1
|
Yu Y, Hu W, Xu Y, Xu HB, Gao J. Advancements in delivery Systems for Proteolysis-Targeting Chimeras (PROTACs): Overcoming challenges and expanding biomedical applications. J Control Release 2025; 382:113719. [PMID: 40268200 DOI: 10.1016/j.jconrel.2025.113719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
PROTAC (Proteolysis-Targeting Chimera), an emerging drug development strategy based on small molecule technology, has garnered widespread attention due to its high efficiency, broad applicability, low resistance, and dosage advantages. However, PROTAC molecules still exhibit certain limitations that require urgent resolution. Although significant progress has been made in designing PROTACs that target various disease-related proteins, research on drug delivery systems (DDS) for PROTACs remains relatively limited. This review aims to explore the critical role of delivery system design in addressing the inherent challenges associated with PROTAC molecules from a novel perspective. Beginning with five major challenges-insufficient targeting, poor pharmacokinetic properties, low cell permeability, limited accessibility, and the Hook effect-this article introduces formulation strategies to mitigate these deficiencies. It discusses potential solutions through targeted modifications, nano-delivery systems, intelligent response systems, and membrane biomimetic technologies, among others. Furthermore, it elucidates the mechanisms and principles underlying these approaches and analyzes the advantages of various delivery strategies. The insights provided in this review offer insights for designing delivery systems tailored to PROTACs with diverse characteristics for different disease applications.
Collapse
Affiliation(s)
- Yawei Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weitong Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Bin Xu
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Zhe Jiang 315010, China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
2
|
Sun Q, Wang H, Xie J, Wang L, Mu J, Li J, Ren Y, Lai L. Computer-Aided Drug Discovery for Undruggable Targets. Chem Rev 2025. [PMID: 40423592 DOI: 10.1021/acs.chemrev.4c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Undruggable targets are those of therapeutical significance but challenging for conventional drug design approaches. Such targets often exhibit unique features, including highly dynamic structures, a lack of well-defined ligand-binding pockets, the presence of highly conserved active sites, and functional modulation by protein-protein interactions. Recent advances in computational simulations and artificial intelligence have revolutionized the drug design landscape, giving rise to innovative strategies for overcoming these obstacles. In this review, we highlight the latest progress in computational approaches for drug design against undruggable targets, present several successful case studies, and discuss remaining challenges and future directions. Special emphasis is placed on four primary target categories: intrinsically disordered proteins, protein allosteric regulation, protein-protein interactions, and protein degradation, along with discussion of emerging target types. We also examine how AI-driven methodologies have transformed the field, from applications in protein-ligand complex structure prediction and virtual screening to de novo ligand generation for undruggable targets. Integration of computational methods with experimental techniques is expected to bring further breakthroughs to overcome the hurdles of undruggable targets. As the field continues to evolve, these advancements hold great promise to expand the druggable space, offering new therapeutic opportunities for previously untreatable diseases.
Collapse
Affiliation(s)
- Qi Sun
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Hanping Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Liying Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junxi Mu
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junren Li
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuhao Ren
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Che R, Mirani B, Panah M, Chen X, Luo H, Alexandrov A. Identification of RMP24 and RMP64, human ribonuclease MRP-specific protein components. Cell Rep 2025; 44:115752. [PMID: 40413743 DOI: 10.1016/j.celrep.2025.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/05/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025] Open
Abstract
Human RNase MRP is a ribonucleoprotein (RNP) enzyme that processes precursor rRNA (pre-rRNA) at ITS1 site 2 and may have additional activities. It is an endonuclease related to RNase P, which processes pre-tRNAs and pre-tRNA-like substrates. In Saccharomyces cerevisiae, these two RNPs utilize distinct catalytic RNAs with eight shared and one or two specific protein subunits. However, the human RNase MRP-specific protein subunits remain unidentified. Our genome-wide forward genetic screening identifies two poorly characterized human genes, which we name ribonuclease MRP subunit P24 (RMP24) and RMP64. We show that Rmp24 and Rmp64 are required for pre-rRNA ITS1 site 2 processing and associate with MRP RNA but are not required for RNase P activity and do not associate with RNase P-specific H1 RNA. Despite limited sequence homology, Rmp24 and Rmp64 exhibit predicted structural similarities to two RNase MRP-specific components in S. cerevisiae. Collectively, our functional screening and validation reveal two protein components unique to human nuclear RNase MRP.
Collapse
Affiliation(s)
- Rui Che
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA; Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Bhoomi Mirani
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA; Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Monireh Panah
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA; Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Xiaotong Chen
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Andrei Alexandrov
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA; Clemson University Center for Human Genetics, Greenwood, SC 29646, USA.
| |
Collapse
|
4
|
Goldmann U, Wiedmer T, Garofoli A, Sedlyarov V, Bichler M, Haladik B, Wolf G, Christodoulaki E, Ingles-Prieto A, Ferrada E, Frommelt F, Teoh ST, Leippe P, Onea G, Pfeifer M, Kohlbrenner M, Chang L, Selzer P, Reinhardt J, Digles D, Ecker GF, Osthushenrich T, MacNamara A, Malarstig A, Hepworth D, Superti-Furga G. Data- and knowledge-derived functional landscape of human solute carriers. Mol Syst Biol 2025:10.1038/s44320-025-00108-2. [PMID: 40355757 DOI: 10.1038/s44320-025-00108-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
The human solute carrier (SLC) superfamily of ~460 membrane transporters remains the largest understudied protein family despite its therapeutic potential. To advance SLC research, we developed a comprehensive knowledgebase that integrates systematic multi-omics data sets with selected curated information from public sources. We annotated SLC substrates through literature curation, compiled SLC disease associations using data mining techniques, and determined the subcellular localization of SLCs by combining annotations from public databases with an immunofluorescence imaging approach. This SLC-centric knowledge is made accessible to the scientific community via a web portal featuring interactive dashboards and visualization tools. Utilizing this systematically collected and curated resource, we computationally derived an integrated functional landscape for the entire human SLC superfamily. We identified clusters with distinct properties and established functional distances between transporters. Based on all available data sets and their integration, we assigned biochemical/biological functions to each SLC, making this study one of the largest systematic annotations of human gene function and a potential blueprint for future research endeavors.
Collapse
Affiliation(s)
- Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Garofoli
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Manuel Bichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ben Haladik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Eirini Christodoulaki
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Evandro Ferrada
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gabriel Onea
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | - Daniela Digles
- University of Vienna, Department of Pharmaceutical Sciences, Vienna, Austria
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Sciences, Vienna, Austria
| | | | | | | | | | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
- Fondazione Ri.MED, Palermo, Italy.
| |
Collapse
|
5
|
Wolf G, Leippe P, Onstein S, Goldmann U, Frommelt F, Teoh ST, Girardi E, Wiedmer T, Superti-Furga G. The genetic interaction map of the human solute carrier superfamily. Mol Syst Biol 2025:10.1038/s44320-025-00105-5. [PMID: 40355755 DOI: 10.1038/s44320-025-00105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Solute carriers (SLCs), the largest superfamily of transporter proteins in humans with about 450 members, control the movement of molecules across membranes. A typical human cell expresses over 200 different SLCs, yet their collective influence on cell phenotypes is not well understood due to overlapping substrate specificities and expression patterns. To address this, we performed systematic pairwise gene double knockouts using CRISPR-Cas12a and -Cas9 in human colon carcinoma cells. A total of 1,088,605 guide combinations were used to interrogate 35,421 SLC-SLC and SLC-enzyme double knockout combinations across multiple growth conditions, uncovering 1236 genetic interactions with a growth phenotype. Further exploration of an interaction between the mitochondrial citrate/malate exchanger SLC25A1 and the zinc transporter SLC39A1 revealed an unexpected role for SLC39A1 in metabolic reprogramming and anti-apoptotic signaling. This full-scale genetic interaction map of human SLC transporters is the backbone for understanding the intricate functional network of SLCs in cellular systems and generates hypotheses for pharmacological target exploitation in cancer and other diseases. The results are available at https://re-solute.eu/resources/dashboards/genomics/ .
Collapse
Affiliation(s)
- Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Solgate GmbH, IST Park Building, 3400, Klosterneuburg, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
- Fondazione Ri.MED, Palermo, Italy.
| |
Collapse
|
6
|
Flickinger KM, Mellado Fritz CA, Huggler KS, Wade GM, Chang GR, Fox KC, Simcox JA, Cantor JR. Cytosolic NADK is conditionally essential for folate-dependent nucleotide synthesis. Nat Metab 2025:10.1038/s42255-025-01272-3. [PMID: 40316835 DOI: 10.1038/s42255-025-01272-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/11/2025] [Indexed: 05/04/2025]
Abstract
Nicotinamide adenine dinucleotide kinase (NADK) catalyses the phosphorylation of NAD+ to produce NAD phosphate, the oxidized form of NADPH, a cofactor that serves a critical role in driving reductive metabolism. Cancer cells co-express two distinct NAD kinases that differ by localization (NADK, cytosol; NADK2, mitochondria). CRISPR screens performed across hundreds of cancer cell lines indicate that both are dispensable for growth in conventional culture media. By contrast, NADK deletion impaired cell growth in human plasma-like medium. Here we trace this conditional NADK dependence to the availability of folic acid. NADPH is the preferred cofactor of dihydrofolate reductase (DHFR), the enzyme that mediates metabolic activation of folic acid. We find that NADK is required for enabling cytosolic NADPH-driven DHFR activity sufficient to maintain folate-dependent nucleotide synthesis under low folic acid conditions. Our results reveal a basis for conditional NADK essentiality and suggest that folate availability determines whether DHFR activity can be sustained by alternative electron donors such as NADH.
Collapse
Affiliation(s)
- Kyle M Flickinger
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Carlos A Mellado Fritz
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kimberly S Huggler
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Gina M Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Gavin R Chang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathryn C Fox
- Flow Cytometry Laboratory, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith A Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason R Cantor
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Lee AR, Tangiyan A, Singh I, Choi PS. Incomplete paralog compensation generates selective dependency on TRA2A in cancer. PLoS Genet 2025; 21:e1011685. [PMID: 40367120 PMCID: PMC12077678 DOI: 10.1371/journal.pgen.1011685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Paralogs often exhibit functional redundancy, allowing them to effectively compensate for each other's loss. However, this buffering mechanism is frequently disrupted in cancer, exposing unique paralog-specific vulnerabilities. Here, we identify a selective dependency on the splicing factor TRA2A. We find that TRA2A and its paralog TRA2B are synthetic lethal partners that function as widespread and largely redundant activators of both alternative and constitutive splicing. While loss of TRA2A alone is typically neutral due to compensation by TRA2B, we discover that a subset of cancer cell lines are highly TRA2A-dependent. Upon TRA2A depletion, these cell lines exhibit a lack of paralog buffering specifically on shared splicing targets, leading to defects in mitosis and cell death. Notably, TRA2B overexpression rescues both the aberrant splicing and lethality associated with TRA2A loss, indicating that paralog compensation is dosage-sensitive. Together, these findings reveal a complex dosage-dependent relationship between paralogous splicing factors, and highlight how dysfunctional paralog buffering can create a selective dependency in cancer.
Collapse
Affiliation(s)
- Amanda R. Lee
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Anna Tangiyan
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Isha Singh
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Peter S. Choi
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
8
|
Chang J, Li Q, Zhang T, Sun H, Jia Z, Li Y, Zhang S, Sun T, Ma S, Cao J. Genome-wide CRISPR screening of genes and pathways for insect cell responding to abnormal environmental pH. Int J Biol Macromol 2025; 305:141000. [PMID: 39952507 DOI: 10.1016/j.ijbiomac.2025.141000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cells are bathed in the extracellular fluids in which the extracellular pH (pHe) is maintained to a narrow range, and abnormal pHe is related to multiple diseases. However, the genes and signaling pathways underlying cell response to abnormal pHe remain unclear. Identification of genes responsive to extreme pHe challenge has great value in both basic research and medicine. Here, we performed genome-wide CRISPR screening to reveal genes and pathways related to insect cell response to abnormal pHe. Cells of the Bombyx mori embryonic cell line (BmE) genome-scale CRISPR screening cell library (BmEGCKLib) were cultured in different pHe (the physiological pH 6.3 as control; pH 5.0, 5.5, 6.6 and 6.95 as abnormal pHe). In the four extreme pH groups, we identified 44 overlapped fitness genes and 24 overlapped positive selected genes respectively. We also performed Kyoto Encyclopedia of Genes and Genomes pathways enrichment analysis for the selected genes. The "phosphatidylinositol signaling system", "mRNA surveillance pathway" and "spliceosome pathway" were significantly enriched in the negative selection, suggesting that cellular signal transduction and mRNA quality play essential roles for cells to resist to abnormal pHe. This is the first time to provide insight into insect cell response to abnormal pHe on a genome-scale.
Collapse
Affiliation(s)
- Jiasong Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Qi Li
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Tong Zhang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Hao Sun
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhangrong Jia
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yiying Li
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Shengxiao Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Teng Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China.
| | - Sanyuan Ma
- Biological Science Research Center, Southwest University, Chongqing, China.
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
9
|
Tian S, Qin Y, Wu Y, Dong M. Design, performance, processing, and validation of a pooled CRISPR perturbation screen for bacterial toxins. Nat Protoc 2025; 20:1158-1195. [PMID: 39487259 DOI: 10.1038/s41596-024-01075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/18/2024] [Indexed: 11/04/2024]
Abstract
Unbiased forward genetic screens have been extensively employed in biological research to elucidate functional genomics. In pooled clustered regularly interspaced short palindromic repeats (CRISPR) perturbation screens, various genetically encoded gain-of-function or loss-of-function mutations are introduced into a heterogeneous population of cells. Subsequently, these cells are screened for phenotypes, perturbation-associated genotypes are analyzed and a connection between genotype and phenotype is determined. CRISPR screening techniques enable the investigation of important biological questions, such as how bacterial toxins kill cells and cause disease. However, the broad spectrum of effects caused by diverse toxins presents a challenge when selecting appropriate screening strategies. Here, we provide a step-by-step protocol for a genome-wide pooled CRISPR perturbation screen to study bacterial toxins. We describe technical considerations, pilot experiments, library construction, screen execution, result analysis and validation of the top enriched hits. These screens are applicable for many different types of toxins and are anticipated to reveal a repertoire of host factors crucial in the intoxication pathway, such as receptors, trafficking/translocation factors and substrates. The entire protocol takes 21-27 weeks and does not require specialized knowledge beyond basic biology.
Collapse
Affiliation(s)
- Songhai Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yuhang Qin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuxuan Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Makwana R, Patel R, O'Neill R, Marchi E, Lyon GJ. The Cardiovascular Manifestations and Management Recommendations for Ogden Syndrome. Pediatr Cardiol 2025:10.1007/s00246-025-03877-7. [PMID: 40293509 DOI: 10.1007/s00246-025-03877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The NatA complex is composed of the NAA10, NAA15, and HYPK sub-units. It is primarily responsible for N-terminal acetylation, a critical post-translational modification in eukaryotes. Pathogenic variants within NAA10 cause Ogden Syndrome (OS), which is characterized by varying degrees of intellectual disability, hypotonia, developmental delay, and cardiac abnormalities. Although the cardiac manifestations of the disease have been described extensively in case reports, there has not been a study focusing on the cardiac manifestations and their recommended clinical cardiac management. In this study, we describe the cardiac manifestations of OS in a cohort of 85 probands. We found increased incidence of structural and electrophysiologic abnormalities, with particularly high prevalence of QT interval prolongation. Sub-analysis showed that male probands and those with variants within the NAA15-binding domain had more severe phenotypes than females or those with variants outside of the NAA15-binding domain. Our results suggest that an OS diagnosis should be accompanied by full cardiac workup with emphasis on echocardiogram for structural defects and EKG/Holter monitoring for electrophysiologic abnormalities. Additionally, we strongly recommend that the use of QT-prolonging drugs be followed up with routine electrophysiological monitoring or consultation with a pediatric cardiologist. We hope this study guides clinicians and caregivers treating patients with OS and moves the field toward a standardized diagnostic workup for patients with this condition.
Collapse
Affiliation(s)
- Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Rahi Patel
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Rosemary O'Neill
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, USA.
| |
Collapse
|
11
|
Martyn GE, Montgomery MT, Jones H, Guo K, Doughty BR, Linder J, Bisht D, Xia F, Cai XS, Chen Z, Cochran K, Lawrence KA, Munson G, Pampari A, Fulco CP, Sahni N, Kelley DR, Lander ES, Kundaje A, Engreitz JM. Rewriting regulatory DNA to dissect and reprogram gene expression. Cell 2025:S0092-8674(25)00352-6. [PMID: 40245860 DOI: 10.1016/j.cell.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/16/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025]
Abstract
Regulatory DNA provides a platform for transcription factor binding to encode cell-type-specific patterns of gene expression. However, the effects and programmability of regulatory DNA sequences remain difficult to map or predict. Here, we develop variant effects from flow-sorting experiments with CRISPR targeting screens (Variant-EFFECTS) to introduce hundreds of designed edits to endogenous regulatory DNA and quantify their effects on gene expression. We systematically dissect and reprogram 3 regulatory elements for 2 genes in 2 cell types. These data reveal endogenous binding sites with effects specific to genomic context, transcription factor motifs with cell-type-specific activities, and limitations of computational models for predicting the effect sizes of variants. We identify small edits that can tune gene expression over a large dynamic range, suggesting new possibilities for prime-editing-based therapeutics targeting regulatory DNA. Variant-EFFECTS provides a generalizable tool to dissect regulatory DNA and to identify genome editing reagents that tune gene expression in an endogenous context.
Collapse
Affiliation(s)
- Gabriella E Martyn
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Michael T Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Hank Jones
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Katherine Guo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Benjamin R Doughty
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johannes Linder
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Deepa Bisht
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Fan Xia
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Xiangmeng S Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ziwei Chen
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Kathryn A Lawrence
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Glen Munson
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Kelley
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Jesse M Engreitz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Mattioli F, Friðriksdóttir R, Hebert A, Bassani S, Ibrahim N, Naz S, Chrast J, Pailler-Pradeau C, Oddsson Á, Sulem P, Halldorsson GH, Melsted P, Guðbjartsson DF, Palombo F, Pippucci T, Nouri N, Seri M, Farrow EG, Saunders CJ, Guex N, Ansar M, Stefansson K, Reymond A. Bi-allelic variants in BRF2 are associated with perinatal death and craniofacial anomalies. Genome Med 2025; 17:38. [PMID: 40229899 PMCID: PMC11995667 DOI: 10.1186/s13073-025-01463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Variants in genes encoding multiple subunits of the RNA Polymerase III complex which synthesizes rRNAs, tRNAs, and other small RNAs were previously associated with neurological disorders, such as syndromic hypomyelination leukodystrophies, pontocerebellar hypoplasia, and cerebellofaciodental syndrome. One new such candidate is BRF2, which encodes a TFIIB-like factor that recruits the RNA polymerase III complex to type 3 promoters to initiate transcription of U6, RnaseP, and 7SK RNAs. METHODS We combined sequencing with functional analyses to investigate the effects of BRF2 variants. RESULTS We observe that a previously reported significant underrepresentation of double transmission of a splice variant results in recessive lethality in three large Icelandic families with multiple perinatal losses. Using data aggregation, we identified an additional seven individuals worldwide from three unrelated families carrying biallelic variants in BRF2. Affected individuals present a variable phenotype ranging from severe craniofacial anomalies with early death to intellectual disability with motor and speech development. In silico 3D modelling and functional analyses showed functional impairment of the identified variants, e.g., differences in target loci occupancy. Zebrafish knocked down for the orthologous brf2 presented with abnormal escape response, reduced swimming velocity and head size, and craniofacial malformations. These defects were complemented by the human wild-type but not mutated BRF2 mRNA further demonstrating their deleteriousness. CONCLUSIONS Overall, our results support the association of biallelic BRF2 variants with a novel neurodevelopmental disease and provide an additional link between RNA polymerase III, its targets and craniofacial anomalies.
Collapse
Affiliation(s)
- Francesca Mattioli
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | | | - Anne Hebert
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Sissy Bassani
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Nazia Ibrahim
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
- Lahore College for Women University, Lahore, Pakistan
| | - Shagufta Naz
- Lahore College for Women University, Lahore, Pakistan
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Clara Pailler-Pradeau
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | | | | | - Gisli H Halldorsson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Páll Melsted
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Daníel F Guðbjartsson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Flavia Palombo
- IRCCS Istituto Delle Scienze Neurologiche, Programma Di Neurogenetica, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Nayereh Nouri
- Craniofacial and Cleft Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marco Seri
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Emily G Farrow
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Carol J Saunders
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Muhammad Ansar
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland.
- Health2030 Genome Center, Foundation Campus Biotech Geneva, Geneva, Switzerland.
| |
Collapse
|
13
|
Azizi L, Hausman H, Meyer AK, Wong M, Pajonk F. The Mevalonate Pathway in the Radiation Response of Cancer. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00278-0. [PMID: 40194746 DOI: 10.1016/j.ijrobp.2025.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
The mevalonate (MVA) pathway plays a critical role in cholesterol biosynthesis, protein prenylation, and metabolic reprogramming, all of which contribute to cancer progression and therapy resistance. Targeting the MVA pathway with statins and other inhibitors has shown promise in preclinical studies; however, clinical outcomes remain controversial, raising concerns about translating these findings into effective treatments. Additionally, the interaction between the MVA pathway and radiation therapy (RT) is not yet fully understood, as RT upregulates the pathway, which can enhance tumor cell survival. This review summarizes the current literature on MVA pathway inhibition in cancer therapy, focusing on its potential to enhance the efficacy of RT. A better understanding of the pathway's role in radiation responses will be essential to translate combination therapies that target this pathway.
Collapse
Affiliation(s)
- Linda Azizi
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California.
| | - Hannah Hausman
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Alexandra K Meyer
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Matthew Wong
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California; Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California; Jonsson Comprehensive Cancer Center at University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
14
|
Jiang Q, Braun DA, Clauser KR, Ramesh V, Shirole NH, Duke-Cohan JE, Nabilsi N, Kramer NJ, Forman C, Lippincott IE, Klaeger S, Phulphagar KM, Chea V, Kim N, Vanasse AP, Saad E, Parsons T, Carr-Reynolds M, Carulli I, Pinjusic K, Jiang Y, Li R, Syamala S, Rachimi S, Verzani EK, Stevens JD, Lane WJ, Camp SY, Meli K, Pappalardi MB, Herbert ZT, Qiu X, Cejas P, Long HW, Shukla SA, Van Allen EM, Choueiri TK, Churchman LS, Abelin JG, Gurer C, MacBeath G, Childs RW, Carr SA, Keskin DB, Wu CJ, Kaelin WG. HIF regulates multiple translated endogenous retroviruses: Implications for cancer immunotherapy. Cell 2025; 188:1807-1827.e34. [PMID: 40023154 PMCID: PMC11988688 DOI: 10.1016/j.cell.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/04/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC), despite having a low mutational burden, is considered immunogenic because it occasionally undergoes spontaneous regressions and often responds to immunotherapies. The signature lesion in ccRCC is inactivation of the VHL tumor suppressor gene and consequent upregulation of the HIF transcription factor. An earlier case report described a ccRCC patient who was cured by an allogeneic stem cell transplant and later found to have donor-derived T cells that recognized a ccRCC-specific peptide encoded by a HIF-responsive endogenous retrovirus (ERV), ERVE-4. We report that ERVE-4 is one of many ERVs that are induced by HIF, translated into HLA-bound peptides in ccRCCs, and capable of generating antigen-specific T cell responses. Moreover, ERV expression can be induced in non-ccRCC tumors with clinical-grade HIF stabilizers. These findings have implications for leveraging ERVs for cancer immunotherapy.
Collapse
Affiliation(s)
- Qinqin Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - David A Braun
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Yale Center of Cellular and Molecular Oncology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vijyendra Ramesh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nitin H Shirole
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph E Duke-Cohan
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Nicholas J Kramer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Cleo Forman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Isabelle E Lippincott
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kshiti M Phulphagar
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vipheaviny Chea
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nawoo Kim
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Allison P Vanasse
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Eddy Saad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Isabel Carulli
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Katarina Pinjusic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yijia Jiang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rong Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sudeepa Syamala
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jonathan D Stevens
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - William J Lane
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Sabrina Y Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kevin Meli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachet A Shukla
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | | | | | - Richard W Childs
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Computer Science, Metropolitan College, Boston University, Boston, MA 02215, USA; Section for Bioinformatics, Department of Health Technology, Technical University of Denmark 2800 Lyngby, Denmark.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
15
|
Fielden J, Siegner SM, Gallagher DN, Schröder MS, Dello Stritto MR, Lam S, Kobel L, Schlapansky MF, Jackson SP, Cejka P, Jost M, Corn JE. Comprehensive interrogation of synthetic lethality in the DNA damage response. Nature 2025; 640:1093-1102. [PMID: 40205037 PMCID: PMC12018271 DOI: 10.1038/s41586-025-08815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
The DNA damage response (DDR) is a multifaceted network of pathways that preserves genome stability1,2. Unravelling the complementary interplay between these pathways remains a challenge3,4. Here we used CRISPR interference (CRISPRi) screening to comprehensively map the genetic interactions required for survival during normal human cell homeostasis across all core DDR genes. We captured known interactions and discovered myriad new connections that are available online. We defined the molecular mechanism of two of the strongest interactions. First, we found that WDR48 works with USP1 to restrain PCNA degradation in FEN1/LIG1-deficient cells. Second, we found that SMARCAL1 and FANCM directly unwind TA-rich DNA cruciforms, preventing catastrophic chromosome breakage by the ERCC1-ERCC4 complex. Our data yield fundamental insights into genome maintenance, provide a springboard for mechanistic investigations into new connections between DDR factors and pinpoint synthetic vulnerabilities that could be exploited in cancer therapy.
Collapse
Affiliation(s)
- John Fielden
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Sebastian M Siegner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Danielle N Gallagher
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Markus S Schröder
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Maria Rosaria Dello Stritto
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lena Kobel
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Moritz F Schlapansky
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Marco Jost
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Jacob E Corn
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Villegas NK, Gaudreault YR, Keller A, Kearns P, Stapleton JA, Plesa C. Optimizing in vitro Transcribed CRISPR-Cas9 Single-Guide RNA Libraries for Improved Uniformity and Affordability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644170. [PMID: 40196484 PMCID: PMC11974757 DOI: 10.1101/2025.03.24.644170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
We describe a scalable and cost-effective sgRNA synthesis workflow that reduces costs by over 70% through the use of large pools of microarray-derived oligos encoding unique sgRNA spacers. These subpool oligos are assembled into full-length dsDNA templates via Golden Gate Assembly before in vitro transcription with T7 RNA polymerase. RNA-seq analysis reveals severe biases in spacer representation, with some spacers being highly overrepresented while others are completely absent. Consistent with previous studies, we identify guanine-rich sequences within the first four nucleotides of the spacer, immediately downstream of the T7 promoter, as the primary driver of this bias. To address this issue, we introduced a guanine tetramer upstream of all spacers, which reduced bias by an average of 19% in sgRNA libraries containing 389 spacers. However, this modification also increased the presence of high-molecular-weight RNA species after transcription. We also tested two alternative bias-reduction strategies: compartmentalizing spacers within emulsions and optimizing DNA input and reaction volumes. Both methods independently reduced bias in 2,626-plex sgRNA libraries, though to a lesser extent than the guanine tetramer approach. These advancements enhance both the affordability and uniformity of sgRNA libraries, with broad implications for improving CRISPR-Cas9 screens and optimizing guide RNA design for other CRISPR and nuclease systems.
Collapse
Affiliation(s)
- Natanya K. Villegas
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
- Institute of Molecular Biology, University of Oregon 1229 University of Oregon, 1318 Franklin Blvd., Room 273, Onyx Bridge, Eugene, OR 97403, USA
- Biology Department, University of Oregon 1210 University of Oregon, 77 Klamath Hall, Eugene, OR 97403, USA
| | - Yukiko R. Gaudreault
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - Abigail Keller
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - Phillip Kearns
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - James A. Stapleton
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - Calin Plesa
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| |
Collapse
|
17
|
Ocana A, Pandiella A, Privat C, Bravo I, Luengo-Oroz M, Amir E, Gyorffy B. Integrating artificial intelligence in drug discovery and early drug development: a transformative approach. Biomark Res 2025; 13:45. [PMID: 40087789 PMCID: PMC11909971 DOI: 10.1186/s40364-025-00758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Artificial intelligence (AI) can transform drug discovery and early drug development by addressing inefficiencies in traditional methods, which often face high costs, long timelines, and low success rates. In this review we provide an overview of how to integrate AI to the current drug discovery and development process, as it can enhance activities like target identification, drug discovery, and early clinical development. Through multiomics data analysis and network-based approaches, AI can help to identify novel oncogenic vulnerabilities and key therapeutic targets. AI models, such as AlphaFold, predict protein structures with high accuracy, aiding druggability assessments and structure-based drug design. AI also facilitates virtual screening and de novo drug design, creating optimized molecular structures for specific biological properties. In early clinical development, AI supports patient recruitment by analyzing electronic health records and improves trial design through predictive modeling, protocol optimization, and adaptive strategies. Innovations like synthetic control arms and digital twins can reduce logistical and ethical challenges by simulating outcomes using real-world or virtual patient data. Despite these advancements, limitations remain. AI models may be biased if trained on unrepresentative datasets, and reliance on historical or synthetic data can lead to overfitting or lack generalizability. Ethical and regulatory issues, such as data privacy, also challenge the implementation of AI. In conclusion, in this review we provide a comprehensive overview about how to integrate AI into current processes. These efforts, although they will demand collaboration between professionals, and robust data quality, have a transformative potential to accelerate drug development.
Collapse
Affiliation(s)
- Alberto Ocana
- Experimental Therapeutics in Cancer Unit, Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos and CIBERONC, Madrid, Spain.
- INTHEOS-CEU-START Catedra, Facultad de Medicina, Universidad CEU San Pablo, 28668 Boadilla del Monte, Madrid, Spain.
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Salamanca, 37007, Spain
| | - Cristian Privat
- , CancerAppy, Av Ribera de Axpe, 28, Erando, 48950, Vizcaya, Spain
| | - Iván Bravo
- Facultad de Farmacia, Universidad de Castilla La Mancha, Albacete, Spain
| | | | - Eitan Amir
- Princess Margaret Cancer Center, Toronto, Canada
| | - Balazs Gyorffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó U. 7-9, Budapest, 1094, Hungary
- Research Centre for Natural Sciences, Hungarian Research Network, Magyar Tudosok Korutja 2, Budapest, 1117, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, 7624, Hungary
| |
Collapse
|
18
|
Xiong S, Jin J, Zhao X, Zhao Y, He Z, Guo H, Gong C, Yu J, Guo L, Liang T. Cell Cycle-Based Molecular Features via Synthetic Lethality and Non-Coding RNA Interactions in Cancer. Genes (Basel) 2025; 16:310. [PMID: 40149461 PMCID: PMC11941865 DOI: 10.3390/genes16030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The cell cycle, a critical and intricate biological process, comprises various phases, and its dysregulation plays a pivotal role in tumorigenesis and metastasis. The exploration of cell cycle-based molecular subtypes across pan-cancers, along with the application of synthetic lethality concepts, holds promise for advancing cancer therapies. METHODS A pan-cancer analysis was conducted to assess the cell cycle serves as a reliable signature for classifying molecular subtypes and to understand the potential clinical application of genes as potential drug targets based on synthetic lethality. RESULTS Molecular subtypes derived from cell cycle features in certain cancers, particularly kidney-related malignancies, exhibited distinct immune characteristics. Synthetic lethal interactions within the cell cycle pathway were common, with significant genetic interactions further identifying potential drug targets through the exploitation of genetic relationships with key driver genes. Additionally, miRNAs and lncRNAs may influence the cell cycle through miRNA:mRNA interactions and ceRNA networks, thereby enriching the genetic interaction landscape. CONCLUSIONS These findings suggest that the cell cycle pathway could serve as a promising molecular subtype signature to enhance cancer prognostication and offer potential targets for anticancer drug development through synthetic lethality.
Collapse
Affiliation(s)
- Shizheng Xiong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Jiaming Jin
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Xinmiao Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Yang Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Zhiheng He
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Chengjun Gong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Li Guo
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| |
Collapse
|
19
|
Li Y, Meng Z, Fan C, Rong H, Xi Y, Liao Q. Identification and multi-omics analysis of essential coding and long non-coding genes in colorectal cancer. Biochem Biophys Rep 2025; 41:101938. [PMID: 40034256 PMCID: PMC11874739 DOI: 10.1016/j.bbrep.2025.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/19/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Essential genes are indispensable for the survival of cancer cell. CRISPR/Cas9-based pooled genetic screens have distinguished the essential genes and their functions in distinct cellular processes. Nevertheless, the landscape of essential genes at the single cell levels and the effect on the tumor microenvironment (TME) remains limited. Here, we identified 396 essential protein-coding genes (ESPs) by integration of 8 genome-wide CRISPR loss-of-function screen datasets of colorectal cancer (CRC) cell lines and single-cell RNA sequencing (scRNA-seq) data of CRC tissues. Then, 29 essential long non-coding genes (ESLs) were predicted using Hypergeometric Test (HT) and Personalized PageRank (PPR) algorithms based on ESPs and co-expressed network constructed from scRNA-seq. CRISPR/Cas9 knockout experiment verified the effect of several ESPs and ESLs on the survival of CRC cell line. Furthermore, multi-omics features of ESPs and ESLs were illustrated by examining their expression patterns and transcription factor (TF) regulatory network at the single cell level, as well as DNA mutation and DNA methylation events at bulk level. Finally, through integrating multiple intracellular regulatory networks with cell-cell communication network (CCN), we elucidated that CD47 and MIF are regulated by multiple CRC essential genes, and the anti-cancer drugs sunitinib can interfere the expression of them potentially. Our findings provide a comprehensive asset of CRC ESPs and ESLs, sheding light on the mining of potential therapy targets for CRC.
Collapse
Affiliation(s)
- Yanguo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Zixing Meng
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chengjiang Fan
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Hao Rong
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qi Liao
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
20
|
Acosta J, Johnson GA, Gould SI, Dong K, Lendner Y, Detrés D, Atwa O, Bulkens J, Gruber S, Contreras ME, Wuest AN, Narendra VK, Hemann MT, Sánchez-Rivera FJ. Multiplexed in vivo base editing identifies functional gene-variant-context interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639770. [PMID: 40060482 PMCID: PMC11888363 DOI: 10.1101/2025.02.23.639770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Human genome sequencing efforts in healthy and diseased individuals continue to identify a broad spectrum of genetic variants associated with predisposition, progression, and therapeutic outcomes for diseases like cancer1-6. Insights derived from these studies have significant potential to guide clinical diagnoses and treatment decisions; however, the relative importance and functional impact of most genetic variants remain poorly understood. Precision genome editing technologies like base and prime editing can be used to systematically engineer and interrogate diverse types of endogenous genetic variants in their native context7-9. We and others have recently developed and applied scalable sensor-based screening approaches to engineer and measure the phenotypes produced by thousands of endogenous mutations in vitro 10-12. However, the impact of most genetic variants in the physiological in vivo setting, including contextual differences depending on the tissue or microenvironment, remains unexplored. Here, we integrate new cross-species base editing sensor libraries with syngeneic cancer mouse models to develop a multiplexed in vivo platform for systematic functional analysis of endogenous genetic variants in primary and disseminated malignancies. We used this platform to screen 13,840 guide RNAs designed to engineer 7,783 human cancer-associated mutations mapping to 489 endogenous protein-coding genes, allowing us to construct a rich compendium of putative functional interactions between genes, mutations, and physiological contexts. Our findings suggest that the physiological in vivo environment and cellular organotropism are important contextual determinants of specific gene-variant phenotypes. We also show that many mutations and their in vivo effects fail to be detected with standard CRISPR-Cas9 nuclease approaches and often produce discordant phenotypes, potentially due to site-specific amino acid selection- or separation-of-function mechanisms. This versatile platform could be deployed to investigate how genetic variation impacts diverse in vivo phenotypes associated with cancer and other genetic diseases, as well as identify new potential therapeutic avenues to treat human disease.
Collapse
Affiliation(s)
- Jonuelle Acosta
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grace A. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samuel I. Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kexin Dong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yovel Lendner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diego Detrés
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ondine Atwa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jari Bulkens
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Utrecht University, Utrecht, The Netherlands
| | - Samuel Gruber
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manuel E. Contreras
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra N. Wuest
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Varun K. Narendra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael T. Hemann
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francisco J. Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Schmidt H, Zhang M, Chakarov D, Bansal V, Mourelatos H, Sánchez-Rivera FJ, Lowe SW, Ventura A, Leslie CS, Pritykin Y. Genome-wide CRISPR guide RNA design and specificity analysis with GuideScan2. Genome Biol 2025; 26:41. [PMID: 40011959 PMCID: PMC11863968 DOI: 10.1186/s13059-025-03488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
We present GuideScan2 for memory-efficient, parallelizable construction of high-specificity CRISPR guide RNA (gRNA) databases and user-friendly design and analysis of individual gRNAs and gRNA libraries for targeting coding and non-coding regions in custom genomes. GuideScan2 analysis identifies widespread confounding effects of low-specificity gRNAs in published CRISPR screens and enables construction of a gRNA library that reduces off-target effects in a gene essentiality screen. GuideScan2 also enables the design and experimental validation of allele-specific gRNAs in a hybrid mouse genome. GuideScan2 will facilitate CRISPR experiments across a wide range of applications.
Collapse
Affiliation(s)
- Henri Schmidt
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Minsi Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dimitar Chakarov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Vineet Bansal
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Haralambos Mourelatos
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell/Rockefeller/Memorial Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Present address: David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Yuri Pritykin
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
22
|
Hao G, Zhou L, Liu H, Kachroo P, Hunt AG. Revisiting CPSF30-mediated alternative polyadenylation in Arabidopsis thaliana. PLoS One 2025; 20:e0319180. [PMID: 39992955 PMCID: PMC11849871 DOI: 10.1371/journal.pone.0319180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Alternative polyadenylation (APA) is an important contributor to the regulation of gene expression in plants. One subunit of the complex that cleaves and polyadenylates mRNAs in the nucleus, CPSF30 (for the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor), has been implicated in a wide-ranging network of regulatory events. CPSF30 plays roles in root development, flowering time, and response to biotic and abiotic stresses. CPSF30 also is a conduit that links cellular signaling and RNA modification with alternative RNA processing events and transcriptional dynamics. While much is known about CPSF30 and its roles in plants, questions remain regarding the connections between CPSF30-mediated APA and the downstream events that lead to specific phenotypic outcomes. To address these, we conducted a detailed analysis of poly(A) site usage in the CPSF30 mutant. Our results corroborate earlier reports that link CPSF30 with a distinctive cis element (AAUAAA) that is present 10-30 nts upstream of some, but not all, plant pre-mRNAs. Interestingly, our results reveal a distinctive shift in poly(A) site in mutants deficient in CPSF30, resulting in cleavage and polyadenylation at the location of motifs similar to AAUAAA. Importantly, CPSF30-associated APA had at best a small impact on mRNA functionality. These results necessitate the formulation of new hypotheses for mechanisms by which CPSF30-mediated APA influences physiological processes.
Collapse
Affiliation(s)
- Guijie Hao
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Lichun Zhou
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
23
|
Chung OW, Yao S, Yang F, Wang L, Cerda-Smith C, Hutchinson HM, Wood KC, Su W, Khasraw M, Zou L, Ramsden DA, Zhang ZZZ. BRCA1-A and LIG4 complexes mediate ecDNA biogenesis and cancer drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638901. [PMID: 40027615 PMCID: PMC11870461 DOI: 10.1101/2025.02.18.638901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Extrachromosomal circular DNA (ecDNA) are commonly produced within the nucleus to drive genome dynamics and heterogeneity, enabling cancer cell evolution and adaptation. However, the mechanisms underlying ecDNA biogenesis remain poorly understood. Here using genome-wide CRISPR screening in human cells, we identified the BRCA1-A and the LIG4 complexes mediate ecDNA production. Following DNA fragmentation, the upstream BRCA1-A complex protects DNA ends from excessive resection, promoting end-joining for circularization. Conversely, the MRN complex, which mediates end resection and thus antagonizes the BRCA1-A complex, suppresses ecDNA formation. Downstream, LIG4 conservatively catalyzes ecDNA production in Drosophila and mammals, with patient tumor ecDNA harboring junctions marked by LIG4 activity. Notably, disrupting LIG4 or BRCA1-A in cancer cells impairs ecDNA-mediated adaptation, hindering resistance to both chemotherapy and targeted therapies. Together, our study reveals the roles of the LIG4 and BRCA1-A complexes in ecDNA biogenesis, and uncovers new therapeutic targets to block ecDNA-mediated adaptation for cancer treatment.
Collapse
Affiliation(s)
- Oliver W. Chung
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
- These authors contributed equally
| | - Shun Yao
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
- These authors contributed equally
| | - Fu Yang
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
- Present address: Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- These authors contributed equally
| | - Ling Wang
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
| | - Christian Cerda-Smith
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
| | - Haley M. Hutchinson
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
| | - Kris C. Wood
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
| | - Weijia Su
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, USA
| | - Lee Zou
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
| | - Dale A. Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - ZZ Zhao Zhang
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
- Lead contact
| |
Collapse
|
24
|
Miyake N, Shiga K, Hasegawa Y, Iwabuchi C, Shiroshita K, Kobayashi H, Takubo K, Velilla F, Maeno A, Kawasaki T, Imai Y, Sakai N, Hirose T, Fujita A, Takahashi H, Okamoto N, Enokizono M, Iwasaki S, Ito S, Matsumoto N. Biallelic TEDC1 variants cause a new syndrome with severe growth impairment and endocrine complications. Eur J Hum Genet 2025:10.1038/s41431-025-01802-3. [PMID: 39979680 DOI: 10.1038/s41431-025-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
We encountered two affected male patients born to non-consanguineous parents, who presented with prenatal-onset severe growth impairment, primary microcephaly, developmental delay, adrenal insufficiency, congenital glaucoma, delayed bone aging, craniosynostosis, congenital tracheal stenosis, and primary hypogonadism. By exome sequencing, we identified compound heterozygous TEDC1 variants (NM_001134877.1 c.[104-5C>G];[787delG] p.[?];[(Ala263LeufsTer29)] in both affected siblings. We confirmed that the splice site variant, c.104-5C>G, leads to no TEDC1 protein production via nonsense-mediated mRNA decay. The frameshift variant located in the last coding exon, c.787delG, produces a C-terminally truncated protein, which impairs the binding with TEDC2. Thus, both variants are thought to be loss-of-function. TEDC1 and TEDC2 are both required for centriole stability and cell proliferation. Our in vitro experiments using patient-derived cells revealed cell cycle abnormality. Our in vivo study using tedc1-/- zebrafish generated by CRISPR/Cas9 successfully recapitulated the growth impairment and cranial bone dysplasia as seen in our patients. The tedc1-/- mutant zebrafish were sterile and did not have developed gonads. Furthermore, we showed that biallelic TEDC1 deletion causes cilia abnormalities through defective acetylated tubulins.
Collapse
Affiliation(s)
- Noriko Miyake
- Department of Human Genetics, National Center for Global Health and Medicine, Tokyo, Japan.
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Kentaro Shiga
- Children's Medical Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yuya Hasegawa
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Chisato Iwabuchi
- Department of Human Genetics, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kohei Shiroshita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fabien Velilla
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Akiteru Maeno
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Toshihiro Kawasaki
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Noriyoshi Sakai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Mikako Enokizono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | | | - Shuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
25
|
Dharmadhikari AV, Abad MA, Khan S, Maroofian R, Sands TT, Ullah F, Samejima I, Shen Y, Wear MA, Moore KE, Kondakova E, Mitina N, Schaub T, Lee GK, Umandap CH, Berger SM, Iglesias AD, Popp B, Abou Jamra R, Gabriel H, Rentas S, Rippert AL, Gray C, Izumi K, Conlin LK, Koboldt DC, Mosher TM, Hickey SE, Albert DVF, Norwood H, Lewanda AF, Dai H, Liu P, Mitani T, Marafi D, Eker HK, Pehlivan D, Posey JE, Lippa NC, Vena N, Heinzen EL, Goldstein DB, Mignot C, de Sainte Agathe JM, Al-Sannaa NA, Zamani M, Sadeghian S, Azizimalamiri R, Seifia T, Zaki MS, Abdel-Salam GMH, Abdel-Hamid MS, Alabdi L, Alkuraya FS, Dawoud H, Lofty A, Bauer P, Zifarelli G, Afzal E, Zafar F, Efthymiou S, Gossett D, Towne MC, Yeneabat R, Perez-Duenas B, Cazurro-Gutierrez A, Verdura E, Cantarin-Extremera V, Marques ADV, Helwak A, Tollervey D, Wontakal SN, Aggarwal VS, Rosenfeld JA, Tarabykin V, Ohta S, Lupski JR, Houlden H, Earnshaw WC, Davis EE, Jeyaprakash AA, Liao J. RNA methyltransferase SPOUT1/CENP-32 links mitotic spindle organization with the neurodevelopmental disorder SpADMiSS. Nat Commun 2025; 16:1703. [PMID: 39962046 PMCID: PMC11833075 DOI: 10.1038/s41467-025-56876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, here we identify 28 individuals with neurodevelopmental delays from 21 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants show reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicate that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 reveals that most disease-associated missense variants are located within the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants show reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS (SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.
Collapse
Affiliation(s)
- Avinash V Dharmadhikari
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Maria Alba Abad
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sheraz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, WC1N 3BG, London, UK
| | - Tristan T Sands
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Farid Ullah
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Itaru Samejima
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Yanwen Shen
- Translational Research Center for the Nervous System, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China
- Faculty of Life and Health sciences, Shenzhen University of Advanced Technology, 518055, Shenzhen, Guangdong, China
- Department of Pediatrics, Chinese PLA General Hospital, Medical School of Chinese People's Liberation Army, 100853, Beijing, China
- Department of Pediatrics, Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Martin A Wear
- Edinburgh Protein Production Facility (EPPF), University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Kiara E Moore
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elena Kondakova
- Institute of Neuroscience, Laboratory of Genetics of Brain Development, National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23 Gagarin avenue, Nizhny, Novgorod, Russia
| | - Natalia Mitina
- Institute of Neuroscience, Laboratory of Genetics of Brain Development, National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23 Gagarin avenue, Nizhny, Novgorod, Russia
| | - Theres Schaub
- Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, 10117, Berlin, Charitéplatz 1, Germany
| | - Grace K Lee
- Personalized Care (PCARE) Program, Department of Pathology and Laboratory Medicine; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Christine H Umandap
- Medical Genetics, DMG Children's Rehabilitative Services, Phoenix, AZ, 85013, USA
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sara M Berger
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alejandro D Iglesias
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Stefan Rentas
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Alyssa L Rippert
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher Gray
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Division of Genetic & Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, OH, USA
| | - Dara V F Albert
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Division of Neurology, Nationwide Children's Hospital, Columbus, OH 43205, OH, USA
| | | | | | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Natalie C Lippa
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Natalie Vena
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Erin L Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cyril Mignot
- Département de Génétique, APHP Sorbonne Université, 75013, Paris, France
| | | | | | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahere Seifia
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Lama Alabdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan Sami Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Heba Dawoud
- Pediatrics Department, Faculty of Medicine, Tanta University, El-Geesh Street, Tanta, 31527, Egypt
| | - Aya Lofty
- Pediatrics Department, Faculty of Medicine, Tanta University, El-Geesh Street, Tanta, 31527, Egypt
| | - Peter Bauer
- CENTOGENE GmbH, Am Strande 7, 18055, Rostock, Germany
| | | | - Erum Afzal
- Department of Development Pediatrics, The Children's Hospital and The Institute of Child Health, Multan, Pakistan
| | - Faisal Zafar
- Department of Development Pediatrics, The Children's Hospital and The Institute of Child Health, Multan, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, WC1N 3BG, London, UK
| | - Daniel Gossett
- Texas Child Neurology, Plano, TX, 75024, USA
- Neurology Consultants of Dallas, Dallas, TX, 75243, USA
| | | | - Raey Yeneabat
- Departments of Pathology and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Belen Perez-Duenas
- Department of Paediatric Neurology, Hospital Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Research Institute, Barcelona, Spain
- Department of Paediatrics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Cazurro-Gutierrez
- Vall d'Hebron Research Institute, Barcelona, Spain
- Department of Paediatrics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Edgard Verdura
- Vall d'Hebron Research Institute, Barcelona, Spain
- Molecular Biology CORE, Biomedical Diagnostic Center (CDB), Hospital, l Clínic de Barcelona, Barcelona, Spain
| | - Veronica Cantarin-Extremera
- Department of Paediatric Neurology, Hospital Infantil Niño Jesús, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER (GCV23/ER/3)), ISCIII, Madrid, Spain
| | - Ana do Vale Marques
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität, Munich, Germany
| | - Aleksandra Helwak
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Tollervey
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sandeep N Wontakal
- Departments of Pathology and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vimla S Aggarwal
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Victor Tarabykin
- Institute of Neuroscience, Laboratory of Genetics of Brain Development, National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23 Gagarin avenue, Nizhny, Novgorod, Russia
- Institute of Cell and Neurobiology, Charité Universitätsmedizin Berlin, 10117, Berlin, Charitéplatz 1, Germany
| | - Shinya Ohta
- Institute for Genetic Medicine Pathophysiology, Hokkaido University, Sapporo, Japan
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, WC1N 3BG, London, UK
| | - William C Earnshaw
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - A Arockia Jeyaprakash
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.
- Molecular Biology CORE, Biomedical Diagnostic Center (CDB), Hospital, l Clínic de Barcelona, Barcelona, Spain.
| | - Jun Liao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
26
|
Makwana R, Patel R, O'Neill R, Marchi E, Lyon GJ. The Cardiovascular Manifestations and Management Recommendations for Ogden Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.11.25321331. [PMID: 40236393 PMCID: PMC11996587 DOI: 10.1101/2025.02.11.25321331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The NatA complex is composed of the NAA10, NAA15, and HYPK subunits. It is primarily responsible for N-terminal acetylation, a critical post-translational modification in eukaryotes. Pathogenic variants within NAA10 cause Ogden Syndrome (OS), which is characterized by varying degrees of intellectual disability, hypotonia, developmental delay, and cardiac abnormalities. Although the cardiac manifestations of the disease have been described extensively in case reports, there has not been a study focusing on the cardiac manifestations and their recommended clinical cardiac management. In this study, we describe the cardiac manifestations of OS in a cohort of 85 probands. We found increased incidence of structural and electrophysiologic abnormalities, with particularly high prevalence of QT interval prolongation. Sub-analysis showed that male probands and those with variants within the NAA15-binding domain had more severe phenotypes than females or those with variants outside of the NAA15-binding domain. Our results suggest that an OS diagnosis should be accompanied by full cardiac workup with emphasis on echocardiogram for structural defects and EKG/Holter monitoring for electrophysiologic abnormalities. Additionally, we strongly recommend that the use of QT-prolonging drugs be followed up with routine electrophysiological monitoring or consultation with a pediatric cardiologist. We hope this study guides clinicians and caregivers treating patients with OS and moves the field toward a standardized diagnostic workup for patients with this condition.
Collapse
|
27
|
Caragine CM, Le VT, Mustafa M, Diaz BJ, Morris JA, Müller S, Mendez-Mancilla A, Geller E, Liscovitch-Brauer N, Sanjana NE. Comprehensive dissection of cis-regulatory elements in a 2.8 Mb topologically associated domain in six human cancers. Nat Commun 2025; 16:1611. [PMID: 39948336 PMCID: PMC11825950 DOI: 10.1038/s41467-025-56568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Cis-regulatory elements (CREs), such as enhancers and promoters, are fundamental regulators of gene expression and, across different cell types, the MYC locus utilizes a diverse regulatory architecture driven by multiple CREs. To better understand differences in CRE function, we perform pooled CRISPR inhibition (CRISPRi) screens to comprehensively probe the 2.8 Mb topologically-associated domain containing MYC in 6 human cancer cell lines with nucleotide resolution. We map 32 CREs where inhibition leads to changes in cell growth, including 8 that overlap previously identified enhancers. Targeting specific CREs decreases MYC expression by as much as 60%, and cell growth by as much as 50%. Using 3-D enhancer contact mapping, we find that these CREs almost always contact MYC but less than 10% of total MYC contacts impact growth when silenced, highlighting the utility of our approach to identify phenotypically-relevant CREs. We also detect an enrichment of lineage-specific transcription factors (TFs) at MYC CREs and, for some of these TFs, find a strong, tumor-specific correlation between TF and MYC expression not found in normal tissue. Taken together, these CREs represent systematically identified, functional regulatory regions and demonstrate how the same region of the human genome can give rise to complex, tissue-specific gene regulation.
Collapse
Affiliation(s)
- Christina M Caragine
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Victoria T Le
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Meer Mustafa
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Bianca Jay Diaz
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - John A Morris
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Simon Müller
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Alejandro Mendez-Mancilla
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Evan Geller
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Noa Liscovitch-Brauer
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Huggler KS, Mellado Fritz CA, Flickinger KM, Chang GR, McGuire MF, Cantor JR. Hexokinase detachment from mitochondria drives the Warburg effect to support compartmentalized ATP production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637120. [PMID: 39975027 PMCID: PMC11839068 DOI: 10.1101/2025.02.07.637120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hexokinase (HK) catalyzes the synthesis of glucose-6-phosphate, marking the first committed step of glucose metabolism. Most cancer cells express two homologous isoforms (HK1 and HK2) that can each bind to the outer mitochondrial membrane (OMM). CRISPR screens across hundreds of cancer cell lines indicate that both are dispensable for cell growth in traditional culture media. By contrast, HK2 deletion impairs cell growth in Human Plasma-Like Medium (HPLM). Here, we find that HK2 is required to maintain sufficient cytosolic (OMM-detached) HK activity under conditions that enhance HK1 binding to the OMM. Notably, OMM-detached rather than OMM-docked HK promotes "aerobic glycolysis" (Warburg effect), an enigmatic phenotype displayed by most proliferating cells. We show that several proposed theories for this phenotype cannot explain the HK2 dependence and instead find that HK2 deletion severely impairs glycolytic ATP production with little impact on total ATP yield for cells in HPLM. Our results reveal a basis for conditional HK2 essentiality and suggest that demand for compartmentalized ATP synthesis underlies the Warburg effect.
Collapse
|
29
|
Long L, Wang L, Liang Y, Ye F, Jin Y, Luo D, Li X, Wang Y, Li Y, Han D, Chen B, Zhao W, Wang L, Yang Q. UGCG promotes chemoresistance and breast cancer progression via NF-κB and Wnt/β-catenin pathway activation. Transl Oncol 2025; 52:102241. [PMID: 39674092 PMCID: PMC11700287 DOI: 10.1016/j.tranon.2024.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Taxane-based chemotherapy is the primary treatment for triple-negative breast cancer (TNBC), yet clinical outcomes remain unsatisfactory due to the persistence of chemoresistance. Identifying key factors that contribute to chemoresistance and understanding the associated molecular mechanisms is therefore essential. METHOD The GEO databases were utilized to pinpoint factors related to chemoresistance, which were subsequently validated using clinical tissue samples. The role of UGCG in the malignant progression and chemoresistance of TNBC was assessed through various functional assays. Western blotting, qRT-PCR, and immunohistochemistry were employed to investigate the signaling pathways associated with UGCG in TNBC. RESULTS UGCG expression was notably elevated in chemoresistant breast cancer tissues and cells, as identified in GEO databases and confirmed through immunohistochemistry. Additionally, findings from our cohorts indicated that higher levels of UGCG expression correlated with a lower rate of pathological complete response (pCR), suggesting it could serve as an independent predictor of chemotherapy effectiveness. Gain- and loss-of-function experiments demonstrated that UGCG enhanced the proliferation, metastasis, and stemness of breast cancer cells. Furthermore, treatment with paclitaxel or docetaxel resulted in increased UGCG expression, which in turn reduced chemotherapy-induced cell apoptosis and improved drug resistance and metastatic capabilities. Mechanistically, UGCG was found to amplify the activation of NF-κB and Wnt/β-catenin pathways, and the use of inhibitors targeting these pathways diminished the UGCG-induced malignant effects. CONCLUSION Our findings underscore the significant role of UGCG in the chemoresistance and progression of breast cancer, suggesting it as a predictive biomarker and potential therapeutic target to combat chemoresistance in this disease.
Collapse
Affiliation(s)
- Li Long
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China; Department of Breast Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, PR China
| | - Lei Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Fangzhou Ye
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Yuhan Jin
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoyan Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Yajie Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Bing Chen
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Wenjing Zhao
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Lijuan Wang
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China; Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China; Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
30
|
Chen X, Zheng M, Lin S, Huang M, Chen S, Chen S. The application of CRISPR/Cas9-based genome-wide screening to disease research. Mol Cell Probes 2025; 79:102004. [PMID: 39709065 DOI: 10.1016/j.mcp.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
High-throughput genetic screening serves as an indispensable approach for deciphering gene functions and the intricate relationships between phenotypes and genotypes. The CRISPR/Cas9 system, with its ability to precisely edit genomes on a large scale, has revolutionized the field by enabling the construction of comprehensive genomic libraries. This technology has become a cornerstone for genome-wide screenings in disease research. This review offers a comprehensive examination of how CRISPR/Cas9-based genetic screening has been leveraged to uncover genes that play a role in disease mechanisms, focusing on areas such as cancer development and viral replication processes. The insights presented in this review hold promise for the development of novel therapeutic strategies and precision medicine approaches.
Collapse
Affiliation(s)
- Xiuqin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Su Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Meiqing Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China.
| |
Collapse
|
31
|
Malycheva D, Alvarado-Kristensson M. Molecular characterization of the TUBG1 meshwork's influence on Cytoskeletal organization. Heliyon 2025; 11:e41829. [PMID: 40013266 PMCID: PMC11862694 DOI: 10.1016/j.heliyon.2025.e41829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 02/28/2025] Open
Abstract
The γ-tubulin (TUBG) meshwork is a central regulator of cellular architecture, orchestrating processes such as microtubule nucleation, mitochondrial organization, and genomic integrity. This study investigates the molecular impact of TUBG depletion on the cytoskeleton. Knockdown of TUBG using single guide RNA disrupted microtubule, vimentin, and lamin B networks while simultaneously reinforcing actin filaments structures. These findings suggest that actin reinforcement may act as a compensatory response to the broader disruption of cytoskeletal integrity. Expression of N-terminal (TUBG1-335) or C-terminal (TUBG334-451) fragments of TUBG1 partially restored these networks, with the C-terminal fragment demonstrating greater effectiveness reestablishing microtubule integrity. Both fragments stabilized vimentin filaments and the nuclear envelope, underscoring TUBG's dual structural and regulatory roles across multiple cytoskeletal systems. This study highlights the critical hubbing properties of TUBG in coordinating cytoskeletal integrity and its potential as a therapeutic target in cytoskeleton-related disorders.
Collapse
Affiliation(s)
- Darina Malycheva
- Molecular Pathology, Department of Translational Medicine, Lund University, SE, 21428 Malmö, Sweden
| | | |
Collapse
|
32
|
Smith EM, Ly J, Haug S, Cheeseman IM. Molecular determinants of RNase MRP specificity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635360. [PMID: 39974906 PMCID: PMC11838342 DOI: 10.1101/2025.01.28.635360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
RNase MRP and RNase P are evolutionarily related complexes that facilitate rRNA and tRNA biogenesis, respectively. The two enzymes share nearly all protein subunits and have evolutionarily related catalytic RNAs. Notably, RNase P includes a unique subunit, Rpp21, whereas no RNase MRP-specific proteins have been found in humans, limiting molecular analyses of RNase MRP function. Here, we identify the RNase MRP-specific protein, C18orf21/RMRPP1. RMRPP1 and Rpp21 display significant structural homology, but we identify specific regions that drive interactions with their respective complexes. Additionally, we reveal that RNase MRP is required for 40S, but not 60S, ribosome biogenesis uncovering an alternative pathway for ribosome assembly. Finally, we identify Nepro as an essential rRNA processing factor that associates with the RNase MRP complex. Together, our findings elucidate the molecular determinants of RNase MRP function and underscore its critical role in ribosome biogenesis.
Collapse
Affiliation(s)
- Eric M. Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jimmy Ly
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sofia Haug
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
33
|
Che R, Mirani B, Panah M, Chen X, Luo H, Alexandrov A. Identification of Two Elusive Human Ribonuclease MRP-Specific Protein Components. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.19.633795. [PMID: 39896489 PMCID: PMC11785048 DOI: 10.1101/2025.01.19.633795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
All known protein components of one of the longest-studied human ribonucleoprotein ribozyme nuclear Ribonuclease MRP (RNase MRP), which processes pre-rRNA at ITS1 site 2, are shared with Ribonuclease P (RNase P), which cleaves pre-tRNA 5' leader sequences. Our genome-wide forward genetic screening identified two poorly characterized human genes, which we named RPP24 and RPP64. We show that these two genes are required for pre-rRNA ITS1 site 2 processing and their protein products efficiently associate with RNA MRP. Unlike all other human RNase MRP protein components, RPP24 and RPP64 are not required for RNase P activity and do not associate with RNase P-specific RNA H1. Despite extremely limited sequence homology, RPP24 and RPP64 exhibit predicted structural similarities to two RNase MRP-specific components in S. cerevisiae, with specific differences in RPP64 regions of substrate recognition. Collectively, our functional screening and validation revealed the first two protein components unique to human nuclear RNase MRP.
Collapse
Affiliation(s)
- Rui Che
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Bhoomi Mirani
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Monireh Panah
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Xiaotong Chen
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Hong Luo
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Andrei Alexandrov
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| |
Collapse
|
34
|
Shin SW, Kim SH, Gasselin A, Lee GM, Lee JS. Comprehensive genome-scale CRISPR knockout screening of CHO cells. Sci Data 2025; 12:71. [PMID: 39814846 PMCID: PMC11735622 DOI: 10.1038/s41597-025-04438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Chinese hamster ovary (CHO) cells play a pivotal role in the production of recombinant therapeutics. In the present study, we conducted a genome-scale pooled CRISPR knockout (KO) screening using a virus-free, recombinase-mediated cassette exchange-based platform in CHO-K1 host and CHO-K1 derived recombinant cells. Genome-wide guide RNA (gRNA) amplicon sequencing data were generated from cell libraries, as well as short- and long-term KO libraries, and validated through phenotypic assessment and gRNA read count distribution. Additionally, we obtained gRNA amplicon sequencing data from the highly productive recombinant cell populations. By analyzing these datasets, essential genes involved in cell fitness as well as functional target genes associated with therapeutic protein production can be identified. Collectively, our next-generation sequencing datasets, derived from a robust and reliable CRISPR screening method, provide valuable insights into CHO genomic functions, advancing the development of next-generation CHO factories.
Collapse
Affiliation(s)
- Sung Wook Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Aghiles Gasselin
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
35
|
Bodner J, Vadlamani P, Helmin KA, Liu Q, Mendillo ML, Singer BD, Srivastava S, Foltz DR. Distinct Control of histone H1 expression within the Histone Locus body by CRAMP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631602. [PMID: 39829857 PMCID: PMC11741267 DOI: 10.1101/2025.01.07.631602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Proper histone gene expression is critical to cell viability and maintaining genomic integrity. Multiple histone genes organized into three genomic loci encode for replication coupled core and linker histones. Histone gene expression and transcript processing is orchestrated in the histone locus body (HLB) within the nucleus. We identified human CRAMP1 as a selective regulator of linker histone H1 expression. CRAMP1 is recruited to the HLB in RPE1 hTERT cells. Affinity purification shows that CRAMP1 physically associates the HLB component GON4L (a.k.a. YARP). We show that the PAH domains of GON4L interact with CRAMP1. CRAMP1 disruption results in a loss of histone H1 expression and a reduction in H1 protein. CRAMP1 occupies the unmethylated promoters of the replication coupled linker histone genes that reside within the histone locus body, and the replication independent histone H1 loci, which reside in a region of the genome without other histone genes. Together these data identify CRAMP1 as a novel and selective regulator of histone H1 gene expression.
Collapse
|
36
|
Bolomsky A, Choi J, Phelan JD. Genotype from Phenotype: Using CRISPR Screens to Dissect Lymphoma Biology. Methods Mol Biol 2025; 2865:241-257. [PMID: 39424727 DOI: 10.1007/978-1-0716-4188-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Genome-wide screens are a powerful technique to dissect the complex network of genes regulating diverse cellular phenotypes. The recent adaptation of the CRISPR-Cas9 system for genome engineering has revolutionized functional genomic screening. Here, we present protocols used to introduce Cas9 into human lymphoma cell lines, produce high-titer lentivirus of a genome-wide sgRNA library, transduce and culture cells during the screen, select cells with a specified phenotype, isolate genomic DNA, and prepare a custom library for next-generation sequencing. These protocols were tailored for loss-of-function CRISPR screens in human B-cell lymphoma cell lines but are highly amenable for other experimental purposes.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Fong SH, Kuenzi BM, Mattson NM, Lee J, Sanchez K, Bojorquez-Gomez A, Ford K, Munson BP, Licon K, Bergendahl S, Shen JP, Kreisberg JF, Mali P, Hager JH, White MA, Ideker T. A multilineage screen identifies actionable synthetic lethal interactions in human cancers. Nat Genet 2025; 57:154-164. [PMID: 39558023 DOI: 10.1038/s41588-024-01971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/02/2024] [Indexed: 11/20/2024]
Abstract
Cancers are driven by alterations in diverse genes, creating dependencies that can be therapeutically targeted. However, many genetic dependencies have proven inconsistent across tumors. Here we describe SCHEMATIC, a strategy to identify a core network of highly penetrant, actionable genetic interactions. First, fundamental cellular processes are perturbed by systematic combinatorial knockouts across tumor lineages, identifying 1,805 synthetic lethal interactions (95% unreported). Interactions are then analyzed by hierarchical pooling, revealing that half segregate reliably by tissue type or biomarker status (51%) and a substantial minority are penetrant across lineages (34%). Interactions converge on 49 multigene systems, including MAPK signaling and BAF transcriptional regulatory complexes, which become essential on disruption of polymerases. Some 266 interactions translate to robust biomarkers of drug sensitivity, including frequent genetic alterations in the KDM5C/6A histone demethylases, which sensitize to inhibition of TIPARP (PARP7). SCHEMATIC offers a context-aware, data-driven approach to match genetic alterations to targeted therapies.
Collapse
Affiliation(s)
- Samson H Fong
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Brent M Kuenzi
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nicole M Mattson
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Lee
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle Sanchez
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ana Bojorquez-Gomez
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle Ford
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Brenton P Munson
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katherine Licon
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sarah Bergendahl
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Paul Shen
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason F Kreisberg
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | - Trey Ideker
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
38
|
Ngoi NYL, Gallo D, Torrado C, Nardo M, Durocher D, Yap TA. Synthetic lethal strategies for the development of cancer therapeutics. Nat Rev Clin Oncol 2025; 22:46-64. [PMID: 39627502 DOI: 10.1038/s41571-024-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Synthetic lethality is a genetic phenomenon whereby the simultaneous presence of two different genetic alterations impairs cellular viability. Importantly, targeting synthetic lethal interactions offers potential therapeutic strategies for cancers with alterations in pathways that might otherwise be considered undruggable. High-throughput screening methods based on modern CRISPR-Cas9 technologies have emerged and become crucial for identifying novel synthetic lethal interactions with the potential for translation into biologically rational cancer therapeutic strategies as well as associated predictive biomarkers of response capable of guiding patient selection. Spurred by the clinical success of PARP inhibitors in patients with BRCA-mutant cancers, novel agents targeting multiple synthetic lethal interactions within DNA damage response pathways are in clinical development, and rational strategies targeting synthetic lethal interactions spanning alterations in epigenetic, metabolic and proliferative pathways have also emerged and are in late preclinical and/or early clinical testing. In this Review, we provide a comprehensive overview of established and emerging technologies for synthetic lethal drug discovery and development and discuss promising therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Gallo
- Repare Therapeutics, Inc., Montreal, Quebec, Canada
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
39
|
Arafeh R, Shibue T, Dempster JM, Hahn WC, Vazquez F. The present and future of the Cancer Dependency Map. Nat Rev Cancer 2025; 25:59-73. [PMID: 39468210 DOI: 10.1038/s41568-024-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Despite tremendous progress in the past decade, the complex and heterogeneous nature of cancer complicates efforts to identify new therapies and therapeutic combinations that achieve durable responses in most patients. Further advances in cancer therapy will rely, in part, on the development of targeted therapeutics matched with the genetic and molecular characteristics of cancer. The Cancer Dependency Map (DepMap) is a large-scale data repository and research platform, aiming to systematically reveal the landscape of cancer vulnerabilities in thousands of genetically and molecularly annotated cancer models. DepMap is used routinely by cancer researchers and translational scientists and has facilitated the identification of several novel and selective therapeutic strategies for multiple cancer types that are being tested in the clinic. However, it is also clear that the current version of DepMap is not yet comprehensive. In this Perspective, we review (1) the impact and current uses of DepMap, (2) the opportunities to enhance DepMap to overcome its current limitations, and (3) the ongoing efforts to further improve and expand DepMap.
Collapse
Affiliation(s)
- Rand Arafeh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | | | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
40
|
Liang WW, Müller S, Hart SK, Wessels HH, Méndez-Mancilla A, Sookdeo A, Choi O, Caragine CM, Corman A, Lu L, Kolumba O, Williams B, Sanjana NE. Transcriptome-scale RNA-targeting CRISPR screens reveal essential lncRNAs in human cells. Cell 2024; 187:7637-7654.e29. [PMID: 39532094 DOI: 10.1016/j.cell.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/09/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
Mammalian genomes host a diverse array of RNA that includes protein-coding and noncoding transcripts. However, the functional roles of most long noncoding RNAs (lncRNAs) remain elusive. Using RNA-targeting CRISPR-Cas13 screens, we probed how the loss of ∼6,200 lncRNAs impacts cell fitness across five human cell lines and identified 778 lncRNAs with context-specific or broad essentiality. We confirm their essentiality with individual perturbations and find that the majority of essential lncRNAs operate independently of their nearest protein-coding genes. Using transcriptome profiling in single cells, we discover that the loss of essential lncRNAs impairs cell-cycle progression and drives apoptosis. Many essential lncRNAs demonstrate dynamic expression across tissues during development. Using ∼9,000 primary tumors, we pinpoint those lncRNAs whose expression in tumors correlates with survival, yielding new biomarkers and potential therapeutic targets. This transcriptome-wide survey of functional lncRNAs advances our understanding of noncoding transcripts and demonstrates the potential of transcriptome-scale noncoding screens with Cas13.
Collapse
Affiliation(s)
- Wen-Wei Liang
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Simon Müller
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Sydney K Hart
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Alejandro Méndez-Mancilla
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Akash Sookdeo
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Olivia Choi
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Christina M Caragine
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Alba Corman
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Lu Lu
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Olena Kolumba
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Breanna Williams
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA.
| |
Collapse
|
41
|
Perampalam P, McDonald JI, Dick FA. GO-CRISPR: A highly controlled workflow to discover gene essentiality in loss-of-function screens. PLoS One 2024; 19:e0315923. [PMID: 39693330 DOI: 10.1371/journal.pone.0315923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Genome-wide CRISPR screens are an effective discovery tool for genes that underlie diverse cellular mechanisms that can be scored through cell fitness. Loss-of-function screens are particularly challenging compared to gain-of-function because of the limited dynamic range of decreased sgRNA sequence detection. Here we describe Guide-Only control CRISPR (GO-CRISPR), an improved loss-of-function screening workflow, and its companion software package, Toolset for the Ranked Analysis of GO-CRISPR Screens (TRACS). We demonstrate a typical GO-CRISPR workflow in a non-proliferative 3D spheroid model of dormant high grade serous ovarian cancer and demonstrate superior performance to standard screening methods. The unique integration of the pooled sgRNA library quality and guide-only controls allows TRACS to identify novel molecular pathways that were previously unidentified in tumor dormancy and undetectable to analysis packages that lack the guide only controls. Together, GO-CRISPR and TRACS can robustly improve the discovery of essential genes in challenging biological scenarios such as growth arrested cells.
Collapse
Affiliation(s)
- Pirunthan Perampalam
- London Health Sciences Centre Research Institute, London Regional Cancer Program, London, ON, Canada
- Department of Biochemistry, Western University, London, ON, Canada
- Copoly.ai Inc., Ottawa, ON, Canada
| | - James I McDonald
- London Health Sciences Centre Research Institute, London Regional Cancer Program, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Frederick A Dick
- London Health Sciences Centre Research Institute, London Regional Cancer Program, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
| |
Collapse
|
42
|
Chen J, Bai Y, Huang Y, Cui M, Wang Y, Gu Z, Wu X, Li Y, Rong YS. The Ptch/SPOUT1 methyltransferase deposits an m 3U modification on 28 S rRNA for normal ribosomal function in flies and humans. SCIENCE ADVANCES 2024; 10:eadr1743. [PMID: 39671501 PMCID: PMC11641110 DOI: 10.1126/sciadv.adr1743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
The ribosomal RNA (rRNA) is one of the most heavily modified RNA species in nature. Although we have advanced knowledge of the sites, functions, and the enzymology of many of the rRNA modifications from all kingdoms of life, we lack basic understanding of many of those that are not universally present. A single N3 modified uridine base (m3U) was identified to be present on the 28S rRNA from humans and frogs but absent in bacteria or yeast. Here, we show that the equivalent m3U is present in Drosophila and that the Ptch/CG12128 enzyme and its human homolog SPOUT1 are both necessary and sufficient for carrying out the modification. The Ptch-modified U is at a functional center of the large ribosomal subunit, and, consistently, ptch-mutant cells suffer loss of ribosomal functions. SPOUT1, suggested to be the most druggable RNA methyltransferases in humans, represents a unique target where ribosomal functions could be specifically compromised in cancer cells.
Collapse
Affiliation(s)
- Jie Chen
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yaofu Bai
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yuantai Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Cui
- School of Public Health, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yiqing Wang
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Zhenqi Gu
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Xiaolong Wu
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yubin Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yikang S. Rong
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| |
Collapse
|
43
|
Tucker SK, Eberhart JK. The convergence of mTOR signaling and ethanol teratogenesis. Reprod Toxicol 2024; 130:108720. [PMID: 39306261 DOI: 10.1016/j.reprotox.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Ethanol is one of the most common teratogens and causes of human developmental disabilities. Fetal alcohol spectrum disorders (FASD), which describes the wide range of deficits due to prenatal ethanol exposure, are estimated to affect between 1.1 % and 5.0 % of births in the United States. Ethanol dysregulates numerous cellular mechanisms such as programmed cell death (apoptosis), protein synthesis, autophagy, and various aspects of cell signaling, all of which contribute to FASD. The mechanistic target of rapamycin (mTOR) regulates these cellular mechanisms via sensing of nutrients like amino acids and glucose, DNA damage, and growth factor signaling. Despite an extensive literature on ethanol teratogenesis and mTOR signaling, there has been less attention paid to their interaction. Here, we discuss the impact of ethanol teratogenesis on mTORC1's ability to coordinate growth factor and amino acid sensing with protein synthesis, autophagy, and apoptosis. Notably, the effect of ethanol exposure on mTOR signaling depends on the timing and dose of ethanol as well as the system studied. Overall, the overlap between the functions of mTORC1 and the phenotypes observed in FASD suggest a mechanistic interaction. However, more work is required to fully understand the impact of ethanol teratogenesis on mTOR signaling.
Collapse
Affiliation(s)
- Scott K Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX, USA
| | - Johann K Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX, USA.
| |
Collapse
|
44
|
LaBoone PA, Assis R. Stress-Induced Constraint on Expression Noise of Essential Genes in E. coli. J Mol Evol 2024; 92:834-841. [PMID: 39394469 DOI: 10.1007/s00239-024-10211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
Gene expression is an inherently noisy process that is constrained by natural selection. Yet the condition dependence of constraint on expression noise remains unclear. Here, we address this problem by studying constraint on expression noise of E. coli genes in eight diverse growth conditions. In particular, we use variation in expression noise as an analog for constraint, examining its relationships to expression level and to the number of regulatory inputs from transcription factors across and within conditions. We show that variation in expression noise is negatively associated with expression level, implicating constraint to minimize expression noise of highly expressed genes. However, this relationship is condition dependent, with the strongest constraint observed when E. coli are grown in the presence of glycerol or ciprofloxacin, which result in carbon or antibiotic stress, respectively. In contrast, we do not observe evidence of constraint on expression noise of highly regulated genes, suggesting that highly expressed and highly regulated genes represent distinct classes of genes. Indeed, we find that essential genes are often highly expressed but not highly regulated, with elevated expression noise in glycerol and ciprofloxacin conditions. Thus, our findings support the hypothesis that selective constraint on expression noise is condition dependent in E. coli, illustrating how it may play a critical role in ensuring expression stability of essential genes in unstable environments.
Collapse
Affiliation(s)
- Perry A LaBoone
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Raquel Assis
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA.
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
45
|
Mohammed SEM, Nowikovsky K. The mysteries of LETM1 pleiotropy. Pharmacol Res 2024; 210:107485. [PMID: 39481506 DOI: 10.1016/j.phrs.2024.107485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
LETM1 is a nuclear-encoded protein located in the inner mitochondrial membrane, playing a critical role in regulating mitochondrial cation and volume homeostasis. However, numerous studies on functional features, molecular interactions, and disease-associated effects of LETM1 revealed that LETM1 is also involved in other metabolic functions including glucose utilization, mitochondrial DNA and ribosome organization, cristae architecture and respiratory complex stability. Undisputedly, osmoregulatory processes are essential for mitochondrial functionality, but the pleiotropic aspects of LETM1 challenges us to understand the core function of LETM1, which still remains elusive. In this review, we provide an overview of the current knowledge and latest developments regarding the activities involving LETM1. We highlight various findings that offer different functional perspectives and ideas on the core function of LETM1. Specifically, we emphasize data supporting LETM1's role as a mitochondrial translational factor, K+/H+ exchanger, or Ca2+/H+ exchanger, along with recent findings on its interaction with ATAD3A and TMBIM5. We also present the severe clinical implications of LETM1 deficiency. Finally, we discuss emerging questions raised by the different views on LETM1, which need to be addressed to guide future research directions and ultimately resolve the function of this essential protein and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sami E M Mohammed
- Department of Biomedical Sciences and Pathobiology, Centre of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, Vetmeduni, Vienna, Austria
| | - Karin Nowikovsky
- Department of Biomedical Sciences and Pathobiology, Centre of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, Vetmeduni, Vienna, Austria.
| |
Collapse
|
46
|
Zhang ZY, Fan YE, Huang CB, Du MZ. Human essential gene identification based on feature fusion and feature screening. IET Syst Biol 2024; 18:227-237. [PMID: 39578676 DOI: 10.1049/syb2.12105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/11/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
Essential genes are necessary to sustain the life of a species under adequate nutritional conditions. These genes have attracted significant attention for their potential as drug targets, especially in developing broad-spectrum antibacterial drugs. However, studying essential genes remains challenging due to their variability in specific environmental conditions. In this study, the authors aim to develop a powerful prediction model for identifying essential genes in humans. The authors first obtained the essential gene data from human cancer cell lines and characterised gene sequences using 7 feature encoding methods such as Kmer, the Composition of K-spaced Nucleic Acid Pairs, and Z-curve. Subsequently, feature fusion and feature optimisation strategies were employed to select the impactful features. Finally, machine learning algorithms were applied to construct the prediction models and evaluate their performance. The single-feature-based model achieved the highest area under the Receiver Operating Characteristic curve (AUC) of 0.830. After fusing and filtering these features, the classical machine learning models achieved the highest AUC at 0.823 while the deep learning model reached 0.860. Results obtained by the authors show that compared to using individual features, feature fusion and feature optimisation strategies significantly improved model performance. Moreover, the study provided an advantageous method for essential gene identification compared to other methods.
Collapse
Affiliation(s)
- Zhao-Yue Zhang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue-Er Fan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, ABa Teachers University, Chengdu, China
| | - Meng-Ze Du
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
47
|
Xu T, Wang S, Ma T, Dong Y, Ashby CR, Hao GF. The identification of essential cellular genes is critical for validating drug targets. Drug Discov Today 2024; 29:104215. [PMID: 39428084 DOI: 10.1016/j.drudis.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Accurately identifying biological targets is crucial for advancing treatment options. Essential genes, vital for cell or organism survival, hold promise as potential drug targets in disease treatment. Although many studies have sought to identify essential genes as therapeutic targets in medicine and bioinformatics, systematic reviews on their relationship with drug targets are relatively rare. This work presents a comprehensive analysis to aid in identifying essential genes as potential targets for drug discovery, encompassing their relevance, identification methods, successful case studies, and challenges. This work will facilitate the identification of essential genes as therapeutic targets, thereby boosting new drug development.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China.
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, USA.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
48
|
Iannuzzi RM, Manipur I, Pacini C, Behan FM, Guarracino MR, Garnett MJ, Savino A, Iorio F. Benchmark Software and Data for Evaluating CRISPR-Cas9 Experimental Pipelines Through the Assessment of a Calibration Screen. CRISPR J 2024; 7:355-365. [PMID: 38165445 DOI: 10.1089/crispr.2023.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Genome-wide genetic screens using CRISPR-guide RNA libraries are widely performed in mammalian cells to functionally characterize individual genes and for the discovery of new anticancer therapeutic targets. As the effectiveness of such powerful and precise tools for cancer pharmacogenomics is emerging, tools and methods for their quality assessment are becoming increasingly necessary. Here, we provide an R package and a high-quality reference data set for the assessment of novel experimental pipelines through which a single calibration experiment has been executed: a screen of the HT-29 human colorectal cancer cell line with a commercially available genome-wide library of single-guide RNAs. This package and data allow experimental researchers to benchmark their screens and produce a quality-control report, encompassing several quality and validation metrics. The R code used for processing the reference data set, for its quality assessment, as well as to evaluate the quality of a user-provided screen, and to reproduce the figures presented in this article is available at https://github.com/DepMap-Analytics/HT29benchmark. The reference data is publicly available on FigShare.
Collapse
Affiliation(s)
| | - Ichcha Manipur
- Institute for High Performance Computing and Networking (ICAR), National Research Council, Naples, Italy
| | - Clare Pacini
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Open Targets, Hinxton, United Kingdom
| | - Fiona M Behan
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Open Targets, Hinxton, United Kingdom
| | - Mario R Guarracino
- Institute for High Performance Computing and Networking (ICAR), National Research Council, Naples, Italy
| | - Mathew J Garnett
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Open Targets, Hinxton, United Kingdom
| | | | - Francesco Iorio
- Human Technopole, Milan, Italy
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Open Targets, Hinxton, United Kingdom
| |
Collapse
|
49
|
Lam S, Thomas JC, Jackson SP. Genome-aware annotation of CRISPR guides validates targets in variant cell lines and enhances discovery in screens. Genome Med 2024; 16:139. [PMID: 39593080 PMCID: PMC11590575 DOI: 10.1186/s13073-024-01414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND CRISPR-Cas9 technology has revolutionised genetic screens and can inform on gene essentiality and chemo-genetic interactions. It is easily deployed and widely supported with many pooled CRISPR libraries available commercially. However, discrepancies between the reference genomes used in the design of those CRISPR libraries and the cell line under investigation can lead to loss of signal or introduction of bias. The problem is particularly acute when dealing with variant cell lines such as cancer cell lines. RESULTS Here, we present an algorithm, EXOme-guided Re-annotation of nuCleotIde SEquences (Exorcise), which uses sequence search to detect and correct mis-annotations in CRISPR libraries. Exorcise verifies the presence of CRISPR targets in the target genome and applies corrections to CRISPR libraries using existing exome annotations. We applied Exorcise to re-annotate guides in pooled CRISPR libraries available on Addgene and found that libraries designed on a more permissive reference sequence had more mis-annotations. In simulated CRISPR screens, we modelled common mis-annotations and found that they adversely affect discovery of hits in the intermediate range. We then confirmed this by applying Exorcise on datasets from Dependency Map (DepMap) and the DNA Damage Response CRISPR Screen Viewer (DDRcs), where we found improved discovery power upon Exorcise while retaining the strongest hits. CONCLUSIONS Pooled CRISPR libraries map guide sequences to genes and these mappings might not be ready to use due to permissive library design or investigating a variant cell line. By re-annotating CRISPR guides, Exorcise focuses CRISPR experiments towards the genome of the cell line under investigation. Exorcise can be applied at the library design stage or the analysis stage and allows post hoc re-analysis of completed screens. It is available under a Creative Commons Zero v1.0 Universal licence at https://github.com/SimonLammmm/exorcise .
Collapse
Affiliation(s)
- Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - John C Thomas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
50
|
Lodovichi S, Nepomuceno TC, Woods NT, Rix U, Koomen JM, Pellicioli A, Galli A, Monteiro ANA. SART1 modulates poly-(ADP-ribose) chain accumulation and PARP1 chromatin localization. iScience 2024; 27:111252. [PMID: 39569366 PMCID: PMC11576398 DOI: 10.1016/j.isci.2024.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 02/23/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
PARP1 inhibitors (PARPis) are used for treatment of cancers with mutations in BRCA1 or BRCA2 that are deficient in homologous recombination. The identification of modulators of PARP1 activity is critical to understand and overcome resistance to PARPis. We integrated data from three omics-scale screens to discover new regulators of PARP1 activity. We identified SART1 and show that its silencing leads to an increase in poly-ADP ribosylation and chromatin-bound PARP1. SART1 is recruited to chromatin following DNA damage and limits PARP1 chromatin retention and activity. The SART1 N-terminus is sufficient to regulate the accumulation of PAR chains and PARP1 on chromatin, an activity dependent on the RGG/RG box. Silencing of SART1 leads to an increased sensitivity of cells to DNA damage induced by IR, irrespective of BRCA1 status and to PARPis only in absence of BRCA1. These results suggest that SART1 could be clinically utilized to improve PARPi efficacy.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, 56125 Pisa, Italy
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Thales C Nepomuceno
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Nicholas T Woods
- Gastrointestinal Cancer Program, Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Molecular Oncology and Molecular Medicine Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, 56125 Pisa, Italy
| | - Alvaro N A Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|