quality control mechanisms of mitochondrial protein import. J Inherit Metab Dis 2024; 47:903-916. [PMID: 38790152 DOI: 10.1002/jimd.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria carry out essential functions for the cell, including energy production, various biosynthesis pathways, formation of co-factors and cellular signalling in apoptosis and inflammation. The functionality of mitochondria requires the import of about 900-1300 proteins from the cytosol in baker's yeast Saccharomyces cerevisiae and human cells, respectively. The vast majority of these proteins pass the outer membrane in a largely unfolded state through the translocase of the outer mitochondrial membrane (TOM) complex. Subsequently, specific protein translocases sort the precursor proteins into the outer and inner membranes, the intermembrane space and matrix. Premature folding of mitochondrial precursor proteins, defects in the mitochondrial protein translocases or a reduction of the membrane potential across the inner mitochondrial membrane can cause stalling of precursors at the protein import apparatus. Consequently, the translocon is clogged and non-imported precursor proteins accumulate in the cell, which in turn leads to proteotoxic stress and eventually cell death. To prevent such stress situations, quality control mechanisms remove non-imported precursor proteins from the TOM channel. The highly conserved ubiquitin-proteasome system of the cytosol plays a critical role in this process. Thus, the surveillance of protein import via the TOM complex involves the coordinated activity of mitochondria-localized and cytosolic proteins to prevent proteotoxic stress in the cell.
Collapse
Affiliation(s)
- Lion Borgert
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Fabian den Brave
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Glover HL, Schreiner A, Dewson G, Tait SWG. Mitochondria and cell death. Nat Cell Biol 2024; 26:1434-1446. [PMID: 38902422 DOI: 10.1038/s41556-024-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024]
Abstract
Mitochondria are cellular factories for energy production, calcium homeostasis and iron metabolism, but they also have an unequivocal and central role in intrinsic apoptosis through the release of cytochrome c. While the subsequent activation of proteolytic caspases ensures that cell death proceeds in the absence of collateral inflammation, other phlogistic cell death pathways have been implicated in using, or engaging, mitochondria. Here we discuss the emerging complexities of intrinsic apoptosis controlled by the BCL-2 family of proteins. We highlight the emerging theory that non-lethal mitochondrial apoptotic signalling has diverse biological roles that impact cancer, innate immunity and ageing. Finally, we delineate the role of mitochondria in other forms of cell death, such as pyroptosis, ferroptosis and necroptosis, and discuss mitochondria as central hubs for the intersection and coordination of cell death signalling pathways, underscoring their potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Hannah L Glover
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Annabell Schreiner
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Stephen W G Tait
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
25
|
Fielden LF, Busch JD, Lindau C, Qiu J, Wiedemann N. Analysis of mitochondrial protein translocation by disulfide bond formation and cysteine specific crosslinking. Methods Enzymol 2024; 707:257-298. [PMID: 39488378 DOI: 10.1016/bs.mie.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Protein translocation is a highly dynamic process and, in addition, mitochondrial protein import is especially complicated as the majority of nuclear encoded precursor proteins must engage with multiple translocases before they are assembled in the correct mitochondrial subcompartment. In this chapter, we describe assays for engineered disulfide bond formation and cysteine specific crosslinking to analyze the rearrangement of translocase subunits or to probe protein-protein interactions between precursor proteins and translocase subunits. Such assays were used to characterize the translocase of the outer membrane, the presequence translocase of the inner membrane and the sorting and assembly machinery for the biogenesis of β-Barrel proteins. Moreover, these approaches were also employed to determine the translocation path of precursor proteins (identification of import receptors and specific domains required for translocation) as well as the analysis, location and translocase subunit dependence for the formation of β-Barrel proteins. Here we describe how engineered disulfide bond formation and cysteine specific crosslinking assays are planned and performed and discuss important aspects for its application to study mitochondrial protein translocation.
Collapse
Affiliation(s)
- Laura F Fielden
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob D Busch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jian Qiu
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
26
|
Crameri JJ, Stojanovski D. Monitoring the in vitro import and assembly of mitochondrial precursor proteins into mammalian mitochondria. Methods Enzymol 2024; 706:365-390. [PMID: 39455224 DOI: 10.1016/bs.mie.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondrial protein import is a complex process governing the delivery of the organelle's proteome. This process, in turn, is essential for maintaining mitochondrial function and cellular homeostasis. Initiated by protein synthesis in the cytoplasm, precursor proteins destined for the mitochondria possess targeting signals that guide them to the mitochondrial surface. At mitochondria, the translocation of proteins across the mitochondrial membranes involves an intricate interplay between translocases, chaperones, and receptors. The mitochondrial import assay offers researchers the opportunity to recapitulate the process of protein import in vitro. The assay has served as an indispensable tool in helping decipher the intricacies of protein translocation into mitochondria, first in fungal models, and subsequently in higher eukaryotic models. In this chapter, we will describe how protein import can be assayed using mammalian mitochondria and provide insight into the types of questions that can be addressed in mammalian mitochondrial biology using this experimental approach.
Collapse
Affiliation(s)
- Jordan J Crameri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia; The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia; The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
27
|
Steymans I, Becker T. Monitoring α-helical membrane protein insertion into the outer mitochondrial membrane of yeast cells. Methods Enzymol 2024; 707:39-62. [PMID: 39488383 DOI: 10.1016/bs.mie.2024.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondria are surrounded by two membranes, the outer and inner membrane. The outer membrane contains a few dozen integral membrane proteins that mediate transport, fusion and fission processes, form contact sites and are involved in signaling pathways. There are two different types of outer membrane proteins. A few proteins are membrane-integrated by a transmembrane β-barrel, while other proteins are embedded by single or multiple α-helical membrane segments. All outer membrane proteins are produced on cytosolic ribosomes, but their import mechanisms differ. The translocase of the outer mitochondrial membrane (TOM complex) and the sorting and assembly machinery (SAM complex) import β-barrel proteins. Different import pathways have been reported for proteins with α-helical membrane anchors. The mitochondrial import (MIM) complex is the major insertase for this type of proteins. The in vitro import of radiolabeled precursor proteins into isolated mitochondria is a versatile technique to study protein import into the outer mitochondrial membrane. The import of these proteins does not involve proteolytic processing and is not dependent on the membrane potential. Therefore, the import assay has to be combined with blue native electrophoresis, carbonate extraction or protease accessibility assays to determine the import efficiency. These techniques allow to define import steps, assembly intermediates and study membrane integration. The in vitro import assay has been a central tool to uncover specific import routes and mechanisms.
Collapse
Affiliation(s)
- Isabelle Steymans
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
28
|
Hazu M, Guna A, Stevens TA, Voorhees RM. Monitoring alpha-helical membrane protein insertion into the outer mitochondrial membrane in mammalian cells. Methods Enzymol 2024; 707:63-99. [PMID: 39488394 DOI: 10.1016/bs.mie.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondrial function is dependent on the correct localization and insertion of membrane proteins into the outer mitochondrial membrane (OM). In mammals, the OM contains ∼150 proteins, the majority of which contain α-helical transmembrane domains. This family of α-helical proteins has significantly expanded in metazoans and has evolved to mediate critical signaling and regulatory processes including mitochondrial fusion and fission, mitophagy, apoptosis and aspects of the innate immune response. Recently, the conserved OM protein MTCH2 has been identified as an insertase for α-helical proteins in human mitochondria. However, our understanding of the targeting, insertion, folding and quality control of α-helical OM proteins remains incomplete. Here we highlight three methods to monitor α-helical protein insertion both in human cells and in vitro. First, we describe a versatile split fluorescent reporter system that can be used to monitor the insertion of α-helical proteins into the OM in human cells. Second, we delineate a streamlined approach to isolating functional, insertion competent mitochondria from human cells that are compatible with in vitro import assays. Finally, we explain in detail how to reconstitute the insertion of α-helical proteins in a minimal system, by creating functional proteoliposomes containing purified MTCH2. Together these tools represent an integrated platform to enable the detailed mechanistic analysis of biogenesis of the diverse and physiologically essential α-helical OM proteome.
Collapse
Affiliation(s)
- Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
29
|
Calvo Santos L, den Brave F. Analysis of quality control pathways for the translocase of the outer mitochondrial membrane. Methods Enzymol 2024; 707:565-584. [PMID: 39488391 DOI: 10.1016/bs.mie.2024.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The functionality of mitochondria depends on the import of proteins synthesized on cytosolic ribosomes. Impaired import into mitochondria results in mitochondrial dysfunction and proteotoxic accumulation of precursor proteins in the cytosol. All proteins sorted to inner mitochondrial compartments are imported via the translocase of the outer membrane (TOM) complex. Premature protein folding, a reduction of the mitochondrial membrane potential or defects in translocases can result in precursor arrest during translocation, thereby clogging the TOM channel and blocking protein import. In recent years, different pathways have been identified, which employ the cytosolic ubiquitin-proteasome system in the extraction and turnover of precursor proteins from the TOM complex. Central events in this process are the modification of arrested precursor proteins with ubiquitin, their extraction by AAA-ATPases and subsequent degradation by the 26 S proteasome. Analysis of these processes is largely facilitated by the expression of model proteins that function as efficient "cloggers" of the import machinery. Here we describe the use of such clogger proteins and how their handling by the protein quality control machinery can be monitored. We provide protocols to study the extent of clogging, the ubiquitin-modification of arrested precursor proteins and their turnover by the 26 S proteasome.
Collapse
Affiliation(s)
- Lara Calvo Santos
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
30
|
Özdemir M, Dennerlein S. The TOM complex from an evolutionary perspective and the functions of TOMM70. Biol Chem 2024; 0:hsz-2024-0043. [PMID: 39092472 DOI: 10.1515/hsz-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
In humans, up to 1,500 mitochondrial precursor proteins are synthesized at cytosolic ribosomes and must be imported into the organelle. This is not only essential for mitochondrial but also for many cytosolic functions. The majority of mitochondrial precursor proteins are imported over the translocase of the outer membrane (TOM). In recent years, high-resolution structure analyses from different organisms shed light on the composition and arrangement of the TOM complex. Although significant similarities have been found, differences were also observed, which have been favored during evolution and could reflect the manifold functions of TOM with cellular signaling and its response to altered metabolic situations. A key component within these regulatory mechanisms is TOMM70, which is involved in protein import, forms contacts to the ER and the nucleus, but is also involved in cellular defense mechanisms during infections.
Collapse
Affiliation(s)
- Metin Özdemir
- Institute for Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
31
|
Onwunma J, Binsabaan S, Allen SP, Sankaran B, Wohlever ML. The structural and biophysical basis of substrate binding to the hydrophobic groove in Ubiquilin Sti1 domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602902. [PMID: 39026758 PMCID: PMC11257586 DOI: 10.1101/2024.07.10.602902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ubiquilins are a family of cytosolic proteins that ferry ubiquitinated substrates to the proteasome for degradation. Recent work has demonstrated that Ubiquilins can also act as molecular chaperones, utilizing internal Sti1 domains to directly bind to hydrophobic sequences. Ubiquilins are associated with several neurodegenerative diseases with point mutations in UBQLN2 causing dominant, X-linked Amyotrophic Lateral Sclerosis (ALS). The molecular basis of Ubiquilin chaperone activity and how ALS mutations in the Sti1 domains affect Ubiquilin activity are poorly understood. This study presents the first crystal structure of the Sti1 domain from a fungal Ubiquilin homolog bound to a transmembrane domain (TMD). The structure reveals that two Sti1 domains form a head-to-head dimer, creating a hydrophobic cavity that accommodates two TMDs. Mapping the UBQLN2 sequence onto the structure shows that several ALS mutations are predicted to disrupt the hydrophobic groove. Using a newly developed competitive binding assay, we show that Ubiquilins preferentially bind to hydrophobic substrates with low helical propensity, motifs that are enriched in both substrates and in Ubiquilins. This study provides insights into the molecular and structural basis for Ubiquilin substrate binding, with broad implications for the role of the Sti1 domain in phase separation and ALS.
Collapse
Affiliation(s)
- Joan Onwunma
- Previously at University of Toledo, Department of Chemistry & Biochemistry
| | | | - Shawn P Allen
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| | - Banumathi Sankaran
- Lawrence Berkley National Lab, Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging
| | - Matthew L Wohlever
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| |
Collapse
|
32
|
den Brave F, Schulte U, Fakler B, Pfanner N, Becker T. Mitochondrial complexome and import network. Trends Cell Biol 2024; 34:578-594. [PMID: 37914576 DOI: 10.1016/j.tcb.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Mitochondria perform crucial functions in cellular metabolism, protein and lipid biogenesis, quality control, and signaling. The systematic analysis of protein complexes and interaction networks provided exciting insights into the structural and functional organization of mitochondria. Most mitochondrial proteins do not act as independent units, but are interconnected by stable or dynamic protein-protein interactions. Protein translocases are responsible for importing precursor proteins into mitochondria and form central elements of several protein interaction networks. These networks include molecular chaperones and quality control factors, metabolite channels and respiratory chain complexes, and membrane and organellar contact sites. Protein translocases link the distinct networks into an overarching network, the mitochondrial import network (MitimNet), to coordinate biogenesis, membrane organization and function of mitochondria.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
33
|
Hegde RS, Keenan RJ. A unifying model for membrane protein biogenesis. Nat Struct Mol Biol 2024; 31:1009-1017. [PMID: 38811793 PMCID: PMC7616256 DOI: 10.1038/s41594-024-01296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/31/2024]
Abstract
α-Helical integral membrane proteins comprise approximately 25% of the proteome in all organisms. The membrane proteome is highly diverse, varying in the number, topology, spacing and properties of transmembrane domains. This diversity imposes different constraints on the insertion of different regions of a membrane protein into the lipid bilayer. Here, we present a cohesive framework to explain membrane protein biogenesis, in which different parts of a nascent substrate are triaged between Oxa1 and SecY family members for insertion. In this model, Oxa1 family proteins insert transmembrane domains flanked by short translocated segments, whereas the SecY channel is required for insertion of transmembrane domains flanked by long translocated segments. Our unifying model rationalizes evolutionary, genetic, biochemical and structural data across organisms and provides a foundation for future mechanistic studies of membrane protein biogenesis.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
34
|
Peng X, Yang Y, Hou R, Zhang L, Shen C, Yang X, Luo Z, Yin Z, Cao Y. MTCH2 in Metabolic Diseases, Neurodegenerative Diseases, Cancers, Embryonic Development and Reproduction. Drug Des Devel Ther 2024; 18:2203-2213. [PMID: 38882047 PMCID: PMC11180440 DOI: 10.2147/dddt.s460448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Mitochondrial carrier homolog 2 (MTCH2) is a member of the solute carrier 25 family, located on the outer mitochondrial membrane. MTCH2 was first identified in 2000. The development in MTCH2 research is rapidly increasing. The most well-known role of MTCH2 is linking to the pro-apoptosis BID to facilitate mitochondrial apoptosis. Genetic variants in MTCH2 have been investigated for their association with metabolic and neurodegenerative diseases, however, no intervention or therapeutic suggestions were provided. Recent studies revealed the physiological and pathological function of MTCH2 in metabolic diseases, neurodegenerative diseases, cancers, embryonic development and reproduction via regulating mitochondrial apoptosis, metabolic shift between glycolysis and oxidative phosphorylation, mitochondrial fusion/fission, epithelial-mesenchymal transition, etc. This review endeavors to assess a total of 131 published articles to summarise the structure and physiological/pathological role of MTCH2, which has not previously been conducted. This review concludes that MTCH2 plays a crucial role in metabolic diseases, neurodegenerative diseases, cancers, embryonic development and reproduction, and the predominant molecular mechanism is regulation of mitochondrial function. This review gives a comprehensive state of current knowledgement on MTCH2, which will promote the therapeutic research of MTCH2.
Collapse
Affiliation(s)
- Xiaoqing Peng
- School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, Anhui, People’s Republic of China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, People’s Republic of China
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, People’s Republic of China
| | - Ruirui Hou
- School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
| | - Longbiao Zhang
- School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
| | - Can Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaoyan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhigang Luo
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zongzhi Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, People’s Republic of China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, People’s Republic of China
| |
Collapse
|
35
|
Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell 2024; 187:2601-2627. [PMID: 38788685 DOI: 10.1016/j.cell.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Stem Cells and Metabolism Program, Faculty of Medicine, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland; HUS Diagnostics, Helsinki University Hospital, Helsinki, Finland.
| | - Jodi Nunnari
- Altos Labs, Bay Area Institute, Redwood Shores, CA, USA.
| |
Collapse
|
36
|
Ulupinar P, Çağlayan E, Rayaman E, Nagata K, Turan K. The mitochondrial carrier homolog 2 is involved in down-regulation of influenza A virus replication. Mol Biol Rep 2024; 51:642. [PMID: 38727866 DOI: 10.1007/s11033-024-09584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated. METHODS The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms. RESULTS It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2. CONCLUSION It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.
Collapse
Affiliation(s)
- Pınar Ulupinar
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Elif Çağlayan
- University of Health Sciences, Kartal Koşuyolu High Speciality Educational and Research Hospital, Istanbul, Turkey
| | - Erkan Rayaman
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Kyosuke Nagata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kadir Turan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.
| |
Collapse
|
37
|
Jenner A, Garcia-Saez AJ. The regulation of the apoptotic pore-An immunological tightrope walk. Adv Immunol 2024; 162:59-108. [PMID: 38866439 DOI: 10.1016/bs.ai.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Apoptotic pore formation in mitochondria is the pivotal point for cell death during mitochondrial apoptosis. It is regulated by BCL-2 family proteins in response to various cellular stress triggers and mediates mitochondrial outer membrane permeabilization (MOMP). This allows the release of mitochondrial contents into the cytosol, which triggers rapid cell death and clearance through the activation of caspases. However, under conditions of low caspase activity, the mitochondrial contents released into the cytosol through apoptotic pores serve as inflammatory signals and activate various inflammatory responses. In this chapter, we discuss how the formation of the apoptotic pore is regulated by BCL-2 proteins as well as other cellular or mitochondrial proteins and membrane lipids. Moreover, we highlight the importance of sublethal MOMP in the regulation of mitochondrial-activated inflammation and discuss its physiological consequences in the context of pathogen infection and disease and how it can potentially be exploited therapeutically, for example to improve cancer treatment.
Collapse
Affiliation(s)
- Andreas Jenner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
38
|
Saukko-Paavola AJ, Klemm RW. Remodelling of mitochondrial function by import of specific lipids at multiple membrane-contact sites. FEBS Lett 2024; 598:1274-1291. [PMID: 38311340 DOI: 10.1002/1873-3468.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Organelles form physical and functional contact between each other to exchange information, metabolic intermediates, and signaling molecules. Tethering factors and contact site complexes bring partnering organelles into close spatial proximity to establish membrane contact sites (MCSs), which specialize in unique functions like lipid transport or Ca2+ signaling. Here, we discuss how MCSs form dynamic platforms that are important for lipid metabolism. We provide a perspective on how import of specific lipids from the ER and other organelles may contribute to remodeling of mitochondria during nutrient starvation. We speculate that mitochondrial adaptation is achieved by connecting several compartments into a highly dynamic organelle network. The lipid droplet appears to be a central hub in coordinating the function of these organelle neighborhoods.
Collapse
Affiliation(s)
| | - Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
39
|
Li D, Rocha-Roa C, Schilling MA, Reinisch KM, Vanni S. Lipid scrambling is a general feature of protein insertases. Proc Natl Acad Sci U S A 2024; 121:e2319476121. [PMID: 38621120 PMCID: PMC11047089 DOI: 10.1073/pnas.2319476121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases." These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far-overlooked role in membrane dynamics as scramblases.
Collapse
Affiliation(s)
- Dazhi Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Cristian Rocha-Roa
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
| | - Matthew A. Schilling
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Stefano Vanni
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, FribourgCH-1700, Switzerland
| |
Collapse
|
40
|
Bartoš L, Menon AK, Vácha R. Insertases scramble lipids: Molecular simulations of MTCH2. Structure 2024; 32:505-510.e4. [PMID: 38377988 PMCID: PMC11001264 DOI: 10.1016/j.str.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/30/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Scramblases play a pivotal role in facilitating bidirectional lipid transport across cell membranes, thereby influencing lipid metabolism, membrane homeostasis, and cellular signaling. MTCH2, a mitochondrial outer membrane protein insertase, has a membrane-spanning hydrophilic groove resembling those that form the lipid transit pathway in known scramblases. Employing both coarse-grained and atomistic molecular dynamics simulations, we show that MTCH2 significantly reduces the free energy barrier for lipid movement along the groove and therefore can indeed function as a scramblase. Notably, the scrambling rate of MTCH2 in silico is similar to that of voltage-dependent anion channel (VDAC), a recently discovered scramblase of the outer mitochondrial membrane, suggesting a potential complementary physiological role for these mitochondrial proteins. Finally, our findings suggest that other insertases which possess a hydrophilic path across the membrane like MTCH2, can also function as scramblases.
Collapse
Affiliation(s)
- Ladislav Bartoš
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
41
|
Lee-Glover LP, Shutt TE. Mitochondrial quality control pathways sense mitochondrial protein import. Trends Endocrinol Metab 2024; 35:308-320. [PMID: 38103974 DOI: 10.1016/j.tem.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Mitochondrial quality control (MQC) mechanisms are required to maintain a functional proteome, which enables mitochondria to perform a myriad of important cellular functions from oxidative phosphorylation to numerous other metabolic pathways. Mitochondrial protein homeostasis begins with the import of over 1000 nuclear-encoded mitochondrial proteins and the synthesis of 13 mitochondrial DNA-encoded proteins. A network of chaperones and proteases helps to fold new proteins and degrade unnecessary, damaged, or misfolded proteins, whereas more extensive damage can be removed by mitochondrial-derived vesicles (MDVs) or mitochondrial autophagy (mitophagy). Here, focusing on mechanisms in mammalian cells, we review the importance of mitochondrial protein import as a sentinel of mitochondrial function that activates multiple MQC mechanisms when impaired.
Collapse
Affiliation(s)
- Laurie P Lee-Glover
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Timothy E Shutt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
42
|
Jiang W, Miao Y, Xing X, Liu S, Xing W, Qian F. MTCH2 stimulates cellular proliferation and cycles via PI3K/Akt pathway in breast cancer. Heliyon 2024; 10:e28172. [PMID: 38560664 PMCID: PMC10979243 DOI: 10.1016/j.heliyon.2024.e28172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The MTCH2 protein is located on the mitochondrial outer membrane and regulates mitochondria-related cell death. This study set out to investigate the role of MTCH2 in the underlying pathophysiological mechanisms of breast cancer (BC). MTCH2 expression levels in BC were analyzed using bioinformatics prior to verification by cell lines in vitro. Experiments of over-expression and siRNA-mediated knockdown of MTCH2 were conducted to assess its biological functions, including its effects on cellular proliferation and cycle progression. Xenografts were utilised for in vivo study and signaling pathway alterations were examined to identify the mechanisms driven by MTCH2 in BC proliferation and cell-cycle regulation. MTCH2 was up-regulated in BC and correlated with patients' overall survival. Over-expression of MTCH2 promoted cellular proliferation and cycle progression, while silencing MTCH2 had the opposite effect. Xenograft experiments were utilised to confirm the in vitro cellular findings and it was identified that the PI3K/Akt signaling pathway was activated by MTCH2 over-expression and suppressed by its silencing. Moreover, the activation of IGF-1R rescued cellular growth and cycle arrest induced by MTCH2-silencing. Overall, this study reveals that expression of MTCH2 in BC is upregulated and potentiates cellular proliferation and cycle progression via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wenying Jiang
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
- Department of Breast Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Yuxia Miao
- Department of Echocardiography, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Xiaoxiao Xing
- Department of Ultrasound Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Shuiqing Liu
- Department of Ultrasound Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Feng Qian
- Department of Ultrasound Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
- Department of Ultrasonography, People’s Hospital of Ziyang County, Ankang, 725399, China
| |
Collapse
|
43
|
Muthukumar G, Stevens TA, Inglis AJ, Esantsi TK, Saunders RA, Schulte F, Voorhees RM, Guna A, Weissman JS. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. Mol Cell 2024; 84:1101-1119.e9. [PMID: 38428433 DOI: 10.1016/j.molcel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
Mitochondrial outer membrane ⍺-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse proteins remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse ⍺-helical substrates reveals that these components are organized into distinct targeting pathways that act on substrates based on their topology. NAC is required for the efficient targeting of polytopic proteins, whereas signal-anchored proteins require TTC1, a cytosolic chaperone that physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, the targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
Collapse
Affiliation(s)
- Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alina Guna
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA.
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
44
|
Zhang JW, Huang LY, Li YN, Tian Y, Yu J, Wang XF. Mitochondrial carrier homolog 2 increases malignant phenotype of human gastric epithelial cells and promotes proliferation, invasion, and migration of gastric cancer cells. World J Gastrointest Oncol 2024; 16:991-1005. [PMID: 38577443 PMCID: PMC10989370 DOI: 10.4251/wjgo.v16.i3.991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND The precise role of mitochondrial carrier homolog 2 (MTCH2) in promoting malignancy in gastric mucosal cells and its involvement in gastric cancer cell metastasis have not been fully elucidated. AIM To determine the role of MTCH2 in gastric cancer. METHODS We collected 65 samples of poorly differentiated gastric cancer tissue and adjacent tissues, constructed MTCH2-overexpressing and MTCH2-knockdown cell models, and evaluated the proliferation, migration, and invasion of human gastric epithelial cells (GES-1) and human gastric cancer cells (AGS) cells. The mitochondrial membrane potential (MMP), mitochondrial permeability transformation pore (mPTP) and ATP fluorescence probe were used to detect mitochondrial function. Mitochondrial function and ATP synthase protein levels were detected via Western blotting. RESULTS The expression of MTCH2 and ATP2A2 in gastric cancer tissues was significantly greater than that in adjacent tissues. Overexpression of MTCH2 promoted colony formation, invasion, migration, MMP expression and ATP production in GES-1 and AGS cells while upregulating ATP2A2 expression and inhibiting cell apoptosis; knockdown of MTCH2 had the opposite effect, promoting overactivation of the mPTP and promoting apoptosis. CONCLUSION MTCH2 can increase the malignant phenotype of GES-1 cells and promote the proliferation, invasion, and migration of gastric cancer cells by regulating mitochondrial function, providing a basis for targeted therapy for gastric cancer cells.
Collapse
Affiliation(s)
- Jing-Wen Zhang
- School of Basic Medical Science, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling-Yan Huang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ya-Ning Li
- School of Basic Medical Science, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ying Tian
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia Yu
- School of Basic Medical Science, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Fei Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| |
Collapse
|
45
|
Zheng X, Chu B. The biology of mitochondrial carrier homolog 2. Mitochondrion 2024; 75:101837. [PMID: 38158152 DOI: 10.1016/j.mito.2023.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The mitochondrial carrier system is in charge of small molecule transport between the mitochondria and the cytoplasm as well as being an integral portion of the core mitochondrial function. One member of the mitochondrial carrier family of proteins, mitochondrial carrier homolog 2 (MTCH2), is characterized as a critical mitochondrial outer membrane protein insertase participating in mitochondrial homeostasis. Accumulating evidence demonstrate that MTCH2 is integrally linked to cell death and mitochondrial metabolism, and its genetic alterations cause a variety of disease phenotypes, ranging from obesity, Alzheimer's disease, and tumor. To provide a comprehensive insight into the current understanding of MTCH2, we present a detailed description of the physiopathological functions of MTCH2, ranging from apoptosis, mitochondrial dynamics, and metabolic homeostasis regulation. Moreover, we summarized the impact of MTCH2 in human diseases, and highlighted tumors, to assess the role of MTCH2 mutations or variable expression on pathogenesis and target therapeutic options.
Collapse
Affiliation(s)
- Xiaohe Zheng
- Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China
| | - Binxiang Chu
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China.
| |
Collapse
|
46
|
Jung SJ, Sridhara S, Ott M. Early steps in the biogenesis of mitochondrially encoded oxidative phosphorylation subunits. IUBMB Life 2024; 76:125-139. [PMID: 37712772 DOI: 10.1002/iub.2784] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
The complexes mediating oxidative phosphorylation (OXPHOS) in the inner mitochondrial membrane consist of proteins encoded in the nuclear or the mitochondrial DNA. The mitochondrially encoded membrane proteins (mito-MPs) represent the catalytic core of these complexes and follow complicated pathways for biogenesis. Owing to their overall hydrophobicity, mito-MPs are co-translationally inserted into the inner membrane by the Oxa1 insertase. After insertion, OXPHOS biogenesis factors mediate the assembly of mito-MPs into complexes and participate in the regulation of mitochondrial translation, while protein quality control factors recognize and degrade faulty or excess proteins. This review summarizes the current understanding of these early steps occurring during the assembly of mito-MPs by concentrating on results obtained in the model organism baker's yeast.
Collapse
Affiliation(s)
- Sung-Jun Jung
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Ott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
47
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
48
|
González C, Martínez‐Sánchez L, Clemente P, Toivonen JM, Arredondo JJ, Fernández‐Moreno MÁ, Carrodeguas JA. Dysfunction of Drosophila mitochondrial carrier homolog (Mtch) alters apoptosis and disturbs development. FEBS Open Bio 2024; 14:276-289. [PMID: 38013241 PMCID: PMC10839352 DOI: 10.1002/2211-5463.13742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Mitochondrial carrier homologs 1 (MTCH1) and 2 (MTCH2) are orphan members of the mitochondrial transporter family SLC25. Human MTCH1 is also known as presenilin 1-associated protein, PSAP. MTCH2 is a receptor for tBid and is related to lipid metabolism. Both proteins have been recently described as protein insertases of the outer mitochondrial membrane. We have depleted Mtch in Drosophila and show here that mutant flies are unable to complete development, showing an excess of apoptosis during pupation; this observation was confirmed by RNAi in Schneider cells. These findings are contrary to what has been described in humans. We discuss the implications in view of recent reports concerning the function of these proteins.
Collapse
Affiliation(s)
- Cristina González
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Lidia Martínez‐Sánchez
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Paula Clemente
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Janne Markus Toivonen
- LAGENBIO, Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2)Universidad de ZaragozaSpain
- IIS AragónZaragozaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Juan José Arredondo
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Miguel Ángel Fernández‐Moreno
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER)Facultad de Medicina, UAMMadridSpain
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas Sols‐MorrealeThe Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasMadridSpain
| | - José Alberto Carrodeguas
- IIS AragónZaragozaSpain
- Institute for Biocomputation and Physics of Complex Systems (BIFI)University of ZaragozaSpain
- Department of Biochemistry and Molecular and Cellular Biology, School of SciencesUniversity of ZaragozaSpain
| |
Collapse
|
49
|
Ronayne CT, Latorre-Muro P. Navigating the landscape of mitochondrial-ER communication in health and disease. Front Mol Biosci 2024; 11:1356500. [PMID: 38323074 PMCID: PMC10844478 DOI: 10.3389/fmolb.2024.1356500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Intracellular organelle communication enables the maintenance of tissue homeostasis and health through synchronized adaptive processes triggered by environmental cues. Mitochondrial-Endoplasmic Reticulum (ER) communication sustains cellular fitness by adjusting protein synthesis and degradation, and metabolite and protein trafficking through organelle membranes. Mitochondrial-ER communication is bidirectional and requires that the ER-components of the Integrated Stress Response signal to mitochondria upon activation and, likewise, mitochondria signal to the ER under conditions of metabolite and protein overload to maintain proper functionality and ensure cellular survival. Declines in the mitochondrial-ER communication occur upon ageing and correlate with the onset of a myriad of heterogeneous age-related diseases such as obesity, type 2 diabetes, cancer, or neurodegenerative pathologies. Thus, the exploration of the molecular mechanisms of mitochondrial-ER signaling and regulation will provide insights into the most fundamental cellular adaptive processes with important therapeutical opportunities. In this review, we will discuss the pathways and mechanisms of mitochondrial-ER communication at the mitochondrial-ER interface and their implications in health and disease.
Collapse
Affiliation(s)
- Conor T. Ronayne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
50
|
Stevens TA, Tomaleri GP, Hazu M, Wei S, Nguyen VN, DeKalb C, Voorhees RM, Pleiner T. A nanobody-based strategy for rapid and scalable purification of human protein complexes. Nat Protoc 2024; 19:127-158. [PMID: 37974029 DOI: 10.1038/s41596-023-00904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/18/2023] [Indexed: 11/19/2023]
Abstract
The isolation of proteins in high yield and purity is a major bottleneck for the analysis of their three-dimensional structure, function and interactome. Here, we present a streamlined workflow for the rapid production of proteins or protein complexes using lentiviral transduction of human suspension cells, combined with highly specific nanobody-mediated purification and proteolytic elution. Application of the method requires prior generation of a plasmid coding for a protein of interest (POI) fused to an N- or C-terminal GFP or ALFA peptide tag using a lentiviral plasmid toolkit we have designed. The plasmid is then used to generate human suspension cell lines stably expressing the tagged fusion protein by lentiviral transduction. By leveraging the picomolar affinity of the GFP and ALFA nanobodies for their respective tags, the POI can be specifically captured from the resulting cell lysate even when expressed at low levels and under a variety of conditions, including detergents and mild denaturants. Finally, rapid and specific elution of the POI (in its tagged or untagged form) under native conditions is achieved within minutes at 4 °C, using the engineered SUMO protease SENPEuB. We demonstrate the wide applicability of the method by purifying multiple challenging soluble and membrane protein complexes to high purity from human cells. Our strategy is also directly compatible with many widely used GFP-expression plasmids, cell lines and transgenic model organisms. Finally, our method is faster than alternative approaches, requiring only 8 d from plasmid to purified protein, and results in substantially improved yields and purity.
Collapse
Affiliation(s)
- Taylor Anthony Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sophia Wei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Vy N Nguyen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Charlene DeKalb
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Tino Pleiner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|